mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
590 lines
19 KiB
590 lines
19 KiB
/* |
|
* SIPR / ACELP.NET decoder |
|
* |
|
* Copyright (c) 2008 Vladimir Voroshilov |
|
* Copyright (c) 2009 Vitor Sessak |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <math.h> |
|
#include <stdint.h> |
|
|
|
#include "libavutil/mathematics.h" |
|
#include "avcodec.h" |
|
#define ALT_BITSTREAM_READER_LE |
|
#include "get_bits.h" |
|
#include "dsputil.h" |
|
|
|
#include "lsp.h" |
|
#include "celp_math.h" |
|
#include "acelp_vectors.h" |
|
#include "acelp_pitch_delay.h" |
|
#include "acelp_filters.h" |
|
#include "celp_filters.h" |
|
|
|
#define MAX_SUBFRAME_COUNT 5 |
|
|
|
#include "sipr.h" |
|
#include "siprdata.h" |
|
|
|
typedef struct { |
|
const char *mode_name; |
|
uint16_t bits_per_frame; |
|
uint8_t subframe_count; |
|
uint8_t frames_per_packet; |
|
float pitch_sharp_factor; |
|
|
|
/* bitstream parameters */ |
|
uint8_t number_of_fc_indexes; |
|
uint8_t ma_predictor_bits; ///< size in bits of the switched MA predictor |
|
|
|
/** size in bits of the i-th stage vector of quantizer */ |
|
uint8_t vq_indexes_bits[5]; |
|
|
|
/** size in bits of the adaptive-codebook index for every subframe */ |
|
uint8_t pitch_delay_bits[5]; |
|
|
|
uint8_t gp_index_bits; |
|
uint8_t fc_index_bits[10]; ///< size in bits of the fixed codebook indexes |
|
uint8_t gc_index_bits; ///< size in bits of the gain codebook indexes |
|
} SiprModeParam; |
|
|
|
static const SiprModeParam modes[MODE_COUNT] = { |
|
[MODE_16k] = { |
|
.mode_name = "16k", |
|
.bits_per_frame = 160, |
|
.subframe_count = SUBFRAME_COUNT_16k, |
|
.frames_per_packet = 1, |
|
.pitch_sharp_factor = 0.00, |
|
|
|
.number_of_fc_indexes = 10, |
|
.ma_predictor_bits = 1, |
|
.vq_indexes_bits = {7, 8, 7, 7, 7}, |
|
.pitch_delay_bits = {9, 6}, |
|
.gp_index_bits = 4, |
|
.fc_index_bits = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5}, |
|
.gc_index_bits = 5 |
|
}, |
|
|
|
[MODE_8k5] = { |
|
.mode_name = "8k5", |
|
.bits_per_frame = 152, |
|
.subframe_count = 3, |
|
.frames_per_packet = 1, |
|
.pitch_sharp_factor = 0.8, |
|
|
|
.number_of_fc_indexes = 3, |
|
.ma_predictor_bits = 0, |
|
.vq_indexes_bits = {6, 7, 7, 7, 5}, |
|
.pitch_delay_bits = {8, 5, 5}, |
|
.gp_index_bits = 0, |
|
.fc_index_bits = {9, 9, 9}, |
|
.gc_index_bits = 7 |
|
}, |
|
|
|
[MODE_6k5] = { |
|
.mode_name = "6k5", |
|
.bits_per_frame = 232, |
|
.subframe_count = 3, |
|
.frames_per_packet = 2, |
|
.pitch_sharp_factor = 0.8, |
|
|
|
.number_of_fc_indexes = 3, |
|
.ma_predictor_bits = 0, |
|
.vq_indexes_bits = {6, 7, 7, 7, 5}, |
|
.pitch_delay_bits = {8, 5, 5}, |
|
.gp_index_bits = 0, |
|
.fc_index_bits = {5, 5, 5}, |
|
.gc_index_bits = 7 |
|
}, |
|
|
|
[MODE_5k0] = { |
|
.mode_name = "5k0", |
|
.bits_per_frame = 296, |
|
.subframe_count = 5, |
|
.frames_per_packet = 2, |
|
.pitch_sharp_factor = 0.85, |
|
|
|
.number_of_fc_indexes = 1, |
|
.ma_predictor_bits = 0, |
|
.vq_indexes_bits = {6, 7, 7, 7, 5}, |
|
.pitch_delay_bits = {8, 5, 8, 5, 5}, |
|
.gp_index_bits = 0, |
|
.fc_index_bits = {10}, |
|
.gc_index_bits = 7 |
|
} |
|
}; |
|
|
|
const float ff_pow_0_5[] = { |
|
1.0/(1 << 1), 1.0/(1 << 2), 1.0/(1 << 3), 1.0/(1 << 4), |
|
1.0/(1 << 5), 1.0/(1 << 6), 1.0/(1 << 7), 1.0/(1 << 8), |
|
1.0/(1 << 9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12), |
|
1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16) |
