You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1958 lines
96 KiB

/*
* Copyright (c) 2021 Loongson Technology Corporation Limited
* All rights reserved.
* Contributed by Shiyou Yin <yinshiyou-hf@loongson.cn>
* Xiwei Gu <guxiwei-hf@loongson.cn>
* Lu Wang <wanglu@loongson.cn>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifndef AVUTIL_LOONGARCH_LOONGSON_INTRINSICS_H
#define AVUTIL_LOONGARCH_LOONGSON_INTRINSICS_H
/*
* Copyright (c) 2021 Loongson Technology Corporation Limited
* All rights reserved.
* Contributed by Shiyou Yin <yinshiyou-hf@loongson.cn>
* Xiwei Gu <guxiwei-hf@loongson.cn>
* Lu Wang <wanglu@loongson.cn>
*
* This file is a header file for loongarch builtin extension.
*
*/
#ifndef LOONGSON_INTRINSICS_H
#define LOONGSON_INTRINSICS_H
/**
* MAJOR version: Macro usage changes.
* MINOR version: Add new functions, or bug fixes.
* MICRO version: Comment changes or implementation changes.
*/
#define LSOM_VERSION_MAJOR 1
#define LSOM_VERSION_MINOR 1
#define LSOM_VERSION_MICRO 0
#define DUP2_ARG1(_INS, _IN0, _IN1, _OUT0, _OUT1) \
{ \
_OUT0 = _INS(_IN0); \
_OUT1 = _INS(_IN1); \
}
#define DUP2_ARG2(_INS, _IN0, _IN1, _IN2, _IN3, _OUT0, _OUT1) \
{ \
_OUT0 = _INS(_IN0, _IN1); \
_OUT1 = _INS(_IN2, _IN3); \
}
#define DUP2_ARG3(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _OUT0, _OUT1) \
{ \
_OUT0 = _INS(_IN0, _IN1, _IN2); \
_OUT1 = _INS(_IN3, _IN4, _IN5); \
}
#define DUP4_ARG1(_INS, _IN0, _IN1, _IN2, _IN3, _OUT0, _OUT1, _OUT2, _OUT3) \
{ \
DUP2_ARG1(_INS, _IN0, _IN1, _OUT0, _OUT1); \
DUP2_ARG1(_INS, _IN2, _IN3, _OUT2, _OUT3); \
}
#define DUP4_ARG2(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _IN6, _IN7, _OUT0, \
_OUT1, _OUT2, _OUT3) \
{ \
DUP2_ARG2(_INS, _IN0, _IN1, _IN2, _IN3, _OUT0, _OUT1); \
DUP2_ARG2(_INS, _IN4, _IN5, _IN6, _IN7, _OUT2, _OUT3); \
}
#define DUP4_ARG3(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _IN6, _IN7, _IN8, \
_IN9, _IN10, _IN11, _OUT0, _OUT1, _OUT2, _OUT3) \
{ \
DUP2_ARG3(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _OUT0, _OUT1); \
DUP2_ARG3(_INS, _IN6, _IN7, _IN8, _IN9, _IN10, _IN11, _OUT2, _OUT3); \
}
#ifdef __loongarch_sx
#include <lsxintrin.h>
/* __lsx_vldx() from lsxintrin.h does not accept a const void*;
* remove the following once it does. */
#define LSX_VLDX(cptr, stride) __lsx_vldx((void*)(cptr), (stride))
/*
* =============================================================================
* Description : Dot product & addition of byte vector elements
* Arguments : Inputs - in_c, in_h, in_l
* Outputs - out
* Return Type - halfword
* Details : Signed byte elements from in_h are multiplied by
* signed byte elements from in_l, and then added adjacent to
* each other to get results with the twice size of input.
* Then the results plus to signed half-word elements from in_c.
* Example : out = __lsx_vdp2add_h_b(in_c, in_h, in_l)
* in_c : 1,2,3,4, 1,2,3,4
* in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
* in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1
* out : 23,40,41,26, 23,40,41,26
* =============================================================================
*/
static inline __m128i __lsx_vdp2add_h_b(__m128i in_c, __m128i in_h,
__m128i in_l) {
__m128i out;
out = __lsx_vmaddwev_h_b(in_c, in_h, in_l);
out = __lsx_vmaddwod_h_b(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product & addition of byte vector elements
* Arguments : Inputs - in_c, in_h, in_l
* Outputs - out
* Return Type - halfword
* Details : Unsigned byte elements from in_h are multiplied by
* unsigned byte elements from in_l, and then added adjacent to
* each other to get results with the twice size of input.
* The results plus to signed half-word elements from in_c.
* Example : out = __lsx_vdp2add_h_bu(in_c, in_h, in_l)
* in_c : 1,2,3,4, 1,2,3,4
* in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
* in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1
* out : 23,40,41,26, 23,40,41,26
* =============================================================================
*/
static inline __m128i __lsx_vdp2add_h_bu(__m128i in_c, __m128i in_h,
__m128i in_l) {
__m128i out;
out = __lsx_vmaddwev_h_bu(in_c, in_h, in_l);
out = __lsx_vmaddwod_h_bu(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product & addition of byte vector elements
* Arguments : Inputs - in_c, in_h, in_l
* Outputs - out
* Return Type - halfword
* Details : Unsigned byte elements from in_h are multiplied by
* signed byte elements from in_l, and then added adjacent to
* each other to get results with the twice size of input.
* The results plus to signed half-word elements from in_c.
* Example : out = __lsx_vdp2add_h_bu_b(in_c, in_h, in_l)
* in_c : 1,1,1,1, 1,1,1,1
* in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
* in_l : -1,-2,-3,-4, -5,-6,-7,-8, 1,2,3,4, 5,6,7,8
* out : -4,-24,-60,-112, 6,26,62,114
* =============================================================================
*/
static inline __m128i __lsx_vdp2add_h_bu_b(__m128i in_c, __m128i in_h,
__m128i in_l) {
__m128i out;
out = __lsx_vmaddwev_h_bu_b(in_c, in_h, in_l);
out = __lsx_vmaddwod_h_bu_b(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product & addition of half-word vector elements
* Arguments : Inputs - in_c, in_h, in_l
* Outputs - out
* Return Type - __m128i
* Details : Signed half-word elements from in_h are multiplied by
* signed half-word elements from in_l, and then added adjacent to
* each other to get results with the twice size of input.
* Then the results plus to signed word elements from in_c.
* Example : out = __lsx_vdp2add_h_b(in_c, in_h, in_l)
* in_c : 1,2,3,4
* in_h : 1,2,3,4, 5,6,7,8
* in_l : 8,7,6,5, 4,3,2,1
* out : 23,40,41,26
* =============================================================================
*/
static inline __m128i __lsx_vdp2add_w_h(__m128i in_c, __m128i in_h,
__m128i in_l) {
__m128i out;
out = __lsx_vmaddwev_w_h(in_c, in_h, in_l);
out = __lsx_vmaddwod_w_h(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product of byte vector elements
* Arguments : Inputs - in_h, in_l
* Outputs - out
* Return Type - halfword
* Details : Signed byte elements from in_h are multiplied by
* signed byte elements from in_l, and then added adjacent to
* each other to get results with the twice size of input.
* Example : out = __lsx_vdp2_h_b(in_h, in_l)
* in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
* in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1
* out : 22,38,38,22, 22,38,38,22
* =============================================================================
*/
static inline __m128i __lsx_vdp2_h_b(__m128i in_h, __m128i in_l) {
__m128i out;
out = __lsx_vmulwev_h_b(in_h, in_l);
out = __lsx_vmaddwod_h_b(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product of byte vector elements
* Arguments : Inputs - in_h, in_l
* Outputs - out
* Return Type - halfword
* Details : Unsigned byte elements from in_h are multiplied by
* unsigned byte elements from in_l, and then added adjacent to
* each other to get results with the twice size of input.
* Example : out = __lsx_vdp2_h_bu(in_h, in_l)
* in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
* in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1
* out : 22,38,38,22, 22,38,38,22
* =============================================================================
*/
static inline __m128i __lsx_vdp2_h_bu(__m128i in_h, __m128i in_l) {
__m128i out;
out = __lsx_vmulwev_h_bu(in_h, in_l);
out = __lsx_vmaddwod_h_bu(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product of byte vector elements
* Arguments : Inputs - in_h, in_l
* Outputs - out
* Return Type - halfword
* Details : Unsigned byte elements from in_h are multiplied by
* signed byte elements from in_l, and then added adjacent to
* each other to get results with the twice size of input.
* Example : out = __lsx_vdp2_h_bu_b(in_h, in_l)
* in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
* in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,-1
* out : 22,38,38,22, 22,38,38,6
* =============================================================================
*/
static inline __m128i __lsx_vdp2_h_bu_b(__m128i in_h, __m128i in_l) {
__m128i out;
out = __lsx_vmulwev_h_bu_b(in_h, in_l);
out = __lsx_vmaddwod_h_bu_b(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product of byte vector elements
* Arguments : Inputs - in_h, in_l
* Outputs - out
* Return Type - halfword
* Details : Signed byte elements from in_h are multiplied by
* signed byte elements from in_l, and then added adjacent to
* each other to get results with the twice size of input.
