mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1606 lines
60 KiB
1606 lines
60 KiB
/* |
|
* DCA compatible decoder |
|
* Copyright (C) 2004 Gildas Bazin |
|
* Copyright (C) 2004 Benjamin Zores |
|
* Copyright (C) 2006 Benjamin Larsson |
|
* Copyright (C) 2007 Konstantin Shishkov |
|
* Copyright (C) 2012 Paul B Mahol |
|
* Copyright (C) 2014 Niels Möller |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <math.h> |
|
#include <stddef.h> |
|
#include <stdio.h> |
|
|
|
#include "libavutil/attributes.h" |
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/float_dsp.h" |
|
#include "libavutil/internal.h" |
|
#include "libavutil/intreadwrite.h" |
|
#include "libavutil/mathematics.h" |
|
#include "libavutil/opt.h" |
|
#include "libavutil/samplefmt.h" |
|
|
|
#include "avcodec.h" |
|
#include "dca.h" |
|
#include "dca_syncwords.h" |
|
#include "dcadata.h" |
|
#include "dcadsp.h" |
|
#include "dcahuff.h" |
|
#include "fft.h" |
|
#include "fmtconvert.h" |
|
#include "get_bits.h" |
|
#include "internal.h" |
|
#include "mathops.h" |
|
#include "profiles.h" |
|
#include "put_bits.h" |
|
#include "synth_filter.h" |
|
|
|
#if ARCH_ARM |
|
# include "arm/dca.h" |
|
#endif |
|
|
|
enum DCAMode { |
|
DCA_MONO = 0, |
|
DCA_CHANNEL, |
|
DCA_STEREO, |
|
DCA_STEREO_SUMDIFF, |
|
DCA_STEREO_TOTAL, |
|
DCA_3F, |
|
DCA_2F1R, |
|
DCA_3F1R, |
|
DCA_2F2R, |
|
DCA_3F2R, |
|
DCA_4F2R |
|
}; |
|
|
|
/* -1 are reserved or unknown */ |
|
static const int dca_ext_audio_descr_mask[] = { |
|
DCA_EXT_XCH, |
|
-1, |
|
DCA_EXT_X96, |
|
DCA_EXT_XCH | DCA_EXT_X96, |
|
-1, |
|
-1, |
|
DCA_EXT_XXCH, |
|
-1, |
|
}; |
|
|
|
/* Tables for mapping dts channel configurations to libavcodec multichannel api. |
|
* Some compromises have been made for special configurations. Most configurations |
|
* are never used so complete accuracy is not needed. |
|
* |
|
* L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead. |
|
* S -> side, when both rear and back are configured move one of them to the side channel |
|
* OV -> center back |
|
* All 2 channel configurations -> AV_CH_LAYOUT_STEREO |
|
*/ |
|
static const uint64_t dca_core_channel_layout[] = { |
|
AV_CH_FRONT_CENTER, ///< 1, A |
|
AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono) |
|
AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo) |
|
AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference) |
|
AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total) |
|
AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R |
|
AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S |
|
AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S |
|
AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR |
|
|
|
AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT | |
|
AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR |
|
|
|
AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT | |
|
AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR |
|
|
|
AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT | |
|
AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV |
|
|
|
AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER | |
|
AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER | |
|
AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR |
|
|
|
AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER | |
|
AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO | |
|
AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR |
|
|
|
AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER | |
|
AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT | |
|
AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2 |
|
|
|
AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER | |
|
AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO | |
|
AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR |
|
}; |
|
|
|
#define DCA_DOLBY 101 /* FIXME */ |
|
|
|
#define DCA_CHANNEL_BITS 6 |
|
#define DCA_CHANNEL_MASK 0x3F |
|
|
|
#define DCA_LFE 0x80 |
|
|
|
#define HEADER_SIZE 14 |
|
|
|
#define DCA_NSYNCAUX 0x9A1105A0 |
|
|
|
/** Bit allocation */ |
|
typedef struct BitAlloc { |
|
int offset; ///< code values offset |
|
int maxbits[8]; ///< max bits in VLC |
|
int wrap; ///< wrap for get_vlc2() |
|
VLC vlc[8]; ///< actual codes |
|
} BitAlloc; |
|
|
|
static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select |
|
static BitAlloc dca_tmode; ///< transition mode VLCs |
|
static BitAlloc dca_scalefactor; ///< scalefactor VLCs |
|
static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs |
|
|
|
static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba, |
|
int idx) |
|
{ |
|
return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) + |
|
ba->offset; |
|
} |
|
|
|
static av_cold void dca_init_vlcs(void) |
|
{ |
|
static int vlcs_initialized = 0; |
|
int i, j, c = 14; |
|
static VLC_TYPE dca_table[23622][2]; |
|
|
|
if (vlcs_initialized) |
|
return; |
|
|
|
dca_bitalloc_index.offset = 1; |
|
dca_bitalloc_index.wrap = 2; |
|
for (i = 0; i < 5; i++) { |
|
dca_bitalloc_index.vlc[i].table = &dca_table[ff_dca_vlc_offs[i]]; |
|
dca_bitalloc_index.vlc[i].table_allocated = ff_dca_vlc_offs[i + 1] - ff_dca_vlc_offs[i]; |
|
init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12, |
|
bitalloc_12_bits[i], 1, 1, |
|
bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC); |
|
} |
|
dca_scalefactor.offset = -64; |
|
dca_scalefactor.wrap = 2; |
|
for (i = 0; i < 5; i++) { |
|
dca_scalefactor.vlc[i].table = &dca_table[ff_dca_vlc_offs[i + 5]]; |
|
dca_scalefactor.vlc[i].table_allocated = ff_dca_vlc_offs[i + 6] - ff_dca_vlc_offs[i + 5]; |
|
init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129, |
|
scales_bits[i], 1, 1, |
|
scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC); |
|
} |
|
dca_tmode.offset = 0; |
|
dca_tmode.wrap = 1; |
|
for (i = 0; i < 4; i++) { |
|
dca_tmode.vlc[i].table = &dca_table[ff_dca_vlc_offs[i + 10]]; |
|
dca_tmode.vlc[i].table_allocated = ff_dca_vlc_offs[i + 11] - ff_dca_vlc_offs[i + 10]; |
|
init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4, |
|
tmode_bits[i], 1, 1, |
|
tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC); |
|
} |
|
|
|
for (i = 0; i < 10; i++) |
|
for (j = 0; j < 7; j++) { |
|
if (!bitalloc_codes[i][j]) |
|
break; |
|
dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i]; |
|
dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4); |
|
dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[ff_dca_vlc_offs[c]]; |
|
dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = ff_dca_vlc_offs[c + 1] - ff_dca_vlc_offs[c]; |
|
|
|
init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j], |
|
bitalloc_sizes[i], |
|
bitalloc_bits[i][j], 1, 1, |
|
bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC); |
|
c++; |
|
} |
|
vlcs_initialized = 1; |
|
} |
|
|
|
static inline void get_array(GetBitContext *gb, int *dst, int len, int bits) |
|
{ |
|
while (len--) |
|
*dst++ = get_bits(gb, bits); |
|
} |
|
|
|
static int dca_parse_audio_coding_header(DCAContext *s, int base_channel) |
|
{ |
|
int i, j; |
|
static const uint8_t adj_table[4] = { 16, 18, 20, 23 }; |
|
static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 }; |
|
static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 }; |
|
|
|
s->audio_header.total_channels = get_bits(&s->gb, 3) + 1 + base_channel; |
|
s->audio_header.prim_channels = s->audio_header.total_channels; |
|
|
|
if (s->audio_header.prim_channels > DCA_PRIM_CHANNELS_MAX) |
|
s->audio_header.prim_channels = DCA_PRIM_CHANNELS_MAX; |
|
|
|
for (i = base_channel; i < s->audio_header.prim_channels; i++) { |
|
s->audio_header.subband_activity[i] = get_bits(&s->gb, 5) + 2; |
|
if (s->audio_header.subband_activity[i] > DCA_SUBBANDS) |
|
s->audio_header.subband_activity[i] = DCA_SUBBANDS; |
|
} |
|
for (i = base_channel; i < s->audio_header.prim_channels; i++) { |
|
s->audio_header.vq_start_subband[i] = get_bits(&s->gb, 5) + 1; |
|
if (s->audio_header.vq_start_subband[i] > DCA_SUBBANDS) |
|
s->audio_header.vq_start_subband[i] = DCA_SUBBANDS; |
|
} |
|
get_array(&s->gb, s->audio_header.joint_intensity + base_channel, |
|
s->audio_header.prim_channels - base_channel, 3); |
|
get_array(&s->gb, s->audio_header.transient_huffman + base_channel, |
|
s->audio_header.prim_channels - base_channel, 2); |
|
get_array(&s->gb, s->audio_header.scalefactor_huffman + base_channel, |
|
s->audio_header.prim_channels - base_channel, 3); |
|
get_array(&s->gb, s->audio_header.bitalloc_huffman + base_channel, |
|
s->audio_header.prim_channels - base_channel, 3); |
|
|
|
/* Get codebooks quantization indexes */ |
|
if (!base_channel) |
|
memset(s->audio_header.quant_index_huffman, 0, sizeof(s->audio_header.quant_index_huffman)); |
|
for (j = 1; j < 11; j++) |
|
for (i = base_channel; i < s->audio_header.prim_channels; i++) |
|
s->audio_header.quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]); |
|
|
|
/* Get scale factor adjustment */ |
|
for (j = 0; j < 11; j++) |
|
for (i = base_channel; i < s->audio_header.prim_channels; i++) |
|
s->audio_header.scalefactor_adj[i][j] = 16; |
|
|
|
for (j = 1; j < 11; j++) |
|
for (i = base_channel; i < s->audio_header.prim_channels; i++) |
|
if (s->audio_header.quant_index_huffman[i][j] < thr[j]) |
|
s->audio_header.scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)]; |
|
|
|
if (s->crc_present) { |
|
/* Audio header CRC check */ |
|
get_bits(&s->gb, 16); |
|
} |
|
|
|
s->current_subframe = 0; |
|
s->current_subsubframe = 0; |
|
|
|
return 0; |
|
} |
|
|
|
static int dca_parse_frame_header(DCAContext *s) |
|
{ |
|
init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8); |
|
|
|
/* Sync code */ |
|
skip_bits_long(&s->gb, 32); |
|
|
|
/* Frame header */ |
|
s->frame_type = get_bits(&s->gb, 1); |
|
s->samples_deficit = get_bits(&s->gb, 5) + 1; |
|
s->crc_present = get_bits(&s->gb, 1); |
|
s->sample_blocks = get_bits(&s->gb, 7) + 1; |
|
s->frame_size = get_bits(&s->gb, 14) + 1; |
|
if (s->frame_size < 95) |
|
return AVERROR_INVALIDDATA; |
|
s->amode = get_bits(&s->gb, 6); |
|
s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)]; |
|
if (!s->sample_rate) |
|
return AVERROR_INVALIDDATA; |
|
s->bit_rate_index = get_bits(&s->gb, 5); |
|
s->bit_rate = ff_dca_bit_rates[s->bit_rate_index]; |
|
if (!s->bit_rate) |
|
return AVERROR_INVALIDDATA; |
|
|
|
skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1) |
|
s->dynrange = get_bits(&s->gb, 1); |
|
s->timestamp = get_bits(&s->gb, 1); |
|
s->aux_data = get_bits(&s->gb, 1); |
|
s->hdcd = get_bits(&s->gb, 1); |
|
s->ext_descr = get_bits(&s->gb, 3); |
|
s->ext_coding = get_bits(&s->gb, 1); |
|
s->aspf = get_bits(&s->gb, 1); |
|
s->lfe = get_bits(&s->gb, 2); |
|
s->predictor_history = get_bits(&s->gb, 1); |
|
|
|
if (s->lfe > 2) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* TODO: check CRC */ |
|
if (s->crc_present) |
|
s->header_crc = get_bits(&s->gb, 16); |
|
|
|
s->multirate_inter = get_bits(&s->gb, 1); |
|
s->version = get_bits(&s->gb, 4); |
|
s->copy_history = get_bits(&s->gb, 2); |
|
s->source_pcm_res = get_bits(&s->gb, 3); |
|
s->front_sum = get_bits(&s->gb, 1); |
|
s->surround_sum = get_bits(&s->gb, 1); |
|
s->dialog_norm = get_bits(&s->gb, 4); |
|
|
|
/* FIXME: channels mixing levels */ |
|
s->output = s->amode; |
|
if (s->lfe) |
|
s->output |= DCA_LFE; |
|
|
|
/* Primary audio coding header */ |
|
s->audio_header.subframes = get_bits(&s->gb, 4) + 1; |
|
|
|
return dca_parse_audio_coding_header(s, 0); |
|
} |
|
|
|
static inline int get_scale(GetBitContext *gb, int level, int value, int log2range) |
|
{ |
|
if (level < 5) { |
|
/* huffman encoded */ |
|
value += get_bitalloc(gb, &dca_scalefactor, level); |
|
value = av_clip(value, 0, (1 << log2range) - 1); |
|
} else if (level < 8) { |
|
if (level + 1 > log2range) { |
|
skip_bits(gb, level + 1 - log2range); |
|
value = get_bits(gb, log2range); |
|
} else { |
|
value = get_bits(gb, level + 1); |
|
} |
|
} |
|
return value; |
|
} |
|
|
|
static int dca_subframe_header(DCAContext *s, int base_channel, int block_index) |
|
{ |
|
/* Primary audio coding side information */ |
|
int j, k; |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (!base_channel) { |
|
s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1; |
|
s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3); |
|
} |
|
|
|
for (j = base_channel; j < s->audio_header.prim_channels; j++) { |
|
for (k = 0; k < s->audio_header.subband_activity[j]; k++) |
|
s->dca_chan[j].prediction_mode[k] = get_bits(&s->gb, 1); |
|
} |
|
|
|
/* Get prediction codebook */ |
|
for (j = base_channel; j < s->audio_header.prim_channels; j++) { |
|
for (k = 0; k < s->audio_header.subband_activity[j]; k++) { |
|
if (s->dca_chan[j].prediction_mode[k] > 0) { |
|
/* (Prediction coefficient VQ address) */ |
|
s->dca_chan[j].prediction_vq[k] = get_bits(&s->gb, 12); |
