mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1205 lines
39 KiB
1205 lines
39 KiB
/* |
|
* G.723.1 compatible encoder |
|
* Copyright (c) Mohamed Naufal <naufal22@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* G.723.1 compatible encoder |
|
*/ |
|
|
|
#include <stdint.h> |
|
#include <string.h> |
|
|
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/mem.h" |
|
#include "libavutil/opt.h" |
|
|
|
#include "avcodec.h" |
|
#include "celp_math.h" |
|
#include "g723_1.h" |
|
#include "internal.h" |
|
|
|
#define BITSTREAM_WRITER_LE |
|
#include "put_bits.h" |
|
|
|
static av_cold int g723_1_encode_init(AVCodecContext *avctx) |
|
{ |
|
G723_1_Context *s = avctx->priv_data; |
|
G723_1_ChannelContext *p = &s->ch[0]; |
|
|
|
if (avctx->sample_rate != 8000) { |
|
av_log(avctx, AV_LOG_ERROR, "Only 8000Hz sample rate supported\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if (avctx->channels != 1) { |
|
av_log(avctx, AV_LOG_ERROR, "Only mono supported\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if (avctx->bit_rate == 6300) { |
|
p->cur_rate = RATE_6300; |
|
} else if (avctx->bit_rate == 5300) { |
|
av_log(avctx, AV_LOG_ERROR, "Use bitrate 6300 instead of 5300.\n"); |
|
avpriv_report_missing_feature(avctx, "Bitrate 5300"); |
|
return AVERROR_PATCHWELCOME; |
|
} else { |
|
av_log(avctx, AV_LOG_ERROR, "Bitrate not supported, use 6300\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
avctx->frame_size = 240; |
|
memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(int16_t)); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Remove DC component from the input signal. |
|
* |
|
* @param buf input signal |
|
* @param fir zero memory |
|
* @param iir pole memory |
|
*/ |
|
static void highpass_filter(int16_t *buf, int16_t *fir, int *iir) |
|
{ |
|
int i; |
|
for (i = 0; i < FRAME_LEN; i++) { |
|
*iir = (buf[i] << 15) + ((-*fir) << 15) + MULL2(*iir, 0x7f00); |
|
*fir = buf[i]; |
|
buf[i] = av_clipl_int32((int64_t)*iir + (1 << 15)) >> 16; |
|
} |
|
} |
|
|
|
/** |
|
* Estimate autocorrelation of the input vector. |
|
* |
|
* @param buf input buffer |
|
* @param autocorr autocorrelation coefficients vector |
|
*/ |
|
static void comp_autocorr(int16_t *buf, int16_t *autocorr) |
|
{ |
|
int i, scale, temp; |
|
int16_t vector[LPC_FRAME]; |
|
|
|
ff_g723_1_scale_vector(vector, buf, LPC_FRAME); |
|
|
|
/* Apply the Hamming window */ |
|
for (i = 0; i < LPC_FRAME; i++) |
|
vector[i] = (vector[i] * hamming_window[i] + (1 << 14)) >> 15; |
|
|
|
/* Compute the first autocorrelation coefficient */ |
|
temp = ff_dot_product(vector, vector, LPC_FRAME); |
|
|
|
/* Apply a white noise correlation factor of (1025/1024) */ |
|
temp += temp >> 10; |
|
|
|
/* Normalize */ |
|
scale = ff_g723_1_normalize_bits(temp, 31); |
|
autocorr[0] = av_clipl_int32((int64_t) (temp << scale) + |
|
(1 << 15)) >> 16; |
|
|
|
/* Compute the remaining coefficients */ |
|
if (!autocorr[0]) { |