|
}; |
|
|
|
static void dequant(float *out, const int *idx, const float *cbs[]) |
|
{ |
|
int i; |
|
int stride = 2; |
|
int num_vec = 5; |
|
|
|
for (i = 0; i < num_vec; i++) |
|
memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float)); |
|
|
|
} |
|
|
|
static void lsf_decode_fp(float *lsfnew, float *lsf_history, |
|
const SiprParameters *parm) |
|
{ |
|
int i; |
|
float lsf_tmp[LP_FILTER_ORDER]; |
|
|
|
dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks); |
|
|
|
for (i = 0; i < LP_FILTER_ORDER; i++) |
|
lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i]; |
|
|
|
ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1); |
|
|
|
/* Note that a minimum distance is not enforced between the last value and |
|
the previous one, contrary to what is done in ff_acelp_reorder_lsf() */ |
|
ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1); |
|
lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI); |
|
|
|
memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history)); |
|
|
|
for (i = 0; i < LP_FILTER_ORDER - 1; i++) |
|
lsfnew[i] = cos(lsfnew[i]); |
|
lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI; |
|
} |
|
|
|
/** Apply pitch lag to the fixed vector (AMR section 6.1.2). */ |
|
static void pitch_sharpening(int pitch_lag_int, float beta, |
|
float *fixed_vector) |
|
{ |
|
int i; |
|
|
|
for (i = pitch_lag_int; i < SUBFR_SIZE; i++) |
|
fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int]; |
|
} |
|
|
|
/** |
|
* Extracts decoding parameters from the input bitstream. |
|
* @param parms parameters structure |
|
* @param pgb pointer to initialized GetBitContext structure |
|
*/ |
|
static void decode_parameters(SiprParameters* parms, GetBitContext *pgb, |
|
const SiprModeParam *p) |
|
{ |
|
int i, j; |
|
|
|
parms->ma_pred_switch = get_bits(pgb, p->ma_predictor_bits); |
|
|
|
for (i = 0; i < 5; i++) |
|
parms->vq_indexes[i] = get_bits(pgb, p->vq_indexes_bits[i]); |
|
|
|
for (i = 0; i < p->subframe_count; i++) { |
|
parms->pitch_delay[i] = get_bits(pgb, p->pitch_delay_bits[i]); |
|
parms->gp_index[i] = get_bits(pgb, p->gp_index_bits); |
|
|
|
for (j = 0; j < p->number_of_fc_indexes; j++) |
|
parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]); |
|
|
|
parms->gc_index[i] = get_bits(pgb, p->gc_index_bits); |
|
} |
|
} |
|
|
|
static void lsp2lpc_sipr(const double *lsp, float *Az) |
|
{ |
|
int lp_half_order = LP_FILTER_ORDER >> 1; |
|
double buf[(LP_FILTER_ORDER >> 1) + 1]; |
|
double pa[(LP_FILTER_ORDER >> 1) + 1]; |
|
double *qa = buf + 1; |
|
int i,j; |
|
|
|
qa[-1] = 0.0; |
|
|
|
ff_lsp2polyf(lsp , pa, lp_half_order ); |
|
ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1); |
|
|
|
for (i = 1, j = LP_FILTER_ORDER - 1; i < lp_half_order; i++, j--) { |
|
double paf = pa[i] * (1 + lsp[LP_FILTER_ORDER - 1]); |
|
double qaf = (qa[i] - qa[i-2]) * (1 - lsp[LP_FILTER_ORDER - 1]); |
|
Az[i-1] = (paf + qaf) * 0.5; |
|
Az[j-1] = (paf - qaf) * 0.5; |
|
} |
|
|
|
Az[lp_half_order - 1] = (1.0 + lsp[LP_FILTER_ORDER - 1]) * |
|
pa[lp_half_order] * 0.5; |
|
|
|
Az[LP_FILTER_ORDER - 1] = lsp[LP_FILTER_ORDER - 1]; |
|
} |
|
|
|
static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az, |
|
int num_subfr) |
|
{ |
|
double lsfint[LP_FILTER_ORDER]; |
|
int i,j; |
|
float t, t0 = 1.0 / num_subfr; |
|
|
|
t = t0 * 0.5; |
|
for (i = 0; i < num_subfr; i++) { |
|
