mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
351 lines
9.0 KiB
351 lines
9.0 KiB
/* |
|
* Sample rate convertion for both audio and video |
|
* Copyright (c) 2000 Fabrice Bellard. |
|
* |
|
* This library is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2 of the License, or (at your option) any later version. |
|
* |
|
* This library is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with this library; if not, write to the Free Software |
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
*/ |
|
|
|
/** |
|
* @file resample.c |
|
* Sample rate convertion for both audio and video. |
|
*/ |
|
|
|
#include "avcodec.h" |
|
|
|
typedef struct { |
|
/* fractional resampling */ |
|
uint32_t incr; /* fractional increment */ |
|
uint32_t frac; |
|
int last_sample; |
|
/* integer down sample */ |
|
int iratio; /* integer divison ratio */ |
|
int icount, isum; |
|
int inv; |
|
} ReSampleChannelContext; |
|
|
|
struct ReSampleContext { |
|
ReSampleChannelContext channel_ctx[2]; |
|
float ratio; |
|
/* channel convert */ |
|
int input_channels, output_channels, filter_channels; |
|
}; |
|
|
|
|
|
#define FRAC_BITS 16 |
|
#define FRAC (1 << FRAC_BITS) |
|
|
|
static void init_mono_resample(ReSampleChannelContext *s, float ratio) |
|
{ |
|
ratio = 1.0 / ratio; |
|
s->iratio = (int)floorf(ratio); |
|
if (s->iratio == 0) |
|
s->iratio = 1; |
|
s->incr = (int)((ratio / s->iratio) * FRAC); |
|
s->frac = FRAC; |
|
s->last_sample = 0; |
|
s->icount = s->iratio; |
|
s->isum = 0; |
|
s->inv = (FRAC / s->iratio); |
|
} |
|
|
|
/* fractional audio resampling */ |
|
static int fractional_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples) |
|
{ |
|
unsigned int frac, incr; |
|
int l0, l1; |
|
short *q, *p, *pend; |
|
|
|
l0 = s->last_sample; |
|
incr = s->incr; |
|
frac = s->frac; |
|
|
|
p = input; |
|
pend = input + nb_samples; |
|
q = output; |
|
|
|
l1 = *p++; |
|
for(;;) { |
|
/* interpolate */ |
|
*q++ = (l0 * (FRAC - frac) + l1 * frac) >> FRAC_BITS; |
|
frac = frac + s->incr; |
|
while (frac >= FRAC) { |
|
frac -= FRAC; |
|
if (p >= pend) |
|
goto the_end; |
|
l0 = l1; |
|
l1 = *p++; |
|
} |
|
} |
|
the_end: |
|
s->last_sample = l1; |
|
s->frac = frac; |
|
return q - output; |
|
} |
|
|
|
static int integer_downsample(ReSampleChannelContext *s, short *output, short *input, int nb_samples) |
|
{ |
|
short *q, *p, *pend; |
|
int c, sum; |
|
|
|
p = input; |
|
pend = input + nb_samples; |
|
q = output; |
|
|
|
c = s->icount; |
|
sum = s->isum; |
|
|
|
for(;;) { |
|
sum += *p++; |
|
if (--c == 0) { |
|
*q++ = (sum * s->inv) >> FRAC_BITS; |
|
c = s->iratio; |
|
sum = 0; |
|
} |
|
if (p >= pend) |
|
break; |
|
} |
|
s->isum = sum; |
|
s->icount = c; |
|
return q - output; |
|
} |
|
|
|
/* n1: number of samples */ |
|
static void stereo_to_mono(short *output, short *input, int n1) |
|
{ |
|
short *p, *q; |
|
int n = n1; |
|
|
|
p = input; |
|
q = output; |
|
while (n >= 4) { |
|
