mirror of https://github.com/FFmpeg/FFmpeg.git
2639 lines
68 KiB
2639 lines
68 KiB
/* |
|
* Inter-thread scheduling/synchronization. |
|
* Copyright (c) 2023 Anton Khirnov |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <stdatomic.h> |
|
#include <stddef.h> |
|
#include <stdint.h> |
|
|
|
#include "cmdutils.h" |
|
#include "ffmpeg_sched.h" |
|
#include "ffmpeg_utils.h" |
|
#include "sync_queue.h" |
|
#include "thread_queue.h" |
|
|
|
#include "libavcodec/packet.h" |
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/error.h" |
|
#include "libavutil/fifo.h" |
|
#include "libavutil/frame.h" |
|
#include "libavutil/mem.h" |
|
#include "libavutil/thread.h" |
|
#include "libavutil/threadmessage.h" |
|
#include "libavutil/time.h" |
|
|
|
// 100 ms |
|
// FIXME: some other value? make this dynamic? |
|
#define SCHEDULE_TOLERANCE (100 * 1000) |
|
|
|
enum QueueType { |
|
QUEUE_PACKETS, |
|
QUEUE_FRAMES, |
|
}; |
|
|
|
typedef struct SchWaiter { |
|
pthread_mutex_t lock; |
|
pthread_cond_t cond; |
|
atomic_int choked; |
|
|
|
// the following are internal state of schedule_update_locked() and must not |
|
// be accessed outside of it |
|
int choked_prev; |
|
int choked_next; |
|
} SchWaiter; |
|
|
|
typedef struct SchTask { |
|
Scheduler *parent; |
|
SchedulerNode node; |
|
|
|
SchThreadFunc func; |
|
void *func_arg; |
|
|
|
pthread_t thread; |
|
int thread_running; |
|
} SchTask; |
|
|
|
typedef struct SchDecOutput { |
|
SchedulerNode *dst; |
|
uint8_t *dst_finished; |
|
unsigned nb_dst; |
|
} SchDecOutput; |
|
|
|
typedef struct SchDec { |
|
const AVClass *class; |
|
|
|
SchedulerNode src; |
|
|
|
SchDecOutput *outputs; |
|
unsigned nb_outputs; |
|
|
|
SchTask task; |
|
// Queue for receiving input packets, one stream. |
|
ThreadQueue *queue; |
|
|
|
// Queue for sending post-flush end timestamps back to the source |
|
AVThreadMessageQueue *queue_end_ts; |
|
int expect_end_ts; |
|
|
|
// temporary storage used by sch_dec_send() |
|
AVFrame *send_frame; |
|
} SchDec; |
|
|
|
typedef struct SchSyncQueue { |
|
SyncQueue *sq; |
|
AVFrame *frame; |
|
pthread_mutex_t lock; |
|
|
|
unsigned *enc_idx; |
|
unsigned nb_enc_idx; |
|
} SchSyncQueue; |
|
|
|
typedef struct SchEnc { |
|
const AVClass *class; |
|
|
|
SchedulerNode src; |
|
SchedulerNode *dst; |
|
uint8_t *dst_finished; |
|
unsigned nb_dst; |
|
|
|
// [0] - index of the sync queue in Scheduler.sq_enc, |
|
// [1] - index of this encoder in the sq |
|
int sq_idx[2]; |
|
|
|
/* Opening encoders is somewhat nontrivial due to their interaction with |
|
* sync queues, which are (among other things) responsible for maintaining |
|
* constant audio frame size, when it is required by the encoder. |
|
* |
|
* Opening the encoder requires stream parameters, obtained from the first |
|
* frame. However, that frame cannot be properly chunked by the sync queue |
|
* without knowing the required frame size, which is only available after |
|
* opening the encoder. |
|
* |
|
* This apparent circular dependency is resolved in the following way: |
|
* - the caller creating the encoder gives us a callback which opens the |
|
* encoder and returns the required frame size (if any) |
|
* - when the first frame is sent to the encoder, the sending thread |
|
* - calls this callback, opening the encoder |
|
* - passes the returned frame size to the sync queue |
|
*/ |
|
int (*open_cb)(void *opaque, const AVFrame *frame); |
|
int opened; |
|
|
|
SchTask task; |
|
// Queue for receiving input frames, one stream. |
|
ThreadQueue *queue; |
|
// tq_send() to queue returned EOF |
|
int in_finished; |
|
|
|
// temporary storage used by sch_enc_send() |
|
AVPacket *send_pkt; |
|
} SchEnc; |
|
|
|
typedef struct SchDemuxStream { |
|
SchedulerNode *dst; |
|
uint8_t *dst_finished; |
|
unsigned nb_dst; |
|
} SchDemuxStream; |
|
|
|
typedef struct SchDemux { |
|
const AVClass *class; |
|
|
|
SchDemuxStream *streams; |
|
unsigned nb_streams; |
|
|
|
SchTask task; |
|
SchWaiter waiter; |
|
|
|
// temporary storage used by sch_demux_send() |
|
AVPacket *send_pkt; |
|
|
|
// protected by schedule_lock |
|
int task_exited; |
|
} SchDemux; |
|
|
|
typedef struct PreMuxQueue { |
|
/** |
|
* Queue for buffering the packets before the muxer task can be started. |
|
*/ |
|
AVFifo *fifo; |
|
/** |
|
* Maximum number of packets in fifo. |
|
*/ |
|
int max_packets; |
|
/* |
|
* The size of the AVPackets' buffers in queue. |
|
* Updated when a packet is either pushed or pulled from the queue. |
|
*/ |
|
size_t data_size; |
|
/* Threshold after which max_packets will be in effect */ |
|
size_t data_threshold; |
|
} PreMuxQueue; |
|
|
|
typedef struct SchMuxStream { |
|
SchedulerNode src; |
|
SchedulerNode src_sched; |
|
|
|
unsigned *sub_heartbeat_dst; |
|
unsigned nb_sub_heartbeat_dst; |
|
|
|
PreMuxQueue pre_mux_queue; |
|
|
|
// an EOF was generated while flushing the pre-mux queue |
|
int init_eof; |
|
|
|
//////////////////////////////////////////////////////////// |
|
// The following are protected by Scheduler.schedule_lock // |
|
|
|
/* dts+duration of the last packet sent to this stream |
|
in AV_TIME_BASE_Q */ |
|
int64_t last_dts; |
|
// this stream no longer accepts input |
|
int source_finished; |
|
//////////////////////////////////////////////////////////// |
|
} SchMuxStream; |
|
|
|
typedef struct SchMux { |
|
const AVClass *class; |
|
|
|
SchMuxStream *streams; |
|
unsigned nb_streams; |
|
unsigned nb_streams_ready; |
|
|
|
int (*init)(void *arg); |
|
|
|
SchTask task; |
|
/** |
|
* Set to 1 after starting the muxer task and flushing the |
|
* pre-muxing queues. |
|
* Set either before any tasks have started, or with |
|
* Scheduler.mux_ready_lock held. |
|
*/ |
|
atomic_int mux_started; |
|
ThreadQueue *queue; |
|
unsigned queue_size; |
|
|
|
AVPacket *sub_heartbeat_pkt; |
|
} SchMux; |
|
|
|
typedef struct SchFilterIn { |
|
SchedulerNode src; |
|
SchedulerNode src_sched; |
|
int send_finished; |
|
int receive_finished; |
|
} SchFilterIn; |
|
|
|
typedef struct SchFilterOut { |
|
SchedulerNode dst; |
|
} SchFilterOut; |
|
|
|
typedef struct SchFilterGraph { |
|
const AVClass *class; |
|
|
|
SchFilterIn *inputs; |
|
unsigned nb_inputs; |
|
atomic_uint nb_inputs_finished_send; |
|
unsigned nb_inputs_finished_receive; |
|
|
|
SchFilterOut *outputs; |
|
unsigned nb_outputs; |
|
|
|
SchTask task; |
|
// input queue, nb_inputs+1 streams |
|
// last stream is control |
|
ThreadQueue *queue; |
|
SchWaiter waiter; |
|
|
|
// protected by schedule_lock |
|
unsigned best_input; |
|
int task_exited; |
|
} SchFilterGraph; |
|
|
|
enum SchedulerState { |
|
SCH_STATE_UNINIT, |
|
SCH_STATE_STARTED, |
|
SCH_STATE_STOPPED, |
|
}; |
|
|
|
struct Scheduler { |
|
const AVClass *class; |
|
|
|
SchDemux *demux; |
|
unsigned nb_demux; |
|
|
|
SchMux *mux; |
|
unsigned nb_mux; |
|
|
|
unsigned nb_mux_ready; |
|
pthread_mutex_t mux_ready_lock; |
|
|
|
unsigned nb_mux_done; |
|
unsigned task_failed; |
|
pthread_mutex_t finish_lock; |
|
pthread_cond_t finish_cond; |
|
|
|
|
|
SchDec *dec; |
|
unsigned nb_dec; |
|
|
|
SchEnc *enc; |
|
unsigned nb_enc; |
|
|
|
SchSyncQueue *sq_enc; |
|
unsigned nb_sq_enc; |
|
|
|
SchFilterGraph *filters; |
|
unsigned nb_filters; |
|
|
|
char *sdp_filename; |
|
int sdp_auto; |
|
|
|
enum SchedulerState state; |
|
atomic_int terminate; |
|
|
|
pthread_mutex_t schedule_lock; |
|
|
|
atomic_int_least64_t last_dts; |
|
}; |
|
|
|
/** |
|
* Wait until this task is allowed to proceed. |
|
* |
|
* @retval 0 the caller should proceed |
|
* @retval 1 the caller should terminate |
|
*/ |
|
static int waiter_wait(Scheduler *sch, SchWaiter *w) |
|
{ |
|
int terminate; |
|
|
|
if (!atomic_load(&w->choked)) |
|
return 0; |
|
|
|
pthread_mutex_lock(&w->lock); |
|
|
|
while (atomic_load(&w->choked) && !atomic_load(&sch->terminate)) |
|
pthread_cond_wait(&w->cond, &w->lock); |
|
|
|
terminate = atomic_load(&sch->terminate); |
|
|
|
pthread_mutex_unlock(&w->lock); |
|
|
|
return terminate; |
|
} |
|
|
|
static void waiter_set(SchWaiter *w, int choked) |
|
{ |
|
pthread_mutex_lock(&w->lock); |
|
|
|
atomic_store(&w->choked, choked); |
