mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1733 lines
64 KiB
1733 lines
64 KiB
/* |
|
* AAC decoder |
|
* Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org ) |
|
* Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com ) |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file libavcodec/aac.c |
|
* AAC decoder |
|
* @author Oded Shimon ( ods15 ods15 dyndns org ) |
|
* @author Maxim Gavrilov ( maxim.gavrilov gmail com ) |
|
*/ |
|
|
|
/* |
|
* supported tools |
|
* |
|
* Support? Name |
|
* N (code in SoC repo) gain control |
|
* Y block switching |
|
* Y window shapes - standard |
|
* N window shapes - Low Delay |
|
* Y filterbank - standard |
|
* N (code in SoC repo) filterbank - Scalable Sample Rate |
|
* Y Temporal Noise Shaping |
|
* N (code in SoC repo) Long Term Prediction |
|
* Y intensity stereo |
|
* Y channel coupling |
|
* Y frequency domain prediction |
|
* Y Perceptual Noise Substitution |
|
* Y Mid/Side stereo |
|
* N Scalable Inverse AAC Quantization |
|
* N Frequency Selective Switch |
|
* N upsampling filter |
|
* Y quantization & coding - AAC |
|
* N quantization & coding - TwinVQ |
|
* N quantization & coding - BSAC |
|
* N AAC Error Resilience tools |
|
* N Error Resilience payload syntax |
|
* N Error Protection tool |
|
* N CELP |
|
* N Silence Compression |
|
* N HVXC |
|
* N HVXC 4kbits/s VR |
|
* N Structured Audio tools |
|
* N Structured Audio Sample Bank Format |
|
* N MIDI |
|
* N Harmonic and Individual Lines plus Noise |
|
* N Text-To-Speech Interface |
|
* N (in progress) Spectral Band Replication |
|
* Y (not in this code) Layer-1 |
|
* Y (not in this code) Layer-2 |
|
* Y (not in this code) Layer-3 |
|
* N SinuSoidal Coding (Transient, Sinusoid, Noise) |
|
* N (planned) Parametric Stereo |
|
* N Direct Stream Transfer |
|
* |
|
* Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication. |
|
* - HE AAC v2 comprises LC AAC with Spectral Band Replication and |
|
Parametric Stereo. |
|
*/ |
|
|
|
|
|
#include "avcodec.h" |
|
#include "internal.h" |
|
#include "get_bits.h" |
|
#include "dsputil.h" |
|
#include "lpc.h" |
|
|
|
#include "aac.h" |
|
#include "aactab.h" |
|
#include "aacdectab.h" |
|
#include "mpeg4audio.h" |
|
#include "aac_parser.h" |
|
|
|
#include <assert.h> |
|
#include <errno.h> |
|
#include <math.h> |
|
#include <string.h> |
|
|
|
union float754 { float f; uint32_t i; }; |
|
|
|
static VLC vlc_scalefactors; |
|
static VLC vlc_spectral[11]; |
|
|
|
|
|
static ChannelElement* get_che(AACContext *ac, int type, int elem_id) { |
|
static const int8_t tags_per_config[16] = { 0, 1, 1, 2, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0 }; |
|
if (ac->tag_che_map[type][elem_id]) { |
|
return ac->tag_che_map[type][elem_id]; |
|
} |
|
if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) { |
|
return NULL; |
|
} |
|
switch (ac->m4ac.chan_config) { |
|
case 7: |
|
if (ac->tags_mapped == 3 && type == TYPE_CPE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2]; |
|
} |
|
case 6: |
|
/* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1] |
|
instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have |
|
encountered such a stream, transfer the LFE[0] element to SCE[1] */ |
|
if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0]; |
|
} |
|
case 5: |
|
if (ac->tags_mapped == 2 && type == TYPE_CPE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1]; |
|
} |
|
case 4: |
|
if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; |
|
} |
|
case 3: |
|
case 2: |
|
if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0]; |
|
} else if (ac->m4ac.chan_config == 2) { |
|
return NULL; |
|
} |
|
case 1: |
|
if (!ac->tags_mapped && type == TYPE_SCE) { |
|
ac->tags_mapped++; |
|
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0]; |
|
} |
|
default: |
|
return NULL; |
|
} |
|
} |
|
|
|
/** |
|
* Configure output channel order based on the current program configuration element. |
|
* |
|
* @param che_pos current channel position configuration |
|
* @param new_che_pos New channel position configuration - we only do something if it differs from the current one. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID], |
|
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], int channel_config) { |
|
AVCodecContext *avctx = ac->avccontext; |
|
int i, type, channels = 0; |
|
|
|
memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
|
|
|
/* Allocate or free elements depending on if they are in the |
|
* current program configuration. |
|
* |
|
* Set up default 1:1 output mapping. |
|
* |
|
* For a 5.1 stream the output order will be: |
|
* [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ] |
|
*/ |
|
|
|
for(i = 0; i < MAX_ELEM_ID; i++) { |
|
for(type = 0; type < 4; type++) { |
|
if(che_pos[type][i]) { |
|
if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement)))) |
|
return AVERROR(ENOMEM); |
|
if(type != TYPE_CCE) { |
|
ac->output_data[channels++] = ac->che[type][i]->ch[0].ret; |
|
if(type == TYPE_CPE) { |
|
ac->output_data[channels++] = ac->che[type][i]->ch[1].ret; |
|
} |
|
} |
|
} else |
|
av_freep(&ac->che[type][i]); |
|
} |
|
} |
|
|
|
if (channel_config) { |
|
memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0])); |
|
ac->tags_mapped = 0; |
|
} else { |
|
memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0])); |
|
ac->tags_mapped = 4*MAX_ELEM_ID; |
|
} |
|
|
|
avctx->channels = channels; |
|
|
|
ac->output_configured = 1; |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit. |
|
* |
|
* @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present. |
|
* @param sce_map mono (Single Channel Element) map |
|
* @param type speaker type/position for these channels |
|
*/ |
|
static void decode_channel_map(enum ChannelPosition *cpe_map, |
|
enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) { |
|
while(n--) { |
|
enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map |
|
map[get_bits(gb, 4)] = type; |
|
} |
|
} |
|
|
|
/** |
|
* Decode program configuration element; reference: table 4.2. |
|
* |
|
* @param new_che_pos New channel position configuration - we only do something if it differs from the current one. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], |
|
GetBitContext * gb) { |
|
int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index; |
|
|
|
skip_bits(gb, 2); // object_type |
|
|
|
sampling_index = get_bits(gb, 4); |
|
if (ac->m4ac.sampling_index != sampling_index) |
|