|
memset(autocorr + 1, 0, LPC_ORDER * sizeof(int16_t)); |
|
} else { |
|
for (i = 1; i <= LPC_ORDER; i++) { |
|
temp = ff_dot_product(vector, vector + i, LPC_FRAME - i); |
|
temp = MULL2((temp << scale), binomial_window[i - 1]); |
|
autocorr[i] = av_clipl_int32((int64_t) temp + (1 << 15)) >> 16; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Use Levinson-Durbin recursion to compute LPC coefficients from |
|
* autocorrelation values. |
|
* |
|
* @param lpc LPC coefficients vector |
|
* @param autocorr autocorrelation coefficients vector |
|
* @param error prediction error |
|
*/ |
|
static void levinson_durbin(int16_t *lpc, int16_t *autocorr, int16_t error) |
|
{ |
|
int16_t vector[LPC_ORDER]; |
|
int16_t partial_corr; |
|
int i, j, temp; |
|
|
|
memset(lpc, 0, LPC_ORDER * sizeof(int16_t)); |
|
|
|
for (i = 0; i < LPC_ORDER; i++) { |
|
/* Compute the partial correlation coefficient */ |
|
temp = 0; |
|
for (j = 0; j < i; j++) |
|
temp -= lpc[j] * autocorr[i - j - 1]; |
|
temp = ((autocorr[i] << 13) + temp) << 3; |
|
|
|
if (FFABS(temp) >= (error << 16)) |
|
break; |
|
|
|
partial_corr = temp / (error << 1); |
|
|
|
lpc[i] = av_clipl_int32((int64_t) (partial_corr << 14) + |
|
(1 << 15)) >> 16; |
|
|
|
/* Update the prediction error */ |
|
temp = MULL2(temp, partial_corr); |
|
error = av_clipl_int32((int64_t) (error << 16) - temp + |
|
(1 << 15)) >> 16; |
|
|
|
memcpy(vector, lpc, i * sizeof(int16_t)); |
|
for (j = 0; j < i; j++) { |
|
temp = partial_corr * vector[i - j - 1] << 1; |
|
lpc[j] = av_clipl_int32((int64_t) (lpc[j] << 16) - temp + |
|
(1 << 15)) >> 16; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Calculate LPC coefficients for the current frame. |
|
* |
|
* @param buf current frame |
|
* @param prev_data 2 trailing subframes of the previous frame |
|
* @param lpc LPC coefficients vector |
|
*/ |
|
static void comp_lpc_coeff(int16_t *buf, int16_t *lpc) |
|
{ |
|
int16_t autocorr[(LPC_ORDER + 1) * SUBFRAMES]; |
|
int16_t *autocorr_ptr = autocorr; |
|
int16_t *lpc_ptr = lpc; |
|
int i, j; |
|
|
|
for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) { |
|
comp_autocorr(buf + i, autocorr_ptr); |
|
levinson_durbin(lpc_ptr, autocorr_ptr + 1, autocorr_ptr[0]); |
|
|
|
lpc_ptr += LPC_ORDER; |
|
autocorr_ptr += LPC_ORDER + 1; |
|
} |
|
} |
|
|
|
static void lpc2lsp(int16_t *lpc, int16_t *prev_lsp, int16_t *lsp) |
|
{ |
|
int f[LPC_ORDER + 2]; ///< coefficients of the sum and difference |
|
///< polynomials (F1, F2) ordered as |
|
///< f1[0], f2[0], ...., f1[5], f2[5] |
|
|
|
int max, shift, cur_val, prev_val, count, p; |
|
int i, j; |
|
int64_t temp; |
|
|
|
/* Initialize f1[0] and f2[0] to 1 in Q25 */ |
|
for (i = 0; i < LPC_ORDER; i++) |
|
lsp[i] = (lpc[i] * bandwidth_expand[i] + (1 << 14)) >> 15; |
|
|
|
/* Apply bandwidth expansion on the LPC coefficients */ |
|
f[0] = f[1] = 1 << 25; |
|
|
|
/* Compute the remaining coefficients */ |
|
