mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1773 lines
65 KiB
1773 lines
65 KiB
/* |
|
* ADPCM codecs |
|
* Copyright (c) 2001-2003 The ffmpeg Project |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "put_bits.h" |
|
#include "bytestream.h" |
|
|
|
/** |
|
* @file |
|
* ADPCM codecs. |
|
* First version by Francois Revol (revol@free.fr) |
|
* Fringe ADPCM codecs (e.g., DK3, DK4, Westwood) |
|
* by Mike Melanson (melanson@pcisys.net) |
|
* CD-ROM XA ADPCM codec by BERO |
|
* EA ADPCM decoder by Robin Kay (komadori@myrealbox.com) |
|
* EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org) |
|
* EA IMA EACS decoder by Peter Ross (pross@xvid.org) |
|
* EA IMA SEAD decoder by Peter Ross (pross@xvid.org) |
|
* EA ADPCM XAS decoder by Peter Ross (pross@xvid.org) |
|
* MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com) |
|
* THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl) |
|
* |
|
* Features and limitations: |
|
* |
|
* Reference documents: |
|
* http://www.pcisys.net/~melanson/codecs/simpleaudio.html |
|
* http://www.geocities.com/SiliconValley/8682/aud3.txt |
|
* http://openquicktime.sourceforge.net/plugins.htm |
|
* XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html |
|
* http://www.cs.ucla.edu/~leec/mediabench/applications.html |
|
* SoX source code http://home.sprynet.com/~cbagwell/sox.html |
|
* |
|
* CD-ROM XA: |
|
* http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html |
|
* vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html |
|
* readstr http://www.geocities.co.jp/Playtown/2004/ |
|
*/ |
|
|
|
#define BLKSIZE 1024 |
|
|
|
/* step_table[] and index_table[] are from the ADPCM reference source */ |
|
/* This is the index table: */ |
|
static const int index_table[16] = { |
|
-1, -1, -1, -1, 2, 4, 6, 8, |
|
-1, -1, -1, -1, 2, 4, 6, 8, |
|
}; |
|
|
|
/** |
|
* This is the step table. Note that many programs use slight deviations from |
|
* this table, but such deviations are negligible: |
|
*/ |
|
static const int step_table[89] = { |
|
7, 8, 9, 10, 11, 12, 13, 14, 16, 17, |
|
19, 21, 23, 25, 28, 31, 34, 37, 41, 45, |
|
50, 55, 60, 66, 73, 80, 88, 97, 107, 118, |
|
130, 143, 157, 173, 190, 209, 230, 253, 279, 307, |
|
337, 371, 408, 449, 494, 544, 598, 658, 724, 796, |
|
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, |
|
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, |
|
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, |
|
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 |
|
}; |
|
|
|
/* These are for MS-ADPCM */ |
|
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */ |
|
static const int AdaptationTable[] = { |
|
230, 230, 230, 230, 307, 409, 512, 614, |
|
768, 614, 512, 409, 307, 230, 230, 230 |
|
}; |
|
|
|
/** Divided by 4 to fit in 8-bit integers */ |
|
static const uint8_t AdaptCoeff1[] = { |
|
64, 128, 0, 48, 60, 115, 98 |
|
}; |
|
|
|
/** Divided by 4 to fit in 8-bit integers */ |
|
static const int8_t AdaptCoeff2[] = { |
|
0, -64, 0, 16, 0, -52, -58 |
|
}; |
|
|
|
/* These are for CD-ROM XA ADPCM */ |
|
static const int xa_adpcm_table[5][2] = { |
|
{ 0, 0 }, |
|
{ 60, 0 }, |
|
{ 115, -52 }, |
|
{ 98, -55 }, |
|
{ 122, -60 } |
|
}; |
|
|
|
static const int ea_adpcm_table[] = { |
|
0, 240, 460, 392, 0, 0, -208, -220, 0, 1, |
|
3, 4, 7, 8, 10, 11, 0, -1, -3, -4 |
|
}; |
|
|
|
// padded to zero where table size is less then 16 |
|
static const int swf_index_tables[4][16] = { |
|
/*2*/ { -1, 2 }, |
|
/*3*/ { -1, -1, 2, 4 }, |
|
/*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 }, |
|
/*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 } |
|
}; |
|
|
|
static const int yamaha_indexscale[] = { |
|
230, 230, 230, 230, 307, 409, 512, 614, |
|
230, 230, 230, 230, 307, 409, 512, 614 |
|
}; |
|
|
|
static const int yamaha_difflookup[] = { |
|
1, 3, 5, 7, 9, 11, 13, 15, |
|
-1, -3, -5, -7, -9, -11, -13, -15 |
|
}; |
|
|
|
/* end of tables */ |
|
|
|
typedef struct ADPCMChannelStatus { |
|
int predictor; |
|
short int step_index; |
|
int step; |
|
/* for encoding */ |
|
int prev_sample; |
|
|
|
/* MS version */ |
|
short sample1; |
|
short sample2; |
|
int coeff1; |
|
int coeff2; |
|
int idelta; |
|
} ADPCMChannelStatus; |
|
|
|
typedef struct TrellisPath { |
|
int nibble; |
|
int prev; |
|
} TrellisPath; |
|
|
|
typedef struct TrellisNode { |
|
uint32_t ssd; |
|
int path; |
|
int sample1; |
|
int sample2; |
|
int step; |
|
} TrellisNode; |
|
|
|
typedef struct ADPCMContext { |
|
ADPCMChannelStatus status[6]; |
|
TrellisPath *paths; |
|
TrellisNode *node_buf; |
|
TrellisNode **nodep_buf; |
|
uint8_t *trellis_hash; |
|
} ADPCMContext; |
|
|
|
#define FREEZE_INTERVAL 128 |
|
|
|
/* XXX: implement encoding */ |
|
|
|
#if CONFIG_ENCODERS |
|
static av_cold int adpcm_encode_init(AVCodecContext *avctx) |
|
{ |
|
ADPCMContext *s = avctx->priv_data; |
|
uint8_t *extradata; |
|
int i; |
|
if (avctx->channels > 2) |
|
return -1; /* only stereo or mono =) */ |
|
|
|
if(avctx->trellis && (unsigned)avctx->trellis > 16U){ |
|
av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n"); |
|
return -1; |
|
} |
|
|
|
if (avctx->trellis) { |
|
int frontier = 1 << avctx->trellis; |
|
int max_paths = frontier * FREEZE_INTERVAL; |
|
FF_ALLOC_OR_GOTO(avctx, s->paths, max_paths * sizeof(*s->paths), error); |
|
FF_ALLOC_OR_GOTO(avctx, s->node_buf, 2 * frontier * sizeof(*s->node_buf), error); |
|
FF_ALLOC_OR_GOTO(avctx, s->nodep_buf, 2 * frontier * sizeof(*s->nodep_buf), error); |
|
FF_ALLOC_OR_GOTO(avctx, s->trellis_hash, 65536 * sizeof(*s->trellis_hash), error); |
|
} |
|
|
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_IMA_WAV: |
|
avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */ |
|
/* and we have 4 bytes per channel overhead */ |
|
avctx->block_align = BLKSIZE; |
|
/* seems frame_size isn't taken into account... have to buffer the samples :-( */ |
|
break; |
|
case CODEC_ID_ADPCM_IMA_QT: |
|
avctx->frame_size = 64; |
|
avctx->block_align = 34 * avctx->channels; |
|
break; |
|
case CODEC_ID_ADPCM_MS: |
|
avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */ |
|
/* and we have 7 bytes per channel overhead */ |
|
avctx->block_align = BLKSIZE; |
|
avctx->extradata_size = 32; |
|
extradata = avctx->extradata = av_malloc(avctx->extradata_size); |
|
if (!extradata) |
|
return AVERROR(ENOMEM); |
|
bytestream_put_le16(&extradata, avctx->frame_size); |
|
bytestream_put_le16(&extradata, 7); /* wNumCoef */ |
|
for (i = 0; i < 7; i++) { |
|
bytestream_put_le16(&extradata, AdaptCoeff1[i] * 4); |
|