av_log(ac->avccontext, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n"); |
|
|
|
num_front = get_bits(gb, 4); |
|
num_side = get_bits(gb, 4); |
|
num_back = get_bits(gb, 4); |
|
num_lfe = get_bits(gb, 2); |
|
num_assoc_data = get_bits(gb, 3); |
|
num_cc = get_bits(gb, 4); |
|
|
|
if (get_bits1(gb)) |
|
skip_bits(gb, 4); // mono_mixdown_tag |
|
if (get_bits1(gb)) |
|
skip_bits(gb, 4); // stereo_mixdown_tag |
|
|
|
if (get_bits1(gb)) |
|
skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround |
|
|
|
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front); |
|
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side ); |
|
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back ); |
|
decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe ); |
|
|
|
skip_bits_long(gb, 4 * num_assoc_data); |
|
|
|
decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc ); |
|
|
|
align_get_bits(gb); |
|
|
|
/* comment field, first byte is length */ |
|
skip_bits_long(gb, 8 * get_bits(gb, 8)); |
|
return 0; |
|
} |
|
|
|
/** |
|
* Set up channel positions based on a default channel configuration |
|
* as specified in table 1.17. |
|
* |
|
* @param new_che_pos New channel position configuration - we only do something if it differs from the current one. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], |
|
int channel_config) |
|
{ |
|
if(channel_config < 1 || channel_config > 7) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n", |
|
channel_config); |
|
return -1; |
|
} |
|
|
|
/* default channel configurations: |
|
* |
|
* 1ch : front center (mono) |
|
* 2ch : L + R (stereo) |
|
* 3ch : front center + L + R |
|
* 4ch : front center + L + R + back center |
|
* 5ch : front center + L + R + back stereo |
|
* 6ch : front center + L + R + back stereo + LFE |
|
* 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE |
|
*/ |
|
|
|
if(channel_config != 2) |
|
new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono) |
|
if(channel_config > 1) |
|
new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo) |
|
if(channel_config == 4) |
|
new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center |
|
if(channel_config > 4) |
|
new_che_pos[TYPE_CPE][(channel_config == 7) + 1] |
|
= AAC_CHANNEL_BACK; // back stereo |
|
if(channel_config > 5) |
|
new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE |
|
if(channel_config == 7) |
|
new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode GA "General Audio" specific configuration; reference: table 4.1. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) { |
|
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]; |
|
int extension_flag, ret; |
|
|
|
if(get_bits1(gb)) { // frameLengthFlag |
|
av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1); |
|
return -1; |
|
} |
|
|
|
if (get_bits1(gb)) // dependsOnCoreCoder |
|
skip_bits(gb, 14); // coreCoderDelay |
|
extension_flag = get_bits1(gb); |
|
|
|
if(ac->m4ac.object_type == AOT_AAC_SCALABLE || |
|
ac->m4ac.object_type == AOT_ER_AAC_SCALABLE) |
|
skip_bits(gb, 3); // layerNr |
|
|
|
memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
|
if (channel_config == 0) { |
|
skip_bits(gb, 4); // element_instance_tag |
|
if((ret = decode_pce(ac, new_che_pos, gb))) |
|
return ret; |
|
} else { |
|
if((ret = set_default_channel_config(ac, new_che_pos, channel_config))) |
|
return ret; |
|
} |
|
if((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config))) |
|
return ret; |
|
|
|
if (extension_flag) { |
|
switch (ac->m4ac.object_type) { |
|
case AOT_ER_BSAC: |
|
skip_bits(gb, 5); // numOfSubFrame |
|
skip_bits(gb, 11); // layer_length |
|
break; |
|
case AOT_ER_AAC_LC: |
|
case AOT_ER_AAC_LTP: |
|
case AOT_ER_AAC_SCALABLE: |
|
case AOT_ER_AAC_LD: |
|
skip_bits(gb, 3); /* aacSectionDataResilienceFlag |
|
* aacScalefactorDataResilienceFlag |
|
* aacSpectralDataResilienceFlag |
|
*/ |
|
break; |
|
} |
|
skip_bits1(gb); // extensionFlag3 (TBD in version 3) |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode audio specific configuration; reference: table 1.13. |
|
* |
|
* @param data pointer to AVCodecContext extradata |
|
* @param data_size size of AVCCodecContext extradata |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) { |
|
GetBitContext gb; |
|
int i; |
|
|
|
init_get_bits(&gb, data, data_size * 8); |
|
|
|
if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0) |
|
return -1; |
|
if(ac->m4ac.sampling_index > 12) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index); |
|
return -1; |
|
} |
|
|
|
skip_bits_long(&gb, i); |
|
|
|
switch (ac->m4ac.object_type) { |
|
case AOT_AAC_MAIN: |
|
case AOT_AAC_LC: |
|
if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config)) |
|
return -1; |
|
break; |
|
default: |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n", |
|
ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type); |
|
return -1; |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* linear congruential pseudorandom number generator |
|
* |
|
* @param previous_val pointer to the current state of the generator |
|
* |
|
* @return Returns a 32-bit pseudorandom integer |
|
*/ |
|
static av_always_inline int lcg_random(int previous_val) { |
|
return previous_val * 1664525 + 1013904223; |
|
} |
|
|
|
static void reset_predict_state(PredictorState * ps) { |
|
ps->r0 = 0.0f; |
|
ps->r1 = 0.0f; |
|
ps->cor0 = 0.0f; |
|
ps->cor1 = 0.0f; |
|
ps->var0 = 1.0f; |
|
ps->var1 = 1.0f; |
|
} |
|
|
|
static void reset_all_predictors(PredictorState * ps) { |
|
int i; |
|
for (i = 0; i < MAX_PREDICTORS; i++) |
|
reset_predict_state(&ps[i]); |
|
} |
|
|
|
static void reset_predictor_group(PredictorState * ps, int group_num) { |
|
int i; |
|
for (i = group_num-1; i < MAX_PREDICTORS; i+=30) |
|
reset_predict_state(&ps[i]); |
|
} |
|
|
|
static av_cold int aac_decode_init(AVCodecContext * avccontext) { |
|
AACContext * ac = avccontext->priv_data; |
|
int i; |
|
|
|
ac->avccontext = avccontext; |
|
|
|
if (avccontext->extradata_size > 0) { |
|
if(decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size)) |
|
return -1; |
|
avccontext->sample_rate = ac->m4ac.sample_rate; |
|
} else if (avccontext->channels > 0) { |
|
ac->m4ac.sample_rate = avccontext->sample_rate; |
|
} |
|
|
|
avccontext->sample_fmt = SAMPLE_FMT_S16; |
|
avccontext->frame_size = 1024; |
|
|
|
AAC_INIT_VLC_STATIC( 0, 144); |
|
AAC_INIT_VLC_STATIC( 1, 114); |
|
AAC_INIT_VLC_STATIC( 2, 188); |
|
AAC_INIT_VLC_STATIC( 3, 180); |
|
AAC_INIT_VLC_STATIC( 4, 172); |
|
AAC_INIT_VLC_STATIC( 5, 140); |
