You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

2877 lines
98 KiB

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include "pixdesc.h"
#include "avstring.h"
#include "imgutils.h"
#include "hwcontext.h"
#include "hwcontext_internal.h"
#include "hwcontext_vulkan.h"
#if CONFIG_LIBDRM
#include <unistd.h>
#include <xf86drm.h>
#include <drm_fourcc.h>
#include "hwcontext_drm.h"
#if CONFIG_VAAPI
#include <va/va_drmcommon.h>
#include "hwcontext_vaapi.h"
#endif
#endif
#if CONFIG_CUDA
#include "hwcontext_cuda_internal.h"
#include "cuda_check.h"
#define CHECK_CU(x) FF_CUDA_CHECK_DL(cuda_cu, cu, x)
#endif
typedef struct VulkanExecCtx {
VkCommandPool pool;
VkCommandBuffer buf;
VkQueue queue;
VkFence fence;
} VulkanExecCtx;
typedef struct VulkanDevicePriv {
/* Properties */
VkPhysicalDeviceProperties props;
VkPhysicalDeviceMemoryProperties mprops;
/* Debug callback */
VkDebugUtilsMessengerEXT debug_ctx;
/* Image uploading */
VulkanExecCtx cmd;
/* Extensions */
uint64_t extensions;
/* Settings */
int use_linear_images;
/* Nvidia */
int dev_is_nvidia;
} VulkanDevicePriv;
typedef struct VulkanFramesPriv {
VulkanExecCtx cmd;
} VulkanFramesPriv;
typedef struct AVVkFrameInternal {
#if CONFIG_CUDA
/* Importing external memory into cuda is really expensive so we keep the
* memory imported all the time */
AVBufferRef *cuda_fc_ref; /* Need to keep it around for uninit */
CUexternalMemory ext_mem[AV_NUM_DATA_POINTERS];
CUmipmappedArray cu_mma[AV_NUM_DATA_POINTERS];
CUarray cu_array[AV_NUM_DATA_POINTERS];
CUexternalSemaphore cu_sem;
#endif
} AVVkFrameInternal;
#define VK_LOAD_PFN(inst, name) PFN_##name pfn_##name = (PFN_##name) \
vkGetInstanceProcAddr(inst, #name)
#define DEFAULT_USAGE_FLAGS (VK_IMAGE_USAGE_SAMPLED_BIT | \
VK_IMAGE_USAGE_STORAGE_BIT | \
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | \
VK_IMAGE_USAGE_TRANSFER_DST_BIT)
#define ADD_VAL_TO_LIST(list, count, val) \
do { \
list = av_realloc_array(list, sizeof(*list), ++count); \
if (!list) { \
err = AVERROR(ENOMEM); \
goto end; \
} \
list[count - 1] = val; \
} while(0)
static const struct {
enum AVPixelFormat pixfmt;
const VkFormat vkfmts[3];
} vk_pixfmt_map[] = {
{ AV_PIX_FMT_GRAY8, { VK_FORMAT_R8_UNORM } },
{ AV_PIX_FMT_GRAY16, { VK_FORMAT_R16_UNORM } },
{ AV_PIX_FMT_GRAYF32, { VK_FORMAT_R32_SFLOAT } },
{ AV_PIX_FMT_NV12, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8G8_UNORM } },
{ AV_PIX_FMT_P010, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
{ AV_PIX_FMT_P016, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
{ AV_PIX_FMT_YUV420P, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } },
{ AV_PIX_FMT_YUV422P, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } },
{ AV_PIX_FMT_YUV444P, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } },
{ AV_PIX_FMT_YUV420P16, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ AV_PIX_FMT_YUV422P16, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ AV_PIX_FMT_YUV444P16, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ AV_PIX_FMT_ABGR, { VK_FORMAT_A8B8G8R8_UNORM_PACK32 } },
{ AV_PIX_FMT_BGRA, { VK_FORMAT_B8G8R8A8_UNORM } },
{ AV_PIX_FMT_RGBA, { VK_FORMAT_R8G8B8A8_UNORM } },
{ AV_PIX_FMT_RGB24, { VK_FORMAT_R8G8B8_UNORM } },
{ AV_PIX_FMT_BGR24, { VK_FORMAT_B8G8R8_UNORM } },
{ AV_PIX_FMT_RGB48, { VK_FORMAT_R16G16B16_UNORM } },
{ AV_PIX_FMT_RGBA64, { VK_FORMAT_R16G16B16A16_UNORM } },
{ AV_PIX_FMT_RGB565, { VK_FORMAT_R5G6B5_UNORM_PACK16 } },
{ AV_PIX_FMT_BGR565, { VK_FORMAT_B5G6R5_UNORM_PACK16 } },
{ AV_PIX_FMT_BGR0, { VK_FORMAT_B8G8R8A8_UNORM } },
{ AV_PIX_FMT_0BGR, { VK_FORMAT_A8B8G8R8_UNORM_PACK32 } },
{ AV_PIX_FMT_RGB0, { VK_FORMAT_R8G8B8A8_UNORM } },
{ AV_PIX_FMT_GBRPF32, { VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT } },
};
const VkFormat *av_vkfmt_from_pixfmt(enum AVPixelFormat p)
{
for (enum AVPixelFormat i = 0; i < FF_ARRAY_ELEMS(vk_pixfmt_map); i++)
if (vk_pixfmt_map[i].pixfmt == p)
return vk_pixfmt_map[i].vkfmts;
return NULL;
}
static int pixfmt_is_supported(AVVulkanDeviceContext *hwctx, enum AVPixelFormat p,
int linear)
{
const VkFormat *fmt = av_vkfmt_from_pixfmt(p);
int planes = av_pix_fmt_count_planes(p);
if (!fmt)
return 0;
for (int i = 0; i < planes; i++) {
VkFormatFeatureFlags flags;
VkFormatProperties2 prop = {
.sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2,
};
vkGetPhysicalDeviceFormatProperties2(hwctx->phys_dev, fmt[i], &prop);
flags = linear ? prop.formatProperties.linearTilingFeatures :
prop.formatProperties.optimalTilingFeatures;
if (!(flags & DEFAULT_USAGE_FLAGS))
return 0;
}
return 1;
}
enum VulkanExtensions {
EXT_EXTERNAL_DMABUF_MEMORY = 1ULL << 0, /* VK_EXT_external_memory_dma_buf */
EXT_DRM_MODIFIER_FLAGS = 1ULL << 1, /* VK_EXT_image_drm_format_modifier */
EXT_EXTERNAL_FD_MEMORY = 1ULL << 2, /* VK_KHR_external_memory_fd */
EXT_EXTERNAL_FD_SEM = 1ULL << 3, /* VK_KHR_external_semaphore_fd */
EXT_OPTIONAL = 1ULL << 62,
EXT_REQUIRED = 1ULL << 63,
};
typedef struct VulkanOptExtension {
const char *name;
uint64_t flag;
} VulkanOptExtension;
static const VulkanOptExtension optional_instance_exts[] = {
/* For future use */
};
static const VulkanOptExtension optional_device_exts[] = {
{ VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME, EXT_EXTERNAL_FD_MEMORY, },
{ VK_EXT_EXTERNAL_MEMORY_DMA_BUF_EXTENSION_NAME, EXT_EXTERNAL_DMABUF_MEMORY, },
{ VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, EXT_DRM_MODIFIER_FLAGS, },
{ VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, EXT_EXTERNAL_FD_SEM, },
};
/* Converts return values to strings */
static const char *vk_ret2str(VkResult res)
{
#define CASE(VAL) case VAL: return #VAL
switch (res) {
CASE(VK_SUCCESS);
CASE(VK_NOT_READY);
CASE(VK_TIMEOUT);
CASE(VK_EVENT_SET);
CASE(VK_EVENT_RESET);
CASE(VK_INCOMPLETE);
CASE(VK_ERROR_OUT_OF_HOST_MEMORY);
CASE(VK_ERROR_OUT_OF_DEVICE_MEMORY);
CASE(VK_ERROR_INITIALIZATION_FAILED);
CASE(VK_ERROR_DEVICE_LOST);
CASE(VK_ERROR_MEMORY_MAP_FAILED);
CASE(VK_ERROR_LAYER_NOT_PRESENT);
CASE(VK_ERROR_EXTENSION_NOT_PRESENT);
CASE(VK_ERROR_FEATURE_NOT_PRESENT);
CASE(VK_ERROR_INCOMPATIBLE_DRIVER);
CASE(VK_ERROR_TOO_MANY_OBJECTS);
CASE(VK_ERROR_FORMAT_NOT_SUPPORTED);
CASE(VK_ERROR_FRAGMENTED_POOL);
CASE(VK_ERROR_SURFACE_LOST_KHR);
CASE(VK_ERROR_NATIVE_WINDOW_IN_USE_KHR);
CASE(VK_SUBOPTIMAL_KHR);
CASE(VK_ERROR_OUT_OF_DATE_KHR);
CASE(VK_ERROR_INCOMPATIBLE_DISPLAY_KHR);
CASE(VK_ERROR_VALIDATION_FAILED_EXT);
CASE(VK_ERROR_INVALID_SHADER_NV);
CASE(VK_ERROR_OUT_OF_POOL_MEMORY);
CASE(VK_ERROR_INVALID_EXTERNAL_HANDLE);
CASE(VK_ERROR_NOT_PERMITTED_EXT);
CASE(VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT);
CASE(VK_ERROR_INVALID_DEVICE_ADDRESS_EXT);
CASE(VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT);
default: return "Unknown error";
}
#undef CASE
}
static VkBool32 vk_dbg_callback(VkDebugUtilsMessageSeverityFlagBitsEXT severity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT *data,
void *priv)
{
int l;
AVHWDeviceContext *ctx = priv;
switch (severity) {
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT: l = AV_LOG_VERBOSE; break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT: l = AV_LOG_INFO; break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT: l = AV_LOG_WARNING; break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT: l = AV_LOG_ERROR; break;
default: l = AV_LOG_DEBUG; break;
}
av_log(ctx, l, "%s\n", data->pMessage);
for (int i = 0; i < data->cmdBufLabelCount; i++)
av_log(ctx, l, "\t%i: %s\n", i, data->pCmdBufLabels[i].pLabelName);
return 0;
}
static int check_extensions(AVHWDeviceContext *ctx, int dev,
const char * const **dst, uint32_t *num, int debug)
{
const char *tstr;
const char **extension_names = NULL;
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
int err = 0, found, extensions_found = 0;
const char *mod;
int optional_exts_num;
uint32_t sup_ext_count;
VkExtensionProperties *sup_ext;
const VulkanOptExtension *optional_exts;
if (!dev) {
mod = "instance";
optional_exts = optional_instance_exts;
optional_exts_num = FF_ARRAY_ELEMS(optional_instance_exts);
vkEnumerateInstanceExtensionProperties(NULL, &sup_ext_count, NULL);
sup_ext = av_malloc_array(sup_ext_count, sizeof(VkExtensionProperties));
if (!sup_ext)
return AVERROR(ENOMEM);
vkEnumerateInstanceExtensionProperties(NULL, &sup_ext_count, sup_ext);
} else {
mod = "device";
optional_exts = optional_device_exts;
optional_exts_num = FF_ARRAY_ELEMS(optional_device_exts);
vkEnumerateDeviceExtensionProperties(hwctx->phys_dev, NULL,
&sup_ext_count, NULL);
sup_ext = av_malloc_array(sup_ext_count, sizeof(VkExtensionProperties));
if (!sup_ext)
return AVERROR(ENOMEM);
vkEnumerateDeviceExtensionProperties(hwctx->phys_dev, NULL,
&sup_ext_count, sup_ext);
}
for (int i = 0; i < optional_exts_num; i++) {
int req = optional_exts[i].flag & EXT_REQUIRED;
tstr = optional_exts[i].name;
found = 0;
for (int j = 0; j < sup_ext_count; j++) {
if (!strcmp(tstr, sup_ext[j].extensionName)) {
found = 1;
break;
}
}
if (!found) {
int lvl = req ? AV_LOG_ERROR : AV_LOG_VERBOSE;
av_log(ctx, lvl, "Extension \"%s\" not found!\n", tstr);
if (req) {
err = AVERROR(EINVAL);
goto end;
}
continue;
}
if (!req)
p->extensions |= optional_exts[i].flag;
av_log(ctx, AV_LOG_VERBOSE, "Using %s extension \"%s\"\n", mod, tstr);
ADD_VAL_TO_LIST(extension_names, extensions_found, tstr);
}
if (debug && !dev) {
tstr = VK_EXT_DEBUG_UTILS_EXTENSION_NAME;
found = 0;
for (int j = 0; j < sup_ext_count; j++) {
if (!strcmp(tstr, sup_ext[j].extensionName)) {
found = 1;
break;
}
}
if (found) {
ADD_VAL_TO_LIST(extension_names, extensions_found, tstr);
} else {
av_log(ctx, AV_LOG_ERROR, "Debug extension \"%s\" not found!\n",
tstr);
err = AVERROR(EINVAL);
goto end;
}
}
*dst = extension_names;
*num = extensions_found;
end:
av_free(sup_ext);
return err;
}