for (j = 0; j < LP_FILTER_ORDER; j++) |
|
lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j]; |
|
|
|
lsp2lpc_sipr(lsfint, Az); |
|
Az += LP_FILTER_ORDER; |
|
t += t0; |
|
} |
|
} |
|
|
|
/** |
|
* Evaluates the adaptive impulse response. |
|
*/ |
|
static void eval_ir(const float *Az, int pitch_lag, float *freq, |
|
float pitch_sharp_factor) |
|
{ |
|
float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1]; |
|
int i; |
|
|
|
tmp1[0] = 1.; |
|
for (i = 0; i < LP_FILTER_ORDER; i++) { |
|
tmp1[i+1] = Az[i] * ff_pow_0_55[i]; |
|
tmp2[i ] = Az[i] * ff_pow_0_7 [i]; |
|
} |
|
memset(tmp1 + 11, 0, 37 * sizeof(float)); |
|
|
|
ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE, |
|
LP_FILTER_ORDER); |
|
|
|
pitch_sharpening(pitch_lag, pitch_sharp_factor, freq); |
|
} |
|
|
|
/** |
|
* Evaluates the convolution of a vector with a sparse vector. |
|
*/ |
|
static void convolute_with_sparse(float *out, const AMRFixed *pulses, |
|
const float *shape, int length) |
|
{ |
|
int i, j; |
|
|
|
memset(out, 0, length*sizeof(float)); |
|
for (i = 0; i < pulses->n; i++) |
|
for (j = pulses->x[i]; j < length; j++) |
|
out[j] += pulses->y[i] * shape[j - pulses->x[i]]; |
|
} |
|
|
|
/** |
|
* Apply postfilter, very similar to AMR one. |
|
*/ |
|
static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples) |
|
{ |
|
float buf[SUBFR_SIZE + LP_FILTER_ORDER]; |
|
float *pole_out = buf + LP_FILTER_ORDER; |
|
float lpc_n[LP_FILTER_ORDER]; |
|
float lpc_d[LP_FILTER_ORDER]; |
|
int i; |
|
|
|
for (i = 0; i < LP_FILTER_ORDER; i++) { |
|
lpc_d[i] = lpc[i] * ff_pow_0_75[i]; |
|
lpc_n[i] = lpc[i] * ff_pow_0_5 [i]; |
|
}; |
|
|
|
memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem, |
|
LP_FILTER_ORDER*sizeof(float)); |
|
|
|
ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE, |
|
LP_FILTER_ORDER); |
|
|
|
memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER, |
|
LP_FILTER_ORDER*sizeof(float)); |
|
|
|
ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE); |
|
|
|
memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0, |
|
LP_FILTER_ORDER*sizeof(*pole_out)); |
|
|
|
memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER, |
|
LP_FILTER_ORDER*sizeof(*pole_out)); |
|
|
|
ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE, |
|
LP_FILTER_ORDER); |
|
|
|
} |
|
|
|
static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses, |
|
SiprMode mode, int low_gain) |
|
{ |
|
int i; |
|
|
|
switch (mode) { |
|
case MODE_6k5: |
|
for (i = 0; i < 3; i++) { |
|
fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i; |
|
fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1; |
|
} |
|
fixed_sparse->n = 3; |
|
break; |
|
case MODE_8k5: |
|
for (i = 0; i < 3; i++) { |
|
fixed_sparse->x[2*i ] = 3 * ((pulses[i] >> 4) & 0xf) + i; |
|
fixed_sparse->x[2*i + 1] = 3 * ( pulses[i] & 0xf) + i; |
|
|
|
fixed_sparse->y[2*i ] = (pulses[i] & 0x100) ? -1.0: 1.0; |
|
|
|
fixed_sparse->y[2*i + 1] = |
|
(fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ? |
|
-fixed_sparse->y[2*i ] : fixed_sparse->y[2*i]; |
|
} |
|
|
|
fixed_sparse->n = 6; |
|
break; |
|
case MODE_5k0: |
|
default: |
|
if (low_gain) { |
|
int offset = (pulses[0] & 0x200) ? 2 : 0; |
|
int val = pulses[0]; |
|
|
|
for (i = 0; i < 3; i++) { |
|
int index = (val & 0x7) * 6 + 4 - i*2; |
|
|
|
fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1; |
|