|
AAC_INIT_VLC_STATIC( 6, 168); |
|
AAC_INIT_VLC_STATIC( 7, 114); |
|
AAC_INIT_VLC_STATIC( 8, 262); |
|
AAC_INIT_VLC_STATIC( 9, 248); |
|
AAC_INIT_VLC_STATIC(10, 384); |
|
|
|
dsputil_init(&ac->dsp, avccontext); |
|
|
|
ac->random_state = 0x1f2e3d4c; |
|
|
|
// -1024 - Compensate wrong IMDCT method. |
|
// 32768 - Required to scale values to the correct range for the bias method |
|
// for float to int16 conversion. |
|
|
|
if(ac->dsp.float_to_int16 == ff_float_to_int16_c) { |
|
ac->add_bias = 385.0f; |
|
ac->sf_scale = 1. / (-1024. * 32768.); |
|
ac->sf_offset = 0; |
|
} else { |
|
ac->add_bias = 0.0f; |
|
ac->sf_scale = 1. / -1024.; |
|
ac->sf_offset = 60; |
|
} |
|
|
|
#if !CONFIG_HARDCODED_TABLES |
|
for (i = 0; i < 428; i++) |
|
ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.); |
|
#endif /* CONFIG_HARDCODED_TABLES */ |
|
|
|
INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code), |
|
ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]), |
|
ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]), |
|
352); |
|
|
|
ff_mdct_init(&ac->mdct, 11, 1, 1.0); |
|
ff_mdct_init(&ac->mdct_small, 8, 1, 1.0); |
|
// window initialization |
|
ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024); |
|
ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128); |
|
ff_sine_window_init(ff_sine_1024, 1024); |
|
ff_sine_window_init(ff_sine_128, 128); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Skip data_stream_element; reference: table 4.10. |
|
*/ |
|
static void skip_data_stream_element(GetBitContext * gb) { |
|
int byte_align = get_bits1(gb); |
|
int count = get_bits(gb, 8); |
|
if (count == 255) |
|
count += get_bits(gb, 8); |
|
if (byte_align) |
|
align_get_bits(gb); |
|
skip_bits_long(gb, 8 * count); |
|
} |
|
|
|
static int decode_prediction(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb) { |
|
int sfb; |
|
if (get_bits1(gb)) { |
|
ics->predictor_reset_group = get_bits(gb, 5); |
|
if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n"); |
|
return -1; |
|
} |
|
} |
|
for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) { |
|
ics->prediction_used[sfb] = get_bits1(gb); |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode Individual Channel Stream info; reference: table 4.6. |
|
* |
|
* @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information. |
|
*/ |
|
static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) { |
|
if (get_bits1(gb)) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n"); |
|
memset(ics, 0, sizeof(IndividualChannelStream)); |
|
return -1; |
|
} |
|
ics->window_sequence[1] = ics->window_sequence[0]; |
|
ics->window_sequence[0] = get_bits(gb, 2); |
|
ics->use_kb_window[1] = ics->use_kb_window[0]; |
|
ics->use_kb_window[0] = get_bits1(gb); |
|
ics->num_window_groups = 1; |
|
ics->group_len[0] = 1; |
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
int i; |
|
ics->max_sfb = get_bits(gb, 4); |
|
for (i = 0; i < 7; i++) { |
|
if (get_bits1(gb)) { |
|
ics->group_len[ics->num_window_groups-1]++; |
|
} else { |
|
ics->num_window_groups++; |
|
ics->group_len[ics->num_window_groups-1] = 1; |
|
} |
|
} |
|
ics->num_windows = 8; |
|
ics->swb_offset = ff_swb_offset_128[ac->m4ac.sampling_index]; |
|
ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index]; |
|
ics->tns_max_bands = ff_tns_max_bands_128[ac->m4ac.sampling_index]; |
|
ics->predictor_present = 0; |
|
} else { |
|
ics->max_sfb = get_bits(gb, 6); |
|
ics->num_windows = 1; |
|
ics->swb_offset = ff_swb_offset_1024[ac->m4ac.sampling_index]; |
|
ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index]; |
|
ics->tns_max_bands = ff_tns_max_bands_1024[ac->m4ac.sampling_index]; |
|
ics->predictor_present = get_bits1(gb); |
|
ics->predictor_reset_group = 0; |
|
if (ics->predictor_present) { |
|
if (ac->m4ac.object_type == AOT_AAC_MAIN) { |
|
if (decode_prediction(ac, ics, gb)) { |
|
memset(ics, 0, sizeof(IndividualChannelStream)); |
|
return -1; |
|
} |
|
} else if (ac->m4ac.object_type == AOT_AAC_LC) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n"); |
|
memset(ics, 0, sizeof(IndividualChannelStream)); |
|
return -1; |
|
} else { |
|
av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1); |
|
memset(ics, 0, sizeof(IndividualChannelStream)); |
|
return -1; |
|
} |
|
} |
|
} |
|
|
|
if(ics->max_sfb > ics->num_swb) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Number of scalefactor bands in group (%d) exceeds limit (%d).\n", |
|
ics->max_sfb, ics->num_swb); |
|
memset(ics, 0, sizeof(IndividualChannelStream)); |
|
return -1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode band types (section_data payload); reference: table 4.46. |
|
* |
|
* @param band_type array of the used band type |
|
* @param band_type_run_end array of the last scalefactor band of a band type run |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_band_types(AACContext * ac, enum BandType band_type[120], |
|
int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) { |
|
int g, idx = 0; |
|
const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5; |
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
int k = 0; |
|
while (k < ics->max_sfb) { |
|
uint8_t sect_len = k; |
|
int sect_len_incr; |
|
int sect_band_type = get_bits(gb, 4); |
|
if (sect_band_type == 12) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n"); |
|
return -1; |
|
} |
|
while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1) |
|
sect_len += sect_len_incr; |
|
sect_len += sect_len_incr; |
|
if (sect_len > ics->max_sfb) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Number of bands (%d) exceeds limit (%d).\n", |
|
sect_len, ics->max_sfb); |
|
return -1; |
|
} |
|
for (; k < sect_len; k++) { |
|
band_type [idx] = sect_band_type; |
|
band_type_run_end[idx++] = sect_len; |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode scalefactors; reference: table 4.47. |
|
* |
|
* @param global_gain first scalefactor value as scalefactors are differentially coded |
|
* @param band_type array of the used band type |
|
* @param band_type_run_end array of the last scalefactor band of a band type run |
|
* @param sf array of scalefactors or intensity stereo positions |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb, |
|
unsigned int global_gain, IndividualChannelStream * ics, |
|
enum BandType band_type[120], int band_type_run_end[120]) { |
|
const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0); |
|
int g, i, idx = 0; |
|