|
} |
|
} |
|
} |
|
|
|
/* Bit allocation index */ |
|
for (j = base_channel; j < s->audio_header.prim_channels; j++) { |
|
for (k = 0; k < s->audio_header.vq_start_subband[j]; k++) { |
|
if (s->audio_header.bitalloc_huffman[j] == 6) |
|
s->dca_chan[j].bitalloc[k] = get_bits(&s->gb, 5); |
|
else if (s->audio_header.bitalloc_huffman[j] == 5) |
|
s->dca_chan[j].bitalloc[k] = get_bits(&s->gb, 4); |
|
else if (s->audio_header.bitalloc_huffman[j] == 7) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid bit allocation index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} else { |
|
s->dca_chan[j].bitalloc[k] = |
|
get_bitalloc(&s->gb, &dca_bitalloc_index, s->audio_header.bitalloc_huffman[j]); |
|
} |
|
|
|
if (s->dca_chan[j].bitalloc[k] > 26) { |
|
ff_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n", |
|
j, k, s->dca_chan[j].bitalloc[k]); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
} |
|
|
|
/* Transition mode */ |
|
for (j = base_channel; j < s->audio_header.prim_channels; j++) { |
|
for (k = 0; k < s->audio_header.subband_activity[j]; k++) { |
|
s->dca_chan[j].transition_mode[k] = 0; |
|
if (s->subsubframes[s->current_subframe] > 1 && |
|
k < s->audio_header.vq_start_subband[j] && s->dca_chan[j].bitalloc[k] > 0) { |
|
s->dca_chan[j].transition_mode[k] = |
|
get_bitalloc(&s->gb, &dca_tmode, s->audio_header.transient_huffman[j]); |
|
} |
|
} |
|
} |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
for (j = base_channel; j < s->audio_header.prim_channels; j++) { |
|
const uint32_t *scale_table; |
|
int scale_sum, log_size; |
|
|
|
memset(s->dca_chan[j].scale_factor, 0, |
|
s->audio_header.subband_activity[j] * sizeof(s->dca_chan[j].scale_factor[0][0]) * 2); |
|
|
|
if (s->audio_header.scalefactor_huffman[j] == 6) { |
|
scale_table = ff_dca_scale_factor_quant7; |
|
log_size = 7; |
|
} else { |
|
scale_table = ff_dca_scale_factor_quant6; |
|
log_size = 6; |
|
} |
|
|
|
/* When huffman coded, only the difference is encoded */ |
|
scale_sum = 0; |
|
|
|
for (k = 0; k < s->audio_header.subband_activity[j]; k++) { |
|
if (k >= s->audio_header.vq_start_subband[j] || s->dca_chan[j].bitalloc[k] > 0) { |
|
scale_sum = get_scale(&s->gb, s->audio_header.scalefactor_huffman[j], scale_sum, log_size); |
|
s->dca_chan[j].scale_factor[k][0] = scale_table[scale_sum]; |
|
} |
|
|
|
if (k < s->audio_header.vq_start_subband[j] && s->dca_chan[j].transition_mode[k]) { |
|
/* Get second scale factor */ |
|
scale_sum = get_scale(&s->gb, s->audio_header.scalefactor_huffman[j], scale_sum, log_size); |
|
s->dca_chan[j].scale_factor[k][1] = scale_table[scale_sum]; |
|
} |
|
} |
|
} |
|
|
|
/* Joint subband scale factor codebook select */ |
|
for (j = base_channel; j < s->audio_header.prim_channels; j++) { |
|
/* Transmitted only if joint subband coding enabled */ |
|
if (s->audio_header.joint_intensity[j] > 0) |
|
s->dca_chan[j].joint_huff = get_bits(&s->gb, 3); |
|
} |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
/* Scale factors for joint subband coding */ |
|
for (j = base_channel; j < s->audio_header.prim_channels; j++) { |
|
int source_channel; |
|
|
|
/* Transmitted only if joint subband coding enabled */ |
|
if (s->audio_header.joint_intensity[j] > 0) { |
|
int scale = 0; |
|
source_channel = s->audio_header.joint_intensity[j] - 1; |
|
|
|
/* When huffman coded, only the difference is encoded |
|
* (is this valid as well for joint scales ???) */ |
|
|
|
for (k = s->audio_header.subband_activity[j]; |
|
k < s->audio_header.subband_activity[source_channel]; k++) { |
|
scale = get_scale(&s->gb, s->dca_chan[j].joint_huff, 64 /* bias */, 7); |
|
s->dca_chan[j].joint_scale_factor[k] = scale; /*joint_scale_table[scale]; */ |
|
} |
|
|
|
if (!(s->debug_flag & 0x02)) { |
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
"Joint stereo coding not supported\n"); |
|
s->debug_flag |= 0x02; |
|
} |
|
} |
|
} |
|
|
|
/* Dynamic range coefficient */ |
|
if (!base_channel && s->dynrange) |
|
s->dynrange_coef = get_bits(&s->gb, 8); |
|
|
|
/* Side information CRC check word */ |
|
if (s->crc_present) { |
|
get_bits(&s->gb, 16); |
|
} |
|
|
|
/* |
|
* Primary audio data arrays |
|
*/ |
|
|
|
/* VQ encoded high frequency subbands */ |
|
for (j = base_channel; j < s->audio_header.prim_channels; j++) |
|
for (k = s->audio_header.vq_start_subband[j]; k < s->audio_header.subband_activity[j]; k++) |
|
/* 1 vector -> 32 samples */ |
|
s->dca_chan[j].high_freq_vq[k] = get_bits(&s->gb, 10); |
|
|
|
/* Low frequency effect data */ |
|
if (!base_channel && s->lfe) { |
|
/* LFE samples */ |
|
int lfe_samples = 2 * s->lfe * (4 + block_index); |
|
int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]); |
|
float lfe_scale; |
|
|
|
for (j = lfe_samples; j < lfe_end_sample; j++) { |
|
/* Signed 8 bits int */ |
|
s->lfe_data[j] = get_sbits(&s->gb, 8); |
|
} |
|
|
|
/* Scale factor index */ |
|
skip_bits(&s->gb, 1); |
|
s->lfe_scale_factor = ff_dca_scale_factor_quant7[get_bits(&s->gb, 7)]; |
|
|
|
/* Quantization step size * scale factor */ |
|
lfe_scale = 0.035 * s->lfe_scale_factor; |
|
|
|
for (j = lfe_samples; j < lfe_end_sample; j++) |
|
s->lfe_data[j] *= lfe_scale; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void qmf_32_subbands(DCAContext *s, int chans, |
|
float samples_in[DCA_SUBBANDS][SAMPLES_PER_SUBBAND], float *samples_out, |
|
float scale) |
|
{ |
|
const float *prCoeff; |
|
|
|
int sb_act = s->audio_header.subband_activity[chans]; |
|
|
|
scale *= sqrt(1 / 8.0); |
|
|
|
/* Select filter */ |
|
if (!s->multirate_inter) /* Non-perfect reconstruction */ |
|
prCoeff = ff_dca_fir_32bands_nonperfect; |
|
else /* Perfect reconstruction */ |
|
prCoeff = ff_dca_fir_32bands_perfect; |
|
|
|
s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct, |
|
s->dca_chan[chans].subband_fir_hist, |
|
&s->dca_chan[chans].hist_index, |
|
s->dca_chan[chans].subband_fir_noidea, prCoeff, |
|
samples_out, s->raXin, scale); |
|
} |
|
|
|
static QMF64_table *qmf64_precompute(void) |
|
{ |
|
unsigned i, j; |
|
QMF64_table *table = av_malloc(sizeof(*table)); |
|
if (!table) |
|
return NULL; |
|
|
|
for (i = 0; i < 32; i++) |
|
for (j = 0; j < 32; j++) |
|
table->dct4_coeff[i][j] = cos((2 * i + 1) * (2 * j + 1) * M_PI / 128); |
|
for (i = 0; i < 32; i++) |
|
for (j = 0; j < 32; j++) |
|
table->dct2_coeff[i][j] = cos((2 * i + 1) * j * M_PI / 64); |
|
|
|