/* Creates a VkInstance */
static int create_instance(AVHWDeviceContext *ctx, AVDictionary *opts)
{
int err = 0;
VkResult ret;
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
AVDictionaryEntry *debug_opt = av_dict_get(opts, "debug", NULL, 0);
const int debug_mode = debug_opt && strtol(debug_opt->value, NULL, 10);
VkApplicationInfo application_info = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pEngineName = "libavutil",
.apiVersion = VK_API_VERSION_1_1,
.engineVersion = VK_MAKE_VERSION(LIBAVUTIL_VERSION_MAJOR,
LIBAVUTIL_VERSION_MINOR,
LIBAVUTIL_VERSION_MICRO),
};
VkInstanceCreateInfo inst_props = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pApplicationInfo = &application_info,
};
/* Check for present/missing extensions */
err = check_extensions(ctx, 0, &inst_props.ppEnabledExtensionNames,
&inst_props.enabledExtensionCount, debug_mode);
if (err < 0)
return err;
if (debug_mode) {
static const char *layers[] = { "VK_LAYER_LUNARG_standard_validation" };
inst_props.ppEnabledLayerNames = layers;
inst_props.enabledLayerCount = FF_ARRAY_ELEMS(layers);
}
/* Try to create the instance */
ret = vkCreateInstance(&inst_props, hwctx->alloc, &hwctx->inst);
/* Free used memory */
av_free((void *)inst_props.ppEnabledExtensionNames);
/* Check for errors */
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Instance creation failure: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
if (debug_mode) {
VkDebugUtilsMessengerCreateInfoEXT dbg = {
.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT,
.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT,
.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT,
.pfnUserCallback = vk_dbg_callback,
.pUserData = ctx,
};
VK_LOAD_PFN(hwctx->inst, vkCreateDebugUtilsMessengerEXT);
pfn_vkCreateDebugUtilsMessengerEXT(hwctx->inst, &dbg,
hwctx->alloc, &p->debug_ctx);
}
return 0;
}
typedef struct VulkanDeviceSelection {
uint8_t uuid[VK_UUID_SIZE]; /* Will use this first unless !has_uuid */
int has_uuid;
const char *name; /* Will use this second unless NULL */
uint32_t pci_device; /* Will use this third unless 0x0 */
uint32_t vendor_id; /* Last resort to find something deterministic */
int index; /* Finally fall back to index */
} VulkanDeviceSelection;
static const char *vk_dev_type(enum VkPhysicalDeviceType type)
{
switch (type) {
case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: return "integrated";
case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: return "discrete";
case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: return "virtual";
case VK_PHYSICAL_DEVICE_TYPE_CPU: return "software";
default: return "unknown";
}
}
/* Finds a device */
static int find_device(AVHWDeviceContext *ctx, VulkanDeviceSelection *select)
{
int err = 0, choice = -1;
uint32_t num;
VkResult ret;
VkPhysicalDevice *devices = NULL;
VkPhysicalDeviceIDProperties *idp = NULL;
VkPhysicalDeviceProperties2 *prop = NULL;
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
ret = vkEnumeratePhysicalDevices(hwctx->inst, &num, NULL);
if (ret != VK_SUCCESS || !num) {
av_log(ctx, AV_LOG_ERROR, "No devices found: %s!\n", vk_ret2str(ret));
return AVERROR(ENODEV);
}
devices = av_malloc_array(num, sizeof(VkPhysicalDevice));
if (!devices)
return AVERROR(ENOMEM);
ret = vkEnumeratePhysicalDevices(hwctx->inst, &num, devices);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed enumerating devices: %s\n",
vk_ret2str(ret));
err = AVERROR(ENODEV);
goto end;
}
prop = av_mallocz_array(num, sizeof(*prop));
if (!prop) {
err = AVERROR(ENOMEM);
goto end;
}
idp = av_mallocz_array(num, sizeof(*idp));
if (!idp) {
err = AVERROR(ENOMEM);
goto end;
}
av_log(ctx, AV_LOG_VERBOSE, "GPU listing:\n");
for (int i = 0; i < num; i++) {
idp[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES;
prop[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
prop[i].pNext = &idp[i];
vkGetPhysicalDeviceProperties2(devices[i], &prop[i]);
av_log(ctx, AV_LOG_VERBOSE, " %d: %s (%s) (0x%x)\n", i,
prop[i].properties.deviceName,
vk_dev_type(prop[i].properties.deviceType),
prop[i].properties.deviceID);
}
if (select->has_uuid) {
for (int i = 0; i < num; i++) {
if (!strncmp(idp[i].deviceUUID, select->uuid, VK_UUID_SIZE)) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device by given UUID!\n");
err = AVERROR(ENODEV);
goto end;
} else if (select->name) {
av_log(ctx, AV_LOG_VERBOSE, "Requested device: %s\n", select->name);
for (int i = 0; i < num; i++) {
if (strstr(prop[i].properties.deviceName, select->name)) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device \"%s\"!\n",
select->name);
err = AVERROR(ENODEV);
goto end;
} else if (select->pci_device) {
av_log(ctx, AV_LOG_VERBOSE, "Requested device: 0x%x\n", select->pci_device);
for (int i = 0; i < num; i++) {
if (select->pci_device == prop[i].properties.deviceID) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device with PCI ID 0x%x!\n",
select->pci_device);
err = AVERROR(EINVAL);
goto end;
} else if (select->vendor_id) {
av_log(ctx, AV_LOG_VERBOSE, "Requested vendor: 0x%x\n", select->vendor_id);
for (int i = 0; i < num; i++) {
if (select->vendor_id == prop[i].properties.vendorID) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device with Vendor ID 0x%x!\n",
select->vendor_id);
err = AVERROR(ENODEV);
goto end;
} else {
if (select->index < num) {
choice = select->index;
goto end;
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device with index %i!\n",
select->index);
err = AVERROR(ENODEV);
goto end;
}
end:
if (choice > -1) {
p->dev_is_nvidia = (prop[choice].properties.vendorID == 0x10de);
hwctx->phys_dev = devices[choice];
}
av_free(devices);
av_free(prop);
av_free(idp);
return err;
}
static int search_queue_families(AVHWDeviceContext *ctx, VkDeviceCreateInfo *cd)
{
uint32_t num;
VkQueueFamilyProperties *qs = NULL;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
int graph_index = -1, comp_index = -1, tx_index = -1;
VkDeviceQueueCreateInfo *pc = (VkDeviceQueueCreateInfo *)cd->pQueueCreateInfos;
/* First get the number of queue families */
vkGetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &num, NULL);
if (!num) {
av_log(ctx, AV_LOG_ERROR, "Failed to get queues!\n");
return AVERROR_EXTERNAL;
}
/* Then allocate memory */
qs = av_malloc_array(num, sizeof(VkQueueFamilyProperties));
if (!qs)
return AVERROR(ENOMEM);
/* Finally retrieve the queue families */
vkGetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &num, qs);
#define SEARCH_FLAGS(expr, out) \
for (int i = 0; i < num; i++) { \
const VkQueueFlagBits flags = qs[i].queueFlags; \
if (expr) { \
out = i; \
break; \
} \
}
SEARCH_FLAGS(flags & VK_QUEUE_GRAPHICS_BIT, graph_index)
SEARCH_FLAGS((flags & VK_QUEUE_COMPUTE_BIT) && (i != graph_index),
comp_index)
SEARCH_FLAGS((flags & VK_QUEUE_TRANSFER_BIT) && (i != graph_index) &&
(i != comp_index), tx_index)
#undef SEARCH_FLAGS
#define QF_FLAGS(flags) \
((flags) & VK_QUEUE_GRAPHICS_BIT ) ? "(graphics) " : "", \
((flags) & VK_QUEUE_COMPUTE_BIT ) ? "(compute) " : "", \
((flags) & VK_QUEUE_TRANSFER_BIT ) ? "(transfer) " : "", \
((flags) & VK_QUEUE_SPARSE_BINDING_BIT) ? "(sparse) " : ""
av_log(ctx, AV_LOG_VERBOSE, "Using queue family %i for graphics, "
"flags: %s%s%s%s\n", graph_index, QF_FLAGS(qs[graph_index].queueFlags));
hwctx->queue_family_index = graph_index;
hwctx->queue_family_tx_index = graph_index;
hwctx->queue_family_comp_index = graph_index;
pc[cd->queueCreateInfoCount++].queueFamilyIndex = graph_index;
if (comp_index != -1) {
av_log(ctx, AV_LOG_VERBOSE, "Using queue family %i for compute, "
"flags: %s%s%s%s\n", comp_index, QF_FLAGS(qs[comp_index].queueFlags));
hwctx->queue_family_tx_index = comp_index;
hwctx->queue_family_comp_index = comp_index;
pc[cd->queueCreateInfoCount++].queueFamilyIndex = comp_index;
}
if (tx_index != -1) {
av_log(ctx, AV_LOG_VERBOSE, "Using queue family %i for transfers, "
"flags: %s%s%s%s\n", tx_index, QF_FLAGS(qs[tx_index].queueFlags));
hwctx->queue_family_tx_index = tx_index;
pc[cd->queueCreateInfoCount++].queueFamilyIndex = tx_index;
}
#undef QF_FLAGS
av_free(qs);
return 0;
}
static int create_exec_ctx(AVHWDeviceContext *ctx, VulkanExecCtx *cmd,
int queue_family_index)
{
VkResult ret;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VkCommandPoolCreateInfo cqueue_create = {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
.queueFamilyIndex = queue_family_index,
};
VkCommandBufferAllocateInfo cbuf_create = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
};
VkFenceCreateInfo fence_spawn = {
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
};
ret = vkCreateFence(hwctx->act_dev, &fence_spawn,
hwctx->alloc, &cmd->fence);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to create frame fence: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
ret = vkCreateCommandPool(hwctx->act_dev, &cqueue_create,
hwctx->alloc, &cmd->pool);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Command pool creation failure: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
cbuf_create.commandPool = cmd->pool;
ret = vkAllocateCommandBuffers(hwctx->act_dev, &cbuf_create, &cmd->buf);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Command buffer alloc failure: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
vkGetDeviceQueue(hwctx->act_dev, cqueue_create.queueFamilyIndex, 0,
&cmd->queue);
return 0;
}
static void free_exec_ctx(AVHWDeviceContext *ctx, VulkanExecCtx *cmd)
{
AVVulkanDeviceContext *hwctx = ctx->hwctx;
if (cmd->fence)
vkDestroyFence(hwctx->act_dev, cmd->fence, hwctx->alloc);
if (cmd->buf)
vkFreeCommandBuffers(hwctx->act_dev, cmd->pool, 1, &cmd->buf);
if (cmd->pool)
vkDestroyCommandPool(hwctx->act_dev, cmd->pool, hwctx->alloc);
}
static void vulkan_device_free(AVHWDeviceContext *ctx)
{
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