fixed_sparse->x[i] = index; |
|
|
|
val >>= 3; |
|
} |
|
fixed_sparse->n = 3; |
|
} else { |
|
int pulse_subset = (pulses[0] >> 8) & 1; |
|
|
|
fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset; |
|
fixed_sparse->x[1] = ( pulses[0] & 15) * 3 + pulse_subset + 1; |
|
|
|
fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1; |
|
fixed_sparse->y[1] = -fixed_sparse->y[0]; |
|
fixed_sparse->n = 2; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
static void decode_frame(SiprContext *ctx, SiprParameters *params, |
|
float *out_data) |
|
{ |
|
int i, j; |
|
int subframe_count = modes[ctx->mode].subframe_count; |
|
int frame_size = subframe_count * SUBFR_SIZE; |
|
float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT]; |
|
float *excitation; |
|
float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER]; |
|
float lsf_new[LP_FILTER_ORDER]; |
|
float *impulse_response = ir_buf + LP_FILTER_ORDER; |
|
float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for |
|
// memory alignment |
|
int t0_first = 0; |
|
AMRFixed fixed_cb; |
|
|
|
memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float)); |
|
lsf_decode_fp(lsf_new, ctx->lsf_history, params); |
|
|
|
sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count); |
|
|
|
memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float)); |
|
|
|
excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL; |
|
|
|
for (i = 0; i < subframe_count; i++) { |
|
float *pAz = Az + i*LP_FILTER_ORDER; |
|
float fixed_vector[SUBFR_SIZE]; |
|
int T0,T0_frac; |
|
float pitch_gain, gain_code, avg_energy; |
|
|
|
ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i, |
|
ctx->mode == MODE_5k0, 6); |
|
|
|
if (i == 0 || (i == 2 && ctx->mode == MODE_5k0)) |
|
t0_first = T0; |
|
|
|
ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0), |
|
ff_b60_sinc, 6, |
|
2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER, |
|
SUBFR_SIZE); |
|
|
|
decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode, |
|
ctx->past_pitch_gain < 0.8); |
|
|
|
eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor); |
|
|
|
convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response, |
|
SUBFR_SIZE); |
|
|
|
avg_energy = |
|
(0.01 + ff_dot_productf(fixed_vector, fixed_vector, SUBFR_SIZE))/ |
|
SUBFR_SIZE; |
|
|
|
ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0]; |
|
|
|
gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1], |
|
avg_energy, ctx->energy_history, |
|
34 - 15.0/(0.05*M_LN10/M_LN2), |
|
pred); |
|
|
|
ff_weighted_vector_sumf(excitation, excitation, fixed_vector, |
|
pitch_gain, gain_code, SUBFR_SIZE); |
|
|
|
pitch_gain *= 0.5 * pitch_gain; |
|
pitch_gain = FFMIN(pitch_gain, 0.4); |
|
|
|
ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain; |
|
ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain); |
|
gain_code *= ctx->gain_mem; |
|
|
|
for (j = 0; j < SUBFR_SIZE; j++) |
|
fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j]; |
|
|
|
if (ctx->mode == MODE_5k0) { |
|
postfilter_5k0(ctx, pAz, fixed_vector); |
|
|
|
ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE, |
|
pAz, excitation, SUBFR_SIZE, |
|
LP_FILTER_ORDER); |
|
} |
|
|
|
ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector, |
|
SUBFR_SIZE, LP_FILTER_ORDER); |
|
|
|
excitation += SUBFR_SIZE; |
|
} |
|
|
|
memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER, |
|