* Example : out = __lsx_vdp2_w_h(in_h, in_l)
* in_h : 1,2,3,4, 5,6,7,8
* in_l : 8,7,6,5, 4,3,2,1
* out : 22,38,38,22
* =============================================================================
*/
static inline __m128i __lsx_vdp2_w_h(__m128i in_h, __m128i in_l) {
__m128i out;
out = __lsx_vmulwev_w_h(in_h, in_l);
out = __lsx_vmaddwod_w_h(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Clip all halfword elements of input vector between min & max
* out = ((_in) < (min)) ? (min) : (((_in) > (max)) ? (max) :
* (_in))
* Arguments : Inputs - _in (input vector)
* - min (min threshold)
* - max (max threshold)
* Outputs - out (output vector with clipped elements)
* Return Type - signed halfword
* Example : out = __lsx_vclip_h(_in)
* _in : -8,2,280,249, -8,255,280,249
* min : 1,1,1,1, 1,1,1,1
* max : 9,9,9,9, 9,9,9,9
* out : 1,2,9,9, 1,9,9,9
* =============================================================================
*/
static inline __m128i __lsx_vclip_h(__m128i _in, __m128i min, __m128i max) {
__m128i out;
out = __lsx_vmax_h(min, _in);
out = __lsx_vmin_h(max, out);
return out;
}
/*
* =============================================================================
* Description : Set each element of vector between 0 and 255
* Arguments : Inputs - _in
* Outputs - out
* Return Type - halfword
* Details : Signed byte elements from _in are clamped between 0 and 255.
* Example : out = __lsx_vclip255_h(_in)
* _in : -8,255,280,249, -8,255,280,249
* out : 0,255,255,249, 0,255,255,249
* =============================================================================
*/
static inline __m128i __lsx_vclip255_h(__m128i _in) {
__m128i out;
out = __lsx_vmaxi_h(_in, 0);
out = __lsx_vsat_hu(out, 7);
return out;
}
/*
* =============================================================================
* Description : Set each element of vector between 0 and 255
* Arguments : Inputs - _in
* Outputs - out
* Return Type - word
* Details : Signed byte elements from _in are clamped between 0 and 255.
* Example : out = __lsx_vclip255_w(_in)
* _in : -8,255,280,249
* out : 0,255,255,249
* =============================================================================
*/
static inline __m128i __lsx_vclip255_w(__m128i _in) {
__m128i out;
out = __lsx_vmaxi_w(_in, 0);
out = __lsx_vsat_wu(out, 7);
return out;
}
/*
* =============================================================================
* Description : Swap two variables
* Arguments : Inputs - _in0, _in1
* Outputs - _in0, _in1 (in-place)
* Details : Swapping of two input variables using xor
* Example : LSX_SWAP(_in0, _in1)
* _in0 : 1,2,3,4
* _in1 : 5,6,7,8
* _in0(out) : 5,6,7,8
* _in1(out) : 1,2,3,4
* =============================================================================
*/
#define LSX_SWAP(_in0, _in1) \
{ \
_in0 = __lsx_vxor_v(_in0, _in1); \
_in1 = __lsx_vxor_v(_in0, _in1); \
_in0 = __lsx_vxor_v(_in0, _in1); \
}
/*
* =============================================================================
* Description : Transpose 4x4 block with word elements in vectors
* Arguments : Inputs - in0, in1, in2, in3
* Outputs - out0, out1, out2, out3
* Details :
* Example :
* 1, 2, 3, 4 1, 5, 9,13
* 5, 6, 7, 8 to 2, 6,10,14
* 9,10,11,12 =====> 3, 7,11,15
* 13,14,15,16 4, 8,12,16
* =============================================================================
*/
#define LSX_TRANSPOSE4x4_W(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
{ \
__m128i _t0, _t1, _t2, _t3; \
\
_t0 = __lsx_vilvl_w(_in1, _in0); \
_t1 = __lsx_vilvh_w(_in1, _in0); \
_t2 = __lsx_vilvl_w(_in3, _in2); \
_t3 = __lsx_vilvh_w(_in3, _in2); \
_out0 = __lsx_vilvl_d(_t2, _t0); \
_out1 = __lsx_vilvh_d(_t2, _t0); \
_out2 = __lsx_vilvl_d(_t3, _t1); \
_out3 = __lsx_vilvh_d(_t3, _t1); \
}
/*
* =============================================================================
* Description : Transpose 8x8 block with byte elements in vectors
* Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7
* Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6,
* _out7
* Details : The rows of the matrix become columns, and the columns
* become rows.
* Example : LSX_TRANSPOSE8x8_B
* _in0 : 00,01,02,03,04,05,06,07, 00,00,00,00,00,00,00,00
* _in1 : 10,11,12,13,14,15,16,17, 00,00,00,00,00,00,00,00
* _in2 : 20,21,22,23,24,25,26,27, 00,00,00,00,00,00,00,00
* _in3 : 30,31,32,33,34,35,36,37, 00,00,00,00,00,00,00,00
* _in4 : 40,41,42,43,44,45,46,47, 00,00,00,00,00,00,00,00
* _in5 : 50,51,52,53,54,55,56,57, 00,00,00,00,00,00,00,00
* _in6 : 60,61,62,63,64,65,66,67, 00,00,00,00,00,00,00,00
* _in7 : 70,71,72,73,74,75,76,77, 00,00,00,00,00,00,00,00
*
* _ out0 : 00,10,20,30,40,50,60,70, 00,00,00,00,00,00,00,00
* _ out1 : 01,11,21,31,41,51,61,71, 00,00,00,00,00,00,00,00
* _ out2 : 02,12,22,32,42,52,62,72, 00,00,00,00,00,00,00,00
* _ out3 : 03,13,23,33,43,53,63,73, 00,00,00,00,00,00,00,00
* _ out4 : 04,14,24,34,44,54,64,74, 00,00,00,00,00,00,00,00
* _ out5 : 05,15,25,35,45,55,65,75, 00,00,00,00,00,00,00,00
* _ out6 : 06,16,26,36,46,56,66,76, 00,00,00,00,00,00,00,00
* _ out7 : 07,17,27,37,47,57,67,77, 00,00,00,00,00,00,00,00
* =============================================================================
*/
#define LSX_TRANSPOSE8x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
__m128i zero = { 0 }; \
__m128i shuf8 = { 0x0F0E0D0C0B0A0908, 0x1716151413121110 }; \
__m128i _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \
\
_t0 = __lsx_vilvl_b(_in2, _in0); \
_t1 = __lsx_vilvl_b(_in3, _in1); \
_t2 = __lsx_vilvl_b(_in6, _in4); \
_t3 = __lsx_vilvl_b(_in7, _in5); \
_t4 = __lsx_vilvl_b(_t1, _t0); \
_t5 = __lsx_vilvh_b(_t1, _t0); \
_t6 = __lsx_vilvl_b(_t3, _t2); \
_t7 = __lsx_vilvh_b(_t3, _t2); \
_out0 = __lsx_vilvl_w(_t6, _t4); \
_out2 = __lsx_vilvh_w(_t6, _t4); \
_out4 = __lsx_vilvl_w(_t7, _t5); \
_out6 = __lsx_vilvh_w(_t7, _t5); \
_out1 = __lsx_vshuf_b(zero, _out0, shuf8); \
_out3 = __lsx_vshuf_b(zero, _out2, shuf8); \
_out5 = __lsx_vshuf_b(zero, _out4, shuf8); \
_out7 = __lsx_vshuf_b(zero, _out6, shuf8); \
}
/*
* =============================================================================
* Description : Transpose 8x8 block with half-word elements in vectors
* Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7
* Outputs - out0, out1, out2, out3, out4, out5, out6, out7
* Details :
* Example :
* 00,01,02,03,04,05,06,07 00,10,20,30,40,50,60,70
* 10,11,12,13,14,15,16,17 01,11,21,31,41,51,61,71
* 20,21,22,23,24,25,26,27 02,12,22,32,42,52,62,72
* 30,31,32,33,34,35,36,37 to 03,13,23,33,43,53,63,73
* 40,41,42,43,44,45,46,47 ======> 04,14,24,34,44,54,64,74
* 50,51,52,53,54,55,56,57 05,15,25,35,45,55,65,75
* 60,61,62,63,64,65,66,67 06,16,26,36,46,56,66,76
* 70,71,72,73,74,75,76,77 07,17,27,37,47,57,67,77
* =============================================================================
*/
#define LSX_TRANSPOSE8x8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
__m128i _s0, _s1, _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \
\
_s0 = __lsx_vilvl_h(_in6, _in4); \
_s1 = __lsx_vilvl_h(_in7, _in5); \
_t0 = __lsx_vilvl_h(_s1, _s0); \
_t1 = __lsx_vilvh_h(_s1, _s0); \
_s0 = __lsx_vilvh_h(_in6, _in4); \
_s1 = __lsx_vilvh_h(_in7, _in5); \
_t2 = __lsx_vilvl_h(_s1, _s0); \
_t3 = __lsx_vilvh_h(_s1, _s0); \
_s0 = __lsx_vilvl_h(_in2, _in0); \
_s1 = __lsx_vilvl_h(_in3, _in1); \
_t4 = __lsx_vilvl_h(_s1, _s0); \
_t5 = __lsx_vilvh_h(_s1, _s0); \
_s0 = __lsx_vilvh_h(_in2, _in0); \
_s1 = __lsx_vilvh_h(_in3, _in1); \
_t6 = __lsx_vilvl_h(_s1, _s0); \
_t7 = __lsx_vilvh_h(_s1, _s0); \
\
_out0 = __lsx_vpickev_d(_t0, _t4); \
_out2 = __lsx_vpickev_d(_t1, _t5); \
_out4 = __lsx_vpickev_d(_t2, _t6); \
_out6 = __lsx_vpickev_d(_t3, _t7); \
_out1 = __lsx_vpickod_d(_t0, _t4); \
_out3 = __lsx_vpickod_d(_t1, _t5); \
_out5 = __lsx_vpickod_d(_t2, _t6); \
_out7 = __lsx_vpickod_d(_t3, _t7); \
}
/*
* =============================================================================
* Description : Transpose input 8x4 byte block into 4x8
* Arguments : Inputs - _in0, _in1, _in2, _in3 (input 8x4 byte block)
* Outputs - _out0, _out1, _out2, _out3 (output 4x8 byte block)
* Return Type - as per RTYPE
* Details : The rows of the matrix become columns, and the columns become
* rows.