int offset[3] = { global_gain, global_gain - 90, 100 }; |
|
int noise_flag = 1; |
|
static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" }; |
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
for (i = 0; i < ics->max_sfb;) { |
|
int run_end = band_type_run_end[idx]; |
|
if (band_type[idx] == ZERO_BT) { |
|
for(; i < run_end; i++, idx++) |
|
sf[idx] = 0.; |
|
}else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) { |
|
for(; i < run_end; i++, idx++) { |
|
offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
|
if(offset[2] > 255U) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"%s (%d) out of range.\n", sf_str[2], offset[2]); |
|
return -1; |
|
} |
|
sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300]; |
|
} |
|
}else if(band_type[idx] == NOISE_BT) { |
|
for(; i < run_end; i++, idx++) { |
|
if(noise_flag-- > 0) |
|
offset[1] += get_bits(gb, 9) - 256; |
|
else |
|
offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
|
if(offset[1] > 255U) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"%s (%d) out of range.\n", sf_str[1], offset[1]); |
|
return -1; |
|
} |
|
sf[idx] = -ff_aac_pow2sf_tab[ offset[1] + sf_offset + 100]; |
|
} |
|
}else { |
|
for(; i < run_end; i++, idx++) { |
|
offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
|
if(offset[0] > 255U) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"%s (%d) out of range.\n", sf_str[0], offset[0]); |
|
return -1; |
|
} |
|
sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset]; |
|
} |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode pulse data; reference: table 4.7. |
|
*/ |
|
static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) { |
|
int i, pulse_swb; |
|
pulse->num_pulse = get_bits(gb, 2) + 1; |
|
pulse_swb = get_bits(gb, 6); |
|
if (pulse_swb >= num_swb) |
|
return -1; |
|
pulse->pos[0] = swb_offset[pulse_swb]; |
|
pulse->pos[0] += get_bits(gb, 5); |
|
if (pulse->pos[0] > 1023) |
|
return -1; |
|
pulse->amp[0] = get_bits(gb, 4); |
|
for (i = 1; i < pulse->num_pulse; i++) { |
|
pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1]; |
|
if (pulse->pos[i] > 1023) |
|
return -1; |
|
pulse->amp[i] = get_bits(gb, 4); |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode Temporal Noise Shaping data; reference: table 4.48. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns, |
|
GetBitContext * gb, const IndividualChannelStream * ics) { |
|
int w, filt, i, coef_len, coef_res, coef_compress; |
|
const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE; |
|
const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12; |
|
for (w = 0; w < ics->num_windows; w++) { |
|
if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) { |
|
coef_res = get_bits1(gb); |
|
|
|
for (filt = 0; filt < tns->n_filt[w]; filt++) { |
|
int tmp2_idx; |
|
tns->length[w][filt] = get_bits(gb, 6 - 2*is8); |
|
|
|
if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.", |
|
tns->order[w][filt], tns_max_order); |
|
tns->order[w][filt] = 0; |
|
return -1; |
|
} |
|
if (tns->order[w][filt]) { |
|
tns->direction[w][filt] = get_bits1(gb); |
|
coef_compress = get_bits1(gb); |
|
coef_len = coef_res + 3 - coef_compress; |
|
tmp2_idx = 2*coef_compress + coef_res; |
|
|
|
for (i = 0; i < tns->order[w][filt]; i++) |
|
tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)]; |
|
} |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode Mid/Side data; reference: table 4.54. |
|
* |
|
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; |
|
* [1] mask is decoded from bitstream; [2] mask is all 1s; |
|
* [3] reserved for scalable AAC |
|
*/ |
|
static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb, |
|
int ms_present) { |
|
int idx; |
|
if (ms_present == 1) { |
|
for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++) |
|
cpe->ms_mask[idx] = get_bits1(gb); |
|
} else if (ms_present == 2) { |
|
memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0])); |
|
} |
|
} |
|
|
|
/** |
|
* Decode spectral data; reference: table 4.50. |
|
* Dequantize and scale spectral data; reference: 4.6.3.3. |
|
* |
|
* @param coef array of dequantized, scaled spectral data |
|
* @param sf array of scalefactors or intensity stereo positions |
|
* @param pulse_present set if pulses are present |
|
* @param pulse pointer to pulse data struct |
|
* @param band_type array of the used band type |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120], |
|
int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) { |
|
int i, k, g, idx = 0; |
|
const int c = 1024/ics->num_windows; |
|
const uint16_t * offsets = ics->swb_offset; |
|
float *coef_base = coef; |
|
static const float sign_lookup[] = { 1.0f, -1.0f }; |
|
|
|
for (g = 0; g < ics->num_windows; g++) |
|
memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb])); |
|
|
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
for (i = 0; i < ics->max_sfb; i++, idx++) { |
|
const int cur_band_type = band_type[idx]; |
|
const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4; |
|
const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type); |
|
int group; |
|
if (cur_band_type == ZERO_BT || cur_band_type == INTENSITY_BT2 || cur_band_type == INTENSITY_BT) { |
|
for (group = 0; group < ics->group_len[g]; group++) { |
|
memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float)); |
|
} |
|
}else if (cur_band_type == NOISE_BT) { |
|
for (group = 0; group < ics->group_len[g]; group++) { |
|
float scale; |
|
float band_energy = 0; |
|
for (k = offsets[i]; k < offsets[i+1]; k++) { |
|
ac->random_state = lcg_random(ac->random_state); |
|
coef[group*128+k] = ac->random_state; |
|
band_energy += coef[group*128+k]*coef[group*128+k]; |
|
} |
|
scale = sf[idx] / sqrtf(band_energy); |
|
for (k = offsets[i]; k < offsets[i+1]; k++) { |
|
coef[group*128+k] *= scale; |
|
} |
|
} |
|
}else { |
|
for (group = 0; group < ics->group_len[g]; group++) { |
|
for (k = offsets[i]; k < offsets[i+1]; k += dim) { |
|
const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3); |
|
const int coef_tmp_idx = (group << 7) + k; |
|
const float *vq_ptr; |
|
int j; |
|
if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n", |
|
cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]); |
|
return -1; |
|
} |
|
vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim]; |
|
if (is_cb_unsigned) { |
|
if (vq_ptr[0]) coef[coef_tmp_idx ] = sign_lookup[get_bits1(gb)]; |
|
if (vq_ptr[1]) coef[coef_tmp_idx + 1] = sign_lookup[get_bits1(gb)]; |
|
if (dim == 4) { |
|