/* FIXME: Is the factor 0.125 = 1/8 right? */ |
|
for (i = 0; i < 32; i++) |
|
table->rcos[i] = 0.125 / cos((2 * i + 1) * M_PI / 256); |
|
for (i = 0; i < 32; i++) |
|
table->rsin[i] = -0.125 / sin((2 * i + 1) * M_PI / 256); |
|
|
|
return table; |
|
} |
|
|
|
/* FIXME: Totally unoptimized. Based on the reference code and |
|
* http://multimedia.cx/mirror/dca-transform.pdf, with guessed tweaks |
|
* for doubling the size. */ |
|
static void qmf_64_subbands(DCAContext *s, int chans, |
|
float samples_in[DCA_SUBBANDS_X96K][SAMPLES_PER_SUBBAND], |
|
float *samples_out, float scale) |
|
{ |
|
float raXin[64]; |
|
float A[32], B[32]; |
|
float *raX = s->dca_chan[chans].subband_fir_hist; |
|
float *raZ = s->dca_chan[chans].subband_fir_noidea; |
|
unsigned i, j, k, subindex; |
|
|
|
for (i = s->audio_header.subband_activity[chans]; i < DCA_SUBBANDS_X96K; i++) |
|
raXin[i] = 0.0; |
|
for (subindex = 0; subindex < SAMPLES_PER_SUBBAND; subindex++) { |
|
for (i = 0; i < s->audio_header.subband_activity[chans]; i++) |
|
raXin[i] = samples_in[i][subindex]; |
|
|
|
for (k = 0; k < 32; k++) { |
|
A[k] = 0.0; |
|
for (i = 0; i < 32; i++) |
|
A[k] += (raXin[2 * i] + raXin[2 * i + 1]) * s->qmf64_table->dct4_coeff[k][i]; |
|
} |
|
for (k = 0; k < 32; k++) { |
|
B[k] = raXin[0] * s->qmf64_table->dct2_coeff[k][0]; |
|
for (i = 1; i < 32; i++) |
|
B[k] += (raXin[2 * i] + raXin[2 * i - 1]) * s->qmf64_table->dct2_coeff[k][i]; |
|
} |
|
for (k = 0; k < 32; k++) { |
|
raX[k] = s->qmf64_table->rcos[k] * (A[k] + B[k]); |
|
raX[63 - k] = s->qmf64_table->rsin[k] * (A[k] - B[k]); |
|
} |
|
|
|
for (i = 0; i < DCA_SUBBANDS_X96K; i++) { |
|
float out = raZ[i]; |
|
for (j = 0; j < 1024; j += 128) |
|
out += ff_dca_fir_64bands[j + i] * (raX[j + i] - raX[j + 63 - i]); |
|
*samples_out++ = out * scale; |
|
} |
|
|
|
for (i = 0; i < DCA_SUBBANDS_X96K; i++) { |
|
float hist = 0.0; |
|
for (j = 0; j < 1024; j += 128) |
|
hist += ff_dca_fir_64bands[64 + j + i] * (-raX[i + j] - raX[j + 63 - i]); |
|
|
|
raZ[i] = hist; |
|
} |
|
|
|
/* FIXME: Make buffer circular, to avoid this move. */ |
|
memmove(raX + 64, raX, (1024 - 64) * sizeof(*raX)); |
|
} |
|
} |
|
|
|
static void lfe_interpolation_fir(DCAContext *s, const float *samples_in, |
|
float *samples_out) |
|
{ |
|
/* samples_in: An array holding decimated samples. |
|
* Samples in current subframe starts from samples_in[0], |
|
* while samples_in[-1], samples_in[-2], ..., stores samples |
|
* from last subframe as history. |
|
* |
|
* samples_out: An array holding interpolated samples |
|
*/ |
|
|
|
int idx; |
|
const float *prCoeff; |
|
int deciindex; |
|
|
|
/* Select decimation filter */ |
|
if (s->lfe == 1) { |
|
idx = 1; |
|
prCoeff = ff_dca_lfe_fir_128; |
|
} else { |
|
idx = 0; |
|
if (s->exss_ext_mask & DCA_EXT_EXSS_XLL) |
|
prCoeff = ff_dca_lfe_xll_fir_64; |
|
else |
|
prCoeff = ff_dca_lfe_fir_64; |
|
} |
|
/* Interpolation */ |
|
for (deciindex = 0; deciindex < 2 * s->lfe; deciindex++) { |
|
s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff); |
|
samples_in++; |
|
samples_out += 2 * 32 * (1 + idx); |
|
} |
|
} |
|
|
|
/* downmixing routines */ |
|
#define MIX_REAR1(samples, s1, rs, coef) \ |
|
samples[0][i] += samples[s1][i] * coef[rs][0]; \ |
|
samples[1][i] += samples[s1][i] * coef[rs][1]; |
|
|
|
#define MIX_REAR2(samples, s1, s2, rs, coef) \ |
|
samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \ |
|
samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1]; |
|
|
|
#define MIX_FRONT3(samples, coef) \ |
|
t = samples[c][i]; \ |
|
u = samples[l][i]; \ |
|
v = samples[r][i]; \ |
|
samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \ |
|
samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1]; |
|
|
|
#define DOWNMIX_TO_STEREO(op1, op2) \ |
|
for (i = 0; i < 256; i++) { \ |
|
op1 \ |
|
op2 \ |
|
} |
|
|
|
static void dca_downmix(float **samples, int srcfmt, int lfe_present, |
|
float coef[DCA_PRIM_CHANNELS_MAX + 1][2], |
|
const int8_t *channel_mapping) |
|
{ |
|
int c, l, r, sl, sr, s; |
|
int i; |
|
float t, u, v; |
|
|
|
switch (srcfmt) { |
|
case DCA_MONO: |
|
case DCA_4F2R: |
|
av_log(NULL, 0, "Not implemented!\n"); |
|
break; |
|
case DCA_CHANNEL: |
|
case DCA_STEREO: |
|
case DCA_STEREO_TOTAL: |
|
case DCA_STEREO_SUMDIFF: |
|
break; |
|
case DCA_3F: |
|
c = channel_mapping[0]; |
|
l = channel_mapping[1]; |
|
r = channel_mapping[2]; |
|
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), ); |
|
break; |
|
case DCA_2F1R: |
|
s = channel_mapping[2]; |
|
DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), ); |
|
break; |
|
case DCA_3F1R: |
|
c = channel_mapping[0]; |
|
l = channel_mapping[1]; |
|
r = channel_mapping[2]; |
|
s = channel_mapping[3]; |
|
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), |
|
MIX_REAR1(samples, s, 3, coef)); |
|
break; |
|
case DCA_2F2R: |
|
sl = channel_mapping[2]; |
|
sr = channel_mapping[3]; |
|
DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), ); |
|
break; |
|
case DCA_3F2R: |
|
c = channel_mapping[0]; |
|
l = channel_mapping[1]; |
|
r = channel_mapping[2]; |
|
sl = channel_mapping[3]; |
|
sr = channel_mapping[4]; |
|
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), |
|
MIX_REAR2(samples, sl, sr, 3, coef)); |
|
break; |
|
} |
|
if (lfe_present) { |
|
int lf_buf = ff_dca_lfe_index[srcfmt]; |
|
int lf_idx = ff_dca_channels[srcfmt]; |
|
for (i = 0; i < 256; i++) { |
|
samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0]; |
|
samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1]; |
|
} |
|
} |
|
} |
|
|
|
#ifndef decode_blockcodes |
|
/* Very compact version of the block code decoder that does not use table |
|
* look-up but is slightly slower */ |
|
static int decode_blockcode(int code, int levels, int32_t *values) |
|
{ |
|
int i; |
|
int offset = (levels - 1) >> 1; |
|
|
|
for (i = 0; i < 4; i++) { |
|
int div = FASTDIV(code, levels); |
|
values[i] = code - offset - div * levels; |
|
code = div; |
|
} |
|
|
|
return code; |
|
} |
|
|
|
static int decode_blockcodes(int code1, int code2, int levels, int32_t *values) |
|
{ |
|
return decode_blockcode(code1, levels, values) | |
|
decode_blockcode(code2, levels, values + 4); |
|
} |
|
#endif |
|
|
|
static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 }; |
|
static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 }; |
|
|
|
static int dca_subsubframe(DCAContext *s, int base_channel, int block_index) |
|
{ |
|
int k, l; |