|
pthread_cond_signal(&w->cond); |
|
|
|
pthread_mutex_unlock(&w->lock); |
|
} |
|
|
|
static int waiter_init(SchWaiter *w) |
|
{ |
|
int ret; |
|
|
|
atomic_init(&w->choked, 0); |
|
|
|
ret = pthread_mutex_init(&w->lock, NULL); |
|
if (ret) |
|
return AVERROR(ret); |
|
|
|
ret = pthread_cond_init(&w->cond, NULL); |
|
if (ret) |
|
return AVERROR(ret); |
|
|
|
return 0; |
|
} |
|
|
|
static void waiter_uninit(SchWaiter *w) |
|
{ |
|
pthread_mutex_destroy(&w->lock); |
|
pthread_cond_destroy(&w->cond); |
|
} |
|
|
|
static int queue_alloc(ThreadQueue **ptq, unsigned nb_streams, unsigned queue_size, |
|
enum QueueType type) |
|
{ |
|
ThreadQueue *tq; |
|
ObjPool *op; |
|
|
|
if (queue_size <= 0) { |
|
if (type == QUEUE_FRAMES) |
|
queue_size = DEFAULT_FRAME_THREAD_QUEUE_SIZE; |
|
else |
|
queue_size = DEFAULT_PACKET_THREAD_QUEUE_SIZE; |
|
} |
|
|
|
if (type == QUEUE_FRAMES) { |
|
// This queue length is used in the decoder code to ensure that |
|
// there are enough entries in fixed-size frame pools to account |
|
// for frames held in queues inside the ffmpeg utility. If this |
|
// can ever dynamically change then the corresponding decode |
|
// code needs to be updated as well. |
|
av_assert0(queue_size == DEFAULT_FRAME_THREAD_QUEUE_SIZE); |
|
} |
|
|
|
op = (type == QUEUE_PACKETS) ? objpool_alloc_packets() : |
|
objpool_alloc_frames(); |
|
if (!op) |
|
return AVERROR(ENOMEM); |
|
|
|
tq = tq_alloc(nb_streams, queue_size, op, |
|
(type == QUEUE_PACKETS) ? pkt_move : frame_move); |
|
if (!tq) { |
|
objpool_free(&op); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
*ptq = tq; |
|
return 0; |
|
} |
|
|
|
static void *task_wrapper(void *arg); |
|
|
|
static int task_start(SchTask *task) |
|
{ |
|
int ret; |
|
|
|
av_log(task->func_arg, AV_LOG_VERBOSE, "Starting thread...\n"); |
|
|
|
av_assert0(!task->thread_running); |
|
|
|
ret = pthread_create(&task->thread, NULL, task_wrapper, task); |
|
if (ret) { |
|
av_log(task->func_arg, AV_LOG_ERROR, "pthread_create() failed: %s\n", |
|
strerror(ret)); |
|
return AVERROR(ret); |
|
} |
|
|
|
task->thread_running = 1; |
|
return 0; |
|
} |
|
|
|
static void task_init(Scheduler *sch, SchTask *task, enum SchedulerNodeType type, unsigned idx, |
|
SchThreadFunc func, void *func_arg) |
|
{ |
|
task->parent = sch; |
|
|
|
task->node.type = type; |
|
task->node.idx = idx; |
|
|
|
task->func = func; |
|
task->func_arg = func_arg; |
|
} |
|
|
|
static int64_t trailing_dts(const Scheduler *sch, int count_finished) |
|
{ |
|
int64_t min_dts = INT64_MAX; |
|
|
|
for (unsigned i = 0; i < sch->nb_mux; i++) { |
|
const SchMux *mux = &sch->mux[i]; |
|
|
|
for (unsigned j = 0; j < mux->nb_streams; j++) { |
|
const SchMuxStream *ms = &mux->streams[j]; |
|
|
|
if (ms->source_finished && !count_finished) |
|
continue; |
|
if (ms->last_dts == AV_NOPTS_VALUE) |
|
return AV_NOPTS_VALUE; |
|
|
|
min_dts = FFMIN(min_dts, ms->last_dts); |
|
} |
|
} |
|
|
|
return min_dts == INT64_MAX ? AV_NOPTS_VALUE : min_dts; |
|
} |
|
|
|
void sch_free(Scheduler **psch) |
|
{ |
|
Scheduler *sch = *psch; |
|
|
|
if (!sch) |
|
return; |
|
|
|
sch_stop(sch, NULL); |
|
|
|
for (unsigned i = 0; i < sch->nb_demux; i++) { |
|
SchDemux *d = &sch->demux[i]; |
|
|
|
for (unsigned j = 0; j < d->nb_streams; j++) { |
|
SchDemuxStream *ds = &d->streams[j]; |
|
av_freep(&ds->dst); |
|
av_freep(&ds->dst_finished); |
|
} |
|
av_freep(&d->streams); |
|
|
|
av_packet_free(&d->send_pkt); |
|
|
|
waiter_uninit(&d->waiter); |
|
} |
|
av_freep(&sch->demux); |
|
|
|
for (unsigned i = 0; i < sch->nb_mux; i++) { |
|
SchMux *mux = &sch->mux[i]; |
|
|
|
for (unsigned j = 0; j < mux->nb_streams; j++) { |
|
SchMuxStream *ms = &mux->streams[j]; |
|
|
|
if (ms->pre_mux_queue.fifo) { |
|
AVPacket *pkt; |
|
while (av_fifo_read(ms->pre_mux_queue.fifo, &pkt, 1) >= 0) |
|
av_packet_free(&pkt); |
|
av_fifo_freep2(&ms->pre_mux_queue.fifo); |
|
} |
|
|
|
av_freep(&ms->sub_heartbeat_dst); |
|
} |
|
av_freep(&mux->streams); |
|
|
|
av_packet_free(&mux->sub_heartbeat_pkt); |
|
|
|
tq_free(&mux->queue); |
|
} |
|
av_freep(&sch->mux); |
|
|
|
for (unsigned i = 0; i < sch->nb_dec; i++) { |
|
SchDec *dec = &sch->dec[i]; |
|
|
|
tq_free(&dec->queue); |
|
|
|
av_thread_message_queue_free(&dec->queue_end_ts); |
|
|
|
for (unsigned j = 0; j < dec->nb_outputs; j++) { |
|
SchDecOutput *o = &dec->outputs[j]; |
|
|
|
av_freep(&o->dst); |
|
av_freep(&o->dst_finished); |
|
} |
|
|
|
av_freep(&dec->outputs); |
|
|
|
av_frame_free(&dec->send_frame); |
|
} |
|
av_freep(&sch->dec); |
|
|
|
for (unsigned i = 0; i < sch->nb_enc; i++) { |
|
SchEnc *enc = &sch->enc[i]; |
|
|
|
tq_free(&enc->queue); |
|
|
|
av_packet_free(&enc->send_pkt); |
|
|
|
av_freep(&enc->dst); |
|
av_freep(&enc->dst_finished); |
|
} |
|
av_freep(&sch->enc); |
|
|
|
for (unsigned i = 0; i < sch->nb_sq_enc; i++) { |
|
SchSyncQueue *sq = &sch->sq_enc[i]; |
|
sq_free(&sq->sq); |
|
av_frame_free(&sq->frame); |
|
pthread_mutex_destroy(&sq->lock); |
|
av_freep(&sq->enc_idx); |
|
} |
|
av_freep(&sch->sq_enc); |
|
|
|
for (unsigned i = 0; i < sch->nb_filters; i++) { |
|
SchFilterGraph *fg = &sch->filters[i]; |
|
|
|
tq_free(&fg->queue); |
|
|
|
av_freep(&fg->inputs); |
|
av_freep(&fg->outputs); |
|
|
|
waiter_uninit(&fg->waiter); |
|
} |
|
av_freep(&sch->filters); |
|
|
|
av_freep(&sch->sdp_filename); |
|
|
|
pthread_mutex_destroy(&sch->schedule_lock); |
|
|
|
pthread_mutex_destroy(&sch->mux_ready_lock); |
|
|
|
pthread_mutex_destroy(&sch->finish_lock); |
|
pthread_cond_destroy(&sch->finish_cond); |
|
|
|
av_freep(psch); |
|
} |
|
|
|
static const AVClass scheduler_class = { |
|
.class_name = "Scheduler", |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
Scheduler *sch_alloc(void) |
|
{ |
|
Scheduler *sch; |
|
int ret; |
|
|
|
sch = av_mallocz(sizeof(*sch)); |
|
if (!sch) |
|
return NULL; |
|
|
|
sch->class = &scheduler_class; |
|
sch->sdp_auto = 1; |
|
|
|
ret = pthread_mutex_init(&sch->schedule_lock, NULL); |
|
if (ret) |
|
goto fail; |
|
|
|
ret = pthread_mutex_init(&sch->mux_ready_lock, NULL); |
|
if (ret) |
|
goto fail; |
|
|
|
ret = pthread_mutex_init(&sch->finish_lock, NULL); |
|
if (ret) |
|
goto fail; |
|
|
|
ret = pthread_cond_init(&sch->finish_cond, NULL); |
|
if (ret) |
|
goto fail; |
|
|
|
return sch; |
|
fail: |
|
sch_free(&sch); |
|
return NULL; |
|
} |
|
|
|
int sch_sdp_filename(Scheduler *sch, const char *sdp_filename) |
|
{ |
|
av_freep(&sch->sdp_filename); |
|
sch->sdp_filename = av_strdup(sdp_filename); |
|
return sch->sdp_filename ? 0 : AVERROR(ENOMEM); |
|
} |
|
|
|
static const AVClass sch_mux_class = { |
|
.class_name = "SchMux", |
|
.version = LIBAVUTIL_VERSION_INT, |
|
.parent_log_context_offset = offsetof(SchMux, task.func_arg), |
|
}; |
|
|
|
int sch_add_mux(Scheduler *sch, SchThreadFunc func, int (*init)(void *), |
|
void *arg, int sdp_auto, unsigned thread_queue_size) |
|
{ |
|
const unsigned idx = sch->nb_mux; |
|
|
|
SchMux *mux; |
|
int ret; |
|
|
|
ret = GROW_ARRAY(sch->mux, sch->nb_mux); |
|
if (ret < 0) |
|
return ret; |
|
|
|
mux = &sch->mux[idx]; |
|
mux->class = &sch_mux_class; |
|
mux->init = init; |
|
mux->queue_size = thread_queue_size; |
|
|
|
task_init(sch, &mux->task, SCH_NODE_TYPE_MUX, idx, func, arg); |
|
|
|
sch->sdp_auto &= sdp_auto; |
|
|
|
return idx; |
|
} |
|
|
|
int sch_add_mux_stream(Scheduler *sch, unsigned mux_idx) |
|
{ |
|
SchMux *mux; |
|
SchMuxStream *ms; |
|
unsigned stream_idx; |
|
int ret; |
|
|
|
av_assert0(mux_idx < sch->nb_mux); |
|
mux = &sch->mux[mux_idx]; |
|
|
|
ret = GROW_ARRAY(mux->streams, mux->nb_streams); |
|
if (ret < 0) |
|
return ret; |
|
stream_idx = mux->nb_streams - 1; |
|
|
|
ms = &mux->streams[stream_idx]; |
|
|
|
ms->pre_mux_queue.fifo = av_fifo_alloc2(8, sizeof(AVPacket*), 0); |
|
if (!ms->pre_mux_queue.fifo) |
|
return AVERROR(ENOMEM); |
|
|
|
ms->last_dts = AV_NOPTS_VALUE; |
|
|
|
return stream_idx; |
|
} |
|
|
|
static const AVClass sch_demux_class = { |
|
.class_name = "SchDemux", |
|
.version = LIBAVUTIL_VERSION_INT, |
|
.parent_log_context_offset = offsetof(SchDemux, task.func_arg), |
|
}; |
|
|
|