if (vq_ptr[2]) coef[coef_tmp_idx + 2] = sign_lookup[get_bits1(gb)]; |
|
if (vq_ptr[3]) coef[coef_tmp_idx + 3] = sign_lookup[get_bits1(gb)]; |
|
} |
|
if (cur_band_type == ESC_BT) { |
|
for (j = 0; j < 2; j++) { |
|
if (vq_ptr[j] == 64.0f) { |
|
int n = 4; |
|
/* The total length of escape_sequence must be < 22 bits according |
|
to the specification (i.e. max is 11111111110xxxxxxxxxx). */ |
|
while (get_bits1(gb) && n < 15) n++; |
|
if(n == 15) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n"); |
|
return -1; |
|
} |
|
n = (1<<n) + get_bits(gb, n); |
|
coef[coef_tmp_idx + j] *= cbrtf(n) * n; |
|
}else |
|
coef[coef_tmp_idx + j] *= vq_ptr[j]; |
|
} |
|
}else |
|
{ |
|
coef[coef_tmp_idx ] *= vq_ptr[0]; |
|
coef[coef_tmp_idx + 1] *= vq_ptr[1]; |
|
if (dim == 4) { |
|
coef[coef_tmp_idx + 2] *= vq_ptr[2]; |
|
coef[coef_tmp_idx + 3] *= vq_ptr[3]; |
|
} |
|
} |
|
}else { |
|
coef[coef_tmp_idx ] = vq_ptr[0]; |
|
coef[coef_tmp_idx + 1] = vq_ptr[1]; |
|
if (dim == 4) { |
|
coef[coef_tmp_idx + 2] = vq_ptr[2]; |
|
coef[coef_tmp_idx + 3] = vq_ptr[3]; |
|
} |
|
} |
|
coef[coef_tmp_idx ] *= sf[idx]; |
|
coef[coef_tmp_idx + 1] *= sf[idx]; |
|
if (dim == 4) { |
|
coef[coef_tmp_idx + 2] *= sf[idx]; |
|
coef[coef_tmp_idx + 3] *= sf[idx]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
coef += ics->group_len[g]<<7; |
|
} |
|
|
|
if (pulse_present) { |
|
idx = 0; |
|
for(i = 0; i < pulse->num_pulse; i++){ |
|
float co = coef_base[ pulse->pos[i] ]; |
|
while(offsets[idx + 1] <= pulse->pos[i]) |
|
idx++; |
|
if (band_type[idx] != NOISE_BT && sf[idx]) { |
|
float ico = -pulse->amp[i]; |
|
if (co) { |
|
co /= sf[idx]; |
|
ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico); |
|
} |
|
coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx]; |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static av_always_inline float flt16_round(float pf) { |
|
union float754 tmp; |
|
tmp.f = pf; |
|
tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U; |
|
return tmp.f; |
|
} |
|
|
|
static av_always_inline float flt16_even(float pf) { |
|
union float754 tmp; |
|
tmp.f = pf; |
|
tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U>>16)) & 0xFFFF0000U; |
|
return tmp.f; |
|
} |
|
|
|
static av_always_inline float flt16_trunc(float pf) { |
|
union float754 pun; |
|
pun.f = pf; |
|
pun.i &= 0xFFFF0000U; |
|
return pun.f; |
|
} |
|
|
|
static void predict(AACContext * ac, PredictorState * ps, float* coef, int output_enable) { |
|
const float a = 0.953125; // 61.0/64 |
|
const float alpha = 0.90625; // 29.0/32 |
|
float e0, e1; |
|
float pv; |
|
float k1, k2; |
|
|
|
k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0; |
|
k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0; |
|
|
|
pv = flt16_round(k1 * ps->r0 + k2 * ps->r1); |
|
if (output_enable) |
|
*coef += pv * ac->sf_scale; |
|
|
|
e0 = *coef / ac->sf_scale; |
|
e1 = e0 - k1 * ps->r0; |
|
|
|
ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1); |
|
ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1)); |
|
ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0); |
|
ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0)); |
|
|
|
ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0)); |
|
ps->r0 = flt16_trunc(a * e0); |
|
} |
|
|
|
/** |
|
* Apply AAC-Main style frequency domain prediction. |
|
*/ |
|
static void apply_prediction(AACContext * ac, SingleChannelElement * sce) { |
|
int sfb, k; |
|
|
|
if (!sce->ics.predictor_initialized) { |
|
reset_all_predictors(sce->predictor_state); |
|
sce->ics.predictor_initialized = 1; |
|
} |
|
|
|
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { |
|
for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) { |
|
for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) { |
|
predict(ac, &sce->predictor_state[k], &sce->coeffs[k], |
|
sce->ics.predictor_present && sce->ics.prediction_used[sfb]); |
|
} |
|
} |
|
if (sce->ics.predictor_reset_group) |
|
reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group); |
|
} else |
|
reset_all_predictors(sce->predictor_state); |
|
} |
|
|
|
/** |
|
* Decode an individual_channel_stream payload; reference: table 4.44. |
|
* |
|
* @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information. |
|
* @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.) |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) { |
|
Pulse pulse; |
|
TemporalNoiseShaping * tns = &sce->tns; |
|
IndividualChannelStream * ics = &sce->ics; |
|
float * out = sce->coeffs; |
|
int global_gain, pulse_present = 0; |
|
|
|
/* This assignment is to silence a GCC warning about the variable being used |
|
* uninitialized when in fact it always is. |
|
*/ |
|
pulse.num_pulse = 0; |
|
|
|
global_gain = get_bits(gb, 8); |
|
|
|
if (!common_window && !scale_flag) { |
|
if (decode_ics_info(ac, ics, gb, 0) < 0) |
|
return -1; |
|
} |
|
|
|
if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0) |
|
return -1; |
|
if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0) |
|
return -1; |
|
|
|
pulse_present = 0; |
|
if (!scale_flag) { |
|
if ((pulse_present = get_bits1(gb))) { |
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n"); |
|
return -1; |
|
} |
|
if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n"); |
|
return -1; |
|
} |
|
} |
|
if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics)) |
|
return -1; |
|
if (get_bits1(gb)) { |
|
av_log_missing_feature(ac->avccontext, "SSR", 1); |
|
return -1; |
|
} |
|
} |
|
|
|
if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0) |
|
return -1; |
|
|
|
if(ac->m4ac.object_type == AOT_AAC_MAIN && !common_window) |
|
apply_prediction(ac, sce); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Mid/Side stereo decoding; reference: 4.6.8.1.3. |
|
*/ |
|
static void apply_mid_side_stereo(ChannelElement * cpe) { |
|
const IndividualChannelStream * ics = &cpe->ch[0].ics; |
|
float *ch0 = cpe->ch[0].coeffs; |
|
float *ch1 = cpe->ch[1].coeffs; |
|
int g, i, k, group, idx = 0; |
|
const uint16_t * offsets = ics->swb_offset; |
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
for (i = 0; i < ics->max_sfb; i++, idx++) { |
|
if (cpe->ms_mask[idx] && |
|
cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) { |
|
for (group = 0; group < ics->group_len[g]; group++) { |
|
for (k = offsets[i]; k < offsets[i+1]; k++) { |
|
float tmp = ch0[group*128 + k] - ch1[group*128 + k]; |
|
ch0[group*128 + k] += ch1[group*128 + k]; |
|
ch1[group*128 + k] = tmp; |
|
} |
|
} |
|
} |
|
} |
|
ch0 += ics->group_len[g]*128; |