* Example : LSX_TRANSPOSE8x4_B
* _in0 : 00,01,02,03,00,00,00,00, 00,00,00,00,00,00,00,00
* _in1 : 10,11,12,13,00,00,00,00, 00,00,00,00,00,00,00,00
* _in2 : 20,21,22,23,00,00,00,00, 00,00,00,00,00,00,00,00
* _in3 : 30,31,32,33,00,00,00,00, 00,00,00,00,00,00,00,00
* _in4 : 40,41,42,43,00,00,00,00, 00,00,00,00,00,00,00,00
* _in5 : 50,51,52,53,00,00,00,00, 00,00,00,00,00,00,00,00
* _in6 : 60,61,62,63,00,00,00,00, 00,00,00,00,00,00,00,00
* _in7 : 70,71,72,73,00,00,00,00, 00,00,00,00,00,00,00,00
*
* _out0 : 00,10,20,30,40,50,60,70, 00,00,00,00,00,00,00,00
* _out1 : 01,11,21,31,41,51,61,71, 00,00,00,00,00,00,00,00
* _out2 : 02,12,22,32,42,52,62,72, 00,00,00,00,00,00,00,00
* _out3 : 03,13,23,33,43,53,63,73, 00,00,00,00,00,00,00,00
* =============================================================================
*/
#define LSX_TRANSPOSE8x4_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3) \
{ \
__m128i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
\
_tmp0_m = __lsx_vpackev_w(_in4, _in0); \
_tmp1_m = __lsx_vpackev_w(_in5, _in1); \
_tmp2_m = __lsx_vilvl_b(_tmp1_m, _tmp0_m); \
_tmp0_m = __lsx_vpackev_w(_in6, _in2); \
_tmp1_m = __lsx_vpackev_w(_in7, _in3); \
\
_tmp3_m = __lsx_vilvl_b(_tmp1_m, _tmp0_m); \
_tmp0_m = __lsx_vilvl_h(_tmp3_m, _tmp2_m); \
_tmp1_m = __lsx_vilvh_h(_tmp3_m, _tmp2_m); \
\
_out0 = __lsx_vilvl_w(_tmp1_m, _tmp0_m); \
_out2 = __lsx_vilvh_w(_tmp1_m, _tmp0_m); \
_out1 = __lsx_vilvh_d(_out2, _out0); \
_out3 = __lsx_vilvh_d(_out0, _out2); \
}
/*
* =============================================================================
* Description : Transpose 16x8 block with byte elements in vectors
* Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, in8
* in9, in10, in11, in12, in13, in14, in15
* Outputs - out0, out1, out2, out3, out4, out5, out6, out7
* Details :
* Example :
* 000,001,002,003,004,005,006,007
* 008,009,010,011,012,013,014,015
* 016,017,018,019,020,021,022,023
* 024,025,026,027,028,029,030,031
* 032,033,034,035,036,037,038,039
* 040,041,042,043,044,045,046,047 000,008,...,112,120
* 048,049,050,051,052,053,054,055 001,009,...,113,121
* 056,057,058,059,060,061,062,063 to 002,010,...,114,122
* 064,068,066,067,068,069,070,071 =====> 003,011,...,115,123
* 072,073,074,075,076,077,078,079 004,012,...,116,124
* 080,081,082,083,084,085,086,087 005,013,...,117,125
* 088,089,090,091,092,093,094,095 006,014,...,118,126
* 096,097,098,099,100,101,102,103 007,015,...,119,127
* 104,105,106,107,108,109,110,111
* 112,113,114,115,116,117,118,119
* 120,121,122,123,124,125,126,127
* =============================================================================
*/
#define LSX_TRANSPOSE16x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_in8, _in9, _in10, _in11, _in12, _in13, _in14, \
_in15, _out0, _out1, _out2, _out3, _out4, _out5, \
_out6, _out7) \
{ \
__m128i _tmp0, _tmp1, _tmp2, _tmp3, _tmp4, _tmp5, _tmp6, _tmp7; \
__m128i _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \
DUP4_ARG2(__lsx_vilvl_b, _in2, _in0, _in3, _in1, _in6, _in4, _in7, _in5, \
_tmp0, _tmp1, _tmp2, _tmp3); \
DUP4_ARG2(__lsx_vilvl_b, _in10, _in8, _in11, _in9, _in14, _in12, _in15, \
_in13, _tmp4, _tmp5, _tmp6, _tmp7); \
DUP2_ARG2(__lsx_vilvl_b, _tmp1, _tmp0, _tmp3, _tmp2, _t0, _t2); \
DUP2_ARG2(__lsx_vilvh_b, _tmp1, _tmp0, _tmp3, _tmp2, _t1, _t3); \
DUP2_ARG2(__lsx_vilvl_b, _tmp5, _tmp4, _tmp7, _tmp6, _t4, _t6); \
DUP2_ARG2(__lsx_vilvh_b, _tmp5, _tmp4, _tmp7, _tmp6, _t5, _t7); \
DUP2_ARG2(__lsx_vilvl_w, _t2, _t0, _t3, _t1, _tmp0, _tmp4); \
DUP2_ARG2(__lsx_vilvh_w, _t2, _t0, _t3, _t1, _tmp2, _tmp6); \
DUP2_ARG2(__lsx_vilvl_w, _t6, _t4, _t7, _t5, _tmp1, _tmp5); \
DUP2_ARG2(__lsx_vilvh_w, _t6, _t4, _t7, _t5, _tmp3, _tmp7); \
DUP2_ARG2(__lsx_vilvl_d, _tmp1, _tmp0, _tmp3, _tmp2, _out0, _out2); \
DUP2_ARG2(__lsx_vilvh_d, _tmp1, _tmp0, _tmp3, _tmp2, _out1, _out3); \
DUP2_ARG2(__lsx_vilvl_d, _tmp5, _tmp4, _tmp7, _tmp6, _out4, _out6); \
DUP2_ARG2(__lsx_vilvh_d, _tmp5, _tmp4, _tmp7, _tmp6, _out5, _out7); \
}
/*
* =============================================================================
* Description : Butterfly of 4 input vectors
* Arguments : Inputs - in0, in1, in2, in3
* Outputs - out0, out1, out2, out3
* Details : Butterfly operation
* Example :
* out0 = in0 + in3;
* out1 = in1 + in2;
* out2 = in1 - in2;
* out3 = in0 - in3;
* =============================================================================
*/
#define LSX_BUTTERFLY_4_B(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
{ \
_out0 = __lsx_vadd_b(_in0, _in3); \
_out1 = __lsx_vadd_b(_in1, _in2); \
_out2 = __lsx_vsub_b(_in1, _in2); \
_out3 = __lsx_vsub_b(_in0, _in3); \
}
#define LSX_BUTTERFLY_4_H(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
{ \
_out0 = __lsx_vadd_h(_in0, _in3); \
_out1 = __lsx_vadd_h(_in1, _in2); \
_out2 = __lsx_vsub_h(_in1, _in2); \
_out3 = __lsx_vsub_h(_in0, _in3); \
}
#define LSX_BUTTERFLY_4_W(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
{ \
_out0 = __lsx_vadd_w(_in0, _in3); \
_out1 = __lsx_vadd_w(_in1, _in2); \
_out2 = __lsx_vsub_w(_in1, _in2); \
_out3 = __lsx_vsub_w(_in0, _in3); \
}
#define LSX_BUTTERFLY_4_D(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
{ \
_out0 = __lsx_vadd_d(_in0, _in3); \
_out1 = __lsx_vadd_d(_in1, _in2); \
_out2 = __lsx_vsub_d(_in1, _in2); \
_out3 = __lsx_vsub_d(_in0, _in3); \
}
/*
* =============================================================================
* Description : Butterfly of 8 input vectors
* Arguments : Inputs - _in0, _in1, _in2, _in3, ~
* Outputs - _out0, _out1, _out2, _out3, ~
* Details : Butterfly operation
* Example :
* _out0 = _in0 + _in7;
* _out1 = _in1 + _in6;
* _out2 = _in2 + _in5;
* _out3 = _in3 + _in4;
* _out4 = _in3 - _in4;
* _out5 = _in2 - _in5;
* _out6 = _in1 - _in6;
* _out7 = _in0 - _in7;
* =============================================================================
*/
#define LSX_BUTTERFLY_8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
_out0 = __lsx_vadd_b(_in0, _in7); \
_out1 = __lsx_vadd_b(_in1, _in6); \
_out2 = __lsx_vadd_b(_in2, _in5); \
_out3 = __lsx_vadd_b(_in3, _in4); \
_out4 = __lsx_vsub_b(_in3, _in4); \
_out5 = __lsx_vsub_b(_in2, _in5); \
_out6 = __lsx_vsub_b(_in1, _in6); \
_out7 = __lsx_vsub_b(_in0, _in7); \
}
#define LSX_BUTTERFLY_8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
_out0 = __lsx_vadd_h(_in0, _in7); \
_out1 = __lsx_vadd_h(_in1, _in6); \
_out2 = __lsx_vadd_h(_in2, _in5); \
_out3 = __lsx_vadd_h(_in3, _in4); \
_out4 = __lsx_vsub_h(_in3, _in4); \
_out5 = __lsx_vsub_h(_in2, _in5); \
_out6 = __lsx_vsub_h(_in1, _in6); \
_out7 = __lsx_vsub_h(_in0, _in7); \
}
#define LSX_BUTTERFLY_8_W(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
_out0 = __lsx_vadd_w(_in0, _in7); \
_out1 = __lsx_vadd_w(_in1, _in6); \
_out2 = __lsx_vadd_w(_in2, _in5); \
_out3 = __lsx_vadd_w(_in3, _in4); \
_out4 = __lsx_vsub_w(_in3, _in4); \
_out5 = __lsx_vsub_w(_in2, _in5); \
_out6 = __lsx_vsub_w(_in1, _in6); \
_out7 = __lsx_vsub_w(_in0, _in7); \
}
#define LSX_BUTTERFLY_8_D(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
_out0 = __lsx_vadd_d(_in0, _in7); \
_out1 = __lsx_vadd_d(_in1, _in6); \
_out2 = __lsx_vadd_d(_in2, _in5); \
_out3 = __lsx_vadd_d(_in3, _in4); \
_out4 = __lsx_vsub_d(_in3, _in4); \
_out5 = __lsx_vsub_d(_in2, _in5); \
_out6 = __lsx_vsub_d(_in1, _in6); \
_out7 = __lsx_vsub_d(_in0, _in7); \
}
#endif // LSX
#ifdef __loongarch_asx
#include <lasxintrin.h>
/* __lasx_xvldx() in lasxintrin.h does not accept a const void*;
* remove the following once it does. */
#define LASX_XVLDX(ptr, stride) __lasx_xvldx((void*)ptr, stride)
/*
* =============================================================================
* Description : Dot product of byte vector elements
* Arguments : Inputs - in_h, in_l
* Output - out
* Return Type - signed halfword
* Details : Unsigned byte elements from in_h are multiplied with
* unsigned byte elements from in_l producing a result
* twice the size of input i.e. signed halfword.