|
int subsubframe = s->current_subsubframe; |
|
const uint32_t *quant_step_table; |
|
|
|
/* |
|
* Audio data |
|
*/ |
|
|
|
/* Select quantization step size table */ |
|
if (s->bit_rate_index == 0x1f) |
|
quant_step_table = ff_dca_lossless_quant; |
|
else |
|
quant_step_table = ff_dca_lossy_quant; |
|
|
|
for (k = base_channel; k < s->audio_header.prim_channels; k++) { |
|
int32_t (*subband_samples)[8] = s->dca_chan[k].subband_samples[block_index]; |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
for (l = 0; l < s->audio_header.vq_start_subband[k]; l++) { |
|
int m; |
|
|
|
/* Select the mid-tread linear quantizer */ |
|
int abits = s->dca_chan[k].bitalloc[l]; |
|
|
|
uint32_t quant_step_size = quant_step_table[abits]; |
|
|
|
/* |
|
* Extract bits from the bit stream |
|
*/ |
|
if (!abits) |
|
memset(subband_samples[l], 0, SAMPLES_PER_SUBBAND * |
|
sizeof(subband_samples[l][0])); |
|
else { |
|
uint32_t rscale; |
|
/* Deal with transients */ |
|
int sfi = s->dca_chan[k].transition_mode[l] && |
|
subsubframe >= s->dca_chan[k].transition_mode[l]; |
|
/* Determine quantization index code book and its type. |
|
Select quantization index code book */ |
|
int sel = s->audio_header.quant_index_huffman[k][abits]; |
|
|
|
rscale = (s->dca_chan[k].scale_factor[l][sfi] * |
|
s->audio_header.scalefactor_adj[k][sel] + 8) >> 4; |
|
|
|
if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) { |
|
if (abits <= 7) { |
|
/* Block code */ |
|
int block_code1, block_code2, size, levels, err; |
|
|
|
size = abits_sizes[abits - 1]; |
|
levels = abits_levels[abits - 1]; |
|
|
|
block_code1 = get_bits(&s->gb, size); |
|
block_code2 = get_bits(&s->gb, size); |
|
err = decode_blockcodes(block_code1, block_code2, |
|
levels, subband_samples[l]); |
|
if (err) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"ERROR: block code look-up failed\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else { |
|
/* no coding */ |
|
for (m = 0; m < SAMPLES_PER_SUBBAND; m++) |
|
subband_samples[l][m] = get_sbits(&s->gb, abits - 3); |
|
} |
|
} else { |
|
/* Huffman coded */ |
|
for (m = 0; m < SAMPLES_PER_SUBBAND; m++) |
|
subband_samples[l][m] = get_bitalloc(&s->gb, |
|
&dca_smpl_bitalloc[abits], sel); |
|
} |
|
s->dcadsp.dequantize(subband_samples[l], quant_step_size, rscale); |
|
} |
|
} |
|
|
|
for (l = 0; l < s->audio_header.vq_start_subband[k]; l++) { |
|
int m; |
|
/* |
|
* Inverse ADPCM if in prediction mode |
|
*/ |
|
if (s->dca_chan[k].prediction_mode[l]) { |
|
int n; |
|
if (s->predictor_history) |
|
subband_samples[l][0] += (ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][0] * |
|
(int64_t)s->dca_chan[k].subband_samples_hist[l][3] + |
|
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][1] * |
|
(int64_t)s->dca_chan[k].subband_samples_hist[l][2] + |
|
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][2] * |
|
(int64_t)s->dca_chan[k].subband_samples_hist[l][1] + |
|
ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][3] * |
|
(int64_t)s->dca_chan[k].subband_samples_hist[l][0]) + |
|
(1 << 12) >> 13; |
|
for (m = 1; m < SAMPLES_PER_SUBBAND; m++) { |
|
int64_t sum = ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][0] * |
|
(int64_t)subband_samples[l][m - 1]; |
|
for (n = 2; n <= 4; n++) |
|
if (m >= n) |
|
sum += ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][n - 1] * |
|
(int64_t)subband_samples[l][m - n]; |
|
else if (s->predictor_history) |
|
sum += ff_dca_adpcm_vb[s->dca_chan[k].prediction_vq[l]][n - 1] * |
|
(int64_t)s->dca_chan[k].subband_samples_hist[l][m - n + 4]; |
|
subband_samples[l][m] += (int32_t)(sum + (1 << 12) >> 13); |
|
} |
|
} |
|
|
|
} |
|
/* Backup predictor history for adpcm */ |
|
for (l = 0; l < DCA_SUBBANDS; l++) |
|
AV_COPY128(s->dca_chan[k].subband_samples_hist[l], &subband_samples[l][4]); |
|
|
|
|
|
/* |
|
* Decode VQ encoded high frequencies |
|
*/ |
|
if (s->audio_header.subband_activity[k] > s->audio_header.vq_start_subband[k]) { |
|
if (!s->debug_flag & 0x01) { |
|
av_log(s->avctx, AV_LOG_DEBUG, |
|
"Stream with high frequencies VQ coding\n"); |
|
s->debug_flag |= 0x01; |
|
} |
|
|
|
s->dcadsp.decode_hf(subband_samples, s->dca_chan[k].high_freq_vq, |
|
ff_dca_high_freq_vq, |
|
subsubframe * SAMPLES_PER_SUBBAND, |
|
s->dca_chan[k].scale_factor, |
|
s->audio_header.vq_start_subband[k], |
|
s->audio_header.subband_activity[k]); |
|
} |
|
} |
|
|
|
/* Check for DSYNC after subsubframe */ |
|
if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) { |
|
if (get_bits(&s->gb, 16) != 0xFFFF) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int dca_filter_channels(DCAContext *s, int block_index, int upsample, int downmix) |
|
{ |
|
int k; |
|
|
|
if (upsample) { |
|
LOCAL_ALIGNED(32, float, samples, [DCA_SUBBANDS_X96K], [SAMPLES_PER_SUBBAND]); |
|
|
|
if (!s->qmf64_table) { |
|
s->qmf64_table = qmf64_precompute(); |
|
if (!s->qmf64_table) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
/* 64 subbands QMF */ |
|
for (k = 0; k < s->audio_header.prim_channels; k++) { |
|
int channel = s->channel_order_tab[k]; |
|
int32_t (*subband_samples)[SAMPLES_PER_SUBBAND] = |
|
s->dca_chan[k].subband_samples[block_index]; |
|
|
|
s->fmt_conv.int32_to_float(samples[0], subband_samples[0], |
|
DCA_SUBBANDS_X96K * SAMPLES_PER_SUBBAND); |
|
|
|
if (channel >= 0) |
|
qmf_64_subbands(s, k, samples, |
|
s->samples_chanptr[channel], |
|
/* Upsampling needs a factor 2 here. */ |
|
M_SQRT2 / 32768.0); |
|
} |
|
} else { |
|
/* 32 subbands QMF */ |
|
LOCAL_ALIGNED(32, float, samples, [DCA_SUBBANDS], [SAMPLES_PER_SUBBAND]); |
|
|
|
for (k = 0; k < s->audio_header.prim_channels; k++) { |
|
int channel = s->channel_order_tab[k]; |
|
int32_t (*subband_samples)[SAMPLES_PER_SUBBAND] = |
|
s->dca_chan[k].subband_samples[block_index]; |
|
|
|
s->fmt_conv.int32_to_float(samples[0], subband_samples[0], |
|
DCA_SUBBANDS * SAMPLES_PER_SUBBAND); |
|
|
|
if (channel >= 0) |
|
qmf_32_subbands(s, k, samples, |
|
s->samples_chanptr[channel], |
|
M_SQRT1_2 / 32768.0); |
|
} |
|
} |
|
|
|
/* Generate LFE samples for this subsubframe FIXME!!! */ |
|
if (s->lfe) { |
|
float *samples = s->samples_chanptr[ff_dca_lfe_index[s->amode]]; |
|
lfe_interpolation_fir(s, |
|
s->lfe_data + 2 * s->lfe * (block_index + 4), |
|
samples); |
|
if (upsample) { |
|
unsigned i; |
|
/* Should apply the filter in Table 6-11 when upsampling. For |
|
* now, just duplicate. */ |
|
