mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
203 lines
8.5 KiB
203 lines
8.5 KiB
/* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#ifndef AVUTIL_TX_PRIV_H |
|
#define AVUTIL_TX_PRIV_H |
|
|
|
#include "tx.h" |
|
#include "thread.h" |
|
#include "mem_internal.h" |
|
#include "attributes.h" |
|
|
|
#ifdef TX_FLOAT |
|
#define TX_NAME(x) x ## _float |
|
#define SCALE_TYPE float |
|
typedef float FFTSample; |
|
typedef AVComplexFloat FFTComplex; |
|
#elif defined(TX_DOUBLE) |
|
#define TX_NAME(x) x ## _double |
|
#define SCALE_TYPE double |
|
typedef double FFTSample; |
|
typedef AVComplexDouble FFTComplex; |
|
#elif defined(TX_INT32) |
|
#define TX_NAME(x) x ## _int32 |
|
#define SCALE_TYPE float |
|
typedef int32_t FFTSample; |
|
typedef AVComplexInt32 FFTComplex; |
|
#else |
|
typedef void FFTComplex; |
|
#endif |
|
|
|
#if defined(TX_FLOAT) || defined(TX_DOUBLE) |
|
|
|
#define CMUL(dre, dim, are, aim, bre, bim) \ |
|
do { \ |
|
(dre) = (are) * (bre) - (aim) * (bim); \ |
|
(dim) = (are) * (bim) + (aim) * (bre); \ |
|
} while (0) |
|
|
|
#define SMUL(dre, dim, are, aim, bre, bim) \ |
|
do { \ |
|
(dre) = (are) * (bre) - (aim) * (bim); \ |
|
(dim) = (are) * (bim) - (aim) * (bre); \ |
|
} while (0) |
|
|
|
#define UNSCALE(x) (x) |
|
#define RESCALE(x) (x) |
|
|
|
#define FOLD(a, b) ((a) + (b)) |
|
|
|
#elif defined(TX_INT32) |
|
|
|
/* Properly rounds the result */ |
|
#define CMUL(dre, dim, are, aim, bre, bim) \ |
|
do { \ |
|
int64_t accu; \ |
|
(accu) = (int64_t)(bre) * (are); \ |
|
(accu) -= (int64_t)(bim) * (aim); \ |
|
(dre) = (int)(((accu) + 0x40000000) >> 31); \ |
|
(accu) = (int64_t)(bim) * (are); \ |
|
(accu) += (int64_t)(bre) * (aim); \ |
|
(dim) = (int)(((accu) + 0x40000000) >> 31); \ |
|
} while (0) |
|
|
|
#define SMUL(dre, dim, are, aim, bre, bim) \ |
|
do { \ |
|
int64_t accu; \ |
|
(accu) = (int64_t)(bre) * (are); \ |
|
(accu) -= (int64_t)(bim) * (aim); \ |
|
(dre) = (int)(((accu) + 0x40000000) >> 31); \ |
|
(accu) = (int64_t)(bim) * (are); \ |
|
(accu) -= (int64_t)(bre) * (aim); \ |
|
(dim) = (int)(((accu) + 0x40000000) >> 31); \ |
|
} while (0) |
|
|
|
#define UNSCALE(x) ((double)x/2147483648.0) |
|
#define RESCALE(x) (av_clip64(lrintf((x) * 2147483648.0), INT32_MIN, INT32_MAX)) |
|
|
|
#define FOLD(x, y) ((int)((x) + (unsigned)(y) + 32) >> 6) |
|
|
|
#endif |
|
|
|
#define BF(x, y, a, b) \ |
|
do { \ |
|
x = (a) - (b); \ |
|
y = (a) + (b); \ |
|
} while (0) |
|
|
|
#define CMUL3(c, a, b) \ |
|
CMUL((c).re, (c).im, (a).re, (a).im, (b).re, (b).im) |
|
|
|
#define COSTABLE(size) \ |
|
DECLARE_ALIGNED(32, FFTSample, TX_NAME(ff_cos_##size))[size/4 + 1] |
|
|
|
/* Used by asm, reorder with care */ |
|
struct AVTXContext { |
|
int n; /* Non-power-of-two part */ |
|
int m; /* Power-of-two part */ |
|
int inv; /* Is inverse */ |
|
int type; /* Type */ |
|
uint64_t flags; /* Flags */ |
|
double scale; /* Scale */ |
|
|
|
FFTComplex *exptab; /* MDCT exptab */ |
|
FFTComplex *tmp; /* Temporary buffer needed for all compound transforms */ |
|
int *pfatab; /* Input/Output mapping for compound transforms */ |
|
int *revtab; /* Input mapping for power of two transforms */ |
|
int *inplace_idx; /* Required indices to revtab for in-place transforms */ |
|
|
|
int *revtab_c; /* Revtab for only the C transforms, needed because |
|
* checkasm makes us reuse the same context. */ |
|
|
|