* Then this multiplied results of adjacent odd-even elements
* are added to the out vector
* Example : See out = __lasx_xvdp2_w_h(in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvdp2_h_bu(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvmulwev_h_bu(in_h, in_l);
out = __lasx_xvmaddwod_h_bu(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product of byte vector elements
* Arguments : Inputs - in_h, in_l
* Output - out
* Return Type - signed halfword
* Details : Signed byte elements from in_h are multiplied with
* signed byte elements from in_l producing a result
* twice the size of input i.e. signed halfword.
* Then this multiplication results of adjacent odd-even elements
* are added to the out vector
* Example : See out = __lasx_xvdp2_w_h(in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvdp2_h_b(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvmulwev_h_b(in_h, in_l);
out = __lasx_xvmaddwod_h_b(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product of halfword vector elements
* Arguments : Inputs - in_h, in_l
* Output - out
* Return Type - signed word
* Details : Signed halfword elements from in_h are multiplied with
* signed halfword elements from in_l producing a result
* twice the size of input i.e. signed word.
* Then this multiplied results of adjacent odd-even elements
* are added to the out vector.
* Example : out = __lasx_xvdp2_w_h(in_h, in_l)
* in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
* in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1
* out : 22,38,38,22, 22,38,38,22
* =============================================================================
*/
static inline __m256i __lasx_xvdp2_w_h(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvmulwev_w_h(in_h, in_l);
out = __lasx_xvmaddwod_w_h(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product of word vector elements
* Arguments : Inputs - in_h, in_l
* Output - out
* Return Type - signed double
* Details : Signed word elements from in_h are multiplied with
* signed word elements from in_l producing a result
* twice the size of input i.e. signed double-word.
* Then this multiplied results of adjacent odd-even elements
* are added to the out vector.
* Example : See out = __lasx_xvdp2_w_h(in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvdp2_d_w(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvmulwev_d_w(in_h, in_l);
out = __lasx_xvmaddwod_d_w(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product of halfword vector elements
* Arguments : Inputs - in_h, in_l
* Output - out
* Return Type - signed word
* Details : Unsigned halfword elements from in_h are multiplied with
* signed halfword elements from in_l producing a result
* twice the size of input i.e. unsigned word.
* Multiplication result of adjacent odd-even elements
* are added to the out vector
* Example : See out = __lasx_xvdp2_w_h(in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvdp2_w_hu_h(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvmulwev_w_hu_h(in_h, in_l);
out = __lasx_xvmaddwod_w_hu_h(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product & addition of byte vector elements
* Arguments : Inputs - in_h, in_l
* Output - out
* Return Type - halfword
* Details : Signed byte elements from in_h are multiplied with
* signed byte elements from in_l producing a result
* twice the size of input i.e. signed halfword.
* Then this multiplied results of adjacent odd-even elements
* are added to the in_c vector.
* Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvdp2add_h_b(__m256i in_c, __m256i in_h,
__m256i in_l) {
__m256i out;
out = __lasx_xvmaddwev_h_b(in_c, in_h, in_l);
out = __lasx_xvmaddwod_h_b(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product & addition of byte vector elements
* Arguments : Inputs - in_h, in_l
* Output - out
* Return Type - halfword
* Details : Unsigned byte elements from in_h are multiplied with
* unsigned byte elements from in_l producing a result
* twice the size of input i.e. signed halfword.
* Then this multiplied results of adjacent odd-even elements
* are added to the in_c vector.
* Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvdp2add_h_bu(__m256i in_c, __m256i in_h,
__m256i in_l) {
__m256i out;
out = __lasx_xvmaddwev_h_bu(in_c, in_h, in_l);
out = __lasx_xvmaddwod_h_bu(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product & addition of byte vector elements
* Arguments : Inputs - in_h, in_l
* Output - out
* Return Type - halfword
* Details : Unsigned byte elements from in_h are multiplied with
* signed byte elements from in_l producing a result
* twice the size of input i.e. signed halfword.
* Then this multiplied results of adjacent odd-even elements
* are added to the in_c vector.
* Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvdp2add_h_bu_b(__m256i in_c, __m256i in_h,
__m256i in_l) {
__m256i out;
out = __lasx_xvmaddwev_h_bu_b(in_c, in_h, in_l);
out = __lasx_xvmaddwod_h_bu_b(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product of halfword vector elements
* Arguments : Inputs - in_c, in_h, in_l
* Output - out
* Return Type - per RTYPE
* Details : Signed halfword elements from in_h are multiplied with
* signed halfword elements from in_l producing a result
* twice the size of input i.e. signed word.
* Multiplication result of adjacent odd-even elements
* are added to the in_c vector.
* Example : out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
* in_c : 1,2,3,4, 1,2,3,4
* in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8,
* in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1,
* out : 23,40,41,26, 23,40,41,26
* =============================================================================
*/
static inline __m256i __lasx_xvdp2add_w_h(__m256i in_c, __m256i in_h,
__m256i in_l) {
__m256i out;
out = __lasx_xvmaddwev_w_h(in_c, in_h, in_l);
out = __lasx_xvmaddwod_w_h(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product of halfword vector elements
* Arguments : Inputs - in_c, in_h, in_l
* Output - out
* Return Type - signed word
* Details : Unsigned halfword elements from in_h are multiplied with
* unsigned halfword elements from in_l producing a result
* twice the size of input i.e. signed word.
* Multiplication result of adjacent odd-even elements
* are added to the in_c vector.
* Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvdp2add_w_hu(__m256i in_c, __m256i in_h,
__m256i in_l) {
__m256i out;
out = __lasx_xvmaddwev_w_hu(in_c, in_h, in_l);
out = __lasx_xvmaddwod_w_hu(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Dot product of halfword vector elements
* Arguments : Inputs - in_c, in_h, in_l
* Output - out
* Return Type - signed word
* Details : Unsigned halfword elements from in_h are multiplied with
* signed halfword elements from in_l producing a result
* twice the size of input i.e. signed word.
* Multiplication result of adjacent odd-even elements
* are added to the in_c vector
* Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvdp2add_w_hu_h(__m256i in_c, __m256i in_h,
__m256i in_l) {
__m256i out;
out = __lasx_xvmaddwev_w_hu_h(in_c, in_h, in_l);
out = __lasx_xvmaddwod_w_hu_h(out, in_h, in_l);
return out;
}
/*
* =============================================================================
* Description : Vector Unsigned Dot Product and Subtract
* Arguments : Inputs - in_c, in_h, in_l
* Output - out
* Return Type - signed halfword
* Details : Unsigned byte elements from in_h are multiplied with
* unsigned byte elements from in_l producing a result
* twice the size of input i.e. signed halfword.
* Multiplication result of adjacent odd-even elements
* are added together and subtracted from double width elements
* in_c vector.
* Example : See out = __lasx_xvdp2sub_w_h(in_c, in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvdp2sub_h_bu(__m256i in_c, __m256i in_h,
__m256i in_l) {
__m256i out;
out = __lasx_xvmulwev_h_bu(in_h, in_l);
out = __lasx_xvmaddwod_h_bu(out, in_h, in_l);
out = __lasx_xvsub_h(in_c, out);
return out;
}
/*
* =============================================================================
* Description : Vector Signed Dot Product and Subtract
* Arguments : Inputs - in_c, in_h, in_l
* Output - out
* Return Type - signed word
* Details : Signed halfword elements from in_h are multiplied with
* Signed halfword elements from in_l producing a result
* twice the size of input i.e. signed word.
* Multiplication result of adjacent odd-even elements
* are added together and subtracted from double width elements
* in_c vector.
* Example : out = __lasx_xvdp2sub_w_h(in_c, in_h, in_l)
* in_c : 0,0,0,0, 0,0,0,0
* in_h : 3,1,3,0, 0,0,0,1, 0,0,1,1, 0,0,0,1
* in_l : 2,1,1,0, 1,0,0,0, 0,0,1,0, 1,0,0,1
* out : -7,-3,0,0, 0,-1,0,-1
* =============================================================================
*/
static inline __m256i __lasx_xvdp2sub_w_h(__m256i in_c, __m256i in_h,
__m256i in_l) {
__m256i out;
out = __lasx_xvmulwev_w_h(in_h, in_l);
out = __lasx_xvmaddwod_w_h(out, in_h, in_l);
out = __lasx_xvsub_w(in_c, out);
return out;
}
/*
* =============================================================================
* Description : Dot product of halfword vector elements
* Arguments : Inputs - in_h, in_l
* Output - out
* Return Type - signed word
* Details : Signed halfword elements from in_h are multiplied with
* signed halfword elements from in_l producing a result
* four times the size of input i.e. signed doubleword.
* Then this multiplication results of four adjacent elements
* are added together and stored to the out vector.
* Example : out = __lasx_xvdp4_d_h(in_h, in_l)
* in_h : 3,1,3,0, 0,0,0,1, 0,0,1,-1, 0,0,0,1
* in_l : -2,1,1,0, 1,0,0,0, 0,0,1, 0, 1,0,0,1
* out : -2,0,1,1
* =============================================================================
*/
static inline __m256i __lasx_xvdp4_d_h(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvmulwev_w_h(in_h, in_l);
out = __lasx_xvmaddwod_w_h(out, in_h, in_l);
out = __lasx_xvhaddw_d_w(out, out);
return out;
}
/*
* =============================================================================
* Description : The high half of the vector elements are expanded and
* added after being doubled.