bytestream_put_le16(&extradata, AdaptCoeff2[i] * 4); |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_YAMAHA: |
|
avctx->frame_size = BLKSIZE * avctx->channels; |
|
avctx->block_align = BLKSIZE; |
|
break; |
|
case CODEC_ID_ADPCM_SWF: |
|
if (avctx->sample_rate != 11025 && |
|
avctx->sample_rate != 22050 && |
|
avctx->sample_rate != 44100) { |
|
av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n"); |
|
goto error; |
|
} |
|
avctx->frame_size = 512 * (avctx->sample_rate / 11025); |
|
break; |
|
default: |
|
goto error; |
|
} |
|
|
|
avctx->coded_frame= avcodec_alloc_frame(); |
|
avctx->coded_frame->key_frame= 1; |
|
|
|
return 0; |
|
error: |
|
av_freep(&s->paths); |
|
av_freep(&s->node_buf); |
|
av_freep(&s->nodep_buf); |
|
av_freep(&s->trellis_hash); |
|
return -1; |
|
} |
|
|
|
static av_cold int adpcm_encode_close(AVCodecContext *avctx) |
|
{ |
|
ADPCMContext *s = avctx->priv_data; |
|
av_freep(&avctx->coded_frame); |
|
av_freep(&s->paths); |
|
av_freep(&s->node_buf); |
|
av_freep(&s->nodep_buf); |
|
av_freep(&s->trellis_hash); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample) |
|
{ |
|
int delta = sample - c->prev_sample; |
|
int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8; |
|
c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8); |
|
c->prev_sample = av_clip_int16(c->prev_sample); |
|
c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88); |
|
return nibble; |
|
} |
|
|
|
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample) |
|
{ |
|
int predictor, nibble, bias; |
|
|
|
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64; |
|
|
|
nibble= sample - predictor; |
|
if(nibble>=0) bias= c->idelta/2; |
|
else bias=-c->idelta/2; |
|
|
|
nibble= (nibble + bias) / c->idelta; |
|
nibble= av_clip(nibble, -8, 7)&0x0F; |
|
|
|
predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; |
|
|
|
c->sample2 = c->sample1; |
|
c->sample1 = av_clip_int16(predictor); |
|
|
|
c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; |
|
if (c->idelta < 16) c->idelta = 16; |
|
|
|
return nibble; |
|
} |
|
|
|
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample) |
|
{ |
|
int nibble, delta; |
|
|
|
if(!c->step) { |
|
c->predictor = 0; |
|
c->step = 127; |
|
} |
|
|
|
delta = sample - c->predictor; |
|
|
|
nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8; |
|
|
|
c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8); |
|
c->predictor = av_clip_int16(c->predictor); |
|
c->step = (c->step * yamaha_indexscale[nibble]) >> 8; |
|
c->step = av_clip(c->step, 127, 24567); |
|
|
|
return nibble; |
|
} |
|
|
|
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples, |
|
uint8_t *dst, ADPCMChannelStatus *c, int n) |
|
{ |
|
//FIXME 6% faster if frontier is a compile-time constant |
|
ADPCMContext *s = avctx->priv_data; |
|
const int frontier = 1 << avctx->trellis; |
|
const int stride = avctx->channels; |
|
const int version = avctx->codec->id; |
|
TrellisPath *paths = s->paths, *p; |
|
TrellisNode *node_buf = s->node_buf; |
|
TrellisNode **nodep_buf = s->nodep_buf; |
|
TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd |
|
TrellisNode **nodes_next = nodep_buf + frontier; |
|
int pathn = 0, froze = -1, i, j, k, generation = 0; |
|
uint8_t *hash = s->trellis_hash; |
|
memset(hash, 0xff, 65536 * sizeof(*hash)); |
|
|
|
memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf)); |
|
nodes[0] = node_buf + frontier; |
|
nodes[0]->ssd = 0; |
|
nodes[0]->path = 0; |
|
nodes[0]->step = c->step_index; |
|
nodes[0]->sample1 = c->sample1; |
|
nodes[0]->sample2 = c->sample2; |
|
if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF)) |
|
nodes[0]->sample1 = c->prev_sample; |
|
if(version == CODEC_ID_ADPCM_MS) |
|
nodes[0]->step = c->idelta; |
|
if(version == CODEC_ID_ADPCM_YAMAHA) { |
|
if(c->step == 0) { |
|
nodes[0]->step = 127; |
|
nodes[0]->sample1 = 0; |
|
} else { |
|
nodes[0]->step = c->step; |
|
nodes[0]->sample1 = c->predictor; |
|
} |
|
} |
|
|
|
for(i=0; i<n; i++) { |
|
TrellisNode *t = node_buf + frontier*(i&1); |
|
TrellisNode **u; |
|
int sample = samples[i*stride]; |
|
int heap_pos = 0; |
|
memset(nodes_next, 0, frontier*sizeof(TrellisNode*)); |
|
for(j=0; j<frontier && nodes[j]; j++) { |
|
// higher j have higher ssd already, so they're likely to yield a suboptimal next sample too |
|
const int range = (j < frontier/2) ? 1 : 0; |
|
const int step = nodes[j]->step; |
|
int nidx; |
|
if(version == CODEC_ID_ADPCM_MS) { |
|
const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64; |
|
const int div = (sample - predictor) / step; |
|
const int nmin = av_clip(div-range, -8, 6); |
|
const int nmax = av_clip(div+range, -7, 7); |
|
for(nidx=nmin; nidx<=nmax; nidx++) { |
|
const int nibble = nidx & 0xf; |
|
int dec_sample = predictor + nidx * step; |
|
#define STORE_NODE(NAME, STEP_INDEX)\ |
|
int d;\ |
|
uint32_t ssd;\ |
|
int pos;\ |
|
TrellisNode *u;\ |
|
uint8_t *h;\ |
|
dec_sample = av_clip_int16(dec_sample);\ |
|
d = sample - dec_sample;\ |
|
ssd = nodes[j]->ssd + d*d;\ |
|
/* Check for wraparound, skip such samples completely. \ |
|
* Note, changing ssd to a 64 bit variable would be \ |
|
* simpler, avoiding this check, but it's slower on \ |
|
* x86 32 bit at the moment. */\ |
|
if (ssd < nodes[j]->ssd)\ |
|
goto next_##NAME;\ |
|
/* Collapse any two states with the same previous sample value. \ |
|
* One could also distinguish states by step and by 2nd to last |
|
* sample, but the effects of that are negligible. |
|
* Since nodes in the previous generation are iterated |
|
* through a heap, they're roughly ordered from better to |
|
* worse, but not strictly ordered. Therefore, an earlier |
|
* node with the same sample value is better in most cases |
|
* (and thus the current is skipped), but not strictly |
|
* in all cases. Only skipping samples where ssd >= |
|
* ssd of the earlier node with the same sample gives |
|
* slightly worse quality, though, for some reason. */ \ |
|
h = &hash[(uint16_t) dec_sample];\ |
|
if (*h == generation)\ |
|
goto next_##NAME;\ |
|
if (heap_pos < frontier) {\ |
|
pos = heap_pos++;\ |
|
} else {\ |
|
/* Try to replace one of the leaf nodes with the new \ |
|
* one, but try a different slot each time. */\ |
|
pos = (frontier >> 1) + (heap_pos & ((frontier >> 1) - 1));\ |
|
if (ssd > nodes_next[pos]->ssd)\ |
|
goto next_##NAME;\ |
|
heap_pos++;\ |
|
}\ |
|
*h = generation;\ |
|
u = nodes_next[pos];\ |
|
if(!u) {\ |
|
assert(pathn < FREEZE_INTERVAL<<avctx->trellis);\ |
|
u = t++;\ |
|
nodes_next[pos] = u;\ |
|
u->path = pathn++;\ |
|
}\ |
|
u->ssd = ssd;\ |
|
u->step = STEP_INDEX;\ |
|