av_tx_fn top_tx; /* Used for computing transforms derived from other |
|
* transforms, like full-length iMDCTs and RDFTs. |
|
* NOTE: Do NOT use this to mix assembly with C code. */ |
|
}; |
|
|
|
/* Checks if type is an MDCT */ |
|
int ff_tx_type_is_mdct(enum AVTXType type); |
|
|
|
/* |
|
* Generates the PFA permutation table into AVTXContext->pfatab. The end table |
|
* is appended to the start table. |
|
*/ |
|
int ff_tx_gen_compound_mapping(AVTXContext *s); |
|
|
|
/* |
|
* Generates a standard-ish (slightly modified) Split-Radix revtab into |
|
* AVTXContext->revtab |
|
*/ |
|
int ff_tx_gen_ptwo_revtab(AVTXContext *s, int invert_lookup); |
|
|
|
/* |
|
* Generates an index into AVTXContext->inplace_idx that if followed in the |
|
* specific order, allows the revtab to be done in-place. AVTXContext->revtab |
|
* must already exist. |
|
*/ |
|
int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s, int *revtab); |
|
|
|
/* |
|
* This generates a parity-based revtab of length len and direction inv. |
|
* |
|
* Parity means even and odd complex numbers will be split, e.g. the even |
|
* coefficients will come first, after which the odd coefficients will be |
|
* placed. For example, a 4-point transform's coefficients after reordering: |
|
* z[0].re, z[0].im, z[2].re, z[2].im, z[1].re, z[1].im, z[3].re, z[3].im |
|
* |
|
* The basis argument is the length of the largest non-composite transform |
|
* supported, and also implies that the basis/2 transform is supported as well, |
|
* as the split-radix algorithm requires it to be. |
|
* |
|
* The dual_stride argument indicates that both the basis, as well as the |
|
* basis/2 transforms support doing two transforms at once, and the coefficients |
|
* will be interleaved between each pair in a split-radix like so (stride == 2): |
|
* tx1[0], tx1[2], tx2[0], tx2[2], tx1[1], tx1[3], tx2[1], tx2[3] |
|
* A non-zero number switches this on, with the value indicating the stride |
|
* (how many values of 1 transform to put first before switching to the other). |
|
* Must be a power of two or 0. Must be less than the basis. |
|
* Value will be clipped to the transform size, so for a basis of 16 and a |
|
* dual_stride of 8, dual 8-point transforms will be laid out as if dual_stride |
|
* was set to 4. |
|
* Usually you'll set this to half the complex numbers that fit in a single |
|
* register or 0. This allows to reuse SSE functions as dual-transform |
|
* functions in AVX mode. |
|
* |
|
* If length is smaller than basis/2 this function will not do anything. |
|
*/ |
|
void ff_tx_gen_split_radix_parity_revtab(int *revtab, int len, int inv, |
|
int basis, int dual_stride); |
|
|
|
/* Templated init functions */ |
|
int ff_tx_init_mdct_fft_float(AVTXContext *s, av_tx_fn *tx, |
|
enum AVTXType type, int inv, int len, |
|
const void *scale, uint64_t flags); |
|
int ff_tx_init_mdct_fft_double(AVTXContext *s, av_tx_fn *tx, |
|
enum AVTXType type, int inv, int len, |
|
const void *scale, uint64_t flags); |
|
int ff_tx_init_mdct_fft_int32(AVTXContext *s, av_tx_fn *tx, |
|
enum AVTXType type, int inv, int len, |
|
const void *scale, uint64_t flags); |
|
|
|
typedef struct CosTabsInitOnce { |
|
void (*func)(void); |
|
AVOnce control; |
|
} CosTabsInitOnce; |
|
|
|
void ff_tx_init_float_x86(AVTXContext *s, av_tx_fn *tx); |
|
|
|
#endif /* AVUTIL_TX_PRIV_H */
|
|
|