free_exec_ctx(ctx, &p->cmd);
vkDestroyDevice(hwctx->act_dev, hwctx->alloc);
if (p->debug_ctx) {
VK_LOAD_PFN(hwctx->inst, vkDestroyDebugUtilsMessengerEXT);
pfn_vkDestroyDebugUtilsMessengerEXT(hwctx->inst, p->debug_ctx,
hwctx->alloc);
}
vkDestroyInstance(hwctx->inst, hwctx->alloc);
}
static int vulkan_device_create_internal(AVHWDeviceContext *ctx,
VulkanDeviceSelection *dev_select,
AVDictionary *opts, int flags)
{
int err = 0;
VkResult ret;
AVDictionaryEntry *opt_d;
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VkDeviceQueueCreateInfo queue_create_info[3] = {
{ .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
.pQueuePriorities = (float []){ 1.0f },
.queueCount = 1, },
{ .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
.pQueuePriorities = (float []){ 1.0f },
.queueCount = 1, },
{ .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
.pQueuePriorities = (float []){ 1.0f },
.queueCount = 1, },
};
VkDeviceCreateInfo dev_info = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.pQueueCreateInfos = queue_create_info,
.queueCreateInfoCount = 0,
};
ctx->free = vulkan_device_free;
/* Create an instance if not given one */
if ((err = create_instance(ctx, opts)))
goto end;
/* Find a device (if not given one) */
if ((err = find_device(ctx, dev_select)))
goto end;
vkGetPhysicalDeviceProperties(hwctx->phys_dev, &p->props);
av_log(ctx, AV_LOG_VERBOSE, "Using device: %s\n", p->props.deviceName);
av_log(ctx, AV_LOG_VERBOSE, "Alignments:\n");
av_log(ctx, AV_LOG_VERBOSE, " optimalBufferCopyOffsetAlignment: %li\n",
p->props.limits.optimalBufferCopyOffsetAlignment);
av_log(ctx, AV_LOG_VERBOSE, " optimalBufferCopyRowPitchAlignment: %li\n",
p->props.limits.optimalBufferCopyRowPitchAlignment);
av_log(ctx, AV_LOG_VERBOSE, " minMemoryMapAlignment: %li\n",
p->props.limits.minMemoryMapAlignment);
/* Search queue family */
if ((err = search_queue_families(ctx, &dev_info)))
goto end;
if ((err = check_extensions(ctx, 1, &dev_info.ppEnabledExtensionNames,
&dev_info.enabledExtensionCount, 0)))
goto end;
ret = vkCreateDevice(hwctx->phys_dev, &dev_info, hwctx->alloc,
&hwctx->act_dev);
av_free((void *)dev_info.ppEnabledExtensionNames);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Device creation failure: %s\n",
vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto end;
}
/* Tiled images setting, use them by default */
opt_d = av_dict_get(opts, "linear_images", NULL, 0);
if (opt_d)
p->use_linear_images = strtol(opt_d->value, NULL, 10);
end:
return err;
}
static int vulkan_device_init(AVHWDeviceContext *ctx)
{
int err;
uint32_t queue_num;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *p = ctx->internal->priv;
vkGetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &queue_num, NULL);
if (!queue_num) {
av_log(ctx, AV_LOG_ERROR, "Failed to get queues!\n");
return AVERROR_EXTERNAL;
}
#define CHECK_QUEUE(type, n) \
if (n >= queue_num) { \
av_log(ctx, AV_LOG_ERROR, "Invalid %s queue index %i (device has %i queues)!\n", \
type, n, queue_num); \
return AVERROR(EINVAL); \
}
CHECK_QUEUE("graphics", hwctx->queue_family_index)
CHECK_QUEUE("upload", hwctx->queue_family_tx_index)
CHECK_QUEUE("compute", hwctx->queue_family_comp_index)
#undef CHECK_QUEUE
/* Create exec context - if there's something invalid this will error out */
err = create_exec_ctx(ctx, &p->cmd, hwctx->queue_family_tx_index);
if (err)
return err;
/* Get device capabilities */
vkGetPhysicalDeviceMemoryProperties(hwctx->phys_dev, &p->mprops);
return 0;
}
static int vulkan_device_create(AVHWDeviceContext *ctx, const char *device,
AVDictionary *opts, int flags)
{
VulkanDeviceSelection dev_select = { 0 };
if (device && device[0]) {
char *end = NULL;
dev_select.index = strtol(device, &end, 10);
if (end == device) {
dev_select.index = 0;
dev_select.name = device;
}
}
return vulkan_device_create_internal(ctx, &dev_select, opts, flags);
}
static int vulkan_device_derive(AVHWDeviceContext *ctx,
AVHWDeviceContext *src_ctx, int flags)
{
av_unused VulkanDeviceSelection dev_select = { 0 };
/* If there's only one device on the system, then even if its not covered
* by the following checks (e.g. non-PCIe ARM GPU), having an empty
* dev_select will mean it'll get picked. */
switch(src_ctx->type) {
#if CONFIG_LIBDRM
#if CONFIG_VAAPI
case AV_HWDEVICE_TYPE_VAAPI: {
AVVAAPIDeviceContext *src_hwctx = src_ctx->hwctx;
const char *vendor = vaQueryVendorString(src_hwctx->display);
if (!vendor) {
av_log(ctx, AV_LOG_ERROR, "Unable to get device info from VAAPI!\n");
return AVERROR_EXTERNAL;
}
if (strstr(vendor, "Intel"))
dev_select.vendor_id = 0x8086;
if (strstr(vendor, "AMD"))
dev_select.vendor_id = 0x1002;
return vulkan_device_create_internal(ctx, &dev_select, NULL, flags);
}
#endif
case AV_HWDEVICE_TYPE_DRM: {
AVDRMDeviceContext *src_hwctx = src_ctx->hwctx;
drmDevice *drm_dev_info;
int err = drmGetDevice(src_hwctx->fd, &drm_dev_info);
if (err) {
av_log(ctx, AV_LOG_ERROR, "Unable to get device info from DRM fd!\n");
return AVERROR_EXTERNAL;
}
if (drm_dev_info->bustype == DRM_BUS_PCI)
dev_select.pci_device = drm_dev_info->deviceinfo.pci->device_id;
drmFreeDevice(&drm_dev_info);
return vulkan_device_create_internal(ctx, &dev_select, NULL, flags);
}
#endif
#if CONFIG_CUDA
case AV_HWDEVICE_TYPE_CUDA: {
AVHWDeviceContext *cuda_cu = src_ctx;
AVCUDADeviceContext *src_hwctx = src_ctx->hwctx;
AVCUDADeviceContextInternal *cu_internal = src_hwctx->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
int ret = CHECK_CU(cu->cuDeviceGetUuid((CUuuid *)&dev_select.uuid,
cu_internal->cuda_device));
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR, "Unable to get UUID from CUDA!\n");
return AVERROR_EXTERNAL;
}
dev_select.has_uuid = 1;
return vulkan_device_create_internal(ctx, &dev_select, NULL, flags);
}
#endif
default:
return AVERROR(ENOSYS);
}
}
static int vulkan_frames_get_constraints(AVHWDeviceContext *ctx,
const void *hwconfig,
AVHWFramesConstraints *constraints)
{
int count = 0;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *p = ctx->internal->priv;
for (enum AVPixelFormat i = 0; i < AV_PIX_FMT_NB; i++)
count += pixfmt_is_supported(hwctx, i, p->use_linear_images);
#if CONFIG_CUDA
if (p->dev_is_nvidia)
count++;
#endif
constraints->valid_sw_formats = av_malloc_array(count + 1,
sizeof(enum AVPixelFormat));
if (!constraints->valid_sw_formats)
return AVERROR(ENOMEM);
count = 0;
for (enum AVPixelFormat i = 0; i < AV_PIX_FMT_NB; i++)
if (pixfmt_is_supported(hwctx, i, p->use_linear_images))
constraints->valid_sw_formats[count++] = i;
#if CONFIG_CUDA
if (p->dev_is_nvidia)
constraints->valid_sw_formats[count++] = AV_PIX_FMT_CUDA;
#endif
constraints->valid_sw_formats[count++] = AV_PIX_FMT_NONE;
constraints->min_width = 0;
constraints->min_height = 0;
constraints->max_width = p->props.limits.maxImageDimension2D;
constraints->max_height = p->props.limits.maxImageDimension2D;
constraints->valid_hw_formats = av_malloc_array(2, sizeof(enum AVPixelFormat));
if (!constraints->valid_hw_formats)
return AVERROR(ENOMEM);
constraints->valid_hw_formats[0] = AV_PIX_FMT_VULKAN;
constraints->valid_hw_formats[1] = AV_PIX_FMT_NONE;
return 0;
}
static int alloc_mem(AVHWDeviceContext *ctx, VkMemoryRequirements *req,
VkMemoryPropertyFlagBits req_flags, void *alloc_extension,
VkMemoryPropertyFlagBits *mem_flags, VkDeviceMemory *mem)
{
VkResult ret;
int index = -1;
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *dev_hwctx = ctx->hwctx;
VkMemoryAllocateInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.pNext = alloc_extension,
};
/* Align if we need to */
if (req_flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
req->size = FFALIGN(req->size, p->props.limits.minMemoryMapAlignment);
alloc_info.allocationSize = req->size;
/* The vulkan spec requires memory types to be sorted in the "optimal"
* order, so the first matching type we find will be the best/fastest one */
for (int i = 0; i < p->mprops.memoryTypeCount; i++) {
/* The memory type must be supported by the requirements (bitfield) */
if (!(req->memoryTypeBits & (1 << i)))
continue;
/* The memory type flags must include our properties */
if ((p->mprops.memoryTypes[i].propertyFlags & req_flags) != req_flags)
continue;
/* Found a suitable memory type */
index = i;
break;
}
if (index < 0) {
av_log(ctx, AV_LOG_ERROR, "No memory type found for flags 0x%x\n",
req_flags);
return AVERROR(EINVAL);
}
alloc_info.memoryTypeIndex = index;
ret = vkAllocateMemory(dev_hwctx->act_dev, &alloc_info,
dev_hwctx->alloc, mem);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory: %s\n",
vk_ret2str(ret));
return AVERROR(ENOMEM);
}
*mem_flags |= p->mprops.memoryTypes[index].propertyFlags;
return 0;
}
static void vulkan_free_internal(AVVkFrameInternal *internal)
{
if (!internal)
return;
#if CONFIG_CUDA
if (internal->cuda_fc_ref) {
AVHWFramesContext *cuda_fc = (AVHWFramesContext *)internal->cuda_fc_ref->data;
int planes = av_pix_fmt_count_planes(cuda_fc->sw_format);
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
if (internal->cu_sem)
CHECK_CU(cu->cuDestroyExternalSemaphore(internal->cu_sem));
for (int i = 0; i < planes; i++) {
if (internal->cu_mma[i])
CHECK_CU(cu->cuMipmappedArrayDestroy(internal->cu_mma[i]));
if (internal->ext_mem[i])
CHECK_CU(cu->cuDestroyExternalMemory(internal->ext_mem[i]));
}
av_buffer_unref(&internal->cuda_fc_ref);
}
#endif
av_free(internal);
}
static void vulkan_frame_free(void *opaque, uint8_t *data)
{
AVVkFrame *f = (AVVkFrame *)data;
AVHWFramesContext *hwfc = opaque;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
int planes = av_pix_fmt_count_planes(hwfc->sw_format);
vulkan_free_internal(f->internal);
for (int i = 0; i < planes; i++) {
vkDestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc);
vkFreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc);