u->sample2 = nodes[j]->sample1;\ |
|
u->sample1 = dec_sample;\ |
|
paths[u->path].nibble = nibble;\ |
|
paths[u->path].prev = nodes[j]->path;\ |
|
/* Sift the newly inserted node up in the heap to \ |
|
* restore the heap property. */\ |
|
while (pos > 0) {\ |
|
int parent = (pos - 1) >> 1;\ |
|
if (nodes_next[parent]->ssd <= ssd)\ |
|
break;\ |
|
FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\ |
|
pos = parent;\ |
|
}\ |
|
next_##NAME:; |
|
STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8)); |
|
} |
|
} else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) { |
|
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\ |
|
const int predictor = nodes[j]->sample1;\ |
|
const int div = (sample - predictor) * 4 / STEP_TABLE;\ |
|
int nmin = av_clip(div-range, -7, 6);\ |
|
int nmax = av_clip(div+range, -6, 7);\ |
|
if(nmin<=0) nmin--; /* distinguish -0 from +0 */\ |
|
if(nmax<0) nmax--;\ |
|
for(nidx=nmin; nidx<=nmax; nidx++) {\ |
|
const int nibble = nidx<0 ? 7-nidx : nidx;\ |
|
int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\ |
|
STORE_NODE(NAME, STEP_INDEX);\ |
|
} |
|
LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88)); |
|
} else { //CODEC_ID_ADPCM_YAMAHA |
|
LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567)); |
|
#undef LOOP_NODES |
|
#undef STORE_NODE |
|
} |
|
} |
|
|
|
u = nodes; |
|
nodes = nodes_next; |
|
nodes_next = u; |
|
|
|
generation++; |
|
if (generation == 255) { |
|
memset(hash, 0xff, 65536 * sizeof(*hash)); |
|
generation = 0; |
|
} |
|
|
|
// prevent overflow |
|
if(nodes[0]->ssd > (1<<28)) { |
|
for(j=1; j<frontier && nodes[j]; j++) |
|
nodes[j]->ssd -= nodes[0]->ssd; |
|
nodes[0]->ssd = 0; |
|
} |
|
|
|
// merge old paths to save memory |
|
if(i == froze + FREEZE_INTERVAL) { |
|
p = &paths[nodes[0]->path]; |
|
for(k=i; k>froze; k--) { |
|
dst[k] = p->nibble; |
|
p = &paths[p->prev]; |
|
} |
|
froze = i; |
|
pathn = 0; |
|
// other nodes might use paths that don't coincide with the frozen one. |
|
// checking which nodes do so is too slow, so just kill them all. |
|
// this also slightly improves quality, but I don't know why. |
|
memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*)); |
|
} |
|
} |
|
|
|
p = &paths[nodes[0]->path]; |
|
for(i=n-1; i>froze; i--) { |
|
dst[i] = p->nibble; |
|
p = &paths[p->prev]; |
|
} |
|
|
|
c->predictor = nodes[0]->sample1; |
|
c->sample1 = nodes[0]->sample1; |
|
c->sample2 = nodes[0]->sample2; |
|
c->step_index = nodes[0]->step; |
|
c->step = nodes[0]->step; |
|
c->idelta = nodes[0]->step; |
|
} |
|
|
|
static int adpcm_encode_frame(AVCodecContext *avctx, |
|
unsigned char *frame, int buf_size, void *data) |
|
{ |
|
int n, i, st; |
|
short *samples; |
|
unsigned char *dst; |
|
ADPCMContext *c = avctx->priv_data; |
|
uint8_t *buf; |
|
|
|
dst = frame; |
|
samples = (short *)data; |
|
st= avctx->channels == 2; |
|
/* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */ |
|
|
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_IMA_WAV: |
|
n = avctx->frame_size / 8; |
|
c->status[0].prev_sample = (signed short)samples[0]; /* XXX */ |
|
/* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */ |
|
bytestream_put_le16(&dst, c->status[0].prev_sample); |
|
*dst++ = (unsigned char)c->status[0].step_index; |
|
*dst++ = 0; /* unknown */ |
|
samples++; |
|
if (avctx->channels == 2) { |
|
c->status[1].prev_sample = (signed short)samples[0]; |
|
/* c->status[1].step_index = 0; */ |
|
bytestream_put_le16(&dst, c->status[1].prev_sample); |
|
*dst++ = (unsigned char)c->status[1].step_index; |
|
*dst++ = 0; |
|
samples++; |
|
} |
|
|
|
/* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */ |
|
if(avctx->trellis > 0) { |
|
FF_ALLOC_OR_GOTO(avctx, buf, 2*n*8, error); |
|
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n*8); |
|
if(avctx->channels == 2) |
|
adpcm_compress_trellis(avctx, samples+1, buf + n*8, &c->status[1], n*8); |
|
for(i=0; i<n; i++) { |
|
*dst++ = buf[8*i+0] | (buf[8*i+1] << 4); |
|
*dst++ = buf[8*i+2] | (buf[8*i+3] << 4); |
|
*dst++ = buf[8*i+4] | (buf[8*i+5] << 4); |
|
*dst++ = buf[8*i+6] | (buf[8*i+7] << 4); |
|
if (avctx->channels == 2) { |
|
uint8_t *buf1 = buf + n*8; |
|
*dst++ = buf1[8*i+0] | (buf1[8*i+1] << 4); |
|
*dst++ = buf1[8*i+2] | (buf1[8*i+3] << 4); |
|
*dst++ = buf1[8*i+4] | (buf1[8*i+5] << 4); |
|
*dst++ = buf1[8*i+6] | (buf1[8*i+7] << 4); |
|
} |
|
} |
|
av_free(buf); |
|
} else |
|
for (; n>0; n--) { |
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[0]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4; |
|
dst++; |
|
/* right channel */ |
|
if (avctx->channels == 2) { |
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[1]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[5]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[9]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4; |
|
dst++; |
|
*dst = adpcm_ima_compress_sample(&c->status[1], samples[13]); |
|
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4; |
|
dst++; |
|
} |
|
samples += 8 * avctx->channels; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_QT: |
|
{ |
|
int ch, i; |
|
PutBitContext pb; |
|
init_put_bits(&pb, dst, buf_size*8); |
|
|
|
for(ch=0; ch<avctx->channels; ch++){ |
|
put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7); |
|
put_bits(&pb, 7, c->status[ch].step_index); |
|
if(avctx->trellis > 0) { |
|
uint8_t buf[64]; |
|
adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64); |
|
for(i=0; i<64; i++) |
|
put_bits(&pb, 4, buf[i^1]); |
|
c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F; |
|
} else { |
|
for (i=0; i<64; i+=2){ |
|
int t1, t2; |
|
t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]); |
|
t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]); |
|
put_bits(&pb, 4, t2); |
|
put_bits(&pb, 4, t1); |
|
} |
|
c->status[ch].prev_sample &= ~0x7F; |
|
} |
|
} |
|
|
|
flush_put_bits(&pb); |
|
dst += put_bits_count(&pb)>>3; |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_SWF: |
|
{ |
|
int i; |
|
PutBitContext pb; |
|
init_put_bits(&pb, dst, buf_size*8); |
|
|
|
n = avctx->frame_size-1; |
|
|
|
//Store AdpcmCodeSize |
|
put_bits(&pb, 2, 2); //Set 4bits flash adpcm format |
|
|
|
//Init the encoder state |
|
for(i=0; i<avctx->channels; i++){ |
|
c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits |
|
put_sbits(&pb, 16, samples[i]); |
|
put_bits(&pb, 6, c->status[i].step_index); |
|
c->status[i].prev_sample = (signed short)samples[i]; |
|
} |
|
|
|
if(avctx->trellis > 0) { |
|
FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error); |
|