LP_FILTER_ORDER * sizeof(float)); |
|
|
|
if (ctx->mode == MODE_5k0) { |
|
for (i = 0; i < subframe_count; i++) { |
|
float energy = ff_dot_productf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE, |
|
ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE, |
|
SUBFR_SIZE); |
|
ff_adaptive_gain_control(&synth[i * SUBFR_SIZE], energy, |
|
SUBFR_SIZE, 0.9, &ctx->postfilter_agc); |
|
} |
|
|
|
memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size, |
|
LP_FILTER_ORDER*sizeof(float)); |
|
} |
|
memcpy(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL, |
|
(PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float)); |
|
|
|
ff_acelp_apply_order_2_transfer_function(synth, |
|
(const float[2]) {-1.99997 , 1.000000000}, |
|
(const float[2]) {-1.93307352, 0.935891986}, |
|
0.939805806, |
|
ctx->highpass_filt_mem, |
|
frame_size); |
|
|
|
ctx->dsp.vector_clipf(out_data, synth, -1, 32767./(1<<15), frame_size); |
|
|
|
} |
|
|
|
static av_cold int sipr_decoder_init(AVCodecContext * avctx) |
|
{ |
|
SiprContext *ctx = avctx->priv_data; |
|
int i; |
|
|
|
if (avctx->bit_rate > 12200) ctx->mode = MODE_16k; |
|
else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5; |
|
else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5; |
|
else ctx->mode = MODE_5k0; |
|
|
|
av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name); |
|
|
|
if (ctx->mode == MODE_16k) |
|
ff_sipr_init_16k(ctx); |
|
|
|
for (i = 0; i < LP_FILTER_ORDER; i++) |
|
ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1)); |
|
|
|
for (i = 0; i < 4; i++) |
|
ctx->energy_history[i] = -14; |
|
|
|
avctx->sample_fmt = SAMPLE_FMT_FLT; |
|
|
|
dsputil_init(&ctx->dsp, avctx); |
|
|
|
return 0; |
|
} |
|
|
|
static int sipr_decode_frame(AVCodecContext *avctx, void *datap, |
|
int *data_size, AVPacket *avpkt) |
|
{ |
|
SiprContext *ctx = avctx->priv_data; |
|
const uint8_t *buf=avpkt->data; |
|
SiprParameters parm; |
|
const SiprModeParam *mode_par = &modes[ctx->mode]; |
|
GetBitContext gb; |
|
float *data = datap; |
|
int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE; |
|
int i; |
|
|
|
ctx->avctx = avctx; |
|
if (avpkt->size < (mode_par->bits_per_frame >> 3)) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Error processing packet: packet size (%d) too small\n", |
|
avpkt->size); |
|
|
|
*data_size = 0; |
|
return -1; |
|
} |
|
if (*data_size < subframe_size * mode_par->subframe_count * sizeof(float)) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Error processing packet: output buffer (%d) too small\n", |
|
*data_size); |
|
|
|
*data_size = 0; |
|
return -1; |
|
} |
|
|
|
init_get_bits(&gb, buf, mode_par->bits_per_frame); |
|
|
|
for (i = 0; i < mode_par->frames_per_packet; i++) { |
|
decode_parameters(&parm, &gb, mode_par); |
|
|
|
if (ctx->mode == MODE_16k) |
|
ff_sipr_decode_frame_16k(ctx, &parm, data); |
|
else |
|
decode_frame(ctx, &parm, data); |
|
|
|
data += subframe_size * mode_par->subframe_count; |
|
} |
|
|
|
*data_size = mode_par->frames_per_packet * subframe_size * |
|
mode_par->subframe_count * sizeof(float); |
|
|
|
return mode_par->bits_per_frame >> 3; |
|
}; |
|
|
|
AVCodec sipr_decoder = { |
|
"sipr", |
|
AVMEDIA_TYPE_AUDIO, |
|
CODEC_ID_SIPR, |
|
sizeof(SiprContext), |
|
sipr_decoder_init, |
|
NULL, |
|
NULL, |
|
sipr_decode_frame, |
|
.long_name = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"), |
|
};
|
|
|