q[0] = (p[0] + p[1]) >> 1; |
|
q[1] = (p[2] + p[3]) >> 1; |
|
q[2] = (p[4] + p[5]) >> 1; |
|
q[3] = (p[6] + p[7]) >> 1; |
|
q += 4; |
|
p += 8; |
|
n -= 4; |
|
} |
|
while (n > 0) { |
|
q[0] = (p[0] + p[1]) >> 1; |
|
q++; |
|
p += 2; |
|
n--; |
|
} |
|
} |
|
|
|
/* n1: number of samples */ |
|
static void mono_to_stereo(short *output, short *input, int n1) |
|
{ |
|
short *p, *q; |
|
int n = n1; |
|
int v; |
|
|
|
p = input; |
|
q = output; |
|
while (n >= 4) { |
|
v = p[0]; q[0] = v; q[1] = v; |
|
v = p[1]; q[2] = v; q[3] = v; |
|
v = p[2]; q[4] = v; q[5] = v; |
|
v = p[3]; q[6] = v; q[7] = v; |
|
q += 8; |
|
p += 4; |
|
n -= 4; |
|
} |
|
while (n > 0) { |
|
v = p[0]; q[0] = v; q[1] = v; |
|
q += 2; |
|
p += 1; |
|
n--; |
|
} |
|
} |
|
|
|
/* XXX: should use more abstract 'N' channels system */ |
|
static void stereo_split(short *output1, short *output2, short *input, int n) |
|
{ |
|
int i; |
|
|
|
for(i=0;i<n;i++) { |
|
*output1++ = *input++; |
|
*output2++ = *input++; |
|
} |
|
} |
|
|
|
static void stereo_mux(short *output, short *input1, short *input2, int n) |
|
{ |
|
int i; |
|
|
|
for(i=0;i<n;i++) { |
|
*output++ = *input1++; |
|
*output++ = *input2++; |
|
} |
|
} |
|
|
|
static void ac3_5p1_mux(short *output, short *input1, short *input2, int n) |
|
{ |
|
int i; |
|
short l,r; |
|
|
|
for(i=0;i<n;i++) { |
|
l=*input1++; |
|
r=*input2++; |
|
*output++ = l; /* left */ |
|
*output++ = (l/2)+(r/2); /* center */ |
|
*output++ = r; /* right */ |
|
*output++ = 0; /* left surround */ |
|
*output++ = 0; /* right surroud */ |
|
*output++ = 0; /* low freq */ |
|
} |
|
} |
|
|
|
static int mono_resample(ReSampleChannelContext *s, short *output, short *input, int nb_samples) |
|
{ |
|
short *buf1; |
|
short *buftmp; |
|
|
|
buf1= (short*)av_malloc( nb_samples * sizeof(short) ); |
|
|
|
/* first downsample by an integer factor with averaging filter */ |
|
if (s->iratio > 1) { |
|
buftmp = buf1; |
|
nb_samples = integer_downsample(s, buftmp, input, nb_samples); |
|
} else { |
|
buftmp = input; |
|
} |
|
|
|
/* then do a fractional resampling with linear interpolation */ |
|
if (s->incr != FRAC) { |
|
nb_samples = fractional_resample(s, output, buftmp, nb_samples); |
|
} else { |
|
memcpy(output, buftmp, nb_samples * sizeof(short)); |
|
} |
|
av_free(buf1); |
|
return nb_samples; |
|
} |
|
|
|
ReSampleContext *audio_resample_init(int output_channels, int input_channels, |
|
int output_rate, int input_rate) |
|
{ |
|
ReSampleContext *s; |
|
int i; |
|
|
|
if ( input_channels > 2) |
|
{ |
|
av_log(NULL, AV_LOG_ERROR, "Resampling with input channels greater than 2 unsupported."); |
|
return NULL; |
|
} |
|
|
|
s = av_mallocz(sizeof(ReSampleContext)); |
|
if (!s) |
|
{ |
|
av_log(NULL, AV_LOG_ERROR, "Can't allocate memory for resample context."); |
|
return NULL; |
|
} |
|
|
|
s->ratio = (float)output_rate / (float)input_rate; |
|
|
|
s->input_channels = input_channels; |
|
s->output_channels = output_channels; |
