mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
102 lines
2.7 KiB
102 lines
2.7 KiB
/* |
|
* principal component analysis (PCA) |
|
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/pca.c" |
|
#include "libavutil/lfg.h" |
|
|
|
#undef printf |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
|
|
int main(void){ |
|
PCA *pca; |
|
int i, j, k; |
|
#define LEN 8 |
|
double eigenvector[LEN*LEN]; |
|
double eigenvalue[LEN]; |
|
AVLFG prng; |
|
|
|
av_lfg_init(&prng, 1); |
|
|
|
pca= ff_pca_init(LEN); |
|
|
|
for(i=0; i<9000000; i++){ |
|
double v[2*LEN+100]; |
|
double sum=0; |
|
int pos = av_lfg_get(&prng) % LEN; |
|
int v2 = av_lfg_get(&prng) % 101 - 50; |
|
v[0] = av_lfg_get(&prng) % 101 - 50; |
|
for(j=1; j<8; j++){ |
|
if(j<=pos) v[j]= v[0]; |
|
else v[j]= v2; |
|
sum += v[j]; |
|
} |
|
/* for(j=0; j<LEN; j++){ |
|
v[j] -= v[pos]; |
|
}*/ |
|
// sum += av_lfg_get(&prng) % 10; |
|
/* for(j=0; j<LEN; j++){ |
|
v[j] -= sum/LEN; |
|
}*/ |
|
// lbt1(v+100,v+100,LEN); |
|
ff_pca_add(pca, v); |
|
} |
|
|
|
|
|
ff_pca(pca, eigenvector, eigenvalue); |
|
for(i=0; i<LEN; i++){ |
|
pca->count= 1; |
|
pca->mean[i]= 0; |
|
|
|
// (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x| |
|
|
|
|
|
// pca.covariance[i + i*LEN]= pow(0.5, fabs |
|
for(j=i; j<LEN; j++){ |
|
printf("%f ", pca->covariance[i + j*LEN]); |
|
} |
|
printf("\n"); |
|
} |
|
|
|
for(i=0; i<LEN; i++){ |
|
double v[LEN]; |
|
double error=0; |
|
memset(v, 0, sizeof(v)); |
|
for(j=0; j<LEN; j++){ |
|
for(k=0; k<LEN; k++){ |
|
v[j] += pca->covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN]; |
|
} |
|
v[j] /= eigenvalue[i]; |
|
error += fabs(v[j] - eigenvector[i + j*LEN]); |
|
} |
|
printf("%f ", error); |
|
} |
|
printf("\n"); |
|
|
|
for(i=0; i<LEN; i++){ |
|
for(j=0; j<LEN; j++){ |
|
printf("%9.6f ", eigenvector[i + j*LEN]); |
|
} |
|
printf(" %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]); |
|
} |
|
|
|
return 0; |
|
}
|
|
|