|
ch1 += ics->group_len[g]*128; |
|
} |
|
} |
|
|
|
/** |
|
* intensity stereo decoding; reference: 4.6.8.2.3 |
|
* |
|
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; |
|
* [1] mask is decoded from bitstream; [2] mask is all 1s; |
|
* [3] reserved for scalable AAC |
|
*/ |
|
static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) { |
|
const IndividualChannelStream * ics = &cpe->ch[1].ics; |
|
SingleChannelElement * sce1 = &cpe->ch[1]; |
|
float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs; |
|
const uint16_t * offsets = ics->swb_offset; |
|
int g, group, i, k, idx = 0; |
|
int c; |
|
float scale; |
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
for (i = 0; i < ics->max_sfb;) { |
|
if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) { |
|
const int bt_run_end = sce1->band_type_run_end[idx]; |
|
for (; i < bt_run_end; i++, idx++) { |
|
c = -1 + 2 * (sce1->band_type[idx] - 14); |
|
if (ms_present) |
|
c *= 1 - 2 * cpe->ms_mask[idx]; |
|
scale = c * sce1->sf[idx]; |
|
for (group = 0; group < ics->group_len[g]; group++) |
|
for (k = offsets[i]; k < offsets[i+1]; k++) |
|
coef1[group*128 + k] = scale * coef0[group*128 + k]; |
|
} |
|
} else { |
|
int bt_run_end = sce1->band_type_run_end[idx]; |
|
idx += bt_run_end - i; |
|
i = bt_run_end; |
|
} |
|
} |
|
coef0 += ics->group_len[g]*128; |
|
coef1 += ics->group_len[g]*128; |
|
} |
|
} |
|
|
|
/** |
|
* Decode a channel_pair_element; reference: table 4.4. |
|
* |
|
* @param elem_id Identifies the instance of a syntax element. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_cpe(AACContext * ac, GetBitContext * gb, ChannelElement * cpe) { |
|
int i, ret, common_window, ms_present = 0; |
|
|
|
common_window = get_bits1(gb); |
|
if (common_window) { |
|
if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1)) |
|
return -1; |
|
i = cpe->ch[1].ics.use_kb_window[0]; |
|
cpe->ch[1].ics = cpe->ch[0].ics; |
|
cpe->ch[1].ics.use_kb_window[1] = i; |
|
ms_present = get_bits(gb, 2); |
|
if(ms_present == 3) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n"); |
|
return -1; |
|
} else if(ms_present) |
|
decode_mid_side_stereo(cpe, gb, ms_present); |
|
} |
|
if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0))) |
|
return ret; |
|
if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0))) |
|
return ret; |
|
|
|
if (common_window) { |
|
if (ms_present) |
|
apply_mid_side_stereo(cpe); |
|
if (ac->m4ac.object_type == AOT_AAC_MAIN) { |
|
apply_prediction(ac, &cpe->ch[0]); |
|
apply_prediction(ac, &cpe->ch[1]); |
|
} |
|
} |
|
|
|
apply_intensity_stereo(cpe, ms_present); |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode coupling_channel_element; reference: table 4.8. |
|
* |
|
* @param elem_id Identifies the instance of a syntax element. |
|
* |
|
* @return Returns error status. 0 - OK, !0 - error |
|
*/ |
|
static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) { |
|
int num_gain = 0; |
|
int c, g, sfb, ret; |
|
int sign; |
|
float scale; |
|
SingleChannelElement * sce = &che->ch[0]; |
|
ChannelCoupling * coup = &che->coup; |
|
|
|
coup->coupling_point = 2*get_bits1(gb); |
|
coup->num_coupled = get_bits(gb, 3); |
|
for (c = 0; c <= coup->num_coupled; c++) { |
|
num_gain++; |
|
coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE; |
|
coup->id_select[c] = get_bits(gb, 4); |
|
if (coup->type[c] == TYPE_CPE) { |
|
coup->ch_select[c] = get_bits(gb, 2); |
|
if (coup->ch_select[c] == 3) |
|
num_gain++; |
|
} else |
|
coup->ch_select[c] = 2; |
|
} |
|
coup->coupling_point += get_bits1(gb) || (coup->coupling_point>>1); |
|
|
|
sign = get_bits(gb, 1); |
|
scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3)); |
|
|
|
if ((ret = decode_ics(ac, sce, gb, 0, 0))) |
|
return ret; |
|
|
|
for (c = 0; c < num_gain; c++) { |
|
int idx = 0; |
|
int cge = 1; |
|
int gain = 0; |
|
float gain_cache = 1.; |
|
if (c) { |
|
cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb); |
|
gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0; |
|
gain_cache = pow(scale, -gain); |
|
} |
|
if (coup->coupling_point == AFTER_IMDCT) { |
|
coup->gain[c][0] = gain_cache; |
|
} else { |
|
for (g = 0; g < sce->ics.num_window_groups; g++) { |
|
for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) { |
|
if (sce->band_type[idx] != ZERO_BT) { |
|
if (!cge) { |
|
int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
|
if (t) { |
|
int s = 1; |
|
t = gain += t; |
|
if (sign) { |
|
s -= 2 * (t & 0x1); |
|
t >>= 1; |
|
} |
|
gain_cache = pow(scale, -t) * s; |
|
} |
|
} |
|
coup->gain[c][idx] = gain_cache; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode Spectral Band Replication extension data; reference: table 4.55. |
|
* |
|
* @param crc flag indicating the presence of CRC checksum |
|
* @param cnt length of TYPE_FIL syntactic element in bytes |
|
* |
|
* @return Returns number of bytes consumed from the TYPE_FIL element. |
|
*/ |
|
static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) { |
|
// TODO : sbr_extension implementation |
|
av_log_missing_feature(ac->avccontext, "SBR", 0); |
|
skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type |
|
return cnt; |
|
} |
|
|
|
/** |
|
* Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53. |
|
* |
|
* @return Returns number of bytes consumed. |
|
*/ |
|
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) { |
|
int i; |
|
int num_excl_chan = 0; |
|
|
|
do { |
|
for (i = 0; i < 7; i++) |
|
che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb); |
|
} while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb)); |
|
|
|
return num_excl_chan / 7; |
|
} |
|
|
|
/** |
|
* Decode dynamic range information; reference: table 4.52. |
|
* |
|
* @param cnt length of TYPE_FIL syntactic element in bytes |
|
* |
|
* @return Returns number of bytes consumed. |
|
*/ |
|
static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) { |
|
int n = 1; |
|
int drc_num_bands = 1; |
|
int i; |
|
|
|
/* pce_tag_present? */ |
|
if(get_bits1(gb)) { |
|
che_drc->pce_instance_tag = get_bits(gb, 4); |
|
skip_bits(gb, 4); // tag_reserved_bits |
|
n++; |
|
} |
|
|
|
/* excluded_chns_present? */ |
|
if(get_bits1(gb)) { |
|
n += decode_drc_channel_exclusions(che_drc, gb); |
|
} |
|
|
|
/* drc_bands_present? */ |
|
if (get_bits1(gb)) { |
|
che_drc->band_incr = get_bits(gb, 4); |
|
che_drc->interpolation_scheme = get_bits(gb, 4); |
|
n++; |
|
drc_num_bands += che_drc->band_incr; |
|
for (i = 0; i < drc_num_bands; i++) { |
|