for (i = 511; i > 0; i--) { |
|
samples[2 * i] = |
|
samples[2 * i + 1] = samples[i]; |
|
} |
|
samples[1] = samples[0]; |
|
} |
|
} |
|
|
|
/* FIXME: This downmixing is probably broken with upsample. |
|
* Probably totally broken also with XLL in general. */ |
|
/* Downmixing to Stereo */ |
|
if (downmix) { |
|
dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef, |
|
s->channel_order_tab); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int dca_subframe_footer(DCAContext *s, int base_channel) |
|
{ |
|
int in, out, aux_data_count, aux_data_end, reserved; |
|
uint32_t nsyncaux; |
|
|
|
/* |
|
* Unpack optional information |
|
*/ |
|
|
|
/* presumably optional information only appears in the core? */ |
|
if (!base_channel) { |
|
if (s->timestamp) |
|
skip_bits_long(&s->gb, 32); |
|
|
|
if (s->aux_data) { |
|
aux_data_count = get_bits(&s->gb, 6); |
|
|
|
// align (32-bit) |
|
skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31); |
|
|
|
aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb); |
|
|
|
if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) { |
|
av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n", |
|
nsyncaux); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (get_bits1(&s->gb)) { // bAUXTimeStampFlag |
|
avpriv_request_sample(s->avctx, |
|
"Auxiliary Decode Time Stamp Flag"); |
|
// align (4-bit) |
|
skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4); |
|
// 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4) |
|
skip_bits_long(&s->gb, 44); |
|
} |
|
|
|
if ((s->core_downmix = get_bits1(&s->gb))) { |
|
int am = get_bits(&s->gb, 3); |
|
switch (am) { |
|
case 0: |
|
s->core_downmix_amode = DCA_MONO; |
|
break; |
|
case 1: |
|
s->core_downmix_amode = DCA_STEREO; |
|
break; |
|
case 2: |
|
s->core_downmix_amode = DCA_STEREO_TOTAL; |
|
break; |
|
case 3: |
|
s->core_downmix_amode = DCA_3F; |
|
break; |
|
case 4: |
|
s->core_downmix_amode = DCA_2F1R; |
|
break; |
|
case 5: |
|
s->core_downmix_amode = DCA_2F2R; |
|
break; |
|
case 6: |
|
s->core_downmix_amode = DCA_3F1R; |
|
break; |
|
default: |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid mode %d for embedded downmix coefficients\n", |
|
am); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
for (out = 0; out < ff_dca_channels[s->core_downmix_amode]; out++) { |
|
for (in = 0; in < s->audio_header.prim_channels + !!s->lfe; in++) { |
|
uint16_t tmp = get_bits(&s->gb, 9); |
|
if ((tmp & 0xFF) > 241) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid downmix coefficient code %"PRIu16"\n", |
|
tmp); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->core_downmix_codes[in][out] = tmp; |
|
} |
|
} |
|
} |
|
|
|
align_get_bits(&s->gb); // byte align |
|
skip_bits(&s->gb, 16); // nAUXCRC16 |
|
|
|
/* |
|
* additional data (reserved, cf. ETSI TS 102 114 V1.4.1) |
|
* |
|
* Note: don't check for overreads, aux_data_count can't be trusted. |
|
*/ |
|
if ((reserved = (aux_data_end - get_bits_count(&s->gb))) > 0) { |
|
avpriv_request_sample(s->avctx, |
|
"Core auxiliary data reserved content"); |
|
skip_bits_long(&s->gb, reserved); |
|
} |
|
} |
|
|
|
if (s->crc_present && s->dynrange) |
|
get_bits(&s->gb, 16); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Decode a dca frame block |
|
* |
|
* @param s pointer to the DCAContext |
|
*/ |
|
|
|
static int dca_decode_block(DCAContext *s, int base_channel, int block_index) |
|
{ |
|
int ret; |
|
|
|
/* Sanity check */ |
|
if (s->current_subframe >= s->audio_header.subframes) { |
|
av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i", |
|
s->current_subframe, s->audio_header.subframes); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (!s->current_subsubframe) { |
|
/* Read subframe header */ |
|
if ((ret = dca_subframe_header(s, base_channel, block_index))) |
|
return ret; |
|
} |
|
|
|
/* Read subsubframe */ |
|
if ((ret = dca_subsubframe(s, base_channel, block_index))) |
|
return ret; |
|
|
|
/* Update state */ |
|
s->current_subsubframe++; |
|
if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) { |
|
s->current_subsubframe = 0; |
|
s->current_subframe++; |
|
} |
|
if (s->current_subframe >= s->audio_header.subframes) { |
|
/* Read subframe footer */ |
|
if ((ret = dca_subframe_footer(s, base_channel))) |
|
return ret; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static float dca_dmix_code(unsigned code) |
|
{ |
|
int sign = (code >> 8) - 1; |
|
code &= 0xff; |
|
return ((ff_dca_dmixtable[code] ^ sign) - sign) * (1.0 / (1U << 15)); |
|
} |
|
|
|
static int scan_for_extensions(AVCodecContext *avctx) |
|
{ |
|
DCAContext *s = avctx->priv_data; |
|
int core_ss_end, ret = 0; |
|
|
|
core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8; |
|
|
|
/* only scan for extensions if ext_descr was unknown or indicated a |
|
* supported XCh extension */ |
|
if (s->core_ext_mask < 0 || s->core_ext_mask & DCA_EXT_XCH) { |
|
/* if ext_descr was unknown, clear s->core_ext_mask so that the |
|
* extensions scan can fill it up */ |
|
s->core_ext_mask = FFMAX(s->core_ext_mask, 0); |
|
|
|
/* extensions start at 32-bit boundaries into bitstream */ |
|
skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31); |
|
|
|
while (core_ss_end - get_bits_count(&s->gb) >= 32) { |
|
uint32_t bits = get_bits_long(&s->gb, 32); |
|
int i; |
|
|
|
switch (bits) { |
|
case DCA_SYNCWORD_XCH: { |
|
int ext_amode, xch_fsize; |
|
|
|
s->xch_base_channel = s->audio_header.prim_channels; |
|
|
|
/* validate sync word using XCHFSIZE field */ |
|
xch_fsize = show_bits(&s->gb, 10); |
|
if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) && |
|
(s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1)) |
|
continue; |
|
|
|
/* skip length-to-end-of-frame field for the moment */ |
|
skip_bits(&s->gb, 10); |
|
|
|
s->core_ext_mask |= DCA_EXT_XCH; |
|
|
|
/* extension amode(number of channels in extension) should be 1 */ |
|
/* AFAIK XCh is not used for more channels */ |
|
if ((ext_amode = get_bits(&s->gb, 4)) != 1) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"XCh extension amode %d not supported!\n", |
|
ext_amode); |
|
continue; |
|
} |
|
|
|
/* much like core primary audio coding header */ |
|
dca_parse_audio_coding_header(s, s->xch_base_channel); |
|
|
|
for (i = 0; i < (s->sample_blocks / 8); i++) |
|
if ((ret = dca_decode_block(s, s->xch_base_channel, i))) { |
|
av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n"); |
|