int sch_add_demux(Scheduler *sch, SchThreadFunc func, void *ctx) |
|
{ |
|
const unsigned idx = sch->nb_demux; |
|
|
|
SchDemux *d; |
|
int ret; |
|
|
|
ret = GROW_ARRAY(sch->demux, sch->nb_demux); |
|
if (ret < 0) |
|
return ret; |
|
|
|
d = &sch->demux[idx]; |
|
|
|
task_init(sch, &d->task, SCH_NODE_TYPE_DEMUX, idx, func, ctx); |
|
|
|
d->class = &sch_demux_class; |
|
d->send_pkt = av_packet_alloc(); |
|
if (!d->send_pkt) |
|
return AVERROR(ENOMEM); |
|
|
|
ret = waiter_init(&d->waiter); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return idx; |
|
} |
|
|
|
int sch_add_demux_stream(Scheduler *sch, unsigned demux_idx) |
|
{ |
|
SchDemux *d; |
|
int ret; |
|
|
|
av_assert0(demux_idx < sch->nb_demux); |
|
d = &sch->demux[demux_idx]; |
|
|
|
ret = GROW_ARRAY(d->streams, d->nb_streams); |
|
return ret < 0 ? ret : d->nb_streams - 1; |
|
} |
|
|
|
int sch_add_dec_output(Scheduler *sch, unsigned dec_idx) |
|
{ |
|
SchDec *dec; |
|
int ret; |
|
|
|
av_assert0(dec_idx < sch->nb_dec); |
|
dec = &sch->dec[dec_idx]; |
|
|
|
ret = GROW_ARRAY(dec->outputs, dec->nb_outputs); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return dec->nb_outputs - 1; |
|
} |
|
|
|
static const AVClass sch_dec_class = { |
|
.class_name = "SchDec", |
|
.version = LIBAVUTIL_VERSION_INT, |
|
.parent_log_context_offset = offsetof(SchDec, task.func_arg), |
|
}; |
|
|
|
int sch_add_dec(Scheduler *sch, SchThreadFunc func, void *ctx, int send_end_ts) |
|
{ |
|
const unsigned idx = sch->nb_dec; |
|
|
|
SchDec *dec; |
|
int ret; |
|
|
|
ret = GROW_ARRAY(sch->dec, sch->nb_dec); |
|
if (ret < 0) |
|
return ret; |
|
|
|
dec = &sch->dec[idx]; |
|
|
|
task_init(sch, &dec->task, SCH_NODE_TYPE_DEC, idx, func, ctx); |
|
|
|
dec->class = &sch_dec_class; |
|
dec->send_frame = av_frame_alloc(); |
|
if (!dec->send_frame) |
|
return AVERROR(ENOMEM); |
|
|
|
ret = sch_add_dec_output(sch, idx); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ret = queue_alloc(&dec->queue, 1, 0, QUEUE_PACKETS); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (send_end_ts) { |
|
ret = av_thread_message_queue_alloc(&dec->queue_end_ts, 1, sizeof(Timestamp)); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
return idx; |
|
} |
|
|
|
static const AVClass sch_enc_class = { |
|
.class_name = "SchEnc", |
|
.version = LIBAVUTIL_VERSION_INT, |
|
.parent_log_context_offset = offsetof(SchEnc, task.func_arg), |
|
}; |
|
|
|
int sch_add_enc(Scheduler *sch, SchThreadFunc func, void *ctx, |
|
int (*open_cb)(void *opaque, const AVFrame *frame)) |
|
{ |
|
const unsigned idx = sch->nb_enc; |
|
|
|
SchEnc *enc; |
|
int ret; |
|
|
|
ret = GROW_ARRAY(sch->enc, sch->nb_enc); |
|
if (ret < 0) |
|
return ret; |
|
|
|
enc = &sch->enc[idx]; |
|
|
|
enc->class = &sch_enc_class; |
|
enc->open_cb = open_cb; |
|
enc->sq_idx[0] = -1; |
|
enc->sq_idx[1] = -1; |
|
|
|
task_init(sch, &enc->task, SCH_NODE_TYPE_ENC, idx, func, ctx); |
|
|
|
enc->send_pkt = av_packet_alloc(); |
|
if (!enc->send_pkt) |
|
return AVERROR(ENOMEM); |
|
|
|
ret = queue_alloc(&enc->queue, 1, 0, QUEUE_FRAMES); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return idx; |
|
} |
|
|
|
static const AVClass sch_fg_class = { |
|
.class_name = "SchFilterGraph", |
|
.version = LIBAVUTIL_VERSION_INT, |
|
.parent_log_context_offset = offsetof(SchFilterGraph, task.func_arg), |
|
}; |
|
|
|
int sch_add_filtergraph(Scheduler *sch, unsigned nb_inputs, unsigned nb_outputs, |
|
SchThreadFunc func, void *ctx) |
|
{ |
|
const unsigned idx = sch->nb_filters; |
|
|
|
SchFilterGraph *fg; |
|
int ret; |
|
|
|
ret = GROW_ARRAY(sch->filters, sch->nb_filters); |
|
if (ret < 0) |
|
return ret; |
|
fg = &sch->filters[idx]; |
|
|
|
fg->class = &sch_fg_class; |
|
|
|
task_init(sch, &fg->task, SCH_NODE_TYPE_FILTER_IN, idx, func, ctx); |
|
|
|
if (nb_inputs) { |
|
fg->inputs = av_calloc(nb_inputs, sizeof(*fg->inputs)); |
|
if (!fg->inputs) |
|
return AVERROR(ENOMEM); |
|
fg->nb_inputs = nb_inputs; |
|
} |
|
|
|
if (nb_outputs) { |
|
fg->outputs = av_calloc(nb_outputs, sizeof(*fg->outputs)); |
|
if (!fg->outputs) |
|
return AVERROR(ENOMEM); |
|
fg->nb_outputs = nb_outputs; |
|
} |
|
|
|
ret = waiter_init(&fg->waiter); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ret = queue_alloc(&fg->queue, fg->nb_inputs + 1, 0, QUEUE_FRAMES); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return idx; |
|
} |
|
|
|
int sch_add_sq_enc(Scheduler *sch, uint64_t buf_size_us, void *logctx) |
|
{ |
|
SchSyncQueue *sq; |
|
int ret; |
|
|
|
ret = GROW_ARRAY(sch->sq_enc, sch->nb_sq_enc); |
|
if (ret < 0) |
|
return ret; |
|
sq = &sch->sq_enc[sch->nb_sq_enc - 1]; |
|
|
|
sq->sq = sq_alloc(SYNC_QUEUE_FRAMES, buf_size_us, logctx); |
|
if (!sq->sq) |
|
return AVERROR(ENOMEM); |
|
|
|
sq->frame = av_frame_alloc(); |
|
if (!sq->frame) |
|
return AVERROR(ENOMEM); |
|
|
|
ret = pthread_mutex_init(&sq->lock, NULL); |
|
if (ret) |
|
return AVERROR(ret); |
|
|
|
return sq - sch->sq_enc; |
|
} |
|
|
|
int sch_sq_add_enc(Scheduler *sch, unsigned sq_idx, unsigned enc_idx, |
|
int limiting, uint64_t max_frames) |
|
{ |
|
SchSyncQueue *sq; |
|
SchEnc *enc; |
|
int ret; |
|
|
|
av_assert0(sq_idx < sch->nb_sq_enc); |
|
sq = &sch->sq_enc[sq_idx]; |
|
|
|
av_assert0(enc_idx < sch->nb_enc); |
|
enc = &sch->enc[enc_idx]; |
|
|
|
ret = GROW_ARRAY(sq->enc_idx, sq->nb_enc_idx); |
|
if (ret < 0) |
|
return ret; |
|
sq->enc_idx[sq->nb_enc_idx - 1] = enc_idx; |
|
|
|
ret = sq_add_stream(sq->sq, limiting); |
|
if (ret < 0) |
|
return ret; |
|
|
|
enc->sq_idx[0] = sq_idx; |
|
enc->sq_idx[1] = ret; |
|
|
|
if (max_frames != INT64_MAX) |
|
sq_limit_frames(sq->sq, enc->sq_idx[1], max_frames); |
|
|
|
return 0; |
|
} |
|
|
|
int sch_connect(Scheduler *sch, SchedulerNode src, SchedulerNode dst) |
|
{ |
|
int ret; |
|
|
|
switch (src.type) { |
|
case SCH_NODE_TYPE_DEMUX: { |
|
SchDemuxStream *ds; |
|
|
|
av_assert0(src.idx < sch->nb_demux && |
|
src.idx_stream < sch->demux[src.idx].nb_streams); |
|
ds = &sch->demux[src.idx].streams[src.idx_stream]; |
|
|
|
ret = GROW_ARRAY(ds->dst, ds->nb_dst); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ds->dst[ds->nb_dst - 1] = dst; |
|
|
|
// demuxed packets go to decoding or streamcopy |
|
switch (dst.type) { |
|
case SCH_NODE_TYPE_DEC: { |
|
SchDec *dec; |
|
|
|
av_assert0(dst.idx < sch->nb_dec); |
|
dec = &sch->dec[dst.idx]; |
|
|
|
av_assert0(!dec->src.type); |
|
dec->src = src; |
|
break; |
|
} |
|
case SCH_NODE_TYPE_MUX: { |
|
SchMuxStream *ms; |
|
|
|
av_assert0(dst.idx < sch->nb_mux && |
|
dst.idx_stream < sch->mux[dst.idx].nb_streams); |
|
ms = &sch->mux[dst.idx].streams[dst.idx_stream]; |
|
|
|
av_assert0(!ms->src.type); |
|
ms->src = src; |
|
|
|
break; |
|
} |
|
default: av_assert0(0); |
|
} |
|
|
|
break; |
|
} |
|
case SCH_NODE_TYPE_DEC: { |
|
SchDec *dec; |
|
SchDecOutput *o; |
|
|
|
av_assert0(src.idx < sch->nb_dec); |
|
dec = &sch->dec[src.idx]; |
|
|
|
av_assert0(src.idx_stream < dec->nb_outputs); |
|
o = &dec->outputs[src.idx_stream]; |
|
|
|
ret = GROW_ARRAY(o->dst, o->nb_dst); |
|
if (ret < 0) |
|
return ret; |
|
|
|
o->dst[o->nb_dst - 1] = dst; |
|
|
|
// decoded frames go to filters or encoding |
|
switch (dst.type) { |
|
case SCH_NODE_TYPE_FILTER_IN: { |
|
SchFilterIn *fi; |
|
|
|
av_assert0(dst.idx < sch->nb_filters && |
|
dst.idx_stream < sch->filters[dst.idx].nb_inputs); |
|
fi = &sch->filters[dst.idx].inputs[dst.idx_stream]; |
|
|
|
av_assert0(!fi->src.type); |
|
fi->src = src; |
|
break; |
|
} |
|
case SCH_NODE_TYPE_ENC: { |
|
SchEnc *enc; |
|
|
|
av_assert0(dst.idx < sch->nb_enc); |
|
enc = &sch->enc[dst.idx]; |
|
|
|
av_assert0(!enc->src.type); |
|
enc->src = src; |
|
break; |
|
} |
|
default: av_assert0(0); |
|
} |
|
|
|
break; |
|
} |
|
case SCH_NODE_TYPE_FILTER_OUT: { |
|
SchFilterOut *fo; |
|
|
|
av_assert0(src.idx < sch->nb_filters && |
|
src.idx_stream < sch->filters[src.idx].nb_outputs); |
|
fo = &sch->filters[src.idx].outputs[src.idx_stream]; |
|
|
|
av_assert0(!fo->dst.type); |
|
fo->dst = dst; |
|
|
|
// filtered frames go to encoding or another filtergraph |
|
switch (dst.type) { |
|
case SCH_NODE_TYPE_ENC: { |
|
SchEnc *enc; |
|
|
|