for (i = 0; i < LPC_ORDER / 2; i++) { |
|
/* f1 */ |
|
f[2 * i + 2] = -f[2 * i] - ((lsp[i] + lsp[LPC_ORDER - 1 - i]) << 12); |
|
/* f2 */ |
|
f[2 * i + 3] = f[2 * i + 1] - ((lsp[i] - lsp[LPC_ORDER - 1 - i]) << 12); |
|
} |
|
|
|
/* Divide f1[5] and f2[5] by 2 for use in polynomial evaluation */ |
|
f[LPC_ORDER] >>= 1; |
|
f[LPC_ORDER + 1] >>= 1; |
|
|
|
/* Normalize and shorten */ |
|
max = FFABS(f[0]); |
|
for (i = 1; i < LPC_ORDER + 2; i++) |
|
max = FFMAX(max, FFABS(f[i])); |
|
|
|
shift = ff_g723_1_normalize_bits(max, 31); |
|
|
|
for (i = 0; i < LPC_ORDER + 2; i++) |
|
f[i] = av_clipl_int32((int64_t) (f[i] << shift) + (1 << 15)) >> 16; |
|
|
|
/** |
|
* Evaluate F1 and F2 at uniform intervals of pi/256 along the |
|
* unit circle and check for zero crossings. |
|
*/ |
|
p = 0; |
|
temp = 0; |
|
for (i = 0; i <= LPC_ORDER / 2; i++) |
|
temp += f[2 * i] * cos_tab[0]; |
|
prev_val = av_clipl_int32(temp << 1); |
|
count = 0; |
|
for (i = 1; i < COS_TBL_SIZE / 2; i++) { |
|
/* Evaluate */ |
|
temp = 0; |
|
for (j = 0; j <= LPC_ORDER / 2; j++) |
|
temp += f[LPC_ORDER - 2 * j + p] * cos_tab[i * j % COS_TBL_SIZE]; |
|
cur_val = av_clipl_int32(temp << 1); |
|
|
|
/* Check for sign change, indicating a zero crossing */ |
|
if ((cur_val ^ prev_val) < 0) { |
|
int abs_cur = FFABS(cur_val); |
|
int abs_prev = FFABS(prev_val); |
|
int sum = abs_cur + abs_prev; |
|
|
|
shift = ff_g723_1_normalize_bits(sum, 31); |
|
sum <<= shift; |
|
abs_prev = abs_prev << shift >> 8; |
|
lsp[count++] = ((i - 1) << 7) + (abs_prev >> 1) / (sum >> 16); |
|
|
|
if (count == LPC_ORDER) |
|
break; |
|
|
|
/* Switch between sum and difference polynomials */ |
|
p ^= 1; |
|
|
|
/* Evaluate */ |
|
temp = 0; |
|
for (j = 0; j <= LPC_ORDER / 2; j++) |
|
temp += f[LPC_ORDER - 2 * j + p] * |
|
cos_tab[i * j % COS_TBL_SIZE]; |
|
cur_val = av_clipl_int32(temp << 1); |
|
} |
|
prev_val = cur_val; |
|
} |
|
|
|
if (count != LPC_ORDER) |
|
memcpy(lsp, prev_lsp, LPC_ORDER * sizeof(int16_t)); |
|
} |
|
|
|
/** |
|
* Quantize the current LSP subvector. |
|
* |
|
* @param num band number |
|
* @param offset offset of the current subvector in an LPC_ORDER vector |
|
* @param size size of the current subvector |
|
*/ |
|
#define get_index(num, offset, size) \ |
|
{ \ |
|
int error, max = -1; \ |
|
int16_t temp[4]; \ |
|
int i, j; \ |
|
\ |
|
for (i = 0; i < LSP_CB_SIZE; i++) { \ |
|
for (j = 0; j < size; j++){ \ |
|
temp[j] = (weight[j + (offset)] * lsp_band##num[i][j] + \ |
|
(1 << 14)) >> 15; \ |
|
} \ |
|
error = ff_g723_1_dot_product(lsp + (offset), temp, size) << 1; \ |
|
error -= ff_g723_1_dot_product(lsp_band##num[i], temp, size); \ |
|
if (error > max) { \ |
|
max = error; \ |
|
lsp_index[num] = i; \ |
|
} \ |
|
} \ |
|
} |
|
|
|
/** |
|
* Vector quantize the LSP frequencies. |
|
* |
|
* @param lsp the current lsp vector |
|
* @param prev_lsp the previous lsp vector |
|
*/ |
|
static void lsp_quantize(uint8_t *lsp_index, int16_t *lsp, int16_t *prev_lsp) |
