mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
779 lines
26 KiB
779 lines
26 KiB
/* |
|
* TwinVQ decoder |
|
* Copyright (c) 2009 Vitor Sessak |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <math.h> |
|
#include <stdint.h> |
|
|
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/float_dsp.h" |
|
#include "avcodec.h" |
|
#include "fft.h" |
|
#include "internal.h" |
|
#include "lsp.h" |
|
#include "sinewin.h" |
|
#include "twinvq.h" |
|
|
|
/** |
|
* Evaluate a single LPC amplitude spectrum envelope coefficient from the line |
|
* spectrum pairs. |
|
* |
|
* @param lsp a vector of the cosine of the LSP values |
|
* @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude |
|
* @param order the order of the LSP (and the size of the *lsp buffer). Must |
|
* be a multiple of four. |
|
* @return the LPC value |
|
* |
|
* @todo reuse code from Vorbis decoder: vorbis_floor0_decode |
|
*/ |
|
static float eval_lpc_spectrum(const float *lsp, float cos_val, int order) |
|
{ |
|
int j; |
|
float p = 0.5f; |
|
float q = 0.5f; |
|
float two_cos_w = 2.0f * cos_val; |
|
|
|
for (j = 0; j + 1 < order; j += 2 * 2) { |
|
// Unroll the loop once since order is a multiple of four |
|
q *= lsp[j] - two_cos_w; |
|
p *= lsp[j + 1] - two_cos_w; |
|
|
|
q *= lsp[j + 2] - two_cos_w; |
|
p *= lsp[j + 3] - two_cos_w; |
|
} |
|
|
|
p *= p * (2.0f - two_cos_w); |
|
q *= q * (2.0f + two_cos_w); |
|
|
|
return 0.5 / (p + q); |
|
} |
|
|
|
/** |
|
* Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs. |
|
*/ |
|
static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc) |
|
{ |
|
int i; |
|
const TwinVQModeTab *mtab = tctx->mtab; |
|
int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub; |
|
|
|
for (i = 0; i < size_s / 2; i++) { |
|
float cos_i = tctx->cos_tabs[0][i]; |
|
lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp); |
|
lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp); |
|
} |
|
} |
|
|
|
static void interpolate(float *out, float v1, float v2, int size) |
|
{ |
|
int i; |
|
float step = (v1 - v2) / (size + 1); |
|
|
|
for (i = 0; i < size; i++) { |
|
v2 += step; |
|
out[i] = v2; |
|
} |
|
} |
|
|
|
static inline float get_cos(int idx, int part, const float *cos_tab, int size) |
|
{ |
|
return part ? -cos_tab[size - idx - 1] |
|
: cos_tab[idx]; |
|
} |
|
|
|
/** |
|
* Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs. |
|
* Probably for speed reasons, the coefficients are evaluated as |
|
* siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ... |
|
* where s is an evaluated value, i is a value interpolated from the others |
|
* and b might be either calculated or interpolated, depending on an |
|
* unexplained condition. |
|
* |
|
* @param step the size of a block "siiiibiiii" |
|
* @param in the cosine of the LSP data |
|
* @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI |
|
* (negative cosine values) |
|
* @param size the size of the whole output |
|
*/ |
|
static inline void eval_lpcenv_or_interp(TwinVQContext *tctx, |
|
enum TwinVQFrameType ftype, |
|
float *out, const float *in, |
|
int size, int step, int part) |
|
{ |
|
int i; |
|
const TwinVQModeTab *mtab = tctx->mtab; |
|
const float *cos_tab = tctx->cos_tabs[ftype]; |
|
|
|
// Fill the 's' |
|
for (i = 0; i < size; i += step) |
|
out[i] = |
|