continue; |
|
} |
|
|
|
s->xch_present = 1; |
|
break; |
|
} |
|
case DCA_SYNCWORD_XXCH: |
|
/* XXCh: extended channels */ |
|
/* usually found either in core or HD part in DTS-HD HRA streams, |
|
* but not in DTS-ES which contains XCh extensions instead */ |
|
s->core_ext_mask |= DCA_EXT_XXCH; |
|
break; |
|
|
|
case 0x1d95f262: { |
|
int fsize96 = show_bits(&s->gb, 12) + 1; |
|
if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96) |
|
continue; |
|
|
|
av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n", |
|
get_bits_count(&s->gb)); |
|
skip_bits(&s->gb, 12); |
|
av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96); |
|
av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4)); |
|
|
|
s->core_ext_mask |= DCA_EXT_X96; |
|
break; |
|
} |
|
} |
|
|
|
skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31); |
|
} |
|
} else { |
|
/* no supported extensions, skip the rest of the core substream */ |
|
skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb)); |
|
} |
|
|
|
if (s->core_ext_mask & DCA_EXT_X96) |
|
s->profile = FF_PROFILE_DTS_96_24; |
|
else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) |
|
s->profile = FF_PROFILE_DTS_ES; |
|
|
|
/* check for ExSS (HD part) */ |
|
if (s->dca_buffer_size - s->frame_size > 32 && |
|
get_bits_long(&s->gb, 32) == DCA_SYNCWORD_SUBSTREAM) |
|
ff_dca_exss_parse_header(s); |
|
|
|
return ret; |
|
} |
|
|
|
static int set_channel_layout(AVCodecContext *avctx, int channels) |
|
{ |
|
DCAContext *s = avctx->priv_data; |
|
int num_core_channels = s->audio_header.prim_channels; |
|
int i; |
|
|
|
if (s->amode < 16) { |
|
avctx->channel_layout = dca_core_channel_layout[s->amode]; |
|
|
|
if (s->audio_header.prim_channels + !!s->lfe > 2 && |
|
avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) { |
|
/* |
|
* Neither the core's auxiliary data nor our default tables contain |
|
* downmix coefficients for the additional channel coded in the XCh |
|
* extension, so when we're doing a Stereo downmix, don't decode it. |
|
*/ |
|
s->xch_disable = 1; |
|
} |
|
|
|
if (s->xch_present && !s->xch_disable) { |
|
avctx->channel_layout |= AV_CH_BACK_CENTER; |
|
if (s->lfe) { |
|
avctx->channel_layout |= AV_CH_LOW_FREQUENCY; |
|
s->channel_order_tab = ff_dca_channel_reorder_lfe_xch[s->amode]; |
|
} else { |
|
s->channel_order_tab = ff_dca_channel_reorder_nolfe_xch[s->amode]; |
|
} |
|
} else { |
|
channels = num_core_channels + !!s->lfe; |
|
s->xch_present = 0; /* disable further xch processing */ |
|
if (s->lfe) { |
|
avctx->channel_layout |= AV_CH_LOW_FREQUENCY; |
|
s->channel_order_tab = ff_dca_channel_reorder_lfe[s->amode]; |
|
} else |
|
s->channel_order_tab = ff_dca_channel_reorder_nolfe[s->amode]; |
|
} |
|
|
|
if (channels < ff_dca_channels[s->amode] + !!s->lfe) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (channels > !!s->lfe && |
|
s->channel_order_tab[channels - 1 - !!s->lfe] < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (num_core_channels + !!s->lfe > 2 && |
|
avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) { |
|
channels = 2; |
|
s->output = s->audio_header.prim_channels == 2 ? s->amode : DCA_STEREO; |
|
avctx->channel_layout = AV_CH_LAYOUT_STEREO; |
|
|
|
/* Stereo downmix coefficients |
|
* |
|
* The decoder can only downmix to 2-channel, so we need to ensure |
|
* embedded downmix coefficients are actually targeting 2-channel. |
|
*/ |
|
if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO || |
|
s->core_downmix_amode == DCA_STEREO_TOTAL)) { |
|
for (i = 0; i < num_core_channels + !!s->lfe; i++) { |
|
/* Range checked earlier */ |
|
s->downmix_coef[i][0] = dca_dmix_code(s->core_downmix_codes[i][0]); |
|
s->downmix_coef[i][1] = dca_dmix_code(s->core_downmix_codes[i][1]); |
|
} |
|
s->output = s->core_downmix_amode; |
|
} else { |
|
int am = s->amode & DCA_CHANNEL_MASK; |
|
if (am >= FF_ARRAY_ELEMS(ff_dca_default_coeffs)) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Invalid channel mode %d\n", am); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (num_core_channels + !!s->lfe > |
|
FF_ARRAY_ELEMS(ff_dca_default_coeffs[0])) { |
|
avpriv_request_sample(s->avctx, "Downmixing %d channels", |
|
s->audio_header.prim_channels + !!s->lfe); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
for (i = 0; i < num_core_channels + !!s->lfe; i++) { |
|
s->downmix_coef[i][0] = ff_dca_default_coeffs[am][i][0]; |
|
s->downmix_coef[i][1] = ff_dca_default_coeffs[am][i][1]; |
|
} |
|
} |
|
ff_dlog(s->avctx, "Stereo downmix coeffs:\n"); |
|
for (i = 0; i < num_core_channels + !!s->lfe; i++) { |
|
ff_dlog(s->avctx, "L, input channel %d = %f\n", i, |
|
s->downmix_coef[i][0]); |
|
ff_dlog(s->avctx, "R, input channel %d = %f\n", i, |
|
s->downmix_coef[i][1]); |
|
} |
|
ff_dlog(s->avctx, "\n"); |
|
} |
|
} else { |
|
av_log(avctx, AV_LOG_ERROR, "Nonstandard configuration %d !\n", s->amode); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Main frame decoding function |
|
* FIXME add arguments |
|
*/ |
|
static int dca_decode_frame(AVCodecContext *avctx, void *data, |
|
int *got_frame_ptr, AVPacket *avpkt) |
|
{ |
|
AVFrame *frame = data; |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
|
|
int lfe_samples; |
|
int i, ret; |
|
float **samples_flt; |
|
DCAContext *s = avctx->priv_data; |
|
int channels, full_channels; |
|
int upsample = 0; |
|
int downmix; |
|
|
|
s->exss_ext_mask = 0; |
|
s->xch_present = 0; |
|
|
|
s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer, |
|
DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE); |
|
if (s->dca_buffer_size == AVERROR_INVALIDDATA) { |
|
av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if ((ret = dca_parse_frame_header(s)) < 0) { |
|
// seems like the frame is corrupt, try with the next one |
|
return ret; |
|
} |
|
// set AVCodec values with parsed data |
|
avctx->sample_rate = s->sample_rate; |
|
avctx->bit_rate = s->bit_rate; |
|
|
|
s->profile = FF_PROFILE_DTS; |
|
|
|
for (i = 0; i < (s->sample_blocks / SAMPLES_PER_SUBBAND); i++) { |
|
if ((ret = dca_decode_block(s, 0, i))) { |
|
av_log(avctx, AV_LOG_ERROR, "error decoding block\n"); |
|
return ret; |
|
} |
|
} |
|
|
|
if (s->ext_coding) |
|
s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr]; |
|
else |
|
s->core_ext_mask = 0; |
|
|
|
ret = scan_for_extensions(avctx); |
|
|
|
avctx->profile = s->profile; |
|
|
|
full_channels = channels = s->audio_header.prim_channels + !!s->lfe; |