}
vkDestroySemaphore(hwctx->act_dev, f->sem, hwctx->alloc);
av_free(f);
}
static int alloc_bind_mem(AVHWFramesContext *hwfc, AVVkFrame *f,
void *alloc_pnext, size_t alloc_pnext_stride)
{
int err;
VkResult ret;
AVHWDeviceContext *ctx = hwfc->device_ctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
VkBindImageMemoryInfo bind_info[AV_NUM_DATA_POINTERS] = { { 0 } };
AVVulkanDeviceContext *hwctx = ctx->hwctx;
for (int i = 0; i < planes; i++) {
int use_ded_mem;
VkImageMemoryRequirementsInfo2 req_desc = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
.image = f->img[i],
};
VkMemoryDedicatedAllocateInfo ded_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO,
.pNext = (void *)(((uint8_t *)alloc_pnext) + i*alloc_pnext_stride),
};
VkMemoryDedicatedRequirements ded_req = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS,
};
VkMemoryRequirements2 req = {
.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
.pNext = &ded_req,
};
vkGetImageMemoryRequirements2(hwctx->act_dev, &req_desc, &req);
/* In case the implementation prefers/requires dedicated allocation */
use_ded_mem = ded_req.prefersDedicatedAllocation |
ded_req.requiresDedicatedAllocation;
if (use_ded_mem)
ded_alloc.image = f->img[i];
/* Allocate memory */
if ((err = alloc_mem(ctx, &req.memoryRequirements,
f->tiling == VK_IMAGE_TILING_LINEAR ?
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT :
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
use_ded_mem ? &ded_alloc : (void *)ded_alloc.pNext,
&f->flags, &f->mem[i])))
return err;
f->size[i] = req.memoryRequirements.size;
bind_info[i].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
bind_info[i].image = f->img[i];
bind_info[i].memory = f->mem[i];
}
/* Bind the allocated memory to the images */
ret = vkBindImageMemory2(hwctx->act_dev, planes, bind_info);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to bind memory: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
return 0;
}
enum PrepMode {
PREP_MODE_WRITE,
PREP_MODE_RO_SHADER,
};
static int prepare_frame(AVHWFramesContext *hwfc, VulkanExecCtx *ectx,
AVVkFrame *frame, enum PrepMode pmode)
{
VkResult ret;
VkImageLayout new_layout;
VkAccessFlags new_access;
AVHWDeviceContext *ctx = hwfc->device_ctx;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
VkImageMemoryBarrier img_bar[AV_NUM_DATA_POINTERS] = { 0 };
VkCommandBufferBeginInfo cmd_start = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
VkSubmitInfo s_info = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &ectx->buf,
.pSignalSemaphores = &frame->sem,
.signalSemaphoreCount = 1,
};
switch (pmode) {
case PREP_MODE_WRITE:
new_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
new_access = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case PREP_MODE_RO_SHADER:
new_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
new_access = VK_ACCESS_TRANSFER_READ_BIT;
break;
}
ret = vkBeginCommandBuffer(ectx->buf, &cmd_start);
if (ret != VK_SUCCESS)
return AVERROR_EXTERNAL;
/* Change the image layout to something more optimal for writes.
* This also signals the newly created semaphore, making it usable
* for synchronization */
for (int i = 0; i < planes; i++) {
img_bar[i].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
img_bar[i].srcAccessMask = 0x0;
img_bar[i].dstAccessMask = new_access;
img_bar[i].oldLayout = frame->layout[i];
img_bar[i].newLayout = new_layout;
img_bar[i].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_bar[i].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_bar[i].image = frame->img[i];
img_bar[i].subresourceRange.levelCount = 1;
img_bar[i].subresourceRange.layerCount = 1;
img_bar[i].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
frame->layout[i] = img_bar[i].newLayout;
frame->access[i] = img_bar[i].dstAccessMask;
}
vkCmdPipelineBarrier(ectx->buf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
0, NULL, 0, NULL, planes, img_bar);
ret = vkEndCommandBuffer(ectx->buf);
if (ret != VK_SUCCESS)
return AVERROR_EXTERNAL;
ret = vkQueueSubmit(ectx->queue, 1, &s_info, ectx->fence);
if (ret != VK_SUCCESS) {
return AVERROR_EXTERNAL;
} else {
vkWaitForFences(hwctx->act_dev, 1, &ectx->fence, VK_TRUE, UINT64_MAX);
vkResetFences(hwctx->act_dev, 1, &ectx->fence);
}
return 0;
}
static int create_frame(AVHWFramesContext *hwfc, AVVkFrame **frame,
VkImageTiling tiling, VkImageUsageFlagBits usage,
void *create_pnext)
{
int err;
VkResult ret;
AVHWDeviceContext *ctx = hwfc->device_ctx;
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
enum AVPixelFormat format = hwfc->sw_format;
const VkFormat *img_fmts = av_vkfmt_from_pixfmt(format);
const int planes = av_pix_fmt_count_planes(format);
VkExportSemaphoreCreateInfo ext_sem_info = {
.sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO,
.handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT,
};
VkSemaphoreCreateInfo sem_spawn = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
.pNext = p->extensions & EXT_EXTERNAL_FD_SEM ? &ext_sem_info : NULL,
};
AVVkFrame *f = av_vk_frame_alloc();
if (!f) {
av_log(ctx, AV_LOG_ERROR, "Unable to allocate memory for AVVkFrame!\n");
return AVERROR(ENOMEM);
}
/* Create the images */
for (int i = 0; i < planes; i++) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
int w = hwfc->width;
int h = hwfc->height;
const int p_w = i > 0 ? AV_CEIL_RSHIFT(w, desc->log2_chroma_w) : w;
const int p_h = i > 0 ? AV_CEIL_RSHIFT(h, desc->log2_chroma_h) : h;
VkImageCreateInfo image_create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = create_pnext,
.imageType = VK_IMAGE_TYPE_2D,
.format = img_fmts[i],
.extent.width = p_w,
.extent.height = p_h,
.extent.depth = 1,
.mipLevels = 1,
.arrayLayers = 1,
.flags = VK_IMAGE_CREATE_ALIAS_BIT,
.tiling = tiling,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.usage = usage,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.samples = VK_SAMPLE_COUNT_1_BIT,
};
ret = vkCreateImage(hwctx->act_dev, &image_create_info,
hwctx->alloc, &f->img[i]);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Image creation failure: %s\n",
vk_ret2str(ret));
err = AVERROR(EINVAL);
goto fail;
}
f->layout[i] = image_create_info.initialLayout;
f->access[i] = 0x0;
}
/* Create semaphore */
ret = vkCreateSemaphore(hwctx->act_dev, &sem_spawn,
hwctx->alloc, &f->sem);
if (ret != VK_SUCCESS) {
av_log(hwctx, AV_LOG_ERROR, "Failed to create semaphore: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
f->flags = 0x0;
f->tiling = tiling;
*frame = f;
return 0;
fail:
vulkan_frame_free(hwfc, (uint8_t *)f);
return err;
}
/* Checks if an export flag is enabled, and if it is ORs it with *iexp */
static void try_export_flags(AVHWFramesContext *hwfc,
VkExternalMemoryHandleTypeFlags *comp_handle_types,
VkExternalMemoryHandleTypeFlagBits *iexp,
VkExternalMemoryHandleTypeFlagBits exp)
{
VkResult ret;
AVVulkanFramesContext *hwctx = hwfc->hwctx;
AVVulkanDeviceContext *dev_hwctx = hwfc->device_ctx->hwctx;
VkExternalImageFormatProperties eprops = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR,
};
VkImageFormatProperties2 props = {
.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2,
.pNext = &eprops,
};
VkPhysicalDeviceExternalImageFormatInfo enext = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO,
.handleType = exp,
};
VkPhysicalDeviceImageFormatInfo2 pinfo = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2,
.pNext = !exp ? NULL : &enext,
.format = av_vkfmt_from_pixfmt(hwfc->sw_format)[0],
.type = VK_IMAGE_TYPE_2D,
.tiling = hwctx->tiling,
.usage = hwctx->usage,
.flags = VK_IMAGE_CREATE_ALIAS_BIT,
};
ret = vkGetPhysicalDeviceImageFormatProperties2(dev_hwctx->phys_dev,
&pinfo, &props);
if (ret == VK_SUCCESS) {
*iexp |= exp;
*comp_handle_types |= eprops.externalMemoryProperties.compatibleHandleTypes;
}
}
static AVBufferRef *vulkan_pool_alloc(void *opaque, int size)
{
int err;
AVVkFrame *f;
AVBufferRef *avbuf = NULL;
AVHWFramesContext *hwfc = opaque;
AVVulkanFramesContext *hwctx = hwfc->hwctx;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
VkExportMemoryAllocateInfo eminfo[AV_NUM_DATA_POINTERS];
VkExternalMemoryHandleTypeFlags e = 0x0;
VkExternalMemoryImageCreateInfo eiinfo = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO,
.pNext = hwctx->create_pnext,
};
if (p->extensions & EXT_EXTERNAL_FD_MEMORY)
try_export_flags(hwfc, &eiinfo.handleTypes, &e,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT);
if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY)
try_export_flags(hwfc, &eiinfo.handleTypes, &e,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
for (int i = 0; i < av_pix_fmt_count_planes(hwfc->sw_format); i++) {
eminfo[i].sType = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO;
eminfo[i].pNext = hwctx->alloc_pnext[i];
eminfo[i].handleTypes = e;
}
err = create_frame(hwfc, &f, hwctx->tiling, hwctx->usage,
eiinfo.handleTypes ? &eiinfo : NULL);
if (err)
return NULL;
err = alloc_bind_mem(hwfc, f, eminfo, sizeof(*eminfo));
if (err)
goto fail;
err = prepare_frame(hwfc, &p->cmd, f, PREP_MODE_WRITE);
if (err)
goto fail;
avbuf = av_buffer_create((uint8_t *)f, sizeof(AVVkFrame),
vulkan_frame_free, hwfc, 0);
if (!avbuf)
goto fail;
return avbuf;
fail:
vulkan_frame_free(hwfc, (uint8_t *)f);
return NULL;
}
static void vulkan_frames_uninit(AVHWFramesContext *hwfc)
{
VulkanFramesPriv *fp = hwfc->internal->priv;
free_exec_ctx(hwfc->device_ctx, &fp->cmd);
}
static int vulkan_frames_init(AVHWFramesContext *hwfc)
{
int err;
AVVkFrame *f;
AVVulkanFramesContext *hwctx = hwfc->hwctx;
VulkanFramesPriv *fp = hwfc->internal->priv;
AVVulkanDeviceContext *dev_hwctx = hwfc->device_ctx->hwctx;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
if (hwfc->pool)
return 0;
/* Default pool flags */
hwctx->tiling = hwctx->tiling ? hwctx->tiling : p->use_linear_images ?
VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
hwctx->usage |= DEFAULT_USAGE_FLAGS;
err = create_exec_ctx(hwfc->device_ctx, &fp->cmd,
dev_hwctx->queue_family_tx_index);
if (err)
return err;
/* Test to see if allocation will fail */
err = create_frame(hwfc, &f, hwctx->tiling, hwctx->usage,
hwctx->create_pnext);
if (err) {
free_exec_ctx(hwfc->device_ctx, &p->cmd);
return err;
}
vulkan_frame_free(hwfc, (uint8_t *)f);
hwfc->internal->pool_internal = av_buffer_pool_init2(sizeof(AVVkFrame),
hwfc, vulkan_pool_alloc,
NULL);
if (!hwfc->internal->pool_internal) {
free_exec_ctx(hwfc->device_ctx, &p->cmd);
return AVERROR(ENOMEM);
}
return 0;
}
static int vulkan_get_buffer(AVHWFramesContext *hwfc, AVFrame *frame)
{
frame->buf[0] = av_buffer_pool_get(hwfc->pool);
if (!frame->buf[0])
return AVERROR(ENOMEM);
frame->data[0] = frame->buf[0]->data;
frame->format = AV_PIX_FMT_VULKAN;
frame->width = hwfc->width;
frame->height = hwfc->height;
return 0;
}
static int vulkan_transfer_get_formats(AVHWFramesContext *hwfc,
enum AVHWFrameTransferDirection dir,
enum AVPixelFormat **formats)
{
enum AVPixelFormat *fmts = av_malloc_array(2, sizeof(*fmts));
if (!fmts)
return AVERROR(ENOMEM);
fmts[0] = hwfc->sw_format;
fmts[1] = AV_PIX_FMT_NONE;
*formats = fmts;
return 0;
}
typedef struct VulkanMapping {
AVVkFrame *frame;
int flags;
} VulkanMapping;
static void vulkan_unmap_frame(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap)
{
VulkanMapping *map = hwmap->priv;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
/* Check if buffer needs flushing */
if ((map->flags & AV_HWFRAME_MAP_WRITE) &&
!(map->frame->flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) {
VkResult ret;
VkMappedMemoryRange flush_ranges[AV_NUM_DATA_POINTERS] = { { 0 } };
for (int i = 0; i < planes; i++) {
flush_ranges[i].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
flush_ranges[i].memory = map->frame->mem[i];
flush_ranges[i].size = VK_WHOLE_SIZE;
}
ret = vkFlushMappedMemoryRanges(hwctx->act_dev, planes,
flush_ranges);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to flush memory: %s\n",
vk_ret2str(ret));
}
}
for (int i = 0; i < planes; i++)
vkUnmapMemory(hwctx->act_dev, map->frame->mem[i]);
av_free(map);
}
static int vulkan_map_frame_to_mem(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
VkResult ret;
int err, mapped_mem_count = 0;
AVVkFrame *f = (AVVkFrame *)src->data[0];
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
VulkanMapping *map = av_mallocz(sizeof(VulkanMapping));
if (!map)
return AVERROR(EINVAL);
if (src->format != AV_PIX_FMT_VULKAN) {
av_log(hwfc, AV_LOG_ERROR, "Cannot map from pixel format %s!\n",
av_get_pix_fmt_name(src->format));
err = AVERROR(EINVAL);
goto fail;
}
if (!(f->flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) ||
!(f->tiling == VK_IMAGE_TILING_LINEAR)) {
av_log(hwfc, AV_LOG_ERROR, "Unable to map frame, not host visible "
"and linear!\n");
err = AVERROR(EINVAL);
goto fail;
}
dst->width = src->width;
dst->height = src->height;
for (int i = 0; i < planes; i++) {
ret = vkMapMemory(hwctx->act_dev, f->mem[i], 0,
VK_WHOLE_SIZE, 0, (void **)&dst->data[i]);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to map image memory: %s\n",
vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
mapped_mem_count++;
}
/* Check if the memory contents matter */
if (((flags & AV_HWFRAME_MAP_READ) || !(flags & AV_HWFRAME_MAP_OVERWRITE)) &&
!(f->flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) {
VkMappedMemoryRange map_mem_ranges[AV_NUM_DATA_POINTERS] = { { 0 } };
for (int i = 0; i < planes; i++) {
map_mem_ranges[i].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
map_mem_ranges[i].size = VK_WHOLE_SIZE;
map_mem_ranges[i].memory = f->mem[i];
}
ret = vkInvalidateMappedMemoryRanges(hwctx->act_dev, planes,
map_mem_ranges);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to invalidate memory: %s\n",
vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
}
for (int i = 0; i < planes; i++) {
VkImageSubresource sub = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
};
VkSubresourceLayout layout;
vkGetImageSubresourceLayout(hwctx->act_dev, f->img[i], &sub, &layout);
dst->linesize[i] = layout.rowPitch;
}
map->frame = f;
map->flags = flags;
err = ff_hwframe_map_create(src->hw_frames_ctx, dst, src,
&vulkan_unmap_frame, map);
if (err < 0)
goto fail;
return 0;
fail:
for (int i = 0; i < mapped_mem_count; i++)
vkUnmapMemory(hwctx->act_dev, f->mem[i]);
av_free(map);
return err;
}
#if CONFIG_LIBDRM
static void vulkan_unmap_from(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap)
{
VulkanMapping *map = hwmap->priv;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
for (int i = 0; i < planes; i++) {
vkDestroyImage(hwctx->act_dev, map->frame->img[i], hwctx->alloc);
vkFreeMemory(hwctx->act_dev, map->frame->mem[i], hwctx->alloc);
}
vkDestroySemaphore(hwctx->act_dev, map->frame->sem, hwctx->alloc);
av_freep(&map->frame);
}
static const struct {
uint32_t drm_fourcc;
VkFormat vk_format;
} vulkan_drm_format_map[] = {
{ DRM_FORMAT_R8, VK_FORMAT_R8_UNORM },
{ DRM_FORMAT_R16, VK_FORMAT_R16_UNORM },
{ DRM_FORMAT_GR88, VK_FORMAT_R8G8_UNORM },
{ DRM_FORMAT_RG88, VK_FORMAT_R8G8_UNORM },
{ DRM_FORMAT_GR1616, VK_FORMAT_R16G16_UNORM },
{ DRM_FORMAT_RG1616, VK_FORMAT_R16G16_UNORM },
{ DRM_FORMAT_ARGB8888, VK_FORMAT_B8G8R8A8_UNORM },
{ DRM_FORMAT_XRGB8888, VK_FORMAT_B8G8R8A8_UNORM },
{ DRM_FORMAT_ABGR8888, VK_FORMAT_R8G8B8A8_UNORM },
{ DRM_FORMAT_XBGR8888, VK_FORMAT_R8G8B8A8_UNORM },
};
static inline VkFormat drm_to_vulkan_fmt(uint32_t drm_fourcc)
{
for (int i = 0; i < FF_ARRAY_ELEMS(vulkan_drm_format_map); i++)
if (vulkan_drm_format_map[i].drm_fourcc == drm_fourcc)
return vulkan_drm_format_map[i].vk_format;
return VK_FORMAT_UNDEFINED;
}
static int vulkan_map_from_drm_frame_desc(AVHWFramesContext *hwfc, AVVkFrame **frame,
AVDRMFrameDescriptor *desc)
{
int err = 0;
VkResult ret;
AVVkFrame *f;
int bind_counts = 0;
AVHWDeviceContext *ctx = hwfc->device_ctx;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *p = ctx->internal->priv;
const AVPixFmtDescriptor *fmt_desc = av_pix_fmt_desc_get(hwfc->sw_format);
const int has_modifiers = p->extensions & EXT_DRM_MODIFIER_FLAGS;
VkSubresourceLayout plane_data[AV_NUM_DATA_POINTERS] = { 0 };
VkBindImageMemoryInfo bind_info[AV_NUM_DATA_POINTERS] = { 0 };
VkBindImagePlaneMemoryInfo plane_info[AV_NUM_DATA_POINTERS] = { 0 };
VkExternalMemoryHandleTypeFlagBits htype = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT;
VkSemaphoreCreateInfo sem_spawn = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
};
VK_LOAD_PFN(hwctx->inst, vkGetMemoryFdPropertiesKHR);
for (int i = 0; i < desc->nb_layers; i++) {
if (drm_to_vulkan_fmt(desc->layers[i].format) == VK_FORMAT_UNDEFINED) {
av_log(ctx, AV_LOG_ERROR, "Unsupported DMABUF layer format %#08x!\n",
desc->layers[i].format);
return AVERROR(EINVAL);
}
}
if (!(f = av_vk_frame_alloc())) {
av_log(ctx, AV_LOG_ERROR, "Unable to allocate memory for AVVkFrame!\n");
err = AVERROR(ENOMEM);
goto fail;
}
for (int i = 0; i < desc->nb_objects; i++) {
VkMemoryFdPropertiesKHR fdmp = {
.sType = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR,
};
VkMemoryRequirements req = {
.size = desc->objects[i].size,
};
VkImportMemoryFdInfoKHR idesc = {
.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR,
.handleType = htype,
.fd = dup(desc->objects[i].fd),
};
ret = pfn_vkGetMemoryFdPropertiesKHR(hwctx->act_dev, htype,
idesc.fd, &fdmp);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to get FD properties: %s\n",
vk_ret2str(ret));
err = AVERROR_EXTERNAL;
close(idesc.fd);
goto fail;
}
req.memoryTypeBits = fdmp.memoryTypeBits;
err = alloc_mem(ctx, &req, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&idesc, &f->flags, &f->mem[i]);
if (err) {
close(idesc.fd);
return err;
}
f->size[i] = desc->objects[i].size;
}
f->tiling = has_modifiers ? VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT :
desc->objects[0].format_modifier == DRM_FORMAT_MOD_LINEAR ?
VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
for (int i = 0; i < desc->nb_layers; i++) {
const int planes = desc->layers[i].nb_planes;
const int signal_p = has_modifiers && (planes > 1);
VkImageDrmFormatModifierExplicitCreateInfoEXT drm_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT,
.drmFormatModifier = desc->objects[0].format_modifier,
.drmFormatModifierPlaneCount = planes,
.pPlaneLayouts = (const VkSubresourceLayout *)&plane_data,
};
VkExternalMemoryImageCreateInfo einfo = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO,
.pNext = has_modifiers ? &drm_info : NULL,
.handleTypes = htype,
};
const int p_w = i > 0 ? AV_CEIL_RSHIFT(hwfc->width, fmt_desc->log2_chroma_w) : hwfc->width;
const int p_h = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, fmt_desc->log2_chroma_h) : hwfc->height;
VkImageCreateInfo image_create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = &einfo,
.imageType = VK_IMAGE_TYPE_2D,
.format = drm_to_vulkan_fmt(desc->layers[i].format),
.extent.width = p_w,
.extent.height = p_h,
.extent.depth = 1,
.mipLevels = 1,
.arrayLayers = 1,
.flags = VK_IMAGE_CREATE_ALIAS_BIT |
(signal_p ? VK_IMAGE_CREATE_DISJOINT_BIT : 0x0),
.tiling = f->tiling,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, /* specs say so */
.usage = DEFAULT_USAGE_FLAGS,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.samples = VK_SAMPLE_COUNT_1_BIT,
};
for (int j = 0; j < planes; j++) {
plane_data[j].offset = desc->layers[i].planes[j].offset;
plane_data[j].rowPitch = desc->layers[i].planes[j].pitch;
plane_data[j].size = 0; /* The specs say so for all 3 */
plane_data[j].arrayPitch = 0;
plane_data[j].depthPitch = 0;
}
/* Create image */
ret = vkCreateImage(hwctx->act_dev, &image_create_info,
hwctx->alloc, &f->img[i]);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Image creation failure: %s\n",
vk_ret2str(ret));
err = AVERROR(EINVAL);
goto fail;
}
f->layout[i] = image_create_info.initialLayout;
f->access[i] = 0x0;
for (int j = 0; j < planes; j++) {
VkImageAspectFlagBits aspect = j == 0 ? VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT :
j == 1 ? VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT :
VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT;
plane_info[bind_counts].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO;
plane_info[bind_counts].planeAspect = aspect;
bind_info[bind_counts].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
bind_info[bind_counts].pNext = signal_p ? &plane_info[bind_counts] : NULL;
bind_info[bind_counts].image = f->img[i];
bind_info[bind_counts].memory = f->mem[desc->layers[i].planes[j].object_index];
bind_info[bind_counts].memoryOffset = desc->layers[i].planes[j].offset;
bind_counts++;
}
}
ret = vkCreateSemaphore(hwctx->act_dev, &sem_spawn,
hwctx->alloc, &f->sem);
if (ret != VK_SUCCESS) {
av_log(hwctx, AV_LOG_ERROR, "Failed to create semaphore: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
/* We'd import a semaphore onto the one we created using
* vkImportSemaphoreFdKHR but unfortunately neither DRM nor VAAPI
* offer us anything we could import and sync with, so instead
* just signal the semaphore we created. */
/* Bind the allocated memory to the images */
ret = vkBindImageMemory2(hwctx->act_dev, bind_counts, bind_info);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to bind memory: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
/* NOTE: This is completely uneccesary and unneeded once we can import
* semaphores from DRM. Otherwise we have to activate the semaphores.
* We're reusing the exec context that's also used for uploads/downloads. */
err = prepare_frame(hwfc, &p->cmd, f, PREP_MODE_RO_SHADER);
if (err)
goto fail;
*frame = f;
return 0;
fail:
for (int i = 0; i < desc->nb_layers; i++)
vkDestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc);
for (int i = 0; i < desc->nb_objects; i++)
vkFreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc);
vkDestroySemaphore(hwctx->act_dev, f->sem, hwctx->alloc);
av_free(f);
return err;
}
static int vulkan_map_from_drm(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
int err = 0;
AVVkFrame *f;
VulkanMapping *map = NULL;
err = vulkan_map_from_drm_frame_desc(hwfc, &f,
(AVDRMFrameDescriptor *)src->data[0]);
if (err)
return err;
/* The unmapping function will free this */
dst->data[0] = (uint8_t *)f;
dst->width = src->width;
dst->height = src->height;
map = av_mallocz(sizeof(VulkanMapping));
if (!map)
goto fail;
map->frame = f;
map->flags = flags;
err = ff_hwframe_map_create(dst->hw_frames_ctx, dst, src,
&vulkan_unmap_from, map);
if (err < 0)
goto fail;
av_log(hwfc, AV_LOG_DEBUG, "Mapped DRM object to Vulkan!\n");
return 0;
fail:
vulkan_frame_free(hwfc->device_ctx->hwctx, (uint8_t *)f);
av_free(map);
return err;
}
#if CONFIG_VAAPI
static int vulkan_map_from_vaapi(AVHWFramesContext *dst_fc,
AVFrame *dst, const AVFrame *src,
int flags)
{
int err;
AVFrame *tmp = av_frame_alloc();
AVHWFramesContext *vaapi_fc = (AVHWFramesContext*)src->hw_frames_ctx->data;
AVVAAPIDeviceContext *vaapi_ctx = vaapi_fc->device_ctx->hwctx;
VASurfaceID surface_id = (VASurfaceID)(uintptr_t)src->data[3];
if (!tmp)
return AVERROR(ENOMEM);
/* We have to sync since like the previous comment said, no semaphores */
vaSyncSurface(vaapi_ctx->display, surface_id);
tmp->format = AV_PIX_FMT_DRM_PRIME;
err = av_hwframe_map(tmp, src, flags);
if (err < 0)
goto fail;
err = vulkan_map_from_drm(dst_fc, dst, tmp, flags);
if (err < 0)
goto fail;
err = ff_hwframe_map_replace(dst, src);
fail:
av_frame_free(&tmp);
return err;
}
#endif
#endif
#if CONFIG_CUDA
static int vulkan_export_to_cuda(AVHWFramesContext *hwfc,
AVBufferRef *cuda_hwfc,
const AVFrame *frame)
{
int err;
VkResult ret;
AVVkFrame *dst_f;
AVVkFrameInternal *dst_int;
AVHWDeviceContext *ctx = hwfc->device_ctx;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format);
VK_LOAD_PFN(hwctx->inst, vkGetMemoryFdKHR);
VK_LOAD_PFN(hwctx->inst, vkGetSemaphoreFdKHR);
AVHWFramesContext *cuda_fc = (AVHWFramesContext*)cuda_hwfc->data;
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
CUarray_format cufmt = desc->comp[0].depth > 8 ? CU_AD_FORMAT_UNSIGNED_INT16 :
CU_AD_FORMAT_UNSIGNED_INT8;
dst_f = (AVVkFrame *)frame->data[0];
dst_int = dst_f->internal;
if (!dst_int || !dst_int->cuda_fc_ref) {
VkSemaphoreGetFdInfoKHR sem_export = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR,
.semaphore = dst_f->sem,
.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT,
};
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC ext_sem_desc = {
.type = CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD,
};
if (!dst_f->internal)
dst_f->internal = dst_int = av_mallocz(sizeof(*dst_f->internal));
if (!dst_int) {
err = AVERROR(ENOMEM);
goto fail;
}
dst_int->cuda_fc_ref = av_buffer_ref(cuda_hwfc);
if (!dst_int->cuda_fc_ref) {
err = AVERROR(ENOMEM);
goto fail;
}
for (int i = 0; i < planes; i++) {
CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC tex_desc = {
.offset = 0,
.arrayDesc = {
.Width = i > 0 ? AV_CEIL_RSHIFT(hwfc->width, desc->log2_chroma_w)
: hwfc->width,
.Height = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, desc->log2_chroma_h)
: hwfc->height,
.Depth = 0,
.Format = cufmt,
.NumChannels = 1 + ((planes == 2) && i),
.Flags = 0,
},
.numLevels = 1,
};
CUDA_EXTERNAL_MEMORY_HANDLE_DESC ext_desc = {
.type = CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD,
.size = dst_f->size[i],
};
VkMemoryGetFdInfoKHR export_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR,
.memory = dst_f->mem[i],
.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR,
};
ret = pfn_vkGetMemoryFdKHR(hwctx->act_dev, &export_info,
&ext_desc.handle.fd);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a FD!\n");
err = AVERROR_EXTERNAL;
goto fail;
}
ret = CHECK_CU(cu->cuImportExternalMemory(&dst_int->ext_mem[i], &ext_desc));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
ret = CHECK_CU(cu->cuExternalMemoryGetMappedMipmappedArray(&dst_int->cu_mma[i],
dst_int->ext_mem[i],
&tex_desc));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
ret = CHECK_CU(cu->cuMipmappedArrayGetLevel(&dst_int->cu_array[i],
dst_int->cu_mma[i], 0));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
}
ret = pfn_vkGetSemaphoreFdKHR(hwctx->act_dev, &sem_export,
&ext_sem_desc.handle.fd);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to export semaphore: %s\n",
vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
ret = CHECK_CU(cu->cuImportExternalSemaphore(&dst_int->cu_sem,
&ext_sem_desc));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
}
return 0;
fail:
return err;
}
static int vulkan_transfer_data_from_cuda(AVHWFramesContext *hwfc,
AVFrame *dst, const AVFrame *src)
{
int err;
VkResult ret;
CUcontext dummy;
AVVkFrame *dst_f;
AVVkFrameInternal *dst_int;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format);
AVHWFramesContext *cuda_fc = (AVHWFramesContext*)src->hw_frames_ctx->data;
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS s_w_par = { 0 };
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS s_s_par = { 0 };
ret = CHECK_CU(cu->cuCtxPushCurrent(cuda_dev->cuda_ctx));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
dst_f = (AVVkFrame *)dst->data[0];
ret = vulkan_export_to_cuda(hwfc, src->hw_frames_ctx, dst);
if (ret < 0) {
goto fail;
}
dst_int = dst_f->internal;
ret = CHECK_CU(cu->cuWaitExternalSemaphoresAsync(&dst_int->cu_sem, &s_w_par,
1, cuda_dev->stream));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
for (int i = 0; i < planes; i++) {
CUDA_MEMCPY2D cpy = {
.srcMemoryType = CU_MEMORYTYPE_DEVICE,
.srcDevice = (CUdeviceptr)src->data[i],
.srcPitch = src->linesize[i],
.srcY = 0,
.dstMemoryType = CU_MEMORYTYPE_ARRAY,
.dstArray = dst_int->cu_array[i],
.WidthInBytes = (i > 0 ? AV_CEIL_RSHIFT(hwfc->width, desc->log2_chroma_w)
: hwfc->width) * desc->comp[i].step,
.Height = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, desc->log2_chroma_h)
: hwfc->height,
};
ret = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, cuda_dev->stream));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
}
ret = CHECK_CU(cu->cuSignalExternalSemaphoresAsync(&dst_int->cu_sem, &s_s_par,
1, cuda_dev->stream));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
av_log(hwfc, AV_LOG_VERBOSE, "Transfered CUDA image to Vulkan!\n");
return 0;
fail:
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
vulkan_free_internal(dst_int);
dst_f->internal = NULL;
av_buffer_unref(&dst->buf[0]);
return err;
}
#endif
static int vulkan_map_to(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (src->format) {
#if CONFIG_LIBDRM
#if CONFIG_VAAPI
case AV_PIX_FMT_VAAPI:
if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY)
return vulkan_map_from_vaapi(hwfc, dst, src, flags);