eval_lpc_spectrum(in, |
|
get_cos(i, part, cos_tab, size), |
|
mtab->n_lsp); |
|
|
|
// Fill the 'iiiibiiii' |
|
for (i = step; i <= size - 2 * step; i += step) { |
|
if (out[i + step] + out[i - step] > 1.95 * out[i] || |
|
out[i + step] >= out[i - step]) { |
|
interpolate(out + i - step + 1, out[i], out[i - step], step - 1); |
|
} else { |
|
out[i - step / 2] = |
|
eval_lpc_spectrum(in, |
|
get_cos(i - step / 2, part, cos_tab, size), |
|
mtab->n_lsp); |
|
interpolate(out + i - step + 1, out[i - step / 2], |
|
out[i - step], step / 2 - 1); |
|
interpolate(out + i - step / 2 + 1, out[i], |
|
out[i - step / 2], step / 2 - 1); |
|
} |
|
} |
|
|
|
interpolate(out + size - 2 * step + 1, out[size - step], |
|
out[size - 2 * step], step - 1); |
|
} |
|
|
|
static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype, |
|
const float *buf, float *lpc, |
|
int size, int step) |
|
{ |
|
eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0); |
|
eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2, |
|
2 * step, 1); |
|
|
|
interpolate(lpc + size / 2 - step + 1, lpc[size / 2], |
|
lpc[size / 2 - step], step); |
|
|
|
twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step], |
|
2 * step - 1); |
|
} |
|
|
|
/** |
|
* Inverse quantization. Read CB coefficients for cb1 and cb2 from the |
|
* bitstream, sum the corresponding vectors and write the result to *out |
|
* after permutation. |
|
*/ |
|
static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out, |
|
enum TwinVQFrameType ftype, |
|
const int16_t *cb0, const int16_t *cb1, int cb_len) |
|
{ |
|
int pos = 0; |
|
int i, j; |
|
|
|
for (i = 0; i < tctx->n_div[ftype]; i++) { |
|
int tmp0, tmp1; |
|
int sign0 = 1; |
|
int sign1 = 1; |
|
const int16_t *tab0, *tab1; |
|
int length = tctx->length[ftype][i >= tctx->length_change[ftype]]; |
|
int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]); |
|
|
|
int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part]; |
|
tmp0 = *cb_bits++; |
|
if (bits == 7) { |
|
if (tmp0 & 0x40) |
|
sign0 = -1; |
|
tmp0 &= 0x3F; |
|
} |
|
|
|
bits = tctx->bits_main_spec[1][ftype][bitstream_second_part]; |
|
tmp1 = *cb_bits++; |
|
if (bits == 7) { |
|
if (tmp1 & 0x40) |
|
sign1 = -1; |
|
tmp1 &= 0x3F; |
|
} |
|
|
|
tab0 = cb0 + tmp0 * cb_len; |
|
tab1 = cb1 + tmp1 * cb_len; |
|
|
|
for (j = 0; j < length; j++) |
|
out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] + |
|
sign1 * tab1[j]; |
|
|
|
pos += length; |
|
} |
|
} |
|
|
|
static void dec_gain(TwinVQContext *tctx, |
|
enum TwinVQFrameType ftype, float *out) |
|
{ |
|
const TwinVQModeTab *mtab = tctx->mtab; |
|
const TwinVQFrameData *bits = &tctx->bits; |
|
int i, j; |
|
int sub = mtab->fmode[ftype].sub; |
|
float step = TWINVQ_AMP_MAX / ((1 << TWINVQ_GAIN_BITS) - 1); |
|
float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1); |
|
|
|
if (ftype == TWINVQ_FT_LONG) { |
|
for (i = 0; i < tctx->avctx->channels; i++) |
|
out[i] = (1.0 / (1 << 13)) * |
|
twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i], |
|
TWINVQ_AMP_MAX, TWINVQ_MULAW_MU); |
|
} else { |
|
for (i = 0; i < tctx->avctx->channels; i++) { |
|
float val = (1.0 / (1 << 23)) * |
|
twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i], |
|
TWINVQ_AMP_MAX, TWINVQ_MULAW_MU); |
|
|
|
for (j = 0; j < sub; j++) |
|