adpcm_compress_trellis(avctx, samples+2, buf, &c->status[0], n); |
|
if (avctx->channels == 2) |
|
adpcm_compress_trellis(avctx, samples+3, buf+n, &c->status[1], n); |
|
for(i=0; i<n; i++) { |
|
put_bits(&pb, 4, buf[i]); |
|
if (avctx->channels == 2) |
|
put_bits(&pb, 4, buf[n+i]); |
|
} |
|
av_free(buf); |
|
} else { |
|
for (i=1; i<avctx->frame_size; i++) { |
|
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i])); |
|
if (avctx->channels == 2) |
|
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1])); |
|
} |
|
} |
|
flush_put_bits(&pb); |
|
dst += put_bits_count(&pb)>>3; |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_MS: |
|
for(i=0; i<avctx->channels; i++){ |
|
int predictor=0; |
|
|
|
*dst++ = predictor; |
|
c->status[i].coeff1 = AdaptCoeff1[predictor]; |
|
c->status[i].coeff2 = AdaptCoeff2[predictor]; |
|
} |
|
for(i=0; i<avctx->channels; i++){ |
|
if (c->status[i].idelta < 16) |
|
c->status[i].idelta = 16; |
|
|
|
bytestream_put_le16(&dst, c->status[i].idelta); |
|
} |
|
for(i=0; i<avctx->channels; i++){ |
|
c->status[i].sample2= *samples++; |
|
} |
|
for(i=0; i<avctx->channels; i++){ |
|
c->status[i].sample1= *samples++; |
|
|
|
bytestream_put_le16(&dst, c->status[i].sample1); |
|
} |
|
for(i=0; i<avctx->channels; i++) |
|
bytestream_put_le16(&dst, c->status[i].sample2); |
|
|
|
if(avctx->trellis > 0) { |
|
int n = avctx->block_align - 7*avctx->channels; |
|
FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error); |
|
if(avctx->channels == 1) { |
|
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n); |
|
for(i=0; i<n; i+=2) |
|
*dst++ = (buf[i] << 4) | buf[i+1]; |
|
} else { |
|
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n); |
|
adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n); |
|
for(i=0; i<n; i++) |
|
*dst++ = (buf[i] << 4) | buf[n+i]; |
|
} |
|
av_free(buf); |
|
} else |
|
for(i=7*avctx->channels; i<avctx->block_align; i++) { |
|
int nibble; |
|
nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4; |
|
nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++); |
|
*dst++ = nibble; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_YAMAHA: |
|
n = avctx->frame_size / 2; |
|
if(avctx->trellis > 0) { |
|
FF_ALLOC_OR_GOTO(avctx, buf, 2*n*2, error); |
|
n *= 2; |
|
if(avctx->channels == 1) { |
|
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n); |
|
for(i=0; i<n; i+=2) |
|
*dst++ = buf[i] | (buf[i+1] << 4); |
|
} else { |
|
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n); |
|
adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n); |
|
for(i=0; i<n; i++) |
|
*dst++ = buf[i] | (buf[n+i] << 4); |
|
} |
|
av_free(buf); |
|
} else |
|
for (n *= avctx->channels; n>0; n--) { |
|
int nibble; |
|
nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++); |
|
nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4; |
|
*dst++ = nibble; |
|
} |
|
break; |
|
default: |
|
error: |
|
return -1; |
|
} |
|
return dst - frame; |
|
} |
|
#endif //CONFIG_ENCODERS |
|
|
|
static av_cold int adpcm_decode_init(AVCodecContext * avctx) |
|
{ |
|
ADPCMContext *c = avctx->priv_data; |
|
unsigned int max_channels = 2; |
|
|
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_EA_R1: |
|
case CODEC_ID_ADPCM_EA_R2: |
|
case CODEC_ID_ADPCM_EA_R3: |
|
max_channels = 6; |
|
break; |
|
} |
|
if(avctx->channels > max_channels){ |
|
return -1; |
|
} |
|
|
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_CT: |
|
c->status[0].step = c->status[1].step = 511; |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WAV: |
|
if (avctx->bits_per_coded_sample != 4) { |
|
av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n"); |
|
return -1; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WS: |
|
if (avctx->extradata && avctx->extradata_size == 2 * 4) { |
|
c->status[0].predictor = AV_RL32(avctx->extradata); |
|
c->status[1].predictor = AV_RL32(avctx->extradata + 4); |
|
} |
|
break; |
|
default: |
|
break; |
|
} |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16; |
|
return 0; |
|
} |
|
|
|
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift) |
|
{ |
|
int step_index; |
|
int predictor; |
|
int sign, delta, diff, step; |
|
|
|
step = step_table[c->step_index]; |
|
step_index = c->step_index + index_table[(unsigned)nibble]; |
|
if (step_index < 0) step_index = 0; |
|
else if (step_index > 88) step_index = 88; |
|
|
|
sign = nibble & 8; |
|
delta = nibble & 7; |
|
/* perform direct multiplication instead of series of jumps proposed by |
|
* the reference ADPCM implementation since modern CPUs can do the mults |
|
* quickly enough */ |
|
diff = ((2 * delta + 1) * step) >> shift; |
|
predictor = c->predictor; |
|
if (sign) predictor -= diff; |
|
else predictor += diff; |
|
|
|
c->predictor = av_clip_int16(predictor); |
|
c->step_index = step_index; |
|
|
|
return (short)c->predictor; |
|
} |
|
|
|
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble) |
|
{ |
|
int predictor; |
|
|
|
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64; |
|
predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; |
|
|
|
c->sample2 = c->sample1; |
|
c->sample1 = av_clip_int16(predictor); |
|
c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; |
|
if (c->idelta < 16) c->idelta = 16; |
|
|
|
return c->sample1; |
|
} |
|
|
|
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble) |
|
{ |
|
int sign, delta, diff; |
|
int new_step; |
|
|
|
sign = nibble & 8; |
|
delta = nibble & 7; |
|
/* perform direct multiplication instead of series of jumps proposed by |
|
* the reference ADPCM implementation since modern CPUs can do the mults |
|
* quickly enough */ |
|
diff = ((2 * delta + 1) * c->step) >> 3; |
|
/* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */ |
|
c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff); |
|
c->predictor = av_clip_int16(c->predictor); |
|
/* calculate new step and clamp it to range 511..32767 */ |
|
new_step = (AdaptationTable[nibble & 7] * c->step) >> 8; |
|
c->step = av_clip(new_step, 511, 32767); |
|
|
|
return (short)c->predictor; |
|
} |
|
|
|
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift) |
|
{ |
|
int sign, delta, diff; |
|
|
|
sign = nibble & (1<<(size-1)); |
|
delta = nibble & ((1<<(size-1))-1); |
|
diff = delta << (7 + c->step + shift); |
|
|
|
/* clamp result */ |
|
c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256); |
|
|
|
/* calculate new step */ |
|
if (delta >= (2*size - 3) && c->step < 3) |
|
c->step++; |
|
else if (delta == 0 && c->step > 0) |
|
c->step--; |
|
|
|
return (short) c->predictor; |
|
} |
|
|
|
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble) |