#endif
case AV_PIX_FMT_DRM_PRIME:
if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY)
return vulkan_map_from_drm(hwfc, dst, src, flags);
#endif
default:
return AVERROR(ENOSYS);
}
}
#if CONFIG_LIBDRM
typedef struct VulkanDRMMapping {
AVDRMFrameDescriptor drm_desc;
AVVkFrame *source;
} VulkanDRMMapping;
static void vulkan_unmap_to_drm(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap)
{
AVDRMFrameDescriptor *drm_desc = hwmap->priv;
for (int i = 0; i < drm_desc->nb_objects; i++)
close(drm_desc->objects[i].fd);
av_free(drm_desc);
}
static inline uint32_t vulkan_fmt_to_drm(VkFormat vkfmt)
{
for (int i = 0; i < FF_ARRAY_ELEMS(vulkan_drm_format_map); i++)
if (vulkan_drm_format_map[i].vk_format == vkfmt)
return vulkan_drm_format_map[i].drm_fourcc;
return DRM_FORMAT_INVALID;
}
static int vulkan_map_to_drm(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
int err = 0;
VkResult ret;
AVVkFrame *f = (AVVkFrame *)src->data[0];
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
VK_LOAD_PFN(hwctx->inst, vkGetMemoryFdKHR);
VkImageDrmFormatModifierPropertiesEXT drm_mod = {
.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT,
};
AVDRMFrameDescriptor *drm_desc = av_mallocz(sizeof(*drm_desc));
if (!drm_desc)
return AVERROR(ENOMEM);
err = ff_hwframe_map_create(src->hw_frames_ctx, dst, src, &vulkan_unmap_to_drm, drm_desc);
if (err < 0)
goto end;
if (p->extensions & EXT_DRM_MODIFIER_FLAGS) {
VK_LOAD_PFN(hwctx->inst, vkGetImageDrmFormatModifierPropertiesEXT);
ret = pfn_vkGetImageDrmFormatModifierPropertiesEXT(hwctx->act_dev, f->img[0],
&drm_mod);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to retrieve DRM format modifier!\n");
err = AVERROR_EXTERNAL;
goto end;
}
}
for (int i = 0; (i < planes) && (f->mem[i]); i++) {
VkMemoryGetFdInfoKHR export_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR,
.memory = f->mem[i],
.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT,
};
ret = pfn_vkGetMemoryFdKHR(hwctx->act_dev, &export_info,
&drm_desc->objects[i].fd);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a FD!\n");
err = AVERROR_EXTERNAL;
goto end;
}
drm_desc->nb_objects++;
drm_desc->objects[i].size = f->size[i];
drm_desc->objects[i].format_modifier = drm_mod.drmFormatModifier;
}
drm_desc->nb_layers = planes;
for (int i = 0; i < drm_desc->nb_layers; i++) {
VkSubresourceLayout layout;
VkImageSubresource sub = {
.aspectMask = p->extensions & EXT_DRM_MODIFIER_FLAGS ?
VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT :
VK_IMAGE_ASPECT_COLOR_BIT,
};
VkFormat plane_vkfmt = av_vkfmt_from_pixfmt(hwfc->sw_format)[i];
drm_desc->layers[i].format = vulkan_fmt_to_drm(plane_vkfmt);
drm_desc->layers[i].nb_planes = 1;
if (drm_desc->layers[i].format == DRM_FORMAT_INVALID) {
av_log(hwfc, AV_LOG_ERROR, "Cannot map to DRM layer, unsupported!\n");
err = AVERROR_PATCHWELCOME;
goto end;
}
drm_desc->layers[i].planes[0].object_index = FFMIN(i, drm_desc->nb_objects - 1);
if (f->tiling != VK_IMAGE_TILING_OPTIMAL)
continue;
vkGetImageSubresourceLayout(hwctx->act_dev, f->img[i], &sub, &layout);
drm_desc->layers[i].planes[0].offset = layout.offset;
drm_desc->layers[i].planes[0].pitch = layout.rowPitch;
}
dst->width = src->width;
dst->height = src->height;
dst->data[0] = (uint8_t *)drm_desc;
av_log(hwfc, AV_LOG_VERBOSE, "Mapped AVVkFrame to a DRM object!\n");
return 0;
end:
av_free(drm_desc);
return err;
}
#if CONFIG_VAAPI
static int vulkan_map_to_vaapi(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
int err;
AVFrame *tmp = av_frame_alloc();
if (!tmp)
return AVERROR(ENOMEM);
tmp->format = AV_PIX_FMT_DRM_PRIME;
err = vulkan_map_to_drm(hwfc, tmp, src, flags);
if (err < 0)
goto fail;
err = av_hwframe_map(dst, tmp, flags);
if (err < 0)
goto fail;
err = ff_hwframe_map_replace(dst, src);
fail:
av_frame_free(&tmp);
return err;
}
#endif
#endif
static int vulkan_map_from(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (dst->format) {
#if CONFIG_LIBDRM
case AV_PIX_FMT_DRM_PRIME:
if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY)
return vulkan_map_to_drm(hwfc, dst, src, flags);
#if CONFIG_VAAPI
case AV_PIX_FMT_VAAPI:
if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY)
return vulkan_map_to_vaapi(hwfc, dst, src, flags);
#endif
#endif
default:
return vulkan_map_frame_to_mem(hwfc, dst, src, flags);
}
}
typedef struct ImageBuffer {
VkBuffer buf;
VkDeviceMemory mem;
VkMemoryPropertyFlagBits flags;
} ImageBuffer;
static void free_buf(AVHWDeviceContext *ctx, ImageBuffer *buf)
{
AVVulkanDeviceContext *hwctx = ctx->hwctx;
if (!buf)
return;
vkDestroyBuffer(hwctx->act_dev, buf->buf, hwctx->alloc);
vkFreeMemory(hwctx->act_dev, buf->mem, hwctx->alloc);
}
static int create_buf(AVHWDeviceContext *ctx, ImageBuffer *buf, int height,
int *stride, VkBufferUsageFlags usage,
VkMemoryPropertyFlagBits flags, void *create_pnext,
void *alloc_pnext)
{
int err;
VkResult ret;
VkMemoryRequirements req;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *p = ctx->internal->priv;
VkBufferCreateInfo buf_spawn = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = create_pnext,
.usage = usage,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
};
*stride = FFALIGN(*stride, p->props.limits.optimalBufferCopyRowPitchAlignment);
buf_spawn.size = height*(*stride);
ret = vkCreateBuffer(hwctx->act_dev, &buf_spawn, NULL, &buf->buf);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to create buffer: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
vkGetBufferMemoryRequirements(hwctx->act_dev, buf->buf, &req);
err = alloc_mem(ctx, &req, flags, alloc_pnext, &buf->flags, &buf->mem);
if (err)
return err;
ret = vkBindBufferMemory(hwctx->act_dev, buf->buf, buf->mem, 0);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to bind memory to buffer: %s\n",
vk_ret2str(ret));
free_buf(ctx, buf);
return AVERROR_EXTERNAL;
}
return 0;
}
static int map_buffers(AVHWDeviceContext *ctx, ImageBuffer *buf, uint8_t *mem[],
int nb_buffers, int invalidate)
{
VkResult ret;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VkMappedMemoryRange invalidate_ctx[AV_NUM_DATA_POINTERS];
int invalidate_count = 0;
for (int i = 0; i < nb_buffers; i++) {
ret = vkMapMemory(hwctx->act_dev, buf[i].mem, 0,
VK_WHOLE_SIZE, 0, (void **)&mem[i]);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to map buffer memory: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
}
if (!invalidate)
return 0;
for (int i = 0; i < nb_buffers; i++) {
const VkMappedMemoryRange ival_buf = {
.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,
.memory = buf[i].mem,
.size = VK_WHOLE_SIZE,
};
if (buf[i].flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
continue;
invalidate_ctx[invalidate_count++] = ival_buf;
}
if (invalidate_count) {
ret = vkInvalidateMappedMemoryRanges(hwctx->act_dev, invalidate_count,
invalidate_ctx);
if (ret != VK_SUCCESS)
av_log(ctx, AV_LOG_WARNING, "Failed to invalidate memory: %s\n",
vk_ret2str(ret));
}
return 0;
}
static int unmap_buffers(AVHWDeviceContext *ctx, ImageBuffer *buf,
int nb_buffers, int flush)
{
int err = 0;
VkResult ret;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VkMappedMemoryRange flush_ctx[AV_NUM_DATA_POINTERS];
int flush_count = 0;
if (flush) {
for (int i = 0; i < nb_buffers; i++) {
const VkMappedMemoryRange flush_buf = {
.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,
.memory = buf[i].mem,
.size = VK_WHOLE_SIZE,
};
if (buf[i].flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
continue;
flush_ctx[flush_count++] = flush_buf;
}
}
if (flush_count) {
ret = vkFlushMappedMemoryRanges(hwctx->act_dev, flush_count, flush_ctx);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to flush memory: %s\n",
vk_ret2str(ret));
err = AVERROR_EXTERNAL; /* We still want to try to unmap them */
}
}
for (int i = 0; i < nb_buffers; i++)
vkUnmapMemory(hwctx->act_dev, buf[i].mem);
return err;
}
static int transfer_image_buf(AVHWDeviceContext *ctx, AVVkFrame *frame,
ImageBuffer *buffer, const int *buf_stride, int w,
int h, enum AVPixelFormat pix_fmt, int to_buf)
{
VkResult ret;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *s = ctx->internal->priv;
int bar_num = 0;
VkPipelineStageFlagBits sem_wait_dst[AV_NUM_DATA_POINTERS];
const int planes = av_pix_fmt_count_planes(pix_fmt);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
VkCommandBufferBeginInfo cmd_start = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
VkImageMemoryBarrier img_bar[AV_NUM_DATA_POINTERS] = { 0 };
VkSubmitInfo s_info = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &s->cmd.buf,
.pSignalSemaphores = &frame->sem,
.pWaitSemaphores = &frame->sem,
.pWaitDstStageMask = sem_wait_dst,
.signalSemaphoreCount = 1,
.waitSemaphoreCount = 1,
};
ret = vkBeginCommandBuffer(s->cmd.buf, &cmd_start);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Unable to init command buffer: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
/* Change the image layout to something more optimal for transfers */
for (int i = 0; i < planes; i++) {
VkImageLayout new_layout = to_buf ? VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL :
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
VkAccessFlags new_access = to_buf ? VK_ACCESS_TRANSFER_READ_BIT :
VK_ACCESS_TRANSFER_WRITE_BIT;
sem_wait_dst[i] = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
/* If the layout matches and we have read access skip the barrier */
if ((frame->layout[i] == new_layout) && (frame->access[i] & new_access))
continue;
img_bar[bar_num].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
img_bar[bar_num].srcAccessMask = 0x0;
img_bar[bar_num].dstAccessMask = new_access;
img_bar[bar_num].oldLayout = frame->layout[i];
img_bar[bar_num].newLayout = new_layout;
img_bar[bar_num].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_bar[bar_num].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_bar[bar_num].image = frame->img[i];
img_bar[bar_num].subresourceRange.levelCount = 1;
img_bar[bar_num].subresourceRange.layerCount = 1;
img_bar[bar_num].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
frame->layout[i] = img_bar[bar_num].newLayout;
frame->access[i] = img_bar[bar_num].dstAccessMask;
bar_num++;
}
if (bar_num)
vkCmdPipelineBarrier(s->cmd.buf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
0, NULL, 0, NULL, bar_num, img_bar);
/* Schedule a copy for each plane */
for (int i = 0; i < planes; i++) {
const int p_w = i > 0 ? AV_CEIL_RSHIFT(w, desc->log2_chroma_w) : w;
const int p_h = i > 0 ? AV_CEIL_RSHIFT(h, desc->log2_chroma_h) : h;
VkBufferImageCopy buf_reg = {
.bufferOffset = 0,
/* Buffer stride isn't in bytes, it's in samples, the implementation
* uses the image's VkFormat to know how many bytes per sample
* the buffer has. So we have to convert by dividing. Stupid.