av_assert0(dst.idx < sch->nb_enc); |
|
enc = &sch->enc[dst.idx]; |
|
|
|
av_assert0(!enc->src.type); |
|
enc->src = src; |
|
break; |
|
} |
|
case SCH_NODE_TYPE_FILTER_IN: { |
|
SchFilterIn *fi; |
|
|
|
av_assert0(dst.idx < sch->nb_filters && |
|
dst.idx_stream < sch->filters[dst.idx].nb_inputs); |
|
fi = &sch->filters[dst.idx].inputs[dst.idx_stream]; |
|
|
|
av_assert0(!fi->src.type); |
|
fi->src = src; |
|
break; |
|
} |
|
default: av_assert0(0); |
|
} |
|
|
|
|
|
break; |
|
} |
|
case SCH_NODE_TYPE_ENC: { |
|
SchEnc *enc; |
|
|
|
av_assert0(src.idx < sch->nb_enc); |
|
enc = &sch->enc[src.idx]; |
|
|
|
ret = GROW_ARRAY(enc->dst, enc->nb_dst); |
|
if (ret < 0) |
|
return ret; |
|
|
|
enc->dst[enc->nb_dst - 1] = dst; |
|
|
|
// encoding packets go to muxing or decoding |
|
switch (dst.type) { |
|
case SCH_NODE_TYPE_MUX: { |
|
SchMuxStream *ms; |
|
|
|
av_assert0(dst.idx < sch->nb_mux && |
|
dst.idx_stream < sch->mux[dst.idx].nb_streams); |
|
ms = &sch->mux[dst.idx].streams[dst.idx_stream]; |
|
|
|
av_assert0(!ms->src.type); |
|
ms->src = src; |
|
|
|
break; |
|
} |
|
case SCH_NODE_TYPE_DEC: { |
|
SchDec *dec; |
|
|
|
av_assert0(dst.idx < sch->nb_dec); |
|
dec = &sch->dec[dst.idx]; |
|
|
|
av_assert0(!dec->src.type); |
|
dec->src = src; |
|
|
|
break; |
|
} |
|
default: av_assert0(0); |
|
} |
|
|
|
break; |
|
} |
|
default: av_assert0(0); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int mux_task_start(SchMux *mux) |
|
{ |
|
int ret = 0; |
|
|
|
ret = task_start(&mux->task); |
|
if (ret < 0) |
|
return ret; |
|
|
|
/* flush the pre-muxing queues */ |
|
while (1) { |
|
int min_stream = -1; |
|
Timestamp min_ts = { .ts = AV_NOPTS_VALUE }; |
|
|
|
AVPacket *pkt; |
|
|
|
// find the stream with the earliest dts or EOF in pre-muxing queue |
|
for (unsigned i = 0; i < mux->nb_streams; i++) { |
|
SchMuxStream *ms = &mux->streams[i]; |
|
|
|
if (av_fifo_peek(ms->pre_mux_queue.fifo, &pkt, 1, 0) < 0) |
|
continue; |
|
|
|
if (!pkt || pkt->dts == AV_NOPTS_VALUE) { |
|
min_stream = i; |
|
break; |
|
} |
|
|
|
if (min_ts.ts == AV_NOPTS_VALUE || |
|
av_compare_ts(min_ts.ts, min_ts.tb, pkt->dts, pkt->time_base) > 0) { |
|
min_stream = i; |
|
min_ts = (Timestamp){ .ts = pkt->dts, .tb = pkt->time_base }; |
|
} |
|
} |
|
|
|
if (min_stream >= 0) { |
|
SchMuxStream *ms = &mux->streams[min_stream]; |
|
|
|
ret = av_fifo_read(ms->pre_mux_queue.fifo, &pkt, 1); |
|
av_assert0(ret >= 0); |
|
|
|
if (pkt) { |
|
if (!ms->init_eof) |
|
ret = tq_send(mux->queue, min_stream, pkt); |
|
av_packet_free(&pkt); |
|
if (ret == AVERROR_EOF) |
|
ms->init_eof = 1; |
|
else if (ret < 0) |
|
return ret; |
|
} else |
|
tq_send_finish(mux->queue, min_stream); |
|
|
|
continue; |
|
} |
|
|
|
break; |
|
} |
|
|
|
atomic_store(&mux->mux_started, 1); |
|
|
|
return 0; |
|
} |
|
|
|
int print_sdp(const char *filename); |
|
|
|
static int mux_init(Scheduler *sch, SchMux *mux) |
|
{ |
|
int ret; |
|
|
|
ret = mux->init(mux->task.func_arg); |
|
if (ret < 0) |
|
return ret; |
|
|
|
sch->nb_mux_ready++; |
|
|
|
if (sch->sdp_filename || sch->sdp_auto) { |
|
if (sch->nb_mux_ready < sch->nb_mux) |
|
return 0; |
|
|
|
ret = print_sdp(sch->sdp_filename); |
|
if (ret < 0) { |
|
av_log(sch, AV_LOG_ERROR, "Error writing the SDP.\n"); |
|
return ret; |
|
} |
|
|
|
/* SDP is written only after all the muxers are ready, so now we |
|
* start ALL the threads */ |
|
for (unsigned i = 0; i < sch->nb_mux; i++) { |
|
ret = mux_task_start(&sch->mux[i]); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
} else { |
|
ret = mux_task_start(mux); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
void sch_mux_stream_buffering(Scheduler *sch, unsigned mux_idx, unsigned stream_idx, |
|
size_t data_threshold, int max_packets) |
|
{ |
|
SchMux *mux; |
|
SchMuxStream *ms; |
|
|
|
av_assert0(mux_idx < sch->nb_mux); |
|
mux = &sch->mux[mux_idx]; |
|
|
|
av_assert0(stream_idx < mux->nb_streams); |
|
ms = &mux->streams[stream_idx]; |
|
|
|
ms->pre_mux_queue.max_packets = max_packets; |
|
ms->pre_mux_queue.data_threshold = data_threshold; |
|
} |
|
|
|
int sch_mux_stream_ready(Scheduler *sch, unsigned mux_idx, unsigned stream_idx) |
|
{ |
|
SchMux *mux; |
|
int ret = 0; |
|
|
|
av_assert0(mux_idx < sch->nb_mux); |
|
mux = &sch->mux[mux_idx]; |
|
|
|
av_assert0(stream_idx < mux->nb_streams); |
|
|
|
pthread_mutex_lock(&sch->mux_ready_lock); |
|
|
|
av_assert0(mux->nb_streams_ready < mux->nb_streams); |
|
|
|
// this may be called during initialization - do not start |
|
// threads before sch_start() is called |
|
if (++mux->nb_streams_ready == mux->nb_streams && |
|
sch->state >= SCH_STATE_STARTED) |
|
ret = mux_init(sch, mux); |
|
|
|
pthread_mutex_unlock(&sch->mux_ready_lock); |
|
|
|
return ret; |
|
} |
|
|
|
int sch_mux_sub_heartbeat_add(Scheduler *sch, unsigned mux_idx, unsigned stream_idx, |
|
unsigned dec_idx) |
|
{ |
|
SchMux *mux; |
|
SchMuxStream *ms; |
|
int ret = 0; |
|
|
|
av_assert0(mux_idx < sch->nb_mux); |
|
mux = &sch->mux[mux_idx]; |
|
|
|
av_assert0(stream_idx < mux->nb_streams); |
|
ms = &mux->streams[stream_idx]; |
|
|
|
ret = GROW_ARRAY(ms->sub_heartbeat_dst, ms->nb_sub_heartbeat_dst); |
|
if (ret < 0) |
|
return ret; |
|
|
|
av_assert0(dec_idx < sch->nb_dec); |
|
ms->sub_heartbeat_dst[ms->nb_sub_heartbeat_dst - 1] = dec_idx; |
|
|
|
if (!mux->sub_heartbeat_pkt) { |
|
mux->sub_heartbeat_pkt = av_packet_alloc(); |
|
if (!mux->sub_heartbeat_pkt) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void unchoke_for_stream(Scheduler *sch, SchedulerNode src) |
|
{ |
|
while (1) { |
|
SchFilterGraph *fg; |
|
|
|
// fed directly by a demuxer (i.e. not through a filtergraph) |
|
if (src.type == SCH_NODE_TYPE_DEMUX) { |
|
sch->demux[src.idx].waiter.choked_next = 0; |
|
return; |
|
} |
|
|
|
av_assert0(src.type == SCH_NODE_TYPE_FILTER_OUT); |
|
fg = &sch->filters[src.idx]; |
|
|
|
// the filtergraph contains internal sources and |
|
// requested to be scheduled directly |
|
if (fg->best_input == fg->nb_inputs) { |
|
fg->waiter.choked_next = 0; |
|
return; |
|
} |
|
|
|
src = fg->inputs[fg->best_input].src_sched; |
|
} |
|
} |
|
|
|
static void schedule_update_locked(Scheduler *sch) |
|
{ |
|
int64_t dts; |
|
int have_unchoked = 0; |
|
|
|
// on termination request all waiters are choked, |
|
// we are not to unchoke them |
|
if (atomic_load(&sch->terminate)) |
|
return; |
|
|
|
dts = trailing_dts(sch, 0); |
|
|
|
atomic_store(&sch->last_dts, dts); |
|
|
|
// initialize our internal state |
|
for (unsigned type = 0; type < 2; type++) |
|
for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) { |
|
SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter; |
|
w->choked_prev = atomic_load(&w->choked); |
|
w->choked_next = 1; |
|
} |
|
|
|
// figure out the sources that are allowed to proceed |
|
for (unsigned i = 0; i < sch->nb_mux; i++) { |
|
SchMux *mux = &sch->mux[i]; |
|
|
|
for (unsigned j = 0; j < mux->nb_streams; j++) { |
|
SchMuxStream *ms = &mux->streams[j]; |
|
|
|
// unblock sources for output streams that are not finished |
|
// and not too far ahead of the trailing stream |
|
if (ms->source_finished) |
|
continue; |
|
if (dts == AV_NOPTS_VALUE && ms->last_dts != AV_NOPTS_VALUE) |
|
continue; |
|
if (dts != AV_NOPTS_VALUE && ms->last_dts - dts >= SCHEDULE_TOLERANCE) |
|
continue; |
|
|
|
// resolve the source to unchoke |
|
unchoke_for_stream(sch, ms->src_sched); |
|
have_unchoked = 1; |
|
} |
|
} |
|
|
|
// make sure to unchoke at least one source, if still available |
|
for (unsigned type = 0; !have_unchoked && type < 2; type++) |
|
for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) { |
|
int exited = type ? sch->filters[i].task_exited : sch->demux[i].task_exited; |
|
SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter; |
|
if (!exited) { |
|
w->choked_next = 0; |
|
have_unchoked = 1; |
|
break; |
|
} |
|
} |
|
|
|
|
|
for (unsigned type = 0; type < 2; type++) |
|
for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) { |
|
SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter; |
|
if (w->choked_prev != w->choked_next) |
|
waiter_set(w, w->choked_next); |