|
{ |
|
if(!c->step) { |
|
c->predictor = 0; |
|
c->step = 127; |
|
} |
|
|
|
c->predictor += (c->step * yamaha_difflookup[nibble]) / 8; |
|
c->predictor = av_clip_int16(c->predictor); |
|
c->step = (c->step * yamaha_indexscale[nibble]) >> 8; |
|
c->step = av_clip(c->step, 127, 24567); |
|
return c->predictor; |
|
} |
|
|
|
static void xa_decode(short *out, const unsigned char *in, |
|
ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc) |
|
{ |
|
int i, j; |
|
int shift,filter,f0,f1; |
|
int s_1,s_2; |
|
int d,s,t; |
|
|
|
for(i=0;i<4;i++) { |
|
|
|
shift = 12 - (in[4+i*2] & 15); |
|
filter = in[4+i*2] >> 4; |
|
f0 = xa_adpcm_table[filter][0]; |
|
f1 = xa_adpcm_table[filter][1]; |
|
|
|
s_1 = left->sample1; |
|
s_2 = left->sample2; |
|
|
|
for(j=0;j<28;j++) { |
|
d = in[16+i+j*4]; |
|
|
|
t = (signed char)(d<<4)>>4; |
|
s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); |
|
s_2 = s_1; |
|
s_1 = av_clip_int16(s); |
|
*out = s_1; |
|
out += inc; |
|
} |
|
|
|
if (inc==2) { /* stereo */ |
|
left->sample1 = s_1; |
|
left->sample2 = s_2; |
|
s_1 = right->sample1; |
|
s_2 = right->sample2; |
|
out = out + 1 - 28*2; |
|
} |
|
|
|
shift = 12 - (in[5+i*2] & 15); |
|
filter = in[5+i*2] >> 4; |
|
|
|
f0 = xa_adpcm_table[filter][0]; |
|
f1 = xa_adpcm_table[filter][1]; |
|
|
|
for(j=0;j<28;j++) { |
|
d = in[16+i+j*4]; |
|
|
|
t = (signed char)d >> 4; |
|
s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); |
|
s_2 = s_1; |
|
s_1 = av_clip_int16(s); |
|
*out = s_1; |
|
out += inc; |
|
} |
|
|
|
if (inc==2) { /* stereo */ |
|
right->sample1 = s_1; |
|
right->sample2 = s_2; |
|
out -= 1; |
|
} else { |
|
left->sample1 = s_1; |
|
left->sample2 = s_2; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* DK3 ADPCM support macro */ |
|
#define DK3_GET_NEXT_NIBBLE() \ |
|
if (decode_top_nibble_next) \ |
|
{ \ |
|
nibble = last_byte >> 4; \ |
|
decode_top_nibble_next = 0; \ |
|
} \ |
|
else \ |
|
{ \ |
|
last_byte = *src++; \ |
|
if (src >= buf + buf_size) break; \ |
|
nibble = last_byte & 0x0F; \ |
|
decode_top_nibble_next = 1; \ |
|
} |
|
|
|
static int adpcm_decode_frame(AVCodecContext *avctx, |
|
void *data, int *data_size, |
|
AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
ADPCMContext *c = avctx->priv_data; |
|
ADPCMChannelStatus *cs; |
|
int n, m, channel, i; |
|
int block_predictor[2]; |
|
short *samples; |
|
short *samples_end; |
|
const uint8_t *src; |
|
int st; /* stereo */ |
|
|
|
/* DK3 ADPCM accounting variables */ |
|
unsigned char last_byte = 0; |
|
unsigned char nibble; |
|
int decode_top_nibble_next = 0; |
|
int diff_channel; |
|
|
|
/* EA ADPCM state variables */ |
|
uint32_t samples_in_chunk; |
|
int32_t previous_left_sample, previous_right_sample; |
|
int32_t current_left_sample, current_right_sample; |
|
int32_t next_left_sample, next_right_sample; |
|
int32_t coeff1l, coeff2l, coeff1r, coeff2r; |
|
uint8_t shift_left, shift_right; |
|
int count1, count2; |
|
int coeff[2][2], shift[2];//used in EA MAXIS ADPCM |
|
|
|
if (!buf_size) |
|
return 0; |
|
|
|
//should protect all 4bit ADPCM variants |
|
//8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels |
|
// |
|
if(*data_size/4 < buf_size + 8) |
|
return -1; |
|
|
|
samples = data; |
|
samples_end= samples + *data_size/2; |
|
*data_size= 0; |
|
src = buf; |
|
|
|
st = avctx->channels == 2 ? 1 : 0; |
|
|
|
switch(avctx->codec->id) { |
|
case CODEC_ID_ADPCM_IMA_QT: |
|
n = buf_size - 2*avctx->channels; |
|
for (channel = 0; channel < avctx->channels; channel++) { |
|
cs = &(c->status[channel]); |
|
/* (pppppp) (piiiiiii) */ |
|
|
|
/* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ |
|
cs->predictor = (*src++) << 8; |
|
cs->predictor |= (*src & 0x80); |
|
cs->predictor &= 0xFF80; |
|
|
|
/* sign extension */ |
|
if(cs->predictor & 0x8000) |
|
cs->predictor -= 0x10000; |
|
|
|
cs->predictor = av_clip_int16(cs->predictor); |
|
|
|
cs->step_index = (*src++) & 0x7F; |
|
|
|
if (cs->step_index > 88){ |
|
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); |
|
cs->step_index = 88; |
|
} |
|
|
|
cs->step = step_table[cs->step_index]; |
|
|
|
samples = (short*)data + channel; |
|
|
|
for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */ |
|
*samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3); |
|
samples += avctx->channels; |
|
*samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3); |
|
samples += avctx->channels; |
|
src ++; |
|
} |
|
} |
|
if (st) |
|
samples--; |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WAV: |
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
|
|
// samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1; |
|
|
|
for(i=0; i<avctx->channels; i++){ |
|
cs = &(c->status[i]); |
|
cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src); |
|
|
|
cs->step_index = *src++; |
|
if (cs->step_index > 88){ |
|
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); |
|
cs->step_index = 88; |
|
} |
|
if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */ |
|
} |
|
|
|
while(src < buf + buf_size){ |
|
for(m=0; m<4; m++){ |
|
for(i=0; i<=st; i++) |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3); |
|
for(i=0; i<=st; i++) |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3); |
|
src++; |
|
} |
|
src += 4*st; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_4XM: |
|
cs = &(c->status[0]); |
|
c->status[0].predictor= (int16_t)bytestream_get_le16(&src); |
|
if(st){ |
|
c->status[1].predictor= (int16_t)bytestream_get_le16(&src); |
|
} |
|
c->status[0].step_index= (int16_t)bytestream_get_le16(&src); |
|
if(st){ |
|
c->status[1].step_index= (int16_t)bytestream_get_le16(&src); |
|
} |
|
if (cs->step_index < 0) cs->step_index = 0; |
|
if (cs->step_index > 88) cs->step_index = 88; |
|
|
|
m= (buf_size - (src - buf))>>st; |
|
for(i=0; i<m; i++) { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4); |
|
if (st) |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4); |
|
if (st) |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4); |
|
} |
|
|
|
src += m<<st; |
|
|
|
break; |
|
case CODEC_ID_ADPCM_MS: |
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
n = buf_size - 7 * avctx->channels; |
|
if (n < 0) |
|
return -1; |
|
block_predictor[0] = av_clip(*src++, 0, 6); |
|
block_predictor[1] = 0; |
|
if (st) |
|
block_predictor[1] = av_clip(*src++, 0, 6); |
|
c->status[0].idelta = (int16_t)bytestream_get_le16(&src); |
|
if (st){ |
|
c->status[1].idelta = (int16_t)bytestream_get_le16(&src); |
|
} |
|
c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]]; |
|