* Won't work with YUVA or other planar formats with alpha. */
.bufferRowLength = buf_stride[i] / desc->comp[i].step,
.bufferImageHeight = p_h,
.imageSubresource.layerCount = 1,
.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.imageOffset = { 0, 0, 0, },
.imageExtent = { p_w, p_h, 1, },
};
if (to_buf)
vkCmdCopyImageToBuffer(s->cmd.buf, frame->img[i], frame->layout[i],
buffer[i].buf, 1, &buf_reg);
else
vkCmdCopyBufferToImage(s->cmd.buf, buffer[i].buf, frame->img[i],
frame->layout[i], 1, &buf_reg);
}
ret = vkEndCommandBuffer(s->cmd.buf);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Unable to finish command buffer: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
/* Wait for the download/upload to finish if uploading, otherwise the
* semaphore will take care of synchronization when uploading */
ret = vkQueueSubmit(s->cmd.queue, 1, &s_info, s->cmd.fence);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Unable to submit command buffer: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
} else {
vkWaitForFences(hwctx->act_dev, 1, &s->cmd.fence, VK_TRUE, UINT64_MAX);
vkResetFences(hwctx->act_dev, 1, &s->cmd.fence);
}
return 0;
}
/* Technically we can use VK_EXT_external_memory_host to upload and download,
* however the alignment requirements make this unfeasible as both the pointer
* and the size of each plane need to be aligned to the minimum alignment
* requirement, which on all current implementations (anv, radv) is 4096.
* If the requirement gets relaxed (unlikely) this can easily be implemented. */
static int vulkan_transfer_data_from_mem(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
int err = 0;
AVFrame tmp;
AVVkFrame *f = (AVVkFrame *)dst->data[0];
AVHWDeviceContext *dev_ctx = hwfc->device_ctx;
ImageBuffer buf[AV_NUM_DATA_POINTERS] = { { 0 } };
const int planes = av_pix_fmt_count_planes(src->format);
int log2_chroma = av_pix_fmt_desc_get(src->format)->log2_chroma_h;
if ((src->format != AV_PIX_FMT_NONE && !av_vkfmt_from_pixfmt(src->format))) {
av_log(hwfc, AV_LOG_ERROR, "Unsupported source pixel format!\n");
return AVERROR(EINVAL);
}
if (src->width > hwfc->width || src->height > hwfc->height)
return AVERROR(EINVAL);
/* For linear, host visiable images */
if (f->tiling == VK_IMAGE_TILING_LINEAR &&
f->flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
AVFrame *map = av_frame_alloc();
if (!map)
return AVERROR(ENOMEM);
map->format = src->format;
err = vulkan_map_frame_to_mem(hwfc, map, dst, AV_HWFRAME_MAP_WRITE);
if (err)
goto end;
err = av_frame_copy(map, src);
av_frame_free(&map);
goto end;
}
/* Create buffers */
for (int i = 0; i < planes; i++) {
int h = src->height;
int p_height = i > 0 ? AV_CEIL_RSHIFT(h, log2_chroma) : h;
tmp.linesize[i] = FFABS(src->linesize[i]);
err = create_buf(dev_ctx, &buf[i], p_height,
&tmp.linesize[i], VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, NULL, NULL);
if (err)
goto end;
}
/* Map, copy image to buffer, unmap */
if ((err = map_buffers(dev_ctx, buf, tmp.data, planes, 0)))
goto end;
av_image_copy(tmp.data, tmp.linesize, (const uint8_t **)src->data,
src->linesize, src->format, src->width, src->height);
if ((err = unmap_buffers(dev_ctx, buf, planes, 1)))
goto end;
/* Copy buffers to image */
err = transfer_image_buf(dev_ctx, f, buf, tmp.linesize,
src->width, src->height, src->format, 0);
end:
for (int i = 0; i < planes; i++)
free_buf(dev_ctx, &buf[i]);
return err;
}
static int vulkan_transfer_data_to(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (src->format) {
#if CONFIG_CUDA
case AV_PIX_FMT_CUDA:
if ((p->extensions & EXT_EXTERNAL_FD_MEMORY) &&
(p->extensions & EXT_EXTERNAL_FD_SEM))
return vulkan_transfer_data_from_cuda(hwfc, dst, src);
#endif
default:
if (src->hw_frames_ctx)
return AVERROR(ENOSYS);
else
return vulkan_transfer_data_from_mem(hwfc, dst, src);
}
}
#if CONFIG_CUDA
static int vulkan_transfer_data_to_cuda(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
int err;
VkResult ret;
CUcontext dummy;
AVVkFrame *dst_f;
AVVkFrameInternal *dst_int;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format);
AVHWFramesContext *cuda_fc = (AVHWFramesContext*)dst->hw_frames_ctx->data;
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
ret = CHECK_CU(cu->cuCtxPushCurrent(cuda_dev->cuda_ctx));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
dst_f = (AVVkFrame *)src->data[0];
err = vulkan_export_to_cuda(hwfc, dst->hw_frames_ctx, src);
if (err < 0) {
goto fail;
}
dst_int = dst_f->internal;
for (int i = 0; i < planes; i++) {
CUDA_MEMCPY2D cpy = {
.dstMemoryType = CU_MEMORYTYPE_DEVICE,
.dstDevice = (CUdeviceptr)dst->data[i],
.dstPitch = dst->linesize[i],
.dstY = 0,
.srcMemoryType = CU_MEMORYTYPE_ARRAY,
.srcArray = dst_int->cu_array[i],
.WidthInBytes = (i > 0 ? AV_CEIL_RSHIFT(hwfc->width, desc->log2_chroma_w)
: hwfc->width) * desc->comp[i].step,
.Height = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, desc->log2_chroma_h)
: hwfc->height,
};
ret = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, cuda_dev->stream));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
}
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
av_log(hwfc, AV_LOG_VERBOSE, "Transfered Vulkan image to CUDA!\n");
return 0;
fail:
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
vulkan_free_internal(dst_int);
dst_f->internal = NULL;
av_buffer_unref(&dst->buf[0]);
return err;
}
#endif
static int vulkan_transfer_data_to_mem(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
int err = 0;
AVFrame tmp;
AVVkFrame *f = (AVVkFrame *)src->data[0];
AVHWDeviceContext *dev_ctx = hwfc->device_ctx;
ImageBuffer buf[AV_NUM_DATA_POINTERS] = { { 0 } };
const int planes = av_pix_fmt_count_planes(dst->format);
int log2_chroma = av_pix_fmt_desc_get(dst->format)->log2_chroma_h;
if (dst->width > hwfc->width || dst->height > hwfc->height)
return AVERROR(EINVAL);
/* For linear, host visiable images */
if (f->tiling == VK_IMAGE_TILING_LINEAR &&
f->flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
AVFrame *map = av_frame_alloc();
if (!map)
return AVERROR(ENOMEM);
map->format = dst->format;
err = vulkan_map_frame_to_mem(hwfc, map, src, AV_HWFRAME_MAP_READ);
if (err)
return err;
err = av_frame_copy(dst, map);
av_frame_free(&map);
return err;
}
/* Create buffers */
for (int i = 0; i < planes; i++) {
int h = dst->height;
int p_height = i > 0 ? AV_CEIL_RSHIFT(h, log2_chroma) : h;
tmp.linesize[i] = FFABS(dst->linesize[i]);
err = create_buf(dev_ctx, &buf[i], p_height,
&tmp.linesize[i], VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, NULL, NULL);
}
/* Copy image to buffer */
if ((err = transfer_image_buf(dev_ctx, f, buf, tmp.linesize,
dst->width, dst->height, dst->format, 1)))
goto end;
/* Map, copy buffer to frame, unmap */
if ((err = map_buffers(dev_ctx, buf, tmp.data, planes, 1)))
goto end;
av_image_copy(dst->data, dst->linesize, (const uint8_t **)tmp.data,
tmp.linesize, dst->format, dst->width, dst->height);
err = unmap_buffers(dev_ctx, buf, planes, 0);
end:
for (int i = 0; i < planes; i++)
free_buf(dev_ctx, &buf[i]);
return err;
}
static int vulkan_transfer_data_from(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (dst->format) {
#if CONFIG_CUDA
case AV_PIX_FMT_CUDA:
if ((p->extensions & EXT_EXTERNAL_FD_MEMORY) &&
(p->extensions & EXT_EXTERNAL_FD_SEM))
return vulkan_transfer_data_to_cuda(hwfc, dst, src);
#endif
default:
if (dst->hw_frames_ctx)
return AVERROR(ENOSYS);
else
return vulkan_transfer_data_to_mem(hwfc, dst, src);
}
}
AVVkFrame *av_vk_frame_alloc(void)
{
return av_mallocz(sizeof(AVVkFrame));
}
const HWContextType ff_hwcontext_type_vulkan = {
.type = AV_HWDEVICE_TYPE_VULKAN,
.name = "Vulkan",
.device_hwctx_size = sizeof(AVVulkanDeviceContext),
.device_priv_size = sizeof(VulkanDevicePriv),
.frames_hwctx_size = sizeof(AVVulkanFramesContext),
.frames_priv_size = sizeof(VulkanFramesPriv),
.device_init = &vulkan_device_init,
.device_create = &vulkan_device_create,
.device_derive = &vulkan_device_derive,
.frames_get_constraints = &vulkan_frames_get_constraints,
.frames_init = vulkan_frames_init,
.frames_get_buffer = vulkan_get_buffer,
.frames_uninit = vulkan_frames_uninit,
.transfer_get_formats = vulkan_transfer_get_formats,
.transfer_data_to = vulkan_transfer_data_to,
.transfer_data_from = vulkan_transfer_data_from,
.map_to = vulkan_map_to,
.map_from = vulkan_map_from,
.pix_fmts = (const enum AVPixelFormat []) {
AV_PIX_FMT_VULKAN,
AV_PIX_FMT_NONE
},
};