|
} |
|
|
|
} |
|
|
|
enum { |
|
CYCLE_NODE_NEW = 0, |
|
CYCLE_NODE_STARTED, |
|
CYCLE_NODE_DONE, |
|
}; |
|
|
|
static int |
|
check_acyclic_for_output(const Scheduler *sch, SchedulerNode src, |
|
uint8_t *filters_visited, SchedulerNode *filters_stack) |
|
{ |
|
unsigned nb_filters_stack = 0; |
|
|
|
memset(filters_visited, 0, sch->nb_filters * sizeof(*filters_visited)); |
|
|
|
while (1) { |
|
const SchFilterGraph *fg = &sch->filters[src.idx]; |
|
|
|
filters_visited[src.idx] = CYCLE_NODE_STARTED; |
|
|
|
// descend into every input, depth first |
|
if (src.idx_stream < fg->nb_inputs) { |
|
const SchFilterIn *fi = &fg->inputs[src.idx_stream++]; |
|
|
|
// connected to demuxer, no cycles possible |
|
if (fi->src_sched.type == SCH_NODE_TYPE_DEMUX) |
|
continue; |
|
|
|
// otherwise connected to another filtergraph |
|
av_assert0(fi->src_sched.type == SCH_NODE_TYPE_FILTER_OUT); |
|
|
|
// found a cycle |
|
if (filters_visited[fi->src_sched.idx] == CYCLE_NODE_STARTED) |
|
return AVERROR(EINVAL); |
|
|
|
// place current position on stack and descend |
|
av_assert0(nb_filters_stack < sch->nb_filters); |
|
filters_stack[nb_filters_stack++] = src; |
|
src = (SchedulerNode){ .idx = fi->src_sched.idx, .idx_stream = 0 }; |
|
continue; |
|
} |
|
|
|
filters_visited[src.idx] = CYCLE_NODE_DONE; |
|
|
|
// previous search finished, |
|
if (nb_filters_stack) { |
|
src = filters_stack[--nb_filters_stack]; |
|
continue; |
|
} |
|
return 0; |
|
} |
|
} |
|
|
|
static int check_acyclic(Scheduler *sch) |
|
{ |
|
uint8_t *filters_visited = NULL; |
|
SchedulerNode *filters_stack = NULL; |
|
|
|
int ret = 0; |
|
|
|
if (!sch->nb_filters) |
|
return 0; |
|
|
|
filters_visited = av_malloc_array(sch->nb_filters, sizeof(*filters_visited)); |
|
if (!filters_visited) |
|
return AVERROR(ENOMEM); |
|
|
|
filters_stack = av_malloc_array(sch->nb_filters, sizeof(*filters_stack)); |
|
if (!filters_stack) { |
|
ret = AVERROR(ENOMEM); |
|
goto fail; |
|
} |
|
|
|
// trace the transcoding graph upstream from every filtegraph |
|
for (unsigned i = 0; i < sch->nb_filters; i++) { |
|
ret = check_acyclic_for_output(sch, (SchedulerNode){ .idx = i }, |
|
filters_visited, filters_stack); |
|
if (ret < 0) { |
|
av_log(&sch->filters[i], AV_LOG_ERROR, "Transcoding graph has a cycle\n"); |
|
goto fail; |
|
} |
|
} |
|
|
|
fail: |
|
av_freep(&filters_visited); |
|
av_freep(&filters_stack); |
|
return ret; |
|
} |
|
|
|
static int start_prepare(Scheduler *sch) |
|
{ |
|
int ret; |
|
|
|
for (unsigned i = 0; i < sch->nb_demux; i++) { |
|
SchDemux *d = &sch->demux[i]; |
|
|
|
for (unsigned j = 0; j < d->nb_streams; j++) { |
|
SchDemuxStream *ds = &d->streams[j]; |
|
|
|
if (!ds->nb_dst) { |
|
av_log(d, AV_LOG_ERROR, |
|
"Demuxer stream %u not connected to any sink\n", j); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
ds->dst_finished = av_calloc(ds->nb_dst, sizeof(*ds->dst_finished)); |
|
if (!ds->dst_finished) |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_dec; i++) { |
|
SchDec *dec = &sch->dec[i]; |
|
|
|
if (!dec->src.type) { |
|
av_log(dec, AV_LOG_ERROR, |
|
"Decoder not connected to a source\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
for (unsigned j = 0; j < dec->nb_outputs; j++) { |
|
SchDecOutput *o = &dec->outputs[j]; |
|
|
|
if (!o->nb_dst) { |
|
av_log(dec, AV_LOG_ERROR, |
|
"Decoder output %u not connected to any sink\n", j); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
o->dst_finished = av_calloc(o->nb_dst, sizeof(*o->dst_finished)); |
|
if (!o->dst_finished) |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_enc; i++) { |
|
SchEnc *enc = &sch->enc[i]; |
|
|
|
if (!enc->src.type) { |
|
av_log(enc, AV_LOG_ERROR, |
|
"Encoder not connected to a source\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
if (!enc->nb_dst) { |
|
av_log(enc, AV_LOG_ERROR, |
|
"Encoder not connected to any sink\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
enc->dst_finished = av_calloc(enc->nb_dst, sizeof(*enc->dst_finished)); |
|
if (!enc->dst_finished) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_mux; i++) { |
|
SchMux *mux = &sch->mux[i]; |
|
|
|
for (unsigned j = 0; j < mux->nb_streams; j++) { |
|
SchMuxStream *ms = &mux->streams[j]; |
|
|
|
switch (ms->src.type) { |
|
case SCH_NODE_TYPE_ENC: { |
|
SchEnc *enc = &sch->enc[ms->src.idx]; |
|
if (enc->src.type == SCH_NODE_TYPE_DEC) { |
|
ms->src_sched = sch->dec[enc->src.idx].src; |
|
av_assert0(ms->src_sched.type == SCH_NODE_TYPE_DEMUX); |
|
} else { |
|
ms->src_sched = enc->src; |
|
av_assert0(ms->src_sched.type == SCH_NODE_TYPE_FILTER_OUT); |
|
} |
|
break; |
|
} |
|
case SCH_NODE_TYPE_DEMUX: |
|
ms->src_sched = ms->src; |
|
break; |
|
default: |
|
av_log(mux, AV_LOG_ERROR, |
|
"Muxer stream #%u not connected to a source\n", j); |
|
return AVERROR(EINVAL); |
|
} |
|
} |
|
|
|
ret = queue_alloc(&mux->queue, mux->nb_streams, mux->queue_size, |
|
QUEUE_PACKETS); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_filters; i++) { |
|
SchFilterGraph *fg = &sch->filters[i]; |
|
|
|
for (unsigned j = 0; j < fg->nb_inputs; j++) { |
|
SchFilterIn *fi = &fg->inputs[j]; |
|
SchDec *dec; |
|
|
|
if (!fi->src.type) { |
|
av_log(fg, AV_LOG_ERROR, |
|
"Filtergraph input %u not connected to a source\n", j); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if (fi->src.type == SCH_NODE_TYPE_FILTER_OUT) |
|
fi->src_sched = fi->src; |
|
else { |
|
av_assert0(fi->src.type == SCH_NODE_TYPE_DEC); |
|
dec = &sch->dec[fi->src.idx]; |
|
|
|
switch (dec->src.type) { |
|
case SCH_NODE_TYPE_DEMUX: fi->src_sched = dec->src; break; |
|
case SCH_NODE_TYPE_ENC: fi->src_sched = sch->enc[dec->src.idx].src; break; |
|
default: av_assert0(0); |
|
} |
|
} |
|
} |
|
|
|
for (unsigned j = 0; j < fg->nb_outputs; j++) { |
|
SchFilterOut *fo = &fg->outputs[j]; |
|
|
|
if (!fo->dst.type) { |
|
av_log(fg, AV_LOG_ERROR, |
|
"Filtergraph %u output %u not connected to a sink\n", i, j); |
|
return AVERROR(EINVAL); |
|
} |
|
} |
|
} |
|
|
|
// Check that the transcoding graph has no cycles. |
|
ret = check_acyclic(sch); |
|
if (ret < 0) |
|
return ret; |
|
|
|
return 0; |
|
} |
|
|
|
int sch_start(Scheduler *sch) |
|
{ |
|
int ret; |
|
|
|
ret = start_prepare(sch); |
|
if (ret < 0) |
|
return ret; |
|
|
|
av_assert0(sch->state == SCH_STATE_UNINIT); |
|
sch->state = SCH_STATE_STARTED; |
|
|
|
for (unsigned i = 0; i < sch->nb_mux; i++) { |
|
SchMux *mux = &sch->mux[i]; |
|
|
|
if (mux->nb_streams_ready == mux->nb_streams) { |
|
ret = mux_init(sch, mux); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_enc; i++) { |
|
SchEnc *enc = &sch->enc[i]; |
|
|
|
ret = task_start(&enc->task); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_filters; i++) { |
|
SchFilterGraph *fg = &sch->filters[i]; |
|
|
|
ret = task_start(&fg->task); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_dec; i++) { |
|
SchDec *dec = &sch->dec[i]; |
|
|
|
ret = task_start(&dec->task); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_demux; i++) { |
|
SchDemux *d = &sch->demux[i]; |
|
|
|
if (!d->nb_streams) |
|
continue; |
|
|
|
ret = task_start(&d->task); |
|
if (ret < 0) |
|
goto fail; |
|
} |
|
|
|
pthread_mutex_lock(&sch->schedule_lock); |
|
schedule_update_locked(sch); |
|
pthread_mutex_unlock(&sch->schedule_lock); |
|
|
|
return 0; |
|
fail: |
|
sch_stop(sch, NULL); |
|
return ret; |
|
} |
|
|
|
int sch_wait(Scheduler *sch, uint64_t timeout_us, int64_t *transcode_ts) |
|
{ |
|
int ret; |
|
|
|
// convert delay to absolute timestamp |
|
timeout_us += av_gettime(); |
|
|
|
pthread_mutex_lock(&sch->finish_lock); |
|
|
|
if (sch->nb_mux_done < sch->nb_mux) { |
|
struct timespec tv = { .tv_sec = timeout_us / 1000000, |
|
.tv_nsec = (timeout_us % 1000000) * 1000 }; |
|
pthread_cond_timedwait(&sch->finish_cond, &sch->finish_lock, &tv); |
|
} |
|
|
|
// abort transcoding if any task failed |
|
ret = sch->nb_mux_done == sch->nb_mux || sch->task_failed; |
|
|
|
pthread_mutex_unlock(&sch->finish_lock); |
|
|
|
*transcode_ts = atomic_load(&sch->last_dts); |
|
|
|
return ret; |
|
} |
|
|
|
static int enc_open(Scheduler *sch, SchEnc *enc, const AVFrame *frame) |