che_drc->band_top[i] = get_bits(gb, 8); |
|
n++; |
|
} |
|
} |
|
|
|
/* prog_ref_level_present? */ |
|
if (get_bits1(gb)) { |
|
che_drc->prog_ref_level = get_bits(gb, 7); |
|
skip_bits1(gb); // prog_ref_level_reserved_bits |
|
n++; |
|
} |
|
|
|
for (i = 0; i < drc_num_bands; i++) { |
|
che_drc->dyn_rng_sgn[i] = get_bits1(gb); |
|
che_drc->dyn_rng_ctl[i] = get_bits(gb, 7); |
|
n++; |
|
} |
|
|
|
return n; |
|
} |
|
|
|
/** |
|
* Decode extension data (incomplete); reference: table 4.51. |
|
* |
|
* @param cnt length of TYPE_FIL syntactic element in bytes |
|
* |
|
* @return Returns number of bytes consumed |
|
*/ |
|
static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) { |
|
int crc_flag = 0; |
|
int res = cnt; |
|
switch (get_bits(gb, 4)) { // extension type |
|
case EXT_SBR_DATA_CRC: |
|
crc_flag++; |
|
case EXT_SBR_DATA: |
|
res = decode_sbr_extension(ac, gb, crc_flag, cnt); |
|
break; |
|
case EXT_DYNAMIC_RANGE: |
|
res = decode_dynamic_range(&ac->che_drc, gb, cnt); |
|
break; |
|
case EXT_FILL: |
|
case EXT_FILL_DATA: |
|
case EXT_DATA_ELEMENT: |
|
default: |
|
skip_bits_long(gb, 8*cnt - 4); |
|
break; |
|
}; |
|
return res; |
|
} |
|
|
|
/** |
|
* Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3. |
|
* |
|
* @param decode 1 if tool is used normally, 0 if tool is used in LTP. |
|
* @param coef spectral coefficients |
|
*/ |
|
static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) { |
|
const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb); |
|
int w, filt, m, i; |
|
int bottom, top, order, start, end, size, inc; |
|
float lpc[TNS_MAX_ORDER]; |
|
|
|
for (w = 0; w < ics->num_windows; w++) { |
|
bottom = ics->num_swb; |
|
for (filt = 0; filt < tns->n_filt[w]; filt++) { |
|
top = bottom; |
|
bottom = FFMAX(0, top - tns->length[w][filt]); |
|
order = tns->order[w][filt]; |
|
if (order == 0) |
|
continue; |
|
|
|
// tns_decode_coef |
|
compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0); |
|
|
|
start = ics->swb_offset[FFMIN(bottom, mmm)]; |
|
end = ics->swb_offset[FFMIN( top, mmm)]; |
|
if ((size = end - start) <= 0) |
|
continue; |
|
if (tns->direction[w][filt]) { |
|
inc = -1; start = end - 1; |
|
} else { |
|
inc = 1; |
|
} |
|
start += w * 128; |
|
|
|
// ar filter |
|
for (m = 0; m < size; m++, start += inc) |
|
for (i = 1; i <= FFMIN(m, order); i++) |
|
coef[start] -= coef[start - i*inc] * lpc[i-1]; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Conduct IMDCT and windowing. |
|
*/ |
|
static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) { |
|
IndividualChannelStream * ics = &sce->ics; |
|
float * in = sce->coeffs; |
|
float * out = sce->ret; |
|
float * saved = sce->saved; |
|
const float * swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; |
|
const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024; |
|
const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128; |
|
float * buf = ac->buf_mdct; |
|
float * temp = ac->temp; |
|
int i; |
|
|
|
// imdct |
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) |
|
av_log(ac->avccontext, AV_LOG_WARNING, |
|
"Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. " |
|
"If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n"); |
|
for (i = 0; i < 1024; i += 128) |
|
ff_imdct_half(&ac->mdct_small, buf + i, in + i); |
|
} else |
|
ff_imdct_half(&ac->mdct, buf, in); |
|
|
|
/* window overlapping |
|
* NOTE: To simplify the overlapping code, all 'meaningless' short to long |
|
* and long to short transitions are considered to be short to short |
|
* transitions. This leaves just two cases (long to long and short to short) |
|
* with a little special sauce for EIGHT_SHORT_SEQUENCE. |
|
*/ |
|
if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) && |
|
(ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) { |
|
ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512); |
|
} else { |
|
for (i = 0; i < 448; i++) |
|
out[i] = saved[i] + ac->add_bias; |
|
|
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64); |
|
ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64); |
|
ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64); |
|
ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64); |
|
ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64); |
|
memcpy( out + 448 + 4*128, temp, 64 * sizeof(float)); |
|
} else { |
|
ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64); |
|
for (i = 576; i < 1024; i++) |
|
out[i] = buf[i-512] + ac->add_bias; |
|
} |
|
} |
|
|
|
// buffer update |
|
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
|
for (i = 0; i < 64; i++) |
|
saved[i] = temp[64 + i] - ac->add_bias; |
|
ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64); |
|
ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64); |
|
ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64); |
|
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); |
|
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { |
|
memcpy( saved, buf + 512, 448 * sizeof(float)); |
|
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); |
|
} else { // LONG_STOP or ONLY_LONG |
|
memcpy( saved, buf + 512, 512 * sizeof(float)); |
|
} |
|
} |
|
|
|
/** |
|
* Apply dependent channel coupling (applied before IMDCT). |
|
* |
|
* @param index index into coupling gain array |
|
*/ |
|
static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) { |
|
IndividualChannelStream * ics = &cce->ch[0].ics; |
|
const uint16_t * offsets = ics->swb_offset; |
|
float * dest = target->coeffs; |
|
const float * src = cce->ch[0].coeffs; |
|
int g, i, group, k, idx = 0; |
|
if(ac->m4ac.object_type == AOT_AAC_LTP) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Dependent coupling is not supported together with LTP\n"); |
|
return; |
|
} |
|
for (g = 0; g < ics->num_window_groups; g++) { |
|
for (i = 0; i < ics->max_sfb; i++, idx++) { |
|
if (cce->ch[0].band_type[idx] != ZERO_BT) { |
|
const float gain = cce->coup.gain[index][idx]; |
|
for (group = 0; group < ics->group_len[g]; group++) { |
|
for (k = offsets[i]; k < offsets[i+1]; k++) { |
|
// XXX dsputil-ize |
|
dest[group*128+k] += gain * src[group*128+k]; |
|
} |
|
} |
|
} |
|
} |
|
dest += ics->group_len[g]*128; |
|
src += ics->group_len[g]*128; |
|
} |
|
} |
|
|
|
/** |
|
* Apply independent channel coupling (applied after IMDCT). |
|
* |
|
* @param index index into coupling gain array |
|
*/ |
|
static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) { |
|
int i; |
|
const float gain = cce->coup.gain[index][0]; |