* Arguments : Inputs - in_h, in_l
* Output - out
* Details : The in_h vector and the in_l vector are added after the
* higher half of the two-fold sign extension (signed byte
* to signed halfword) and stored to the out vector.
* Example : See out = __lasx_xvaddwh_w_h(in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvaddwh_h_b(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvilvh_b(in_h, in_l);
out = __lasx_xvhaddw_h_b(out, out);
return out;
}
/*
* =============================================================================
* Description : The high half of the vector elements are expanded and
* added after being doubled.
* Arguments : Inputs - in_h, in_l
* Output - out
* Details : The in_h vector and the in_l vector are added after the
* higher half of the two-fold sign extension (signed halfword
* to signed word) and stored to the out vector.
* Example : out = __lasx_xvaddwh_w_h(in_h, in_l)
* in_h : 3, 0,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1
* in_l : 2,-1,1,2, 1,0,0, 0, 1,0,1, 0, 1,0,0,1
* out : 1,0,0,-1, 1,0,0, 2
* =============================================================================
*/
static inline __m256i __lasx_xvaddwh_w_h(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvilvh_h(in_h, in_l);
out = __lasx_xvhaddw_w_h(out, out);
return out;
}
/*
* =============================================================================
* Description : The low half of the vector elements are expanded and
* added after being doubled.
* Arguments : Inputs - in_h, in_l
* Output - out
* Details : The in_h vector and the in_l vector are added after the
* lower half of the two-fold sign extension (signed byte
* to signed halfword) and stored to the out vector.
* Example : See out = __lasx_xvaddwl_w_h(in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvaddwl_h_b(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvilvl_b(in_h, in_l);
out = __lasx_xvhaddw_h_b(out, out);
return out;
}
/*
* =============================================================================
* Description : The low half of the vector elements are expanded and
* added after being doubled.
* Arguments : Inputs - in_h, in_l
* Output - out
* Details : The in_h vector and the in_l vector are added after the
* lower half of the two-fold sign extension (signed halfword
* to signed word) and stored to the out vector.
* Example : out = __lasx_xvaddwl_w_h(in_h, in_l)
* in_h : 3, 0,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1
* in_l : 2,-1,1,2, 1,0,0, 0, 1,0,1, 0, 1,0,0,1
* out : 5,-1,4,2, 1,0,2,-1
* =============================================================================
*/
static inline __m256i __lasx_xvaddwl_w_h(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvilvl_h(in_h, in_l);
out = __lasx_xvhaddw_w_h(out, out);
return out;
}
/*
* =============================================================================
* Description : The low half of the vector elements are expanded and
* added after being doubled.
* Arguments : Inputs - in_h, in_l
* Output - out
* Details : The out vector and the out vector are added after the
* lower half of the two-fold zero extension (unsigned byte
* to unsigned halfword) and stored to the out vector.
* Example : See out = __lasx_xvaddwl_w_h(in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvaddwl_h_bu(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvilvl_b(in_h, in_l);
out = __lasx_xvhaddw_hu_bu(out, out);
return out;
}
/*
* =============================================================================
* Description : The low half of the vector elements are expanded and
* added after being doubled.
* Arguments : Inputs - in_h, in_l
* Output - out
* Details : The in_l vector after double zero extension (unsigned byte to
* signed halfword),added to the in_h vector.
* Example : See out = __lasx_xvaddw_w_w_h(in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvaddw_h_h_bu(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvsllwil_hu_bu(in_l, 0);
out = __lasx_xvadd_h(in_h, out);
return out;
}
/*
* =============================================================================
* Description : The low half of the vector elements are expanded and
* added after being doubled.
* Arguments : Inputs - in_h, in_l
* Output - out
* Details : The in_l vector after double sign extension (signed halfword to
* signed word), added to the in_h vector.
* Example : out = __lasx_xvaddw_w_w_h(in_h, in_l)
* in_h : 0, 1,0,0, -1,0,0,1,
* in_l : 2,-1,1,2, 1,0,0,0, 0,0,1,0, 1,0,0,1,
* out : 2, 0,1,2, -1,0,1,1,
* =============================================================================
*/
static inline __m256i __lasx_xvaddw_w_w_h(__m256i in_h, __m256i in_l) {
__m256i out;
out = __lasx_xvsllwil_w_h(in_l, 0);
out = __lasx_xvadd_w(in_h, out);
return out;
}
/*
* =============================================================================
* Description : Multiplication and addition calculation after expansion
* of the lower half of the vector.
* Arguments : Inputs - in_c, in_h, in_l
* Output - out
* Details : The in_h vector and the in_l vector are multiplied after
* the lower half of the two-fold sign extension (signed halfword
* to signed word), and the result is added to the vector in_c,
* then stored to the out vector.
* Example : out = __lasx_xvmaddwl_w_h(in_c, in_h, in_l)
* in_c : 1,2,3,4, 5,6,7,8
* in_h : 1,2,3,4, 1,2,3,4, 5,6,7,8, 5,6,7,8
* in_l : 200, 300, 400, 500, 2000, 3000, 4000, 5000,
* -200,-300,-400,-500, -2000,-3000,-4000,-5000
* out : 201, 602,1203,2004, -995, -1794,-2793,-3992
* =============================================================================
*/
static inline __m256i __lasx_xvmaddwl_w_h(__m256i in_c, __m256i in_h,
__m256i in_l) {
__m256i tmp0, tmp1, out;
tmp0 = __lasx_xvsllwil_w_h(in_h, 0);
tmp1 = __lasx_xvsllwil_w_h(in_l, 0);
tmp0 = __lasx_xvmul_w(tmp0, tmp1);
out = __lasx_xvadd_w(tmp0, in_c);
return out;
}
/*
* =============================================================================
* Description : Multiplication and addition calculation after expansion
* of the higher half of the vector.
* Arguments : Inputs - in_c, in_h, in_l
* Output - out
* Details : The in_h vector and the in_l vector are multiplied after
* the higher half of the two-fold sign extension (signed
* halfword to signed word), and the result is added to
* the vector in_c, then stored to the out vector.
* Example : See out = __lasx_xvmaddwl_w_h(in_c, in_h, in_l)
* =============================================================================
*/
static inline __m256i __lasx_xvmaddwh_w_h(__m256i in_c, __m256i in_h,
__m256i in_l) {
__m256i tmp0, tmp1, out;
tmp0 = __lasx_xvilvh_h(in_h, in_h);
tmp1 = __lasx_xvilvh_h(in_l, in_l);
tmp0 = __lasx_xvmulwev_w_h(tmp0, tmp1);
out = __lasx_xvadd_w(tmp0, in_c);
return out;
}
/*
* =============================================================================
* Description : Multiplication calculation after expansion of the lower
* half of the vector.
* Arguments : Inputs - in_h, in_l
* Output - out
* Details : The in_h vector and the in_l vector are multiplied after
* the lower half of the two-fold sign extension (signed
* halfword to signed word), then stored to the out vector.
* Example : out = __lasx_xvmulwl_w_h(in_h, in_l)
* in_h : 3,-1,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1
* in_l : 2,-1,1,2, 1,0,0, 0, 0,0,1, 0, 1,0,0,1
* out : 6,1,3,0, 0,0,1,0
* =============================================================================
*/
static inline __m256i __lasx_xvmulwl_w_h(__m256i in_h, __m256i in_l) {
__m256i tmp0, tmp1, out;
tmp0 = __lasx_xvsllwil_w_h(in_h, 0);
tmp1 = __lasx_xvsllwil_w_h(in_l, 0);
out = __lasx_xvmul_w(tmp0, tmp1);
return out;
}
/*
* =============================================================================
* Description : Multiplication calculation after expansion of the lower
* half of the vector.
* Arguments : Inputs - in_h, in_l
* Output - out
* Details : The in_h vector and the in_l vector are multiplied after
* the lower half of the two-fold sign extension (signed
* halfword to signed word), then stored to the out vector.
* Example : out = __lasx_xvmulwh_w_h(in_h, in_l)
* in_h : 3,-1,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1
* in_l : 2,-1,1,2, 1,0,0, 0, 0,0,1, 0, 1,0,0,1
* out : 0,0,0,0, 0,0,0,1
* =============================================================================
*/
static inline __m256i __lasx_xvmulwh_w_h(__m256i in_h, __m256i in_l) {
__m256i tmp0, tmp1, out;
tmp0 = __lasx_xvilvh_h(in_h, in_h);
tmp1 = __lasx_xvilvh_h(in_l, in_l);
out = __lasx_xvmulwev_w_h(tmp0, tmp1);
return out;
}
/*
* =============================================================================
* Description : The low half of the vector elements are added to the high half
* after being doubled, then saturated.
* Arguments : Inputs - in_h, in_l
* Output - out
* Details : The in_h vector adds the in_l vector after the lower half of
* the two-fold zero extension (unsigned byte to unsigned
* halfword) and then saturated. The results are stored to the out
* vector.