|
{ |
|
int ret; |
|
|
|
ret = enc->open_cb(enc->task.func_arg, frame); |
|
if (ret < 0) |
|
return ret; |
|
|
|
// ret>0 signals audio frame size, which means sync queue must |
|
// have been enabled during encoder creation |
|
if (ret > 0) { |
|
SchSyncQueue *sq; |
|
|
|
av_assert0(enc->sq_idx[0] >= 0); |
|
sq = &sch->sq_enc[enc->sq_idx[0]]; |
|
|
|
pthread_mutex_lock(&sq->lock); |
|
|
|
sq_frame_samples(sq->sq, enc->sq_idx[1], ret); |
|
|
|
pthread_mutex_unlock(&sq->lock); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int send_to_enc_thread(Scheduler *sch, SchEnc *enc, AVFrame *frame) |
|
{ |
|
int ret; |
|
|
|
if (!frame) { |
|
tq_send_finish(enc->queue, 0); |
|
return 0; |
|
} |
|
|
|
if (enc->in_finished) |
|
return AVERROR_EOF; |
|
|
|
ret = tq_send(enc->queue, 0, frame); |
|
if (ret < 0) |
|
enc->in_finished = 1; |
|
|
|
return ret; |
|
} |
|
|
|
static int send_to_enc_sq(Scheduler *sch, SchEnc *enc, AVFrame *frame) |
|
{ |
|
SchSyncQueue *sq = &sch->sq_enc[enc->sq_idx[0]]; |
|
int ret = 0; |
|
|
|
// inform the scheduling code that no more input will arrive along this path; |
|
// this is necessary because the sync queue may not send an EOF downstream |
|
// until other streams finish |
|
// TODO: consider a cleaner way of passing this information through |
|
// the pipeline |
|
if (!frame) { |
|
for (unsigned i = 0; i < enc->nb_dst; i++) { |
|
SchMux *mux; |
|
SchMuxStream *ms; |
|
|
|
if (enc->dst[i].type != SCH_NODE_TYPE_MUX) |
|
continue; |
|
|
|
mux = &sch->mux[enc->dst[i].idx]; |
|
ms = &mux->streams[enc->dst[i].idx_stream]; |
|
|
|
pthread_mutex_lock(&sch->schedule_lock); |
|
|
|
ms->source_finished = 1; |
|
schedule_update_locked(sch); |
|
|
|
pthread_mutex_unlock(&sch->schedule_lock); |
|
} |
|
} |
|
|
|
pthread_mutex_lock(&sq->lock); |
|
|
|
ret = sq_send(sq->sq, enc->sq_idx[1], SQFRAME(frame)); |
|
if (ret < 0) |
|
goto finish; |
|
|
|
while (1) { |
|
SchEnc *enc; |
|
|
|
// TODO: the SQ API should be extended to allow returning EOF |
|
// for individual streams |
|
ret = sq_receive(sq->sq, -1, SQFRAME(sq->frame)); |
|
if (ret < 0) { |
|
ret = (ret == AVERROR(EAGAIN)) ? 0 : ret; |
|
break; |
|
} |
|
|
|
enc = &sch->enc[sq->enc_idx[ret]]; |
|
ret = send_to_enc_thread(sch, enc, sq->frame); |
|
if (ret < 0) { |
|
av_frame_unref(sq->frame); |
|
if (ret != AVERROR_EOF) |
|
break; |
|
|
|
sq_send(sq->sq, enc->sq_idx[1], SQFRAME(NULL)); |
|
continue; |
|
} |
|
} |
|
|
|
if (ret < 0) { |
|
// close all encoders fed from this sync queue |
|
for (unsigned i = 0; i < sq->nb_enc_idx; i++) { |
|
int err = send_to_enc_thread(sch, &sch->enc[sq->enc_idx[i]], NULL); |
|
|
|
// if the sync queue error is EOF and closing the encoder |
|
// produces a more serious error, make sure to pick the latter |
|
ret = err_merge((ret == AVERROR_EOF && err < 0) ? 0 : ret, err); |
|
} |
|
} |
|
|
|
finish: |
|
pthread_mutex_unlock(&sq->lock); |
|
|
|
return ret; |
|
} |
|
|
|
static int send_to_enc(Scheduler *sch, SchEnc *enc, AVFrame *frame) |
|
{ |
|
if (enc->open_cb && frame && !enc->opened) { |
|
int ret = enc_open(sch, enc, frame); |
|
if (ret < 0) |
|
return ret; |
|
enc->opened = 1; |
|
|
|
// discard empty frames that only carry encoder init parameters |
|
if (!frame->buf[0]) { |
|
av_frame_unref(frame); |
|
return 0; |
|
} |
|
} |
|
|
|
return (enc->sq_idx[0] >= 0) ? |
|
send_to_enc_sq (sch, enc, frame) : |
|
send_to_enc_thread(sch, enc, frame); |
|
} |
|
|
|
static int mux_queue_packet(SchMux *mux, SchMuxStream *ms, AVPacket *pkt) |
|
{ |
|
PreMuxQueue *q = &ms->pre_mux_queue; |
|
AVPacket *tmp_pkt = NULL; |
|
int ret; |
|
|
|
if (!av_fifo_can_write(q->fifo)) { |
|
size_t packets = av_fifo_can_read(q->fifo); |
|
size_t pkt_size = pkt ? pkt->size : 0; |
|
int thresh_reached = (q->data_size + pkt_size) > q->data_threshold; |
|
size_t max_packets = thresh_reached ? q->max_packets : SIZE_MAX; |
|
size_t new_size = FFMIN(2 * packets, max_packets); |
|
|
|
if (new_size <= packets) { |
|
av_log(mux, AV_LOG_ERROR, |
|
"Too many packets buffered for output stream.\n"); |
|
return AVERROR(ENOSPC); |
|
} |
|
ret = av_fifo_grow2(q->fifo, new_size - packets); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
if (pkt) { |
|
tmp_pkt = av_packet_alloc(); |
|
if (!tmp_pkt) |
|
return AVERROR(ENOMEM); |
|
|
|
av_packet_move_ref(tmp_pkt, pkt); |
|
q->data_size += tmp_pkt->size; |
|
} |
|
av_fifo_write(q->fifo, &tmp_pkt, 1); |
|
|
|
return 0; |
|
} |
|
|
|
static int send_to_mux(Scheduler *sch, SchMux *mux, unsigned stream_idx, |
|
AVPacket *pkt) |
|
{ |
|
SchMuxStream *ms = &mux->streams[stream_idx]; |
|
int64_t dts = (pkt && pkt->dts != AV_NOPTS_VALUE) ? |
|
av_rescale_q(pkt->dts + pkt->duration, pkt->time_base, AV_TIME_BASE_Q) : |
|
AV_NOPTS_VALUE; |
|
|
|
// queue the packet if the muxer cannot be started yet |
|
if (!atomic_load(&mux->mux_started)) { |
|
int queued = 0; |
|
|
|
// the muxer could have started between the above atomic check and |
|
// locking the mutex, then this block falls through to normal send path |
|
pthread_mutex_lock(&sch->mux_ready_lock); |
|
|
|
if (!atomic_load(&mux->mux_started)) { |
|
int ret = mux_queue_packet(mux, ms, pkt); |
|
queued = ret < 0 ? ret : 1; |
|
} |
|
|
|
pthread_mutex_unlock(&sch->mux_ready_lock); |
|
|
|
if (queued < 0) |
|
return queued; |
|
else if (queued) |
|
goto update_schedule; |
|
} |
|
|
|
if (pkt) { |
|
int ret; |
|
|
|
if (ms->init_eof) |
|
return AVERROR_EOF; |
|
|
|
ret = tq_send(mux->queue, stream_idx, pkt); |
|
if (ret < 0) |
|
return ret; |
|
} else |
|
tq_send_finish(mux->queue, stream_idx); |
|
|
|
update_schedule: |
|
// TODO: use atomics to check whether this changes trailing dts |
|
// to avoid locking unnecesarily |
|
if (dts != AV_NOPTS_VALUE || !pkt) { |
|
pthread_mutex_lock(&sch->schedule_lock); |
|
|
|
if (pkt) ms->last_dts = dts; |
|
else ms->source_finished = 1; |
|
|
|
schedule_update_locked(sch); |
|
|
|
pthread_mutex_unlock(&sch->schedule_lock); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int |
|
demux_stream_send_to_dst(Scheduler *sch, const SchedulerNode dst, |
|
uint8_t *dst_finished, AVPacket *pkt, unsigned flags) |
|
{ |
|
int ret; |
|
|
|
if (*dst_finished) |
|
return AVERROR_EOF; |
|
|
|
if (pkt && dst.type == SCH_NODE_TYPE_MUX && |
|
(flags & DEMUX_SEND_STREAMCOPY_EOF)) { |
|
av_packet_unref(pkt); |
|
pkt = NULL; |
|
} |
|
|
|
if (!pkt) |
|
goto finish; |
|
|
|
ret = (dst.type == SCH_NODE_TYPE_MUX) ? |
|
send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, pkt) : |
|
tq_send(sch->dec[dst.idx].queue, 0, pkt); |
|
if (ret == AVERROR_EOF) |
|
goto finish; |
|
|
|
return ret; |
|
|
|
finish: |
|
if (dst.type == SCH_NODE_TYPE_MUX) |
|
send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, NULL); |
|
else |
|
tq_send_finish(sch->dec[dst.idx].queue, 0); |
|
|
|
*dst_finished = 1; |
|
return AVERROR_EOF; |
|
} |
|
|
|
static int demux_send_for_stream(Scheduler *sch, SchDemux *d, SchDemuxStream *ds, |
|
AVPacket *pkt, unsigned flags) |
|
{ |
|
unsigned nb_done = 0; |
|
|
|
for (unsigned i = 0; i < ds->nb_dst; i++) { |
|
AVPacket *to_send = pkt; |
|
uint8_t *finished = &ds->dst_finished[i]; |
|
|
|
int ret; |
|
|
|
// sending a packet consumes it, so make a temporary reference if needed |
|
if (pkt && i < ds->nb_dst - 1) { |
|
to_send = d->send_pkt; |
|
|
|
ret = av_packet_ref(to_send, pkt); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
ret = demux_stream_send_to_dst(sch, ds->dst[i], finished, to_send, flags); |
|
if (to_send) |
|
av_packet_unref(to_send); |
|
if (ret == AVERROR_EOF) |
|
nb_done++; |
|
else if (ret < 0) |
|
return ret; |
|
} |
|
|
|
return (nb_done == ds->nb_dst) ? AVERROR_EOF : 0; |
|
} |
|
|
|
static int demux_flush(Scheduler *sch, SchDemux *d, AVPacket *pkt) |
|
{ |
|
Timestamp max_end_ts = (Timestamp){ .ts = AV_NOPTS_VALUE }; |
|
|
|
av_assert0(!pkt->buf && !pkt->data && !pkt->side_data_elems); |
|
|
|
for (unsigned i = 0; i < d->nb_streams; i++) { |
|
SchDemuxStream *ds = &d->streams[i]; |
|
|
|
for (unsigned j = 0; j < ds->nb_dst; j++) { |
|
const SchedulerNode *dst = &ds->dst[j]; |
|