out[i * sub + j] = |
|
val * twinvq_mulawinv(sub_step * 0.5 + |
|
sub_step * bits->sub_gain_bits[i * sub + j], |
|
TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU); |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Rearrange the LSP coefficients so that they have a minimum distance of |
|
* min_dist. This function does it exactly as described in section of 3.2.4 |
|
* of the G.729 specification (but interestingly is different from what the |
|
* reference decoder actually does). |
|
*/ |
|
static void rearrange_lsp(int order, float *lsp, float min_dist) |
|
{ |
|
int i; |
|
float min_dist2 = min_dist * 0.5; |
|
for (i = 1; i < order; i++) |
|
if (lsp[i] - lsp[i - 1] < min_dist) { |
|
float avg = (lsp[i] + lsp[i - 1]) * 0.5; |
|
|
|
lsp[i - 1] = avg - min_dist2; |
|
lsp[i] = avg + min_dist2; |
|
} |
|
} |
|
|
|
static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2, |
|
int lpc_hist_idx, float *lsp, float *hist) |
|
{ |
|
const TwinVQModeTab *mtab = tctx->mtab; |
|
int i, j; |
|
|
|
const float *cb = mtab->lspcodebook; |
|
const float *cb2 = cb + (1 << mtab->lsp_bit1) * mtab->n_lsp; |
|
const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp; |
|
|
|
const int8_t funny_rounding[4] = { |
|
-2, |
|
mtab->lsp_split == 4 ? -2 : 1, |
|
mtab->lsp_split == 4 ? -2 : 1, |
|
0 |
|
}; |
|
|
|
j = 0; |
|
for (i = 0; i < mtab->lsp_split; i++) { |
|
int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) / |
|
mtab->lsp_split; |
|
for (; j < chunk_end; j++) |
|
lsp[j] = cb[lpc_idx1 * mtab->n_lsp + j] + |
|
cb2[lpc_idx2[i] * mtab->n_lsp + j]; |
|
} |
|
|
|
rearrange_lsp(mtab->n_lsp, lsp, 0.0001); |
|
|
|
for (i = 0; i < mtab->n_lsp; i++) { |
|
float tmp1 = 1.0 - cb3[lpc_hist_idx * mtab->n_lsp + i]; |
|
float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i]; |
|
hist[i] = lsp[i]; |
|
lsp[i] = lsp[i] * tmp1 + tmp2; |
|
} |
|
|
|
rearrange_lsp(mtab->n_lsp, lsp, 0.0001); |
|
rearrange_lsp(mtab->n_lsp, lsp, 0.000095); |
|
ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp); |
|
} |
|
|
|
static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp, |
|
enum TwinVQFrameType ftype, float *lpc) |
|
{ |
|
int i; |
|
int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub; |
|
|
|
for (i = 0; i < tctx->mtab->n_lsp; i++) |
|
lsp[i] = 2 * cos(lsp[i]); |
|
|
|
switch (ftype) { |
|
case TWINVQ_FT_LONG: |
|
eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8); |
|
break; |
|
case TWINVQ_FT_MEDIUM: |
|
eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2); |
|
break; |
|
case TWINVQ_FT_SHORT: |
|
eval_lpcenv(tctx, lsp, lpc); |
|
break; |
|
} |
|
} |
|
|
|
static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 }; |
|
|
|
static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype, |
|
int wtype, float *in, float *prev, int ch) |
|
{ |
|
FFTContext *mdct = &tctx->mdct_ctx[ftype]; |
|
const TwinVQModeTab *mtab = tctx->mtab; |
|
int bsize = mtab->size / mtab->fmode[ftype].sub; |
|
int size = mtab->size; |
|
float *buf1 = tctx->tmp_buf; |
|
int j, first_wsize, wsize; // Window size |
|
float *out = tctx->curr_frame + 2 * ch * mtab->size; |
|
float *out2 = out; |
|
float *prev_buf; |
|
int types_sizes[] = { |
|
mtab->size / mtab->fmode[TWINVQ_FT_LONG].sub, |
|
mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub, |
|
mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2), |
|
}; |
|
|
|
wsize = types_sizes[wtype_to_wsize[wtype]]; |
|
first_wsize = wsize; |
|
prev_buf = prev + (size - bsize) / 2; |
|
|
|
for (j = 0; j < mtab->fmode[ftype].sub; j++) { |
|
int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype; |
|
|
|
if (!j && wtype == 4) |
|
sub_wtype = 4; |
|
else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7) |
|
sub_wtype = 7; |
|
|
|
wsize = types_sizes[wtype_to_wsize[sub_wtype]]; |
|
|
|
mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j); |
|
|
|
tctx->fdsp.vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2, |
|
buf1 + bsize * j, |
|
ff_sine_windows[av_log2(wsize)], |
|
wsize / 2); |
|
out2 += wsize; |
|
|
|
memcpy(out2, buf1 + bsize * j + wsize / 2, |
|
(bsize - wsize / 2) * sizeof(float)); |
|
|
|
out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize; |
|
|
|
prev_buf = buf1 + bsize * j + bsize / 2; |
|
} |
|
|
|
tctx->last_block_pos[ch] = (size + first_wsize) / 2; |
|
} |
|
|
|
static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype, |
|
int wtype, float **out) |
|
{ |
|
const TwinVQModeTab *mtab = tctx->mtab; |
|
float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0]; |
|
int size1, size2, i; |
|
|
|
for (i = 0; i < tctx->avctx->channels; i++) |
|
imdct_and_window(tctx, ftype, wtype, |
|
tctx->spectrum + i * mtab->size, |
|
prev_buf + 2 * i * mtab->size, |
|
i); |
|
|
|
if (!out) |
|
return; |
|
|
|
size2 = tctx->last_block_pos[0]; |
|
size1 = mtab->size - size2; |
|
|
|
memcpy(&out[0][0], prev_buf, size1 * sizeof(out[0][0])); |
|
memcpy(&out[0][size1], tctx->curr_frame, size2 * sizeof(out[0][0])); |
|
|
|
if (tctx->avctx->channels == 2) { |
|
memcpy(&out[1][0], &prev_buf[2 * mtab->size], |
|
size1 * sizeof(out[1][0])); |
|
memcpy(&out[1][size1], &tctx->curr_frame[2 * mtab->size], |
|
size2 * sizeof(out[1][0])); |
|
tctx->fdsp.butterflies_float(out[0], out[1], mtab->size); |
|
} |
|
} |
|
|
|
static void read_and_decode_spectrum(TwinVQContext *tctx, float *out, |
|
enum TwinVQFrameType ftype) |
|
{ |
|
const TwinVQModeTab *mtab = tctx->mtab; |
|
TwinVQFrameData *bits = &tctx->bits; |
|
int channels = tctx->avctx->channels; |
|
int sub = mtab->fmode[ftype].sub; |
|
int block_size = mtab->size / sub; |
|
float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX]; |
|
float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4]; |
|
|
|
int i, j; |
|
|
|
dequant(tctx, bits->main_coeffs, out, ftype, |
|
mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1, |
|
mtab->fmode[ftype].cb_len_read); |
|
|
|
dec_gain(tctx, ftype, gain); |
|
|
|
if (ftype == TWINVQ_FT_LONG) { |
|
int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) / |
|
tctx->n_div[3]; |
|
dequant(tctx, bits->ppc_coeffs, ppc_shape, |
|
TWINVQ_FT_PPC, mtab->ppc_shape_cb, |
|
mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE, |
|
cb_len_p); |
|
} |
|
|
|
for (i = 0; i < channels; i++) { |
|
float *chunk = out + mtab->size * i; |
|
float lsp[TWINVQ_LSP_COEFS_MAX]; |
|
|
|
for (j = 0; j < sub; j++) { |
|
tctx->dec_bark_env(tctx, bits->bark1[i][j], |
|
bits->bark_use_hist[i][j], i, |
|
tctx->tmp_buf, gain[sub * i + j], ftype); |
|
|
|
tctx->fdsp.vector_fmul(chunk + block_size * j, |
|
chunk + block_size * j, |
|
tctx->tmp_buf, block_size); |