|
|
|
ret = set_channel_layout(avctx, channels); |
|
if (ret < 0) |
|
return ret; |
|
avctx->channels = channels; |
|
|
|
/* get output buffer */ |
|
frame->nb_samples = 256 * (s->sample_blocks / SAMPLES_PER_SUBBAND); |
|
if (s->exss_ext_mask & DCA_EXT_EXSS_XLL) { |
|
int xll_nb_samples = s->xll_segments * s->xll_smpl_in_seg; |
|
/* Check for invalid/unsupported conditions first */ |
|
if (s->xll_residual_channels > channels) { |
|
av_log(s->avctx, AV_LOG_WARNING, |
|
"DCA: too many residual channels (%d, core channels %d). Disabling XLL\n", |
|
s->xll_residual_channels, channels); |
|
s->exss_ext_mask &= ~DCA_EXT_EXSS_XLL; |
|
} else if (xll_nb_samples != frame->nb_samples && |
|
2 * frame->nb_samples != xll_nb_samples) { |
|
av_log(s->avctx, AV_LOG_WARNING, |
|
"DCA: unsupported upsampling (%d XLL samples, %d core samples). Disabling XLL\n", |
|
xll_nb_samples, frame->nb_samples); |
|
s->exss_ext_mask &= ~DCA_EXT_EXSS_XLL; |
|
} else { |
|
if (2 * frame->nb_samples == xll_nb_samples) { |
|
av_log(s->avctx, AV_LOG_INFO, |
|
"XLL: upsampling core channels by a factor of 2\n"); |
|
upsample = 1; |
|
|
|
frame->nb_samples = xll_nb_samples; |
|
// FIXME: Is it good enough to copy from the first channel set? |
|
avctx->sample_rate = s->xll_chsets[0].sampling_frequency; |
|
} |
|
/* If downmixing to stereo, don't decode additional channels. |
|
* FIXME: Using the xch_disable flag for this doesn't seem right. */ |
|
if (!s->xch_disable) |
|
avctx->channels += s->xll_channels - s->xll_residual_channels; |
|
} |
|
} |
|
|
|
/* FIXME: This is an ugly hack, to just revert to the default |
|
* layout if we have additional channels. Need to convert the XLL |
|
* channel masks to libav channel_layout mask. */ |
|
if (av_get_channel_layout_nb_channels(avctx->channel_layout) != avctx->channels) |
|
avctx->channel_layout = 0; |
|
|
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); |
|
return ret; |
|
} |
|
samples_flt = (float **) frame->extended_data; |
|
|
|
/* allocate buffer for extra channels if downmixing */ |
|
if (avctx->channels < full_channels) { |
|
ret = av_samples_get_buffer_size(NULL, full_channels - channels, |
|
frame->nb_samples, |
|
avctx->sample_fmt, 0); |
|
if (ret < 0) |
|
return ret; |
|
|
|
av_fast_malloc(&s->extra_channels_buffer, |
|
&s->extra_channels_buffer_size, ret); |
|
if (!s->extra_channels_buffer) |
|
return AVERROR(ENOMEM); |
|
|
|
ret = av_samples_fill_arrays((uint8_t **) s->extra_channels, NULL, |
|
s->extra_channels_buffer, |
|
full_channels - channels, |
|
frame->nb_samples, avctx->sample_fmt, 0); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
downmix = s->audio_header.prim_channels > 2 && |
|
avctx->request_channel_layout == AV_CH_LAYOUT_STEREO; |
|
|
|
/* filter to get final output */ |
|
for (i = 0; i < (s->sample_blocks / SAMPLES_PER_SUBBAND); i++) { |
|
int ch; |
|
unsigned block = upsample ? 512 : 256; |
|
for (ch = 0; ch < channels; ch++) |
|
s->samples_chanptr[ch] = samples_flt[ch] + i * block; |
|
for (; ch < full_channels; ch++) |
|
s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * block; |
|
|
|
dca_filter_channels(s, i, upsample, downmix); |
|
|
|
/* If this was marked as a DTS-ES stream we need to subtract back- */ |
|
/* channel from SL & SR to remove matrixed back-channel signal */ |
|
if ((s->source_pcm_res & 1) && s->xch_present) { |
|
float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]]; |
|
float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]]; |
|
float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]]; |
|
s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256); |
|
s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256); |
|
} |
|
} |
|
|
|
/* update lfe history */ |
|
lfe_samples = 2 * s->lfe * (s->sample_blocks / SAMPLES_PER_SUBBAND); |
|
for (i = 0; i < 2 * s->lfe * 4; i++) |
|
s->lfe_data[i] = s->lfe_data[i + lfe_samples]; |
|
|
|
if (s->exss_ext_mask & DCA_EXT_EXSS_XLL) { |
|
ret = ff_dca_xll_decode_audio(s, frame); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
/* AVMatrixEncoding |
|
* |
|
* DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */ |
|
ret = ff_side_data_update_matrix_encoding(frame, |
|
(s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ? |
|
AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE); |
|
if (ret < 0) |
|
return ret; |
|
|
|
*got_frame_ptr = 1; |
|
|
|
return buf_size; |
|
} |
|
|
|
/** |
|
* DCA initialization |
|
* |
|
* @param avctx pointer to the AVCodecContext |
|
*/ |
|
|
|
static av_cold int dca_decode_init(AVCodecContext *avctx) |
|
{ |
|
DCAContext *s = avctx->priv_data; |
|
|
|
s->avctx = avctx; |
|
dca_init_vlcs(); |
|
|
|
avpriv_float_dsp_init(&s->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT); |
|
ff_mdct_init(&s->imdct, 6, 1, 1.0); |
|
ff_synth_filter_init(&s->synth); |
|
ff_dcadsp_init(&s->dcadsp); |
|
ff_fmt_convert_init(&s->fmt_conv, avctx); |
|
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
|
|
|
/* allow downmixing to stereo */ |
|
if (avctx->channels > 2 && |
|
avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) |
|
avctx->channels = 2; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int dca_decode_end(AVCodecContext *avctx) |
|
{ |
|
DCAContext *s = avctx->priv_data; |
|
ff_mdct_end(&s->imdct); |
|
av_freep(&s->extra_channels_buffer); |
|
av_freep(&s->xll_sample_buf); |
|
av_freep(&s->qmf64_table); |
|
return 0; |
|
} |
|
|
|
static const AVOption options[] = { |
|
{ "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM }, |
|
{ "disable_xll", "disable decoding of the XLL extension", offsetof(DCAContext, xll_disable), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM }, |
|
{ NULL }, |
|
}; |
|
|
|
static const AVClass dca_decoder_class = { |
|
.class_name = "DCA decoder", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
AVCodec ff_dca_decoder = { |
|
.name = "dca", |
|
.long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"), |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_DTS, |
|
.priv_data_size = sizeof(DCAContext), |
|
.init = dca_decode_init, |
|
.decode = dca_decode_frame, |
|
.close = dca_decode_end, |
|
.capabilities = AV_CODEC_CAP_CHANNEL_CONF | AV_CODEC_CAP_DR1, |
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
|
AV_SAMPLE_FMT_NONE }, |
|
.profiles = NULL_IF_CONFIG_SMALL(ff_dca_profiles), |
|
.priv_class = &dca_decoder_class, |
|
};
|
|
|