SchDec *dec; |
|
int ret; |
|
|
|
if (ds->dst_finished[j] || dst->type != SCH_NODE_TYPE_DEC) |
|
continue; |
|
|
|
dec = &sch->dec[dst->idx]; |
|
|
|
ret = tq_send(dec->queue, 0, pkt); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (dec->queue_end_ts) { |
|
Timestamp ts; |
|
ret = av_thread_message_queue_recv(dec->queue_end_ts, &ts, 0); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (max_end_ts.ts == AV_NOPTS_VALUE || |
|
(ts.ts != AV_NOPTS_VALUE && |
|
av_compare_ts(max_end_ts.ts, max_end_ts.tb, ts.ts, ts.tb) < 0)) |
|
max_end_ts = ts; |
|
|
|
} |
|
} |
|
} |
|
|
|
pkt->pts = max_end_ts.ts; |
|
pkt->time_base = max_end_ts.tb; |
|
|
|
return 0; |
|
} |
|
|
|
int sch_demux_send(Scheduler *sch, unsigned demux_idx, AVPacket *pkt, |
|
unsigned flags) |
|
{ |
|
SchDemux *d; |
|
int terminate; |
|
|
|
av_assert0(demux_idx < sch->nb_demux); |
|
d = &sch->demux[demux_idx]; |
|
|
|
terminate = waiter_wait(sch, &d->waiter); |
|
if (terminate) |
|
return AVERROR_EXIT; |
|
|
|
// flush the downstreams after seek |
|
if (pkt->stream_index == -1) |
|
return demux_flush(sch, d, pkt); |
|
|
|
av_assert0(pkt->stream_index < d->nb_streams); |
|
|
|
return demux_send_for_stream(sch, d, &d->streams[pkt->stream_index], pkt, flags); |
|
} |
|
|
|
static int demux_done(Scheduler *sch, unsigned demux_idx) |
|
{ |
|
SchDemux *d = &sch->demux[demux_idx]; |
|
int ret = 0; |
|
|
|
for (unsigned i = 0; i < d->nb_streams; i++) { |
|
int err = demux_send_for_stream(sch, d, &d->streams[i], NULL, 0); |
|
if (err != AVERROR_EOF) |
|
ret = err_merge(ret, err); |
|
} |
|
|
|
pthread_mutex_lock(&sch->schedule_lock); |
|
|
|
d->task_exited = 1; |
|
|
|
schedule_update_locked(sch); |
|
|
|
pthread_mutex_unlock(&sch->schedule_lock); |
|
|
|
return ret; |
|
} |
|
|
|
int sch_mux_receive(Scheduler *sch, unsigned mux_idx, AVPacket *pkt) |
|
{ |
|
SchMux *mux; |
|
int ret, stream_idx; |
|
|
|
av_assert0(mux_idx < sch->nb_mux); |
|
mux = &sch->mux[mux_idx]; |
|
|
|
ret = tq_receive(mux->queue, &stream_idx, pkt); |
|
pkt->stream_index = stream_idx; |
|
return ret; |
|
} |
|
|
|
void sch_mux_receive_finish(Scheduler *sch, unsigned mux_idx, unsigned stream_idx) |
|
{ |
|
SchMux *mux; |
|
|
|
av_assert0(mux_idx < sch->nb_mux); |
|
mux = &sch->mux[mux_idx]; |
|
|
|
av_assert0(stream_idx < mux->nb_streams); |
|
tq_receive_finish(mux->queue, stream_idx); |
|
|
|
pthread_mutex_lock(&sch->schedule_lock); |
|
mux->streams[stream_idx].source_finished = 1; |
|
|
|
schedule_update_locked(sch); |
|
|
|
pthread_mutex_unlock(&sch->schedule_lock); |
|
} |
|
|
|
int sch_mux_sub_heartbeat(Scheduler *sch, unsigned mux_idx, unsigned stream_idx, |
|
const AVPacket *pkt) |
|
{ |
|
SchMux *mux; |
|
SchMuxStream *ms; |
|
|
|
av_assert0(mux_idx < sch->nb_mux); |
|
mux = &sch->mux[mux_idx]; |
|
|
|
av_assert0(stream_idx < mux->nb_streams); |
|
ms = &mux->streams[stream_idx]; |
|
|
|
for (unsigned i = 0; i < ms->nb_sub_heartbeat_dst; i++) { |
|
SchDec *dst = &sch->dec[ms->sub_heartbeat_dst[i]]; |
|
int ret; |
|
|
|
ret = av_packet_copy_props(mux->sub_heartbeat_pkt, pkt); |
|
if (ret < 0) |
|
return ret; |
|
|
|
tq_send(dst->queue, 0, mux->sub_heartbeat_pkt); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int mux_done(Scheduler *sch, unsigned mux_idx) |
|
{ |
|
SchMux *mux = &sch->mux[mux_idx]; |
|
|
|
pthread_mutex_lock(&sch->schedule_lock); |
|
|
|
for (unsigned i = 0; i < mux->nb_streams; i++) { |
|
tq_receive_finish(mux->queue, i); |
|
mux->streams[i].source_finished = 1; |
|
} |
|
|
|
schedule_update_locked(sch); |
|
|
|
pthread_mutex_unlock(&sch->schedule_lock); |
|
|
|
pthread_mutex_lock(&sch->finish_lock); |
|
|
|
av_assert0(sch->nb_mux_done < sch->nb_mux); |
|
sch->nb_mux_done++; |
|
|
|
pthread_cond_signal(&sch->finish_cond); |
|
|
|
pthread_mutex_unlock(&sch->finish_lock); |
|
|
|
return 0; |
|
} |
|
|
|
int sch_dec_receive(Scheduler *sch, unsigned dec_idx, AVPacket *pkt) |
|
{ |
|
SchDec *dec; |
|
int ret, dummy; |
|
|
|
av_assert0(dec_idx < sch->nb_dec); |
|
dec = &sch->dec[dec_idx]; |
|
|
|
// the decoder should have given us post-flush end timestamp in pkt |
|
if (dec->expect_end_ts) { |
|
Timestamp ts = (Timestamp){ .ts = pkt->pts, .tb = pkt->time_base }; |
|
ret = av_thread_message_queue_send(dec->queue_end_ts, &ts, 0); |
|
if (ret < 0) |
|
return ret; |
|
|
|
dec->expect_end_ts = 0; |
|
} |
|
|
|
ret = tq_receive(dec->queue, &dummy, pkt); |
|
av_assert0(dummy <= 0); |
|
|
|
// got a flush packet, on the next call to this function the decoder |
|
// will give us post-flush end timestamp |
|
if (ret >= 0 && !pkt->data && !pkt->side_data_elems && dec->queue_end_ts) |
|
dec->expect_end_ts = 1; |
|
|
|
return ret; |
|
} |
|
|
|
static int send_to_filter(Scheduler *sch, SchFilterGraph *fg, |
|
unsigned in_idx, AVFrame *frame) |
|
{ |
|
if (frame) |
|
return tq_send(fg->queue, in_idx, frame); |
|
|
|
if (!fg->inputs[in_idx].send_finished) { |
|
fg->inputs[in_idx].send_finished = 1; |
|
tq_send_finish(fg->queue, in_idx); |
|
|
|
// close the control stream when all actual inputs are done |
|
if (atomic_fetch_add(&fg->nb_inputs_finished_send, 1) == fg->nb_inputs - 1) |
|
tq_send_finish(fg->queue, fg->nb_inputs); |
|
} |
|
return 0; |
|
} |
|
|
|
static int dec_send_to_dst(Scheduler *sch, const SchedulerNode dst, |
|
uint8_t *dst_finished, AVFrame *frame) |
|
{ |
|
int ret; |
|
|
|
if (*dst_finished) |
|
return AVERROR_EOF; |
|
|
|
if (!frame) |
|
goto finish; |
|
|
|
ret = (dst.type == SCH_NODE_TYPE_FILTER_IN) ? |
|
send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, frame) : |
|
send_to_enc(sch, &sch->enc[dst.idx], frame); |
|
if (ret == AVERROR_EOF) |
|
goto finish; |
|
|
|
return ret; |
|
|
|
finish: |
|
if (dst.type == SCH_NODE_TYPE_FILTER_IN) |
|
send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, NULL); |
|
else |
|
send_to_enc(sch, &sch->enc[dst.idx], NULL); |
|
|
|
*dst_finished = 1; |
|
|
|
return AVERROR_EOF; |
|
} |
|
|
|
int sch_dec_send(Scheduler *sch, unsigned dec_idx, |
|
unsigned out_idx, AVFrame *frame) |
|
{ |
|
SchDec *dec; |
|
SchDecOutput *o; |
|
int ret; |
|
unsigned nb_done = 0; |
|
|
|
av_assert0(dec_idx < sch->nb_dec); |
|
dec = &sch->dec[dec_idx]; |
|
|
|
av_assert0(out_idx < dec->nb_outputs); |
|
o = &dec->outputs[out_idx]; |
|
|
|
for (unsigned i = 0; i < o->nb_dst; i++) { |
|
uint8_t *finished = &o->dst_finished[i]; |
|
AVFrame *to_send = frame; |
|
|
|
// sending a frame consumes it, so make a temporary reference if needed |
|
if (i < o->nb_dst - 1) { |
|
to_send = dec->send_frame; |
|
|
|
// frame may sometimes contain props only, |
|
// e.g. to signal EOF timestamp |
|
ret = frame->buf[0] ? av_frame_ref(to_send, frame) : |
|
av_frame_copy_props(to_send, frame); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
ret = dec_send_to_dst(sch, o->dst[i], finished, to_send); |
|
if (ret < 0) { |
|
av_frame_unref(to_send); |
|
if (ret == AVERROR_EOF) { |
|
nb_done++; |
|
continue; |
|
} |
|
return ret; |
|
} |
|
} |
|
|
|
return (nb_done == o->nb_dst) ? AVERROR_EOF : 0; |
|
} |
|
|
|
static int dec_done(Scheduler *sch, unsigned dec_idx) |
|
{ |
|
SchDec *dec = &sch->dec[dec_idx]; |
|
int ret = 0; |
|
|
|
tq_receive_finish(dec->queue, 0); |
|
|
|
// make sure our source does not get stuck waiting for end timestamps |
|
// that will never arrive |
|
if (dec->queue_end_ts) |
|
av_thread_message_queue_set_err_recv(dec->queue_end_ts, AVERROR_EOF); |
|
|
|
for (unsigned i = 0; i < dec->nb_outputs; i++) { |
|
SchDecOutput *o = &dec->outputs[i]; |
|
|
|
for (unsigned j = 0; j < o->nb_dst; j++) { |
|
int err = dec_send_to_dst(sch, o->dst[j], &o->dst_finished[j], NULL); |
|
if (err < 0 && err != AVERROR_EOF) |
|
ret = err_merge(ret, err); |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
int sch_enc_receive(Scheduler *sch, unsigned enc_idx, AVFrame *frame) |
|
{ |
|
SchEnc *enc; |
|
int ret, dummy; |
|
|
|
av_assert0(enc_idx < sch->nb_enc); |
|
enc = &sch->enc[enc_idx]; |
|
|
|
ret = tq_receive(enc->queue, &dummy, frame); |
|
av_assert0(dummy <= 0); |
|
|
|
return ret; |
|
} |
|
|
|
static int enc_send_to_dst(Scheduler *sch, const SchedulerNode dst, |