|
} |
|
|
|
if (ftype == TWINVQ_FT_LONG) |
|
tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i], |
|
ppc_shape + i * mtab->ppc_shape_len, chunk); |
|
|
|
decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i], |
|
bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]); |
|
|
|
dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf); |
|
|
|
for (j = 0; j < mtab->fmode[ftype].sub; j++) { |
|
tctx->fdsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size); |
|
chunk += block_size; |
|
} |
|
} |
|
} |
|
|
|
const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = { |
|
TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG, |
|
TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG, TWINVQ_FT_MEDIUM, |
|
TWINVQ_FT_MEDIUM |
|
}; |
|
|
|
int ff_twinvq_decode_frame(AVCodecContext *avctx, void *data, |
|
int *got_frame_ptr, AVPacket *avpkt) |
|
{ |
|
AVFrame *frame = data; |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
TwinVQContext *tctx = avctx->priv_data; |
|
const TwinVQModeTab *mtab = tctx->mtab; |
|
float **out = NULL; |
|
int ret; |
|
|
|
/* get output buffer */ |
|
if (tctx->discarded_packets >= 2) { |
|
frame->nb_samples = mtab->size; |
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); |
|
return ret; |
|
} |
|
out = (float **)frame->extended_data; |
|
} |
|
|
|
if (buf_size < avctx->block_align) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Frame too small (%d bytes). Truncated file?\n", buf_size); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0) |
|
return ret; |
|
|
|
read_and_decode_spectrum(tctx, tctx->spectrum, tctx->bits.ftype); |
|
|
|
imdct_output(tctx, tctx->bits.ftype, tctx->bits.window_type, out); |
|
|
|
FFSWAP(float *, tctx->curr_frame, tctx->prev_frame); |
|
|
|
if (tctx->discarded_packets < 2) { |
|
tctx->discarded_packets++; |
|
*got_frame_ptr = 0; |
|
return buf_size; |
|
} |
|
|
|
*got_frame_ptr = 1; |
|
|
|
return avctx->block_align; |
|
} |
|
|
|
/** |
|
* Init IMDCT and windowing tables |
|
*/ |
|
static av_cold int init_mdct_win(TwinVQContext *tctx) |
|
{ |
|
int i, j, ret; |
|
const TwinVQModeTab *mtab = tctx->mtab; |
|
int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub; |
|
int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub; |
|
int channels = tctx->avctx->channels; |
|
float norm = channels == 1 ? 2.0 : 1.0; |
|
|
|
for (i = 0; i < 3; i++) { |
|
int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub; |
|
if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1, |
|
-sqrt(norm / bsize) / (1 << 15)))) |
|
return ret; |
|
} |
|
|
|
FF_ALLOC_OR_GOTO(tctx->avctx, tctx->tmp_buf, |
|
mtab->size * sizeof(*tctx->tmp_buf), alloc_fail); |
|
|
|
FF_ALLOC_OR_GOTO(tctx->avctx, tctx->spectrum, |
|
2 * mtab->size * channels * sizeof(*tctx->spectrum), |
|
alloc_fail); |
|
FF_ALLOC_OR_GOTO(tctx->avctx, tctx->curr_frame, |
|
2 * mtab->size * channels * sizeof(*tctx->curr_frame), |
|
alloc_fail); |
|
FF_ALLOC_OR_GOTO(tctx->avctx, tctx->prev_frame, |
|
2 * mtab->size * channels * sizeof(*tctx->prev_frame), |
|
alloc_fail); |
|
|
|
for (i = 0; i < 3; i++) { |
|
int m = 4 * mtab->size / mtab->fmode[i].sub; |
|
double freq = 2 * M_PI / m; |
|
FF_ALLOC_OR_GOTO(tctx->avctx, tctx->cos_tabs[i], |
|
(m / 4) * sizeof(*tctx->cos_tabs[i]), alloc_fail); |
|
|
|