c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]]; |
|
c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]]; |
|
c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]]; |
|
|
|
c->status[0].sample1 = bytestream_get_le16(&src); |
|
if (st) c->status[1].sample1 = bytestream_get_le16(&src); |
|
c->status[0].sample2 = bytestream_get_le16(&src); |
|
if (st) c->status[1].sample2 = bytestream_get_le16(&src); |
|
|
|
*samples++ = c->status[0].sample2; |
|
if (st) *samples++ = c->status[1].sample2; |
|
*samples++ = c->status[0].sample1; |
|
if (st) *samples++ = c->status[1].sample1; |
|
for(;n>0;n--) { |
|
*samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 ); |
|
*samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F); |
|
src ++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_DK4: |
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
|
|
c->status[0].predictor = (int16_t)bytestream_get_le16(&src); |
|
c->status[0].step_index = *src++; |
|
src++; |
|
*samples++ = c->status[0].predictor; |
|
if (st) { |
|
c->status[1].predictor = (int16_t)bytestream_get_le16(&src); |
|
c->status[1].step_index = *src++; |
|
src++; |
|
*samples++ = c->status[1].predictor; |
|
} |
|
while (src < buf + buf_size) { |
|
|
|
/* take care of the top nibble (always left or mono channel) */ |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
src[0] >> 4, 3); |
|
|
|
/* take care of the bottom nibble, which is right sample for |
|
* stereo, or another mono sample */ |
|
if (st) |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], |
|
src[0] & 0x0F, 3); |
|
else |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
src[0] & 0x0F, 3); |
|
|
|
src++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_DK3: |
|
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
|
buf_size = avctx->block_align; |
|
|
|
if(buf_size + 16 > (samples_end - samples)*3/8) |
|
return -1; |
|
|
|
c->status[0].predictor = (int16_t)AV_RL16(src + 10); |
|
c->status[1].predictor = (int16_t)AV_RL16(src + 12); |
|
c->status[0].step_index = src[14]; |
|
c->status[1].step_index = src[15]; |
|
/* sign extend the predictors */ |
|
src += 16; |
|
diff_channel = c->status[1].predictor; |
|
|
|
/* the DK3_GET_NEXT_NIBBLE macro issues the break statement when |
|
* the buffer is consumed */ |
|
while (1) { |
|
|
|
/* for this algorithm, c->status[0] is the sum channel and |
|
* c->status[1] is the diff channel */ |
|
|
|
/* process the first predictor of the sum channel */ |
|
DK3_GET_NEXT_NIBBLE(); |
|
adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
|
|
|
/* process the diff channel predictor */ |
|
DK3_GET_NEXT_NIBBLE(); |
|
adpcm_ima_expand_nibble(&c->status[1], nibble, 3); |
|
|
|
/* process the first pair of stereo PCM samples */ |
|
diff_channel = (diff_channel + c->status[1].predictor) / 2; |
|
*samples++ = c->status[0].predictor + c->status[1].predictor; |
|
*samples++ = c->status[0].predictor - c->status[1].predictor; |
|
|
|
/* process the second predictor of the sum channel */ |
|
DK3_GET_NEXT_NIBBLE(); |
|
adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
|
|
|
/* process the second pair of stereo PCM samples */ |
|
diff_channel = (diff_channel + c->status[1].predictor) / 2; |
|
*samples++ = c->status[0].predictor + c->status[1].predictor; |
|
*samples++ = c->status[0].predictor - c->status[1].predictor; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_ISS: |
|
c->status[0].predictor = (int16_t)AV_RL16(src + 0); |
|
c->status[0].step_index = src[2]; |
|
src += 4; |
|
if(st) { |
|
c->status[1].predictor = (int16_t)AV_RL16(src + 0); |
|
c->status[1].step_index = src[2]; |
|
src += 4; |
|
} |
|
|
|
while (src < buf + buf_size) { |
|
|
|
if (st) { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
src[0] >> 4 , 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], |
|
src[0] & 0x0F, 3); |
|
} else { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
src[0] & 0x0F, 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
src[0] >> 4 , 3); |
|
} |
|
|
|
src++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_WS: |
|
/* no per-block initialization; just start decoding the data */ |
|
while (src < buf + buf_size) { |
|
|
|
if (st) { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
src[0] >> 4 , 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[1], |
|
src[0] & 0x0F, 3); |
|
} else { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
src[0] >> 4 , 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
src[0] & 0x0F, 3); |
|
} |
|
|
|
src++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_XA: |
|
while (buf_size >= 128) { |
|
xa_decode(samples, src, &c->status[0], &c->status[1], |
|
avctx->channels); |
|
src += 128; |
|
samples += 28 * 8; |
|
buf_size -= 128; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_EA_EACS: |
|
samples_in_chunk = bytestream_get_le32(&src) >> (1-st); |
|
|
|
if (samples_in_chunk > buf_size-4-(8<<st)) { |
|
src += buf_size - 4; |
|
break; |
|
} |
|
|
|
for (i=0; i<=st; i++) |
|
c->status[i].step_index = bytestream_get_le32(&src); |
|
for (i=0; i<=st; i++) |
|
c->status[i].predictor = bytestream_get_le32(&src); |
|
|
|
for (; samples_in_chunk; samples_in_chunk--, src++) { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3); |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_IMA_EA_SEAD: |
|
for (; src < buf+buf_size; src++) { |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6); |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_EA: |
|
if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) { |
|
src += buf_size; |
|
break; |
|
} |
|
samples_in_chunk = AV_RL32(src); |
|
src += 4; |
|
current_left_sample = (int16_t)bytestream_get_le16(&src); |
|
previous_left_sample = (int16_t)bytestream_get_le16(&src); |
|
current_right_sample = (int16_t)bytestream_get_le16(&src); |
|
previous_right_sample = (int16_t)bytestream_get_le16(&src); |
|
|
|
for (count1 = 0; count1 < samples_in_chunk/28;count1++) { |
|
coeff1l = ea_adpcm_table[ *src >> 4 ]; |
|
coeff2l = ea_adpcm_table[(*src >> 4 ) + 4]; |
|
coeff1r = ea_adpcm_table[*src & 0x0F]; |
|
coeff2r = ea_adpcm_table[(*src & 0x0F) + 4]; |
|
src++; |
|
|
|
shift_left = (*src >> 4 ) + 8; |
|
shift_right = (*src & 0x0F) + 8; |
|
src++; |
|
|
|
for (count2 = 0; count2 < 28; count2++) { |
|
next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left; |
|
next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right; |
|
src++; |
|
|
|
next_left_sample = (next_left_sample + |
|
(current_left_sample * coeff1l) + |
|
(previous_left_sample * coeff2l) + 0x80) >> 8; |
|