* Example : out = __lasx_xvsaddw_hu_hu_bu(in_h, in_l)
* in_h : 2,65532,1,2, 1,0,0,0, 0,0,1,0, 1,0,0,1
* in_l : 3,6,3,0, 0,0,0,1, 0,0,1,1, 0,0,0,1, 3,18,3,0, 0,0,0,1, 0,0,1,1,
* 0,0,0,1
* out : 5,65535,4,2, 1,0,0,1, 3,18,4,0, 1,0,0,2,
* =============================================================================
*/
static inline __m256i __lasx_xvsaddw_hu_hu_bu(__m256i in_h, __m256i in_l) {
__m256i tmp1, out;
__m256i zero = { 0 };
tmp1 = __lasx_xvilvl_b(zero, in_l);
out = __lasx_xvsadd_hu(in_h, tmp1);
return out;
}
/*
* =============================================================================
* Description : Clip all halfword elements of input vector between min & max
* out = ((in) < (min)) ? (min) : (((in) > (max)) ? (max) : (in))
* Arguments : Inputs - in (input vector)
* - min (min threshold)
* - max (max threshold)
* Outputs - in (output vector with clipped elements)
* Return Type - signed halfword
* Example : out = __lasx_xvclip_h(in, min, max)
* in : -8,2,280,249, -8,255,280,249, 4,4,4,4, 5,5,5,5
* min : 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1
* max : 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9
* out : 1,2,9,9, 1,9,9,9, 4,4,4,4, 5,5,5,5
* =============================================================================
*/
static inline __m256i __lasx_xvclip_h(__m256i in, __m256i min, __m256i max) {
__m256i out;
out = __lasx_xvmax_h(min, in);
out = __lasx_xvmin_h(max, out);
return out;
}
/*
* =============================================================================
* Description : Clip all signed halfword elements of input vector
* between 0 & 255
* Arguments : Inputs - in (input vector)
* Outputs - out (output vector with clipped elements)
* Return Type - signed halfword
* Example : See out = __lasx_xvclip255_w(in)
* =============================================================================
*/
static inline __m256i __lasx_xvclip255_h(__m256i in) {
__m256i out;
out = __lasx_xvmaxi_h(in, 0);
out = __lasx_xvsat_hu(out, 7);
return out;
}
/*
* =============================================================================
* Description : Clip all signed word elements of input vector
* between 0 & 255
* Arguments : Inputs - in (input vector)
* Output - out (output vector with clipped elements)
* Return Type - signed word
* Example : out = __lasx_xvclip255_w(in)
* in : -8,255,280,249, -8,255,280,249
* out : 0,255,255,249, 0,255,255,249
* =============================================================================
*/
static inline __m256i __lasx_xvclip255_w(__m256i in) {
__m256i out;
out = __lasx_xvmaxi_w(in, 0);
out = __lasx_xvsat_wu(out, 7);
return out;
}
/*
* =============================================================================
* Description : Indexed halfword element values are replicated to all
* elements in output vector. If 'idx < 8' use xvsplati_l_*,
* if 'idx >= 8' use xvsplati_h_*.
* Arguments : Inputs - in, idx
* Output - out
* Details : Idx element value from in vector is replicated to all
* elements in out vector.
* Valid index range for halfword operation is 0-7
* Example : out = __lasx_xvsplati_l_h(in, idx)
* in : 20,10,11,12, 13,14,15,16, 0,0,2,0, 0,0,0,0
* idx : 0x02
* out : 11,11,11,11, 11,11,11,11, 11,11,11,11, 11,11,11,11
* =============================================================================
*/
static inline __m256i __lasx_xvsplati_l_h(__m256i in, int idx) {
__m256i out;
out = __lasx_xvpermi_q(in, in, 0x02);
out = __lasx_xvreplve_h(out, idx);
return out;
}
/*
* =============================================================================
* Description : Indexed halfword element values are replicated to all
* elements in output vector. If 'idx < 8' use xvsplati_l_*,
* if 'idx >= 8' use xvsplati_h_*.
* Arguments : Inputs - in, idx
* Output - out
* Details : Idx element value from in vector is replicated to all
* elements in out vector.
* Valid index range for halfword operation is 0-7
* Example : out = __lasx_xvsplati_h_h(in, idx)
* in : 20,10,11,12, 13,14,15,16, 0,2,0,0, 0,0,0,0
* idx : 0x09
* out : 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2
* =============================================================================
*/
static inline __m256i __lasx_xvsplati_h_h(__m256i in, int idx) {
__m256i out;
out = __lasx_xvpermi_q(in, in, 0x13);
out = __lasx_xvreplve_h(out, idx);
return out;
}
/*
* =============================================================================
* Description : Transpose 4x4 block with double-word elements in vectors
* Arguments : Inputs - _in0, _in1, _in2, _in3
* Outputs - _out0, _out1, _out2, _out3
* Example : LASX_TRANSPOSE4x4_D
* _in0 : 1,2,3,4
* _in1 : 1,2,3,4
* _in2 : 1,2,3,4
* _in3 : 1,2,3,4
*
* _out0 : 1,1,1,1
* _out1 : 2,2,2,2
* _out2 : 3,3,3,3
* _out3 : 4,4,4,4
* =============================================================================
*/
#define LASX_TRANSPOSE4x4_D(_in0, _in1, _in2, _in3, _out0, _out1, _out2, \
_out3) \
{ \
__m256i _tmp0, _tmp1, _tmp2, _tmp3; \
_tmp0 = __lasx_xvilvl_d(_in1, _in0); \
_tmp1 = __lasx_xvilvh_d(_in1, _in0); \
_tmp2 = __lasx_xvilvl_d(_in3, _in2); \
_tmp3 = __lasx_xvilvh_d(_in3, _in2); \
_out0 = __lasx_xvpermi_q(_tmp2, _tmp0, 0x20); \
_out2 = __lasx_xvpermi_q(_tmp2, _tmp0, 0x31); \
_out1 = __lasx_xvpermi_q(_tmp3, _tmp1, 0x20); \
_out3 = __lasx_xvpermi_q(_tmp3, _tmp1, 0x31); \
}
/*
* =============================================================================
* Description : Transpose 8x8 block with word elements in vectors
* Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7
* Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6,
* _out7
* Example : LASX_TRANSPOSE8x8_W
* _in0 : 1,2,3,4,5,6,7,8
* _in1 : 2,2,3,4,5,6,7,8
* _in2 : 3,2,3,4,5,6,7,8
* _in3 : 4,2,3,4,5,6,7,8
* _in4 : 5,2,3,4,5,6,7,8
* _in5 : 6,2,3,4,5,6,7,8
* _in6 : 7,2,3,4,5,6,7,8
* _in7 : 8,2,3,4,5,6,7,8
*
* _out0 : 1,2,3,4,5,6,7,8
* _out1 : 2,2,2,2,2,2,2,2
* _out2 : 3,3,3,3,3,3,3,3
* _out3 : 4,4,4,4,4,4,4,4
* _out4 : 5,5,5,5,5,5,5,5
* _out5 : 6,6,6,6,6,6,6,6
* _out6 : 7,7,7,7,7,7,7,7
* _out7 : 8,8,8,8,8,8,8,8
* =============================================================================
*/
#define LASX_TRANSPOSE8x8_W(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
__m256i _s0_m, _s1_m; \
__m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
__m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \
\
_s0_m = __lasx_xvilvl_w(_in2, _in0); \
_s1_m = __lasx_xvilvl_w(_in3, _in1); \
_tmp0_m = __lasx_xvilvl_w(_s1_m, _s0_m); \
_tmp1_m = __lasx_xvilvh_w(_s1_m, _s0_m); \
_s0_m = __lasx_xvilvh_w(_in2, _in0); \
_s1_m = __lasx_xvilvh_w(_in3, _in1); \
_tmp2_m = __lasx_xvilvl_w(_s1_m, _s0_m); \
_tmp3_m = __lasx_xvilvh_w(_s1_m, _s0_m); \
_s0_m = __lasx_xvilvl_w(_in6, _in4); \
_s1_m = __lasx_xvilvl_w(_in7, _in5); \
_tmp4_m = __lasx_xvilvl_w(_s1_m, _s0_m); \
_tmp5_m = __lasx_xvilvh_w(_s1_m, _s0_m); \
_s0_m = __lasx_xvilvh_w(_in6, _in4); \
_s1_m = __lasx_xvilvh_w(_in7, _in5); \
_tmp6_m = __lasx_xvilvl_w(_s1_m, _s0_m); \
_tmp7_m = __lasx_xvilvh_w(_s1_m, _s0_m); \
_out0 = __lasx_xvpermi_q(_tmp4_m, _tmp0_m, 0x20); \
_out1 = __lasx_xvpermi_q(_tmp5_m, _tmp1_m, 0x20); \
_out2 = __lasx_xvpermi_q(_tmp6_m, _tmp2_m, 0x20); \
_out3 = __lasx_xvpermi_q(_tmp7_m, _tmp3_m, 0x20); \
_out4 = __lasx_xvpermi_q(_tmp4_m, _tmp0_m, 0x31); \
_out5 = __lasx_xvpermi_q(_tmp5_m, _tmp1_m, 0x31); \
_out6 = __lasx_xvpermi_q(_tmp6_m, _tmp2_m, 0x31); \
_out7 = __lasx_xvpermi_q(_tmp7_m, _tmp3_m, 0x31); \
}
/*
* =============================================================================
* Description : Transpose input 16x8 byte block
* Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7,
* _in8, _in9, _in10, _in11, _in12, _in13, _in14, _in15
* (input 16x8 byte block)
* Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6,
* _out7 (output 8x16 byte block)
* Details : The rows of the matrix become columns, and the columns become
* rows.