for (j = 0; j <= m / 8; j++) |
|
tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq); |
|
for (j = 1; j < m / 8; j++) |
|
tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j]; |
|
} |
|
|
|
ff_init_ff_sine_windows(av_log2(size_m)); |
|
ff_init_ff_sine_windows(av_log2(size_s / 2)); |
|
ff_init_ff_sine_windows(av_log2(mtab->size)); |
|
|
|
return 0; |
|
|
|
alloc_fail: |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
/** |
|
* Interpret the data as if it were a num_blocks x line_len[0] matrix and for |
|
* each line do a cyclic permutation, i.e. |
|
* abcdefghijklm -> defghijklmabc |
|
* where the amount to be shifted is evaluated depending on the column. |
|
*/ |
|
static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks, |
|
int block_size, |
|
const uint8_t line_len[2], int length_div, |
|
enum TwinVQFrameType ftype) |
|
{ |
|
int i, j; |
|
|
|
for (i = 0; i < line_len[0]; i++) { |
|
int shift; |
|
|
|
if (num_blocks == 1 || |
|
(ftype == TWINVQ_FT_LONG && num_vect % num_blocks) || |
|
(ftype != TWINVQ_FT_LONG && num_vect & 1) || |
|
i == line_len[1]) { |
|
shift = 0; |
|
} else if (ftype == TWINVQ_FT_LONG) { |
|
shift = i; |
|
} else |
|
shift = i * i; |
|
|
|
for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++) |
|
tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect; |
|
} |
|
} |
|
|
|
/** |
|
* Interpret the input data as in the following table: |
|
* |
|
* @verbatim |
|
* |
|
* abcdefgh |
|
* ijklmnop |
|
* qrstuvw |
|
* x123456 |
|
* |
|
* @endverbatim |
|
* |
|
* and transpose it, giving the output |
|
* aiqxbjr1cks2dlt3emu4fvn5gow6hp |
|
*/ |
|
static void transpose_perm(int16_t *out, int16_t *in, int num_vect, |
|
const uint8_t line_len[2], int length_div) |
|
{ |
|
int i, j; |
|
int cont = 0; |
|
|
|
for (i = 0; i < num_vect; i++) |
|
for (j = 0; j < line_len[i >= length_div]; j++) |
|
out[cont++] = in[j * num_vect + i]; |
|
} |
|
|
|
static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size) |
|
{ |
|
int block_size = size / n_blocks; |
|
int i; |
|
|
|
for (i = 0; i < size; i++) |
|
out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks; |
|
} |
|
|
|
static av_cold void construct_perm_table(TwinVQContext *tctx, |
|
enum TwinVQFrameType ftype) |
|
{ |
|
int block_size, size; |
|
const TwinVQModeTab *mtab = tctx->mtab; |
|
int16_t *tmp_perm = (int16_t *)tctx->tmp_buf; |
|
|
|
if (ftype == TWINVQ_FT_PPC) { |
|
size = tctx->avctx->channels; |
|
block_size = mtab->ppc_shape_len; |
|
} else { |
|
size = tctx->avctx->channels * mtab->fmode[ftype].sub; |
|
block_size = mtab->size / mtab->fmode[ftype].sub; |
|
} |
|
|
|
permutate_in_line(tmp_perm, tctx->n_div[ftype], size, |
|
block_size, tctx->length[ftype], |
|
tctx->length_change[ftype], ftype); |
|
|
|
transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype], |
|
tctx->length[ftype], tctx->length_change[ftype]); |
|
|
|
linear_perm(tctx->permut[ftype], tctx->permut[ftype], size, |
|
size * block_size); |
|
} |
|
|
|
static av_cold void init_bitstream_params(TwinVQContext *tctx) |
|
{ |
|
const TwinVQModeTab *mtab = tctx->mtab; |
|
int n_ch = tctx->avctx->channels; |
|
int total_fr_bits = tctx->avctx->bit_rate * mtab->size / |
|
tctx->avctx->sample_rate; |
|
|
|
int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 + |
|