next_right_sample = (next_right_sample + |
|
(current_right_sample * coeff1r) + |
|
(previous_right_sample * coeff2r) + 0x80) >> 8; |
|
|
|
previous_left_sample = current_left_sample; |
|
current_left_sample = av_clip_int16(next_left_sample); |
|
previous_right_sample = current_right_sample; |
|
current_right_sample = av_clip_int16(next_right_sample); |
|
*samples++ = (unsigned short)current_left_sample; |
|
*samples++ = (unsigned short)current_right_sample; |
|
} |
|
} |
|
|
|
if (src - buf == buf_size - 2) |
|
src += 2; // Skip terminating 0x0000 |
|
|
|
break; |
|
case CODEC_ID_ADPCM_EA_MAXIS_XA: |
|
for(channel = 0; channel < avctx->channels; channel++) { |
|
for (i=0; i<2; i++) |
|
coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i]; |
|
shift[channel] = (*src & 0x0F) + 8; |
|
src++; |
|
} |
|
for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) { |
|
for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */ |
|
for(channel = 0; channel < avctx->channels; channel++) { |
|
int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel]; |
|
sample = (sample + |
|
c->status[channel].sample1 * coeff[channel][0] + |
|
c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8; |
|
c->status[channel].sample2 = c->status[channel].sample1; |
|
c->status[channel].sample1 = av_clip_int16(sample); |
|
*samples++ = c->status[channel].sample1; |
|
} |
|
} |
|
src+=avctx->channels; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_EA_R1: |
|
case CODEC_ID_ADPCM_EA_R2: |
|
case CODEC_ID_ADPCM_EA_R3: { |
|
/* channel numbering |
|
2chan: 0=fl, 1=fr |
|
4chan: 0=fl, 1=rl, 2=fr, 3=rr |
|
6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */ |
|
const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3; |
|
int32_t previous_sample, current_sample, next_sample; |
|
int32_t coeff1, coeff2; |
|
uint8_t shift; |
|
unsigned int channel; |
|
uint16_t *samplesC; |
|
const uint8_t *srcC; |
|
const uint8_t *src_end = buf + buf_size; |
|
|
|
samples_in_chunk = (big_endian ? bytestream_get_be32(&src) |
|
: bytestream_get_le32(&src)) / 28; |
|
if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) || |
|
28*samples_in_chunk*avctx->channels > samples_end-samples) { |
|
src += buf_size - 4; |
|
break; |
|
} |
|
|
|
for (channel=0; channel<avctx->channels; channel++) { |
|
int32_t offset = (big_endian ? bytestream_get_be32(&src) |
|
: bytestream_get_le32(&src)) |
|
+ (avctx->channels-channel-1) * 4; |
|
|
|
if ((offset < 0) || (offset >= src_end - src - 4)) break; |
|
srcC = src + offset; |
|
samplesC = samples + channel; |
|
|
|
if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) { |
|
current_sample = (int16_t)bytestream_get_le16(&srcC); |
|
previous_sample = (int16_t)bytestream_get_le16(&srcC); |
|
} else { |
|
current_sample = c->status[channel].predictor; |
|
previous_sample = c->status[channel].prev_sample; |
|
} |
|
|
|
for (count1=0; count1<samples_in_chunk; count1++) { |
|
if (*srcC == 0xEE) { /* only seen in R2 and R3 */ |
|
srcC++; |
|
if (srcC > src_end - 30*2) break; |
|
current_sample = (int16_t)bytestream_get_be16(&srcC); |
|
previous_sample = (int16_t)bytestream_get_be16(&srcC); |
|
|
|
for (count2=0; count2<28; count2++) { |
|
*samplesC = (int16_t)bytestream_get_be16(&srcC); |
|
samplesC += avctx->channels; |
|
} |
|
} else { |
|
coeff1 = ea_adpcm_table[ *srcC>>4 ]; |
|
coeff2 = ea_adpcm_table[(*srcC>>4) + 4]; |
|
shift = (*srcC++ & 0x0F) + 8; |
|
|
|
if (srcC > src_end - 14) break; |
|
for (count2=0; count2<28; count2++) { |
|
if (count2 & 1) |
|
next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift; |
|
else |
|
next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift; |
|
|
|
next_sample += (current_sample * coeff1) + |
|
(previous_sample * coeff2); |
|
next_sample = av_clip_int16(next_sample >> 8); |
|
|
|
previous_sample = current_sample; |
|
current_sample = next_sample; |
|
*samplesC = current_sample; |
|
samplesC += avctx->channels; |
|
} |
|
} |
|
} |
|
|
|
if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) { |
|
c->status[channel].predictor = current_sample; |
|
c->status[channel].prev_sample = previous_sample; |
|
} |
|
} |
|
|
|
src = src + buf_size - (4 + 4*avctx->channels); |
|
samples += 28 * samples_in_chunk * avctx->channels; |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_EA_XAS: |
|
if (samples_end-samples < 32*4*avctx->channels |
|
|| buf_size < (4+15)*4*avctx->channels) { |
|
src += buf_size; |
|
break; |
|
} |
|
for (channel=0; channel<avctx->channels; channel++) { |
|
int coeff[2][4], shift[4]; |
|
short *s2, *s = &samples[channel]; |
|
for (n=0; n<4; n++, s+=32*avctx->channels) { |
|
for (i=0; i<2; i++) |
|
coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i]; |
|
shift[n] = (src[2]&0x0F) + 8; |
|
for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels) |
|
s2[0] = (src[0]&0xF0) + (src[1]<<8); |
|
} |
|
|
|
for (m=2; m<32; m+=2) { |
|
s = &samples[m*avctx->channels + channel]; |
|
for (n=0; n<4; n++, src++, s+=32*avctx->channels) { |
|
for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) { |
|
int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n]; |
|
int pred = s2[-1*avctx->channels] * coeff[0][n] |
|
+ s2[-2*avctx->channels] * coeff[1][n]; |
|
s2[0] = av_clip_int16((level + pred + 0x80) >> 8); |
|
} |
|
} |
|
} |
|
} |
|
samples += 32*4*avctx->channels; |
|
break; |
|
case CODEC_ID_ADPCM_IMA_AMV: |
|
case CODEC_ID_ADPCM_IMA_SMJPEG: |
|
c->status[0].predictor = (int16_t)bytestream_get_le16(&src); |
|
c->status[0].step_index = bytestream_get_le16(&src); |
|
|
|
if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) |
|
src+=4; |
|
|
|
while (src < buf + buf_size) { |
|
char hi, lo; |
|
lo = *src & 0x0F; |
|
hi = *src >> 4; |
|
|
|
if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) |
|
FFSWAP(char, hi, lo); |
|
|
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
lo, 3); |
|
*samples++ = adpcm_ima_expand_nibble(&c->status[0], |
|
hi, 3); |
|
src++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_CT: |
|
while (src < buf + buf_size) { |
|
if (st) { |
|
*samples++ = adpcm_ct_expand_nibble(&c->status[0], |
|
src[0] >> 4); |
|
*samples++ = adpcm_ct_expand_nibble(&c->status[1], |
|
src[0] & 0x0F); |
|
} else { |
|
*samples++ = adpcm_ct_expand_nibble(&c->status[0], |
|
src[0] >> 4); |
|
*samples++ = adpcm_ct_expand_nibble(&c->status[0], |
|
src[0] & 0x0F); |
|
} |
|
src++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_SBPRO_4: |
|
case CODEC_ID_ADPCM_SBPRO_3: |
|
case CODEC_ID_ADPCM_SBPRO_2: |
|
if (!c->status[0].step_index) { |
|
/* the first byte is a raw sample */ |