|
uint8_t *dst_finished, AVPacket *pkt) |
|
{ |
|
int ret; |
|
|
|
if (*dst_finished) |
|
return AVERROR_EOF; |
|
|
|
if (!pkt) |
|
goto finish; |
|
|
|
ret = (dst.type == SCH_NODE_TYPE_MUX) ? |
|
send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, pkt) : |
|
tq_send(sch->dec[dst.idx].queue, 0, pkt); |
|
if (ret == AVERROR_EOF) |
|
goto finish; |
|
|
|
return ret; |
|
|
|
finish: |
|
if (dst.type == SCH_NODE_TYPE_MUX) |
|
send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, NULL); |
|
else |
|
tq_send_finish(sch->dec[dst.idx].queue, 0); |
|
|
|
*dst_finished = 1; |
|
|
|
return AVERROR_EOF; |
|
} |
|
|
|
int sch_enc_send(Scheduler *sch, unsigned enc_idx, AVPacket *pkt) |
|
{ |
|
SchEnc *enc; |
|
int ret; |
|
|
|
av_assert0(enc_idx < sch->nb_enc); |
|
enc = &sch->enc[enc_idx]; |
|
|
|
for (unsigned i = 0; i < enc->nb_dst; i++) { |
|
uint8_t *finished = &enc->dst_finished[i]; |
|
AVPacket *to_send = pkt; |
|
|
|
// sending a packet consumes it, so make a temporary reference if needed |
|
if (i < enc->nb_dst - 1) { |
|
to_send = enc->send_pkt; |
|
|
|
ret = av_packet_ref(to_send, pkt); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
ret = enc_send_to_dst(sch, enc->dst[i], finished, to_send); |
|
if (ret < 0) { |
|
av_packet_unref(to_send); |
|
if (ret == AVERROR_EOF) |
|
continue; |
|
return ret; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int enc_done(Scheduler *sch, unsigned enc_idx) |
|
{ |
|
SchEnc *enc = &sch->enc[enc_idx]; |
|
int ret = 0; |
|
|
|
tq_receive_finish(enc->queue, 0); |
|
|
|
for (unsigned i = 0; i < enc->nb_dst; i++) { |
|
int err = enc_send_to_dst(sch, enc->dst[i], &enc->dst_finished[i], NULL); |
|
if (err < 0 && err != AVERROR_EOF) |
|
ret = err_merge(ret, err); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
int sch_filter_receive(Scheduler *sch, unsigned fg_idx, |
|
unsigned *in_idx, AVFrame *frame) |
|
{ |
|
SchFilterGraph *fg; |
|
|
|
av_assert0(fg_idx < sch->nb_filters); |
|
fg = &sch->filters[fg_idx]; |
|
|
|
av_assert0(*in_idx <= fg->nb_inputs); |
|
|
|
// update scheduling to account for desired input stream, if it changed |
|
// |
|
// this check needs no locking because only the filtering thread |
|
// updates this value |
|
if (*in_idx != fg->best_input) { |
|
pthread_mutex_lock(&sch->schedule_lock); |
|
|
|
fg->best_input = *in_idx; |
|
schedule_update_locked(sch); |
|
|
|
pthread_mutex_unlock(&sch->schedule_lock); |
|
} |
|
|
|
if (*in_idx == fg->nb_inputs) { |
|
int terminate = waiter_wait(sch, &fg->waiter); |
|
return terminate ? AVERROR_EOF : AVERROR(EAGAIN); |
|
} |
|
|
|
while (1) { |
|
int ret, idx; |
|
|
|
ret = tq_receive(fg->queue, &idx, frame); |
|
if (idx < 0) |
|
return AVERROR_EOF; |
|
else if (ret >= 0) { |
|
*in_idx = idx; |
|
return 0; |
|
} |
|
|
|
// disregard EOFs for specific streams - they should always be |
|
// preceded by an EOF frame |
|
} |
|
} |
|
|
|
void sch_filter_receive_finish(Scheduler *sch, unsigned fg_idx, unsigned in_idx) |
|
{ |
|
SchFilterGraph *fg; |
|
SchFilterIn *fi; |
|
|
|
av_assert0(fg_idx < sch->nb_filters); |
|
fg = &sch->filters[fg_idx]; |
|
|
|
av_assert0(in_idx < fg->nb_inputs); |
|
fi = &fg->inputs[in_idx]; |
|
|
|
if (!fi->receive_finished) { |
|
fi->receive_finished = 1; |
|
tq_receive_finish(fg->queue, in_idx); |
|
|
|
// close the control stream when all actual inputs are done |
|
if (++fg->nb_inputs_finished_receive == fg->nb_inputs) |
|
tq_receive_finish(fg->queue, fg->nb_inputs); |
|
} |
|
} |
|
|
|
int sch_filter_send(Scheduler *sch, unsigned fg_idx, unsigned out_idx, AVFrame *frame) |
|
{ |
|
SchFilterGraph *fg; |
|
SchedulerNode dst; |
|
|
|
av_assert0(fg_idx < sch->nb_filters); |
|
fg = &sch->filters[fg_idx]; |
|
|
|
av_assert0(out_idx < fg->nb_outputs); |
|
dst = fg->outputs[out_idx].dst; |
|
|
|
return (dst.type == SCH_NODE_TYPE_ENC) ? |
|
send_to_enc (sch, &sch->enc[dst.idx], frame) : |
|
send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, frame); |
|
} |
|
|
|
static int filter_done(Scheduler *sch, unsigned fg_idx) |
|
{ |
|
SchFilterGraph *fg = &sch->filters[fg_idx]; |
|
int ret = 0; |
|
|
|
for (unsigned i = 0; i <= fg->nb_inputs; i++) |
|
tq_receive_finish(fg->queue, i); |
|
|
|
for (unsigned i = 0; i < fg->nb_outputs; i++) { |
|
SchedulerNode dst = fg->outputs[i].dst; |
|
int err = (dst.type == SCH_NODE_TYPE_ENC) ? |
|
send_to_enc (sch, &sch->enc[dst.idx], NULL) : |
|
send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, NULL); |
|
|
|
if (err < 0 && err != AVERROR_EOF) |
|
ret = err_merge(ret, err); |
|
} |
|
|
|
pthread_mutex_lock(&sch->schedule_lock); |
|
|
|
fg->task_exited = 1; |
|
|
|
schedule_update_locked(sch); |
|
|
|
pthread_mutex_unlock(&sch->schedule_lock); |
|
|
|
return ret; |
|
} |
|
|
|
int sch_filter_command(Scheduler *sch, unsigned fg_idx, AVFrame *frame) |
|
{ |
|
SchFilterGraph *fg; |
|
|
|
av_assert0(fg_idx < sch->nb_filters); |
|
fg = &sch->filters[fg_idx]; |
|
|
|
return send_to_filter(sch, fg, fg->nb_inputs, frame); |
|
} |
|
|
|
static int task_cleanup(Scheduler *sch, SchedulerNode node) |
|
{ |
|
switch (node.type) { |
|
case SCH_NODE_TYPE_DEMUX: return demux_done (sch, node.idx); |
|
case SCH_NODE_TYPE_MUX: return mux_done (sch, node.idx); |
|
case SCH_NODE_TYPE_DEC: return dec_done (sch, node.idx); |
|
case SCH_NODE_TYPE_ENC: return enc_done (sch, node.idx); |
|
case SCH_NODE_TYPE_FILTER_IN: return filter_done(sch, node.idx); |
|
default: av_assert0(0); |
|
} |
|
} |
|
|
|
static void *task_wrapper(void *arg) |
|
{ |
|
SchTask *task = arg; |
|
Scheduler *sch = task->parent; |
|
int ret; |
|
int err = 0; |
|
|
|
ret = task->func(task->func_arg); |
|
if (ret < 0) |
|
av_log(task->func_arg, AV_LOG_ERROR, |
|
"Task finished with error code: %d (%s)\n", ret, av_err2str(ret)); |
|
|
|
err = task_cleanup(sch, task->node); |
|
ret = err_merge(ret, err); |
|
|
|
// EOF is considered normal termination |
|
if (ret == AVERROR_EOF) |
|
ret = 0; |
|
if (ret < 0) { |
|
pthread_mutex_lock(&sch->finish_lock); |
|
sch->task_failed = 1; |
|
pthread_cond_signal(&sch->finish_cond); |
|
pthread_mutex_unlock(&sch->finish_lock); |
|
} |
|
|
|
av_log(task->func_arg, ret < 0 ? AV_LOG_ERROR : AV_LOG_VERBOSE, |
|
"Terminating thread with return code %d (%s)\n", ret, |
|
ret < 0 ? av_err2str(ret) : "success"); |
|
|
|
return (void*)(intptr_t)ret; |
|
} |
|
|
|
static int task_stop(Scheduler *sch, SchTask *task) |
|
{ |
|
int ret; |
|
void *thread_ret; |
|
|
|
if (!task->thread_running) |
|
return task_cleanup(sch, task->node); |
|
|
|
ret = pthread_join(task->thread, &thread_ret); |
|
av_assert0(ret == 0); |
|
|
|
task->thread_running = 0; |
|
|
|
return (intptr_t)thread_ret; |
|
} |
|
|
|
int sch_stop(Scheduler *sch, int64_t *finish_ts) |
|
{ |
|
int ret = 0, err; |
|
|
|
if (sch->state != SCH_STATE_STARTED) |
|
return 0; |
|
|
|
atomic_store(&sch->terminate, 1); |
|
|
|
for (unsigned type = 0; type < 2; type++) |
|
for (unsigned i = 0; i < (type ? sch->nb_demux : sch->nb_filters); i++) { |
|
SchWaiter *w = type ? &sch->demux[i].waiter : &sch->filters[i].waiter; |
|
waiter_set(w, 1); |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_demux; i++) { |
|
SchDemux *d = &sch->demux[i]; |
|
|
|
err = task_stop(sch, &d->task); |
|
ret = err_merge(ret, err); |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_dec; i++) { |
|
SchDec *dec = &sch->dec[i]; |
|
|
|
err = task_stop(sch, &dec->task); |
|
ret = err_merge(ret, err); |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_filters; i++) { |
|
SchFilterGraph *fg = &sch->filters[i]; |
|
|
|
err = task_stop(sch, &fg->task); |
|
ret = err_merge(ret, err); |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_enc; i++) { |
|
SchEnc *enc = &sch->enc[i]; |
|
|
|
err = task_stop(sch, &enc->task); |
|
ret = err_merge(ret, err); |
|
} |
|
|
|
for (unsigned i = 0; i < sch->nb_mux; i++) { |
|
SchMux *mux = &sch->mux[i]; |
|
|
|
err = task_stop(sch, &mux->task); |
|
ret = err_merge(ret, err); |
|
} |
|
|
|
if (finish_ts) |
|
*finish_ts = trailing_dts(sch, 1); |
|
|
|
sch->state = SCH_STATE_STOPPED; |
|
|
|
return ret; |
|
}
|
|
|