mtab->lsp_split * mtab->lsp_bit2); |
|
|
|
int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit + |
|
mtab->ppc_period_bit); |
|
|
|
int bsize_no_main_cb[3], bse_bits[3], i; |
|
enum TwinVQFrameType frametype; |
|
|
|
for (i = 0; i < 3; i++) |
|
// +1 for history usage switch |
|
bse_bits[i] = n_ch * |
|
(mtab->fmode[i].bark_n_coef * |
|
mtab->fmode[i].bark_n_bit + 1); |
|
|
|
bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits + |
|
TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS; |
|
|
|
for (i = 0; i < 2; i++) |
|
bsize_no_main_cb[i] = |
|
lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS + |
|
TWINVQ_WINDOW_TYPE_BITS + |
|
mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS); |
|
|
|
if (tctx->codec == TWINVQ_CODEC_METASOUND) { |
|
bsize_no_main_cb[1] += 2; |
|
bsize_no_main_cb[2] += 2; |
|
} |
|
|
|
// The remaining bits are all used for the main spectrum coefficients |
|
for (i = 0; i < 4; i++) { |
|
int bit_size, vect_size; |
|
int rounded_up, rounded_down, num_rounded_down, num_rounded_up; |
|
if (i == 3) { |
|
bit_size = n_ch * mtab->ppc_shape_bit; |
|
vect_size = n_ch * mtab->ppc_shape_len; |
|
} else { |
|
bit_size = total_fr_bits - bsize_no_main_cb[i]; |
|
vect_size = n_ch * mtab->size; |
|
} |
|
|
|
tctx->n_div[i] = (bit_size + 13) / 14; |
|
|
|
rounded_up = (bit_size + tctx->n_div[i] - 1) / |
|
tctx->n_div[i]; |
|
rounded_down = (bit_size) / tctx->n_div[i]; |
|
num_rounded_down = rounded_up * tctx->n_div[i] - bit_size; |
|
num_rounded_up = tctx->n_div[i] - num_rounded_down; |
|
tctx->bits_main_spec[0][i][0] = (rounded_up + 1) / 2; |
|
tctx->bits_main_spec[1][i][0] = rounded_up / 2; |
|
tctx->bits_main_spec[0][i][1] = (rounded_down + 1) / 2; |
|
tctx->bits_main_spec[1][i][1] = rounded_down / 2; |
|
tctx->bits_main_spec_change[i] = num_rounded_up; |
|
|
|
rounded_up = (vect_size + tctx->n_div[i] - 1) / |
|
tctx->n_div[i]; |
|
rounded_down = (vect_size) / tctx->n_div[i]; |
|
num_rounded_down = rounded_up * tctx->n_div[i] - vect_size; |
|
num_rounded_up = tctx->n_div[i] - num_rounded_down; |
|
tctx->length[i][0] = rounded_up; |
|
tctx->length[i][1] = rounded_down; |
|
tctx->length_change[i] = num_rounded_up; |
|
} |
|
|
|
for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++) |
|
construct_perm_table(tctx, frametype); |
|
} |
|
|
|
av_cold int ff_twinvq_decode_close(AVCodecContext *avctx) |
|
{ |
|
TwinVQContext *tctx = avctx->priv_data; |
|
int i; |
|
|
|
for (i = 0; i < 3; i++) { |
|
ff_mdct_end(&tctx->mdct_ctx[i]); |
|
av_free(tctx->cos_tabs[i]); |
|
} |
|
|
|
av_free(tctx->curr_frame); |
|
av_free(tctx->spectrum); |
|
av_free(tctx->prev_frame); |
|
av_free(tctx->tmp_buf); |
|
|
|
return 0; |
|
} |
|
|
|
av_cold int ff_twinvq_decode_init(AVCodecContext *avctx) |
|
{ |
|
int ret; |
|
TwinVQContext *tctx = avctx->priv_data; |
|
|
|
tctx->avctx = avctx; |
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
|
|
|
avpriv_float_dsp_init(&tctx->fdsp, avctx->flags & CODEC_FLAG_BITEXACT); |
|
if ((ret = init_mdct_win(tctx))) { |
|
av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n"); |
|
ff_twinvq_decode_close(avctx); |
|
return ret; |
|
} |
|
init_bitstream_params(tctx); |
|
|
|
twinvq_memset_float(tctx->bark_hist[0][0], 0.1, |
|
FF_ARRAY_ELEMS(tctx->bark_hist)); |
|
|
|
return 0; |
|
}
|
|
|