* Example : See LASX_TRANSPOSE16x8_H
* =============================================================================
*/
#define LASX_TRANSPOSE16x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_in8, _in9, _in10, _in11, _in12, _in13, _in14, \
_in15, _out0, _out1, _out2, _out3, _out4, _out5, \
_out6, _out7) \
{ \
__m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
__m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \
\
_tmp0_m = __lasx_xvilvl_b(_in2, _in0); \
_tmp1_m = __lasx_xvilvl_b(_in3, _in1); \
_tmp2_m = __lasx_xvilvl_b(_in6, _in4); \
_tmp3_m = __lasx_xvilvl_b(_in7, _in5); \
_tmp4_m = __lasx_xvilvl_b(_in10, _in8); \
_tmp5_m = __lasx_xvilvl_b(_in11, _in9); \
_tmp6_m = __lasx_xvilvl_b(_in14, _in12); \
_tmp7_m = __lasx_xvilvl_b(_in15, _in13); \
_out0 = __lasx_xvilvl_b(_tmp1_m, _tmp0_m); \
_out1 = __lasx_xvilvh_b(_tmp1_m, _tmp0_m); \
_out2 = __lasx_xvilvl_b(_tmp3_m, _tmp2_m); \
_out3 = __lasx_xvilvh_b(_tmp3_m, _tmp2_m); \
_out4 = __lasx_xvilvl_b(_tmp5_m, _tmp4_m); \
_out5 = __lasx_xvilvh_b(_tmp5_m, _tmp4_m); \
_out6 = __lasx_xvilvl_b(_tmp7_m, _tmp6_m); \
_out7 = __lasx_xvilvh_b(_tmp7_m, _tmp6_m); \
_tmp0_m = __lasx_xvilvl_w(_out2, _out0); \
_tmp2_m = __lasx_xvilvh_w(_out2, _out0); \
_tmp4_m = __lasx_xvilvl_w(_out3, _out1); \
_tmp6_m = __lasx_xvilvh_w(_out3, _out1); \
_tmp1_m = __lasx_xvilvl_w(_out6, _out4); \
_tmp3_m = __lasx_xvilvh_w(_out6, _out4); \
_tmp5_m = __lasx_xvilvl_w(_out7, _out5); \
_tmp7_m = __lasx_xvilvh_w(_out7, _out5); \
_out0 = __lasx_xvilvl_d(_tmp1_m, _tmp0_m); \
_out1 = __lasx_xvilvh_d(_tmp1_m, _tmp0_m); \
_out2 = __lasx_xvilvl_d(_tmp3_m, _tmp2_m); \
_out3 = __lasx_xvilvh_d(_tmp3_m, _tmp2_m); \
_out4 = __lasx_xvilvl_d(_tmp5_m, _tmp4_m); \
_out5 = __lasx_xvilvh_d(_tmp5_m, _tmp4_m); \
_out6 = __lasx_xvilvl_d(_tmp7_m, _tmp6_m); \
_out7 = __lasx_xvilvh_d(_tmp7_m, _tmp6_m); \
}
/*
* =============================================================================
* Description : Transpose input 16x8 byte block
* Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7,
* _in8, _in9, _in10, _in11, _in12, _in13, _in14, _in15
* (input 16x8 byte block)
* Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6,
* _out7 (output 8x16 byte block)
* Details : The rows of the matrix become columns, and the columns become
* rows.
* Example : LASX_TRANSPOSE16x8_H
* _in0 : 1,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in1 : 2,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in2 : 3,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in3 : 4,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in4 : 5,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in5 : 6,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in6 : 7,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in7 : 8,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in8 : 9,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in9 : 1,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in10 : 0,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in11 : 2,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in12 : 3,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in13 : 7,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in14 : 5,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
* _in15 : 6,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0
*
* _out0 : 1,2,3,4,5,6,7,8,9,1,0,2,3,7,5,6
* _out1 : 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
* _out2 : 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
* _out3 : 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4
* _out4 : 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
* _out5 : 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
* _out6 : 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
* _out7 : 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
* =============================================================================
*/
#define LASX_TRANSPOSE16x8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_in8, _in9, _in10, _in11, _in12, _in13, _in14, \
_in15, _out0, _out1, _out2, _out3, _out4, _out5, \
_out6, _out7) \
{ \
__m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
__m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \
__m256i _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \
\
_tmp0_m = __lasx_xvilvl_h(_in2, _in0); \
_tmp1_m = __lasx_xvilvl_h(_in3, _in1); \
_tmp2_m = __lasx_xvilvl_h(_in6, _in4); \
_tmp3_m = __lasx_xvilvl_h(_in7, _in5); \
_tmp4_m = __lasx_xvilvl_h(_in10, _in8); \
_tmp5_m = __lasx_xvilvl_h(_in11, _in9); \
_tmp6_m = __lasx_xvilvl_h(_in14, _in12); \
_tmp7_m = __lasx_xvilvl_h(_in15, _in13); \
_t0 = __lasx_xvilvl_h(_tmp1_m, _tmp0_m); \
_t1 = __lasx_xvilvh_h(_tmp1_m, _tmp0_m); \
_t2 = __lasx_xvilvl_h(_tmp3_m, _tmp2_m); \
_t3 = __lasx_xvilvh_h(_tmp3_m, _tmp2_m); \
_t4 = __lasx_xvilvl_h(_tmp5_m, _tmp4_m); \
_t5 = __lasx_xvilvh_h(_tmp5_m, _tmp4_m); \
_t6 = __lasx_xvilvl_h(_tmp7_m, _tmp6_m); \
_t7 = __lasx_xvilvh_h(_tmp7_m, _tmp6_m); \
_tmp0_m = __lasx_xvilvl_d(_t2, _t0); \
_tmp2_m = __lasx_xvilvh_d(_t2, _t0); \
_tmp4_m = __lasx_xvilvl_d(_t3, _t1); \
_tmp6_m = __lasx_xvilvh_d(_t3, _t1); \
_tmp1_m = __lasx_xvilvl_d(_t6, _t4); \
_tmp3_m = __lasx_xvilvh_d(_t6, _t4); \
_tmp5_m = __lasx_xvilvl_d(_t7, _t5); \
_tmp7_m = __lasx_xvilvh_d(_t7, _t5); \
_out0 = __lasx_xvpermi_q(_tmp1_m, _tmp0_m, 0x20); \
_out1 = __lasx_xvpermi_q(_tmp3_m, _tmp2_m, 0x20); \
_out2 = __lasx_xvpermi_q(_tmp5_m, _tmp4_m, 0x20); \
_out3 = __lasx_xvpermi_q(_tmp7_m, _tmp6_m, 0x20); \
\
_tmp0_m = __lasx_xvilvh_h(_in2, _in0); \
_tmp1_m = __lasx_xvilvh_h(_in3, _in1); \
_tmp2_m = __lasx_xvilvh_h(_in6, _in4); \
_tmp3_m = __lasx_xvilvh_h(_in7, _in5); \
_tmp4_m = __lasx_xvilvh_h(_in10, _in8); \
_tmp5_m = __lasx_xvilvh_h(_in11, _in9); \
_tmp6_m = __lasx_xvilvh_h(_in14, _in12); \
_tmp7_m = __lasx_xvilvh_h(_in15, _in13); \
_t0 = __lasx_xvilvl_h(_tmp1_m, _tmp0_m); \
_t1 = __lasx_xvilvh_h(_tmp1_m, _tmp0_m); \
_t2 = __lasx_xvilvl_h(_tmp3_m, _tmp2_m); \
_t3 = __lasx_xvilvh_h(_tmp3_m, _tmp2_m); \
_t4 = __lasx_xvilvl_h(_tmp5_m, _tmp4_m); \
_t5 = __lasx_xvilvh_h(_tmp5_m, _tmp4_m); \
_t6 = __lasx_xvilvl_h(_tmp7_m, _tmp6_m); \
_t7 = __lasx_xvilvh_h(_tmp7_m, _tmp6_m); \
_tmp0_m = __lasx_xvilvl_d(_t2, _t0); \
_tmp2_m = __lasx_xvilvh_d(_t2, _t0); \
_tmp4_m = __lasx_xvilvl_d(_t3, _t1); \
_tmp6_m = __lasx_xvilvh_d(_t3, _t1); \
_tmp1_m = __lasx_xvilvl_d(_t6, _t4); \
_tmp3_m = __lasx_xvilvh_d(_t6, _t4); \
_tmp5_m = __lasx_xvilvl_d(_t7, _t5); \
_tmp7_m = __lasx_xvilvh_d(_t7, _t5); \
_out4 = __lasx_xvpermi_q(_tmp1_m, _tmp0_m, 0x20); \
_out5 = __lasx_xvpermi_q(_tmp3_m, _tmp2_m, 0x20); \
_out6 = __lasx_xvpermi_q(_tmp5_m, _tmp4_m, 0x20); \
_out7 = __lasx_xvpermi_q(_tmp7_m, _tmp6_m, 0x20); \
}
/*
* =============================================================================
* Description : Transpose 4x4 block with halfword elements in vectors
* Arguments : Inputs - _in0, _in1, _in2, _in3
* Outputs - _out0, _out1, _out2, _out3
* Return Type - signed halfword
* Details : The rows of the matrix become columns, and the columns become
* rows.
* Example : See LASX_TRANSPOSE8x8_H
* =============================================================================
*/
#define LASX_TRANSPOSE4x4_H(_in0, _in1, _in2, _in3, _out0, _out1, _out2, \
_out3) \
{ \
__m256i _s0_m, _s1_m; \
\
_s0_m = __lasx_xvilvl_h(_in1, _in0); \
_s1_m = __lasx_xvilvl_h(_in3, _in2); \
_out0 = __lasx_xvilvl_w(_s1_m, _s0_m); \
_out2 = __lasx_xvilvh_w(_s1_m, _s0_m); \
_out1 = __lasx_xvilvh_d(_out0, _out0); \
_out3 = __lasx_xvilvh_d(_out2, _out2); \
}
/*
* =============================================================================
* Description : Transpose input 8x8 byte block
* Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7
* (input 8x8 byte block)
* Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6,
* _out7 (output 8x8 byte block)
* Example : See LASX_TRANSPOSE8x8_H
* =============================================================================
*/
#define LASX_TRANSPOSE8x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
__m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
__m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \
_tmp0_m = __lasx_xvilvl_b(_in2, _in0); \
_tmp1_m = __lasx_xvilvl_b(_in3, _in1); \
_tmp2_m = __lasx_xvilvl_b(_in6, _in4); \
_tmp3_m = __lasx_xvilvl_b(_in7, _in5); \
_tmp4_m = __lasx_xvilvl_b(_tmp1_m, _tmp0_m); \
_tmp5_m = __lasx_xvilvh_b(_tmp1_m, _tmp0_m); \
_tmp6_m = __lasx_xvilvl_b(_tmp3_m, _tmp2_m); \
_tmp7_m = __lasx_xvilvh_b(_tmp3_m, _tmp2_m); \
_out0 = __lasx_xvilvl_w(_tmp6_m, _tmp4_m); \
_out2 = __lasx_xvilvh_w(_tmp6_m, _tmp4_m); \
_out4 = __lasx_xvilvl_w(_tmp7_m, _tmp5_m); \
_out6 = __lasx_xvilvh_w(_tmp7_m, _tmp5_m); \
_out1 = __lasx_xvbsrl_v(_out0, 8); \
_out3 = __lasx_xvbsrl_v(_out2, 8); \
_out5 = __lasx_xvbsrl_v(_out4, 8); \
_out7 = __lasx_xvbsrl_v(_out6, 8); \
}
/*
* =============================================================================
* Description : Transpose 8x8 block with halfword elements in vectors.