|
|
|
s->filter_channels = s->input_channels; |
|
if (s->output_channels < s->filter_channels) |
|
s->filter_channels = s->output_channels; |
|
|
|
/* |
|
* ac3 output is the only case where filter_channels could be greater than 2. |
|
* input channels can't be greater than 2, so resample the 2 channels and then |
|
* expand to 6 channels after the resampling. |
|
*/ |
|
if(s->filter_channels>2) |
|
s->filter_channels = 2; |
|
|
|
for(i=0;i<s->filter_channels;i++) { |
|
init_mono_resample(&s->channel_ctx[i], s->ratio); |
|
} |
|
return s; |
|
} |
|
|
|
/* resample audio. 'nb_samples' is the number of input samples */ |
|
/* XXX: optimize it ! */ |
|
/* XXX: do it with polyphase filters, since the quality here is |
|
HORRIBLE. Return the number of samples available in output */ |
|
int audio_resample(ReSampleContext *s, short *output, short *input, int nb_samples) |
|
{ |
|
int i, nb_samples1; |
|
short *bufin[2]; |
|
short *bufout[2]; |
|
short *buftmp2[2], *buftmp3[2]; |
|
int lenout; |
|
|
|
if (s->input_channels == s->output_channels && s->ratio == 1.0) { |
|
/* nothing to do */ |
|
memcpy(output, input, nb_samples * s->input_channels * sizeof(short)); |
|
return nb_samples; |
|
} |
|
|
|
/* XXX: move those malloc to resample init code */ |
|
bufin[0]= (short*) av_malloc( nb_samples * sizeof(short) ); |
|
bufin[1]= (short*) av_malloc( nb_samples * sizeof(short) ); |
|
|
|
/* make some zoom to avoid round pb */ |
|
lenout= (int)(nb_samples * s->ratio) + 16; |
|
bufout[0]= (short*) av_malloc( lenout * sizeof(short) ); |
|
bufout[1]= (short*) av_malloc( lenout * sizeof(short) ); |
|
|
|
if (s->input_channels == 2 && |
|
s->output_channels == 1) { |
|
buftmp2[0] = bufin[0]; |
|
buftmp3[0] = output; |
|
stereo_to_mono(buftmp2[0], input, nb_samples); |
|
} else if (s->output_channels >= 2 && s->input_channels == 1) { |
|
buftmp2[0] = input; |
|
buftmp3[0] = bufout[0]; |
|
} else if (s->output_channels >= 2) { |
|
buftmp2[0] = bufin[0]; |
|
buftmp2[1] = bufin[1]; |
|
buftmp3[0] = bufout[0]; |
|
buftmp3[1] = bufout[1]; |
|
stereo_split(buftmp2[0], buftmp2[1], input, nb_samples); |
|
} else { |
|
buftmp2[0] = input; |
|
buftmp3[0] = output; |
|
} |
|
|
|
/* resample each channel */ |
|
nb_samples1 = 0; /* avoid warning */ |
|
for(i=0;i<s->filter_channels;i++) { |
|
nb_samples1 = mono_resample(&s->channel_ctx[i], buftmp3[i], buftmp2[i], nb_samples); |
|
} |
|
|
|
if (s->output_channels == 2 && s->input_channels == 1) { |
|
mono_to_stereo(output, buftmp3[0], nb_samples1); |
|
} else if (s->output_channels == 2) { |
|
stereo_mux(output, buftmp3[0], buftmp3[1], nb_samples1); |
|
} else if (s->output_channels == 6) { |
|
ac3_5p1_mux(output, buftmp3[0], buftmp3[1], nb_samples1); |
|
} |
|
|
|
av_free(bufin[0]); |
|
av_free(bufin[1]); |
|
|
|
av_free(bufout[0]); |
|
av_free(bufout[1]); |
|
return nb_samples1; |
|
} |
|
|
|
void audio_resample_close(ReSampleContext *s) |
|
{ |
|
av_free(s); |
|
}
|
|
|