|
*samples++ = 128 * (*src++ - 0x80); |
|
if (st) |
|
*samples++ = 128 * (*src++ - 0x80); |
|
c->status[0].step_index = 1; |
|
} |
|
if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) { |
|
while (src < buf + buf_size) { |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
src[0] >> 4, 4, 0); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
|
src[0] & 0x0F, 4, 0); |
|
src++; |
|
} |
|
} else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) { |
|
while (src < buf + buf_size && samples + 2 < samples_end) { |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
src[0] >> 5 , 3, 0); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
(src[0] >> 2) & 0x07, 3, 0); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
src[0] & 0x03, 2, 0); |
|
src++; |
|
} |
|
} else { |
|
while (src < buf + buf_size && samples + 3 < samples_end) { |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
src[0] >> 6 , 2, 2); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
|
(src[0] >> 4) & 0x03, 2, 2); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0], |
|
(src[0] >> 2) & 0x03, 2, 2); |
|
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
|
src[0] & 0x03, 2, 2); |
|
src++; |
|
} |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_SWF: |
|
{ |
|
GetBitContext gb; |
|
const int *table; |
|
int k0, signmask, nb_bits, count; |
|
int size = buf_size*8; |
|
|
|
init_get_bits(&gb, buf, size); |
|
|
|
//read bits & initial values |
|
nb_bits = get_bits(&gb, 2)+2; |
|
//av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits); |
|
table = swf_index_tables[nb_bits-2]; |
|
k0 = 1 << (nb_bits-2); |
|
signmask = 1 << (nb_bits-1); |
|
|
|
while (get_bits_count(&gb) <= size - 22*avctx->channels) { |
|
for (i = 0; i < avctx->channels; i++) { |
|
*samples++ = c->status[i].predictor = get_sbits(&gb, 16); |
|
c->status[i].step_index = get_bits(&gb, 6); |
|
} |
|
|
|
for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) { |
|
int i; |
|
|
|
for (i = 0; i < avctx->channels; i++) { |
|
// similar to IMA adpcm |
|
int delta = get_bits(&gb, nb_bits); |
|
int step = step_table[c->status[i].step_index]; |
|
long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 |
|
int k = k0; |
|
|
|
do { |
|
if (delta & k) |
|
vpdiff += step; |
|
step >>= 1; |
|
k >>= 1; |
|
} while(k); |
|
vpdiff += step; |
|
|
|
if (delta & signmask) |
|
c->status[i].predictor -= vpdiff; |
|
else |
|
c->status[i].predictor += vpdiff; |
|
|
|
c->status[i].step_index += table[delta & (~signmask)]; |
|
|
|
c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); |
|
c->status[i].predictor = av_clip_int16(c->status[i].predictor); |
|
|
|
*samples++ = c->status[i].predictor; |
|
if (samples >= samples_end) { |
|
av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); |
|
return -1; |
|
} |
|
} |
|
} |
|
} |
|
src += buf_size; |
|
break; |
|
} |
|
case CODEC_ID_ADPCM_YAMAHA: |
|
while (src < buf + buf_size) { |
|
if (st) { |
|
*samples++ = adpcm_yamaha_expand_nibble(&c->status[0], |
|
src[0] & 0x0F); |
|
*samples++ = adpcm_yamaha_expand_nibble(&c->status[1], |
|
src[0] >> 4 ); |
|
} else { |
|
*samples++ = adpcm_yamaha_expand_nibble(&c->status[0], |
|
src[0] & 0x0F); |
|
*samples++ = adpcm_yamaha_expand_nibble(&c->status[0], |
|
src[0] >> 4 ); |
|
} |
|
src++; |
|
} |
|
break; |
|
case CODEC_ID_ADPCM_THP: |
|
{ |
|
int table[2][16]; |
|
unsigned int samplecnt; |
|
int prev[2][2]; |
|
int ch; |
|
|
|
if (buf_size < 80) { |
|
av_log(avctx, AV_LOG_ERROR, "frame too small\n"); |
|
return -1; |
|
} |
|
|
|
src+=4; |
|
samplecnt = bytestream_get_be32(&src); |
|
|
|
for (i = 0; i < 32; i++) |
|
table[0][i] = (int16_t)bytestream_get_be16(&src); |
|
|
|
/* Initialize the previous sample. */ |
|
for (i = 0; i < 4; i++) |
|
prev[0][i] = (int16_t)bytestream_get_be16(&src); |
|
|
|
if (samplecnt >= (samples_end - samples) / (st + 1)) { |
|
av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); |
|
return -1; |
|
} |
|
|
|
for (ch = 0; ch <= st; ch++) { |
|
samples = (unsigned short *) data + ch; |
|
|
|
/* Read in every sample for this channel. */ |
|
for (i = 0; i < samplecnt / 14; i++) { |
|
int index = (*src >> 4) & 7; |
|
unsigned int exp = 28 - (*src++ & 15); |
|
int factor1 = table[ch][index * 2]; |
|
int factor2 = table[ch][index * 2 + 1]; |
|
|
|
/* Decode 14 samples. */ |
|
for (n = 0; n < 14; n++) { |
|
int32_t sampledat; |
|
if(n&1) sampledat= *src++ <<28; |
|
else sampledat= (*src&0xF0)<<24; |
|
|
|
sampledat = ((prev[ch][0]*factor1 |
|
+ prev[ch][1]*factor2) >> 11) + (sampledat>>exp); |
|
*samples = av_clip_int16(sampledat); |
|
prev[ch][1] = prev[ch][0]; |
|
prev[ch][0] = *samples++; |
|
|
|
/* In case of stereo, skip one sample, this sample |
|
is for the other channel. */ |
|
samples += st; |
|
} |
|
} |
|
} |
|
|
|
/* In the previous loop, in case stereo is used, samples is |
|
increased exactly one time too often. */ |
|
samples -= st; |
|
break; |
|
} |
|
|
|
default: |
|
return -1; |
|
} |
|
*data_size = (uint8_t *)samples - (uint8_t *)data; |
|
return src - buf; |
|
} |
|
|
|
|
|
|
|
#if CONFIG_ENCODERS |
|
#define ADPCM_ENCODER(id,name,long_name_) \ |
|
AVCodec ff_ ## name ## _encoder = { \ |
|
#name, \ |
|
AVMEDIA_TYPE_AUDIO, \ |
|
id, \ |
|
sizeof(ADPCMContext), \ |
|
adpcm_encode_init, \ |
|
adpcm_encode_frame, \ |
|
adpcm_encode_close, \ |
|
NULL, \ |
|
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, \ |
|
.long_name = NULL_IF_CONFIG_SMALL(long_name_), \ |
|
}; |
|
#else |
|
#define ADPCM_ENCODER(id,name,long_name_) |
|
#endif |
|
|
|
#if CONFIG_DECODERS |
|
#define ADPCM_DECODER(id,name,long_name_) \ |
|
AVCodec ff_ ## name ## _decoder = { \ |
|
#name, \ |
|
AVMEDIA_TYPE_AUDIO, \ |
|
id, \ |
|
sizeof(ADPCMContext), \ |
|
adpcm_decode_init, \ |
|
NULL, \ |
|
NULL, \ |
|
adpcm_decode_frame, \ |
|
.long_name = NULL_IF_CONFIG_SMALL(long_name_), \ |
|
}; |
|
#else |
|
#define ADPCM_DECODER(id,name,long_name_) |
|
#endif |
|
|
|
#define ADPCM_CODEC(id,name,long_name_) \ |
|
ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_) |
|
|
|
/* Note: Do not forget to add new entries to the Makefile as well. */ |
|
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS"); |
|
ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG"); |
|
ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood"); |
|
ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit"); |
|
ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP"); |
|
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA"); |
|
ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");
|
|
|