|
const float bias = ac->add_bias; |
|
const float* src = cce->ch[0].ret; |
|
float* dest = target->ret; |
|
|
|
for (i = 0; i < 1024; i++) |
|
dest[i] += gain * (src[i] - bias); |
|
} |
|
|
|
/** |
|
* channel coupling transformation interface |
|
* |
|
* @param index index into coupling gain array |
|
* @param apply_coupling_method pointer to (in)dependent coupling function |
|
*/ |
|
static void apply_channel_coupling(AACContext * ac, ChannelElement * cc, |
|
enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point, |
|
void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index)) |
|
{ |
|
int i, c; |
|
|
|
for (i = 0; i < MAX_ELEM_ID; i++) { |
|
ChannelElement *cce = ac->che[TYPE_CCE][i]; |
|
int index = 0; |
|
|
|
if (cce && cce->coup.coupling_point == coupling_point) { |
|
ChannelCoupling * coup = &cce->coup; |
|
|
|
for (c = 0; c <= coup->num_coupled; c++) { |
|
if (coup->type[c] == type && coup->id_select[c] == elem_id) { |
|
if (coup->ch_select[c] != 1) { |
|
apply_coupling_method(ac, &cc->ch[0], cce, index); |
|
if (coup->ch_select[c] != 0) |
|
index++; |
|
} |
|
if (coup->ch_select[c] != 2) |
|
apply_coupling_method(ac, &cc->ch[1], cce, index++); |
|
} else |
|
index += 1 + (coup->ch_select[c] == 3); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Convert spectral data to float samples, applying all supported tools as appropriate. |
|
*/ |
|
static void spectral_to_sample(AACContext * ac) { |
|
int i, type; |
|
for(type = 3; type >= 0; type--) { |
|
for (i = 0; i < MAX_ELEM_ID; i++) { |
|
ChannelElement *che = ac->che[type][i]; |
|
if(che) { |
|
if(type <= TYPE_CPE) |
|
apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling); |
|
if(che->ch[0].tns.present) |
|
apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1); |
|
if(che->ch[1].tns.present) |
|
apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1); |
|
if(type <= TYPE_CPE) |
|
apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling); |
|
if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) |
|
imdct_and_windowing(ac, &che->ch[0]); |
|
if(type == TYPE_CPE) |
|
imdct_and_windowing(ac, &che->ch[1]); |
|
if(type <= TYPE_CCE) |
|
apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static int parse_adts_frame_header(AACContext * ac, GetBitContext * gb) { |
|
|
|
int size; |
|
AACADTSHeaderInfo hdr_info; |
|
|
|
size = ff_aac_parse_header(gb, &hdr_info); |
|
if (size > 0) { |
|
if (!ac->output_configured && hdr_info.chan_config) { |
|
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]; |
|
memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
|
ac->m4ac.chan_config = hdr_info.chan_config; |
|
if (set_default_channel_config(ac, new_che_pos, hdr_info.chan_config)) |
|
return -7; |
|
if (output_configure(ac, ac->che_pos, new_che_pos, 1)) |
|
return -7; |
|
} |
|
ac->m4ac.sample_rate = hdr_info.sample_rate; |
|
ac->m4ac.sampling_index = hdr_info.sampling_index; |
|
ac->m4ac.object_type = hdr_info.object_type; |
|
if (hdr_info.num_aac_frames == 1) { |
|
if (!hdr_info.crc_absent) |
|
skip_bits(gb, 16); |
|
} else { |
|
av_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0); |
|
return -1; |
|
} |
|
} |
|
return size; |
|
} |
|
|
|
static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, AVPacket *avpkt) { |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
AACContext * ac = avccontext->priv_data; |
|
ChannelElement * che = NULL; |
|
GetBitContext gb; |
|
enum RawDataBlockType elem_type; |
|
int err, elem_id, data_size_tmp; |
|
|
|
init_get_bits(&gb, buf, buf_size*8); |
|
|
|
if (show_bits(&gb, 12) == 0xfff) { |
|
if (parse_adts_frame_header(ac, &gb) < 0) { |
|
av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n"); |
|
return -1; |
|
} |
|
if (ac->m4ac.sampling_index > 12) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index); |
|
return -1; |
|
} |
|
} |
|
|
|
// parse |
|
while ((elem_type = get_bits(&gb, 3)) != TYPE_END) { |
|
elem_id = get_bits(&gb, 4); |
|
|
|
if(elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id); |
|
return -1; |
|
} |
|
|
|
switch (elem_type) { |
|
|
|
case TYPE_SCE: |
|
err = decode_ics(ac, &che->ch[0], &gb, 0, 0); |
|
break; |
|
|
|
case TYPE_CPE: |
|
err = decode_cpe(ac, &gb, che); |
|
break; |
|
|
|
case TYPE_CCE: |
|
err = decode_cce(ac, &gb, che); |
|
break; |
|
|
|
case TYPE_LFE: |
|
err = decode_ics(ac, &che->ch[0], &gb, 0, 0); |
|
break; |
|
|
|
case TYPE_DSE: |
|
skip_data_stream_element(&gb); |
|
err = 0; |
|
break; |
|
|
|
case TYPE_PCE: |
|
{ |
|
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]; |
|
memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
|
if((err = decode_pce(ac, new_che_pos, &gb))) |
|
break; |
|
if (ac->output_configured) |
|
av_log(avccontext, AV_LOG_ERROR, |
|
"Not evaluating a further program_config_element as this construct is dubious at best.\n"); |
|
else |
|
err = output_configure(ac, ac->che_pos, new_che_pos, 0); |
|
break; |
|
} |
|
|
|
case TYPE_FIL: |
|
if (elem_id == 15) |
|
elem_id += get_bits(&gb, 8) - 1; |
|
while (elem_id > 0) |
|
elem_id -= decode_extension_payload(ac, &gb, elem_id); |
|
err = 0; /* FIXME */ |
|
break; |
|
|
|
default: |
|
err = -1; /* should not happen, but keeps compiler happy */ |
|
break; |
|
} |
|
|
|
if(err) |
|
return err; |
|
} |
|
|
|
spectral_to_sample(ac); |
|
|
|
if (!ac->is_saved) { |
|
ac->is_saved = 1; |
|
*data_size = 0; |
|
return buf_size; |
|
} |
|
|
|
data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t); |
|
if(*data_size < data_size_tmp) { |
|
av_log(avccontext, AV_LOG_ERROR, |
|
"Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n", |
|
*data_size, data_size_tmp); |
|
return -1; |
|
} |
|
*data_size = data_size_tmp; |
|
|
|
ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels); |
|
|
|
return buf_size; |
|
} |
|
|
|
static av_cold int aac_decode_close(AVCodecContext * avccontext) { |
|
AACContext * ac = avccontext->priv_data; |
|
int i, type; |
|
|
|
for (i = 0; i < MAX_ELEM_ID; i++) { |
|
for(type = 0; type < 4; type++) |
|
av_freep(&ac->che[type][i]); |
|
} |
|
|
|
ff_mdct_end(&ac->mdct); |
|
ff_mdct_end(&ac->mdct_small); |
|
return 0 ; |
|
} |
|
|
|
AVCodec aac_decoder = { |
|
"aac", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_AAC, |
|
sizeof(AACContext), |
|
aac_decode_init, |
|
NULL, |
|
aac_decode_close, |
|
aac_decode_frame, |
|
.long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"), |
|
.sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, |
|
};
|
|
|