* Arguments : Inputs - _in0, _in1, ~
* Outputs - _out0, _out1, ~
* Details : The rows of the matrix become columns, and the columns become
* rows.
* Example : LASX_TRANSPOSE8x8_H
* _in0 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
* _in1 : 8,2,3,4, 5,6,7,8, 8,2,3,4, 5,6,7,8
* _in2 : 8,2,3,4, 5,6,7,8, 8,2,3,4, 5,6,7,8
* _in3 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
* _in4 : 9,2,3,4, 5,6,7,8, 9,2,3,4, 5,6,7,8
* _in5 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
* _in6 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8
* _in7 : 9,2,3,4, 5,6,7,8, 9,2,3,4, 5,6,7,8
*
* _out0 : 1,8,8,1, 9,1,1,9, 1,8,8,1, 9,1,1,9
* _out1 : 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2
* _out2 : 3,3,3,3, 3,3,3,3, 3,3,3,3, 3,3,3,3
* _out3 : 4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4
* _out4 : 5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5
* _out5 : 6,6,6,6, 6,6,6,6, 6,6,6,6, 6,6,6,6
* _out6 : 7,7,7,7, 7,7,7,7, 7,7,7,7, 7,7,7,7
* _out7 : 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8
* =============================================================================
*/
#define LASX_TRANSPOSE8x8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
__m256i _s0_m, _s1_m; \
__m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \
__m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \
\
_s0_m = __lasx_xvilvl_h(_in6, _in4); \
_s1_m = __lasx_xvilvl_h(_in7, _in5); \
_tmp0_m = __lasx_xvilvl_h(_s1_m, _s0_m); \
_tmp1_m = __lasx_xvilvh_h(_s1_m, _s0_m); \
_s0_m = __lasx_xvilvh_h(_in6, _in4); \
_s1_m = __lasx_xvilvh_h(_in7, _in5); \
_tmp2_m = __lasx_xvilvl_h(_s1_m, _s0_m); \
_tmp3_m = __lasx_xvilvh_h(_s1_m, _s0_m); \
\
_s0_m = __lasx_xvilvl_h(_in2, _in0); \
_s1_m = __lasx_xvilvl_h(_in3, _in1); \
_tmp4_m = __lasx_xvilvl_h(_s1_m, _s0_m); \
_tmp5_m = __lasx_xvilvh_h(_s1_m, _s0_m); \
_s0_m = __lasx_xvilvh_h(_in2, _in0); \
_s1_m = __lasx_xvilvh_h(_in3, _in1); \
_tmp6_m = __lasx_xvilvl_h(_s1_m, _s0_m); \
_tmp7_m = __lasx_xvilvh_h(_s1_m, _s0_m); \
\
_out0 = __lasx_xvpickev_d(_tmp0_m, _tmp4_m); \
_out2 = __lasx_xvpickev_d(_tmp1_m, _tmp5_m); \
_out4 = __lasx_xvpickev_d(_tmp2_m, _tmp6_m); \
_out6 = __lasx_xvpickev_d(_tmp3_m, _tmp7_m); \
_out1 = __lasx_xvpickod_d(_tmp0_m, _tmp4_m); \
_out3 = __lasx_xvpickod_d(_tmp1_m, _tmp5_m); \
_out5 = __lasx_xvpickod_d(_tmp2_m, _tmp6_m); \
_out7 = __lasx_xvpickod_d(_tmp3_m, _tmp7_m); \
}
/*
* =============================================================================
* Description : Butterfly of 4 input vectors
* Arguments : Inputs - _in0, _in1, _in2, _in3
* Outputs - _out0, _out1, _out2, _out3
* Details : Butterfly operation
* Example : LASX_BUTTERFLY_4
* _out0 = _in0 + _in3;
* _out1 = _in1 + _in2;
* _out2 = _in1 - _in2;
* _out3 = _in0 - _in3;
* =============================================================================
*/
#define LASX_BUTTERFLY_4_B(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
{ \
_out0 = __lasx_xvadd_b(_in0, _in3); \
_out1 = __lasx_xvadd_b(_in1, _in2); \
_out2 = __lasx_xvsub_b(_in1, _in2); \
_out3 = __lasx_xvsub_b(_in0, _in3); \
}
#define LASX_BUTTERFLY_4_H(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
{ \
_out0 = __lasx_xvadd_h(_in0, _in3); \
_out1 = __lasx_xvadd_h(_in1, _in2); \
_out2 = __lasx_xvsub_h(_in1, _in2); \
_out3 = __lasx_xvsub_h(_in0, _in3); \
}
#define LASX_BUTTERFLY_4_W(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
{ \
_out0 = __lasx_xvadd_w(_in0, _in3); \
_out1 = __lasx_xvadd_w(_in1, _in2); \
_out2 = __lasx_xvsub_w(_in1, _in2); \
_out3 = __lasx_xvsub_w(_in0, _in3); \
}
#define LASX_BUTTERFLY_4_D(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \
{ \
_out0 = __lasx_xvadd_d(_in0, _in3); \
_out1 = __lasx_xvadd_d(_in1, _in2); \
_out2 = __lasx_xvsub_d(_in1, _in2); \
_out3 = __lasx_xvsub_d(_in0, _in3); \
}
/*
* =============================================================================
* Description : Butterfly of 8 input vectors
* Arguments : Inputs - _in0, _in1, _in2, _in3, ~
* Outputs - _out0, _out1, _out2, _out3, ~
* Details : Butterfly operation
* Example : LASX_BUTTERFLY_8
* _out0 = _in0 + _in7;
* _out1 = _in1 + _in6;
* _out2 = _in2 + _in5;
* _out3 = _in3 + _in4;
* _out4 = _in3 - _in4;
* _out5 = _in2 - _in5;
* _out6 = _in1 - _in6;
* _out7 = _in0 - _in7;
* =============================================================================
*/
#define LASX_BUTTERFLY_8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
_out0 = __lasx_xvadd_b(_in0, _in7); \
_out1 = __lasx_xvadd_b(_in1, _in6); \
_out2 = __lasx_xvadd_b(_in2, _in5); \
_out3 = __lasx_xvadd_b(_in3, _in4); \
_out4 = __lasx_xvsub_b(_in3, _in4); \
_out5 = __lasx_xvsub_b(_in2, _in5); \
_out6 = __lasx_xvsub_b(_in1, _in6); \
_out7 = __lasx_xvsub_b(_in0, _in7); \
}
#define LASX_BUTTERFLY_8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
_out0 = __lasx_xvadd_h(_in0, _in7); \
_out1 = __lasx_xvadd_h(_in1, _in6); \
_out2 = __lasx_xvadd_h(_in2, _in5); \
_out3 = __lasx_xvadd_h(_in3, _in4); \
_out4 = __lasx_xvsub_h(_in3, _in4); \
_out5 = __lasx_xvsub_h(_in2, _in5); \
_out6 = __lasx_xvsub_h(_in1, _in6); \
_out7 = __lasx_xvsub_h(_in0, _in7); \
}
#define LASX_BUTTERFLY_8_W(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
_out0 = __lasx_xvadd_w(_in0, _in7); \
_out1 = __lasx_xvadd_w(_in1, _in6); \
_out2 = __lasx_xvadd_w(_in2, _in5); \
_out3 = __lasx_xvadd_w(_in3, _in4); \
_out4 = __lasx_xvsub_w(_in3, _in4); \
_out5 = __lasx_xvsub_w(_in2, _in5); \
_out6 = __lasx_xvsub_w(_in1, _in6); \
_out7 = __lasx_xvsub_w(_in0, _in7); \
}
#define LASX_BUTTERFLY_8_D(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \
_out0, _out1, _out2, _out3, _out4, _out5, _out6, \
_out7) \
{ \
_out0 = __lasx_xvadd_d(_in0, _in7); \
_out1 = __lasx_xvadd_d(_in1, _in6); \
_out2 = __lasx_xvadd_d(_in2, _in5); \
_out3 = __lasx_xvadd_d(_in3, _in4); \
_out4 = __lasx_xvsub_d(_in3, _in4); \
_out5 = __lasx_xvsub_d(_in2, _in5); \
_out6 = __lasx_xvsub_d(_in1, _in6); \
_out7 = __lasx_xvsub_d(_in0, _in7); \
}
#endif // LASX
/*
* =============================================================================
* Description : Print out elements in vector.
* Arguments : Inputs - RTYPE, _element_num, _in0, _enter
* Outputs -
* Details : Print out '_element_num' elements in 'RTYPE' vector '_in0', if
* '_enter' is TRUE, prefix "\nVP:" will be added first.
* Example : VECT_PRINT(v4i32,4,in0,1); // in0: 1,2,3,4
* VP:1,2,3,4,
* =============================================================================
*/
#define VECT_PRINT(RTYPE, element_num, in0, enter) \
{ \
RTYPE _tmp0 = (RTYPE)in0; \
int _i = 0; \
if (enter) printf("\nVP:"); \
for (_i = 0; _i < element_num; _i++) printf("%d,", _tmp0[_i]); \
}
#endif /* LOONGSON_INTRINSICS_H */
#endif /* AVUTIL_LOONGARCH_LOONGSON_INTRINSICS_H */