|
{ |
|
int16_t weight[LPC_ORDER]; |
|
int16_t min, max; |
|
int shift, i; |
|
|
|
/* Calculate the VQ weighting vector */ |
|
weight[0] = (1 << 20) / (lsp[1] - lsp[0]); |
|
weight[LPC_ORDER - 1] = (1 << 20) / |
|
(lsp[LPC_ORDER - 1] - lsp[LPC_ORDER - 2]); |
|
|
|
for (i = 1; i < LPC_ORDER - 1; i++) { |
|
min = FFMIN(lsp[i] - lsp[i - 1], lsp[i + 1] - lsp[i]); |
|
if (min > 0x20) |
|
weight[i] = (1 << 20) / min; |
|
else |
|
weight[i] = INT16_MAX; |
|
} |
|
|
|
/* Normalize */ |
|
max = 0; |
|
for (i = 0; i < LPC_ORDER; i++) |
|
max = FFMAX(weight[i], max); |
|
|
|
shift = ff_g723_1_normalize_bits(max, 15); |
|
for (i = 0; i < LPC_ORDER; i++) { |
|
weight[i] <<= shift; |
|
} |
|
|
|
/* Compute the VQ target vector */ |
|
for (i = 0; i < LPC_ORDER; i++) { |
|
lsp[i] -= dc_lsp[i] + |
|
(((prev_lsp[i] - dc_lsp[i]) * 12288 + (1 << 14)) >> 15); |
|
} |
|
|
|
get_index(0, 0, 3); |
|
get_index(1, 3, 3); |
|
get_index(2, 6, 4); |
|
} |
|
|
|
/** |
|
* Perform IIR filtering. |
|
* |
|
* @param fir_coef FIR coefficients |
|
* @param iir_coef IIR coefficients |
|
* @param src source vector |
|
* @param dest destination vector |
|
*/ |
|
static void iir_filter(int16_t *fir_coef, int16_t *iir_coef, |
|
int16_t *src, int16_t *dest) |
|
{ |
|
int m, n; |
|
|
|
for (m = 0; m < SUBFRAME_LEN; m++) { |
|
int64_t filter = 0; |
|
for (n = 1; n <= LPC_ORDER; n++) { |
|
filter -= fir_coef[n - 1] * src[m - n] - |
|
iir_coef[n - 1] * dest[m - n]; |
|
} |
|
|
|
dest[m] = av_clipl_int32((src[m] << 16) + (filter << 3) + |
|
(1 << 15)) >> 16; |
|
} |
|
} |
|
|
|
/** |
|
* Apply the formant perceptual weighting filter. |
|
* |
|
* @param flt_coef filter coefficients |
|
* @param unq_lpc unquantized lpc vector |
|
*/ |
|
static void perceptual_filter(G723_1_ChannelContext *p, int16_t *flt_coef, |
|
int16_t *unq_lpc, int16_t *buf) |
|
{ |
|
int16_t vector[FRAME_LEN + LPC_ORDER]; |
|
int i, j, k, l = 0; |
|
|
|
memcpy(buf, p->iir_mem, sizeof(int16_t) * LPC_ORDER); |
|
memcpy(vector, p->fir_mem, sizeof(int16_t) * LPC_ORDER); |
|
memcpy(vector + LPC_ORDER, buf + LPC_ORDER, sizeof(int16_t) * FRAME_LEN); |
|
|
|
for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) { |
|
for (k = 0; k < LPC_ORDER; k++) { |
|
flt_coef[k + 2 * l] = (unq_lpc[k + l] * percept_flt_tbl[0][k] + |
|
(1 << 14)) >> 15; |
|
flt_coef[k + 2 * l + LPC_ORDER] = (unq_lpc[k + l] * |
|
percept_flt_tbl[1][k] + |
|
(1 << 14)) >> 15; |
|
} |
|
iir_filter(flt_coef + 2 * l, flt_coef + 2 * l + LPC_ORDER, |
|
vector + i, buf + i); |
|
l += LPC_ORDER; |
|
} |
|
memcpy(p->iir_mem, buf + FRAME_LEN, sizeof(int16_t) * LPC_ORDER); |
|
memcpy(p->fir_mem, vector + FRAME_LEN, sizeof(int16_t) * LPC_ORDER); |
|
} |
|
|
|
/** |
|
* Estimate the open loop pitch period. |
|
* |
|
* @param buf perceptually weighted speech |
|
* @param start estimation is carried out from this position |
|
*/ |
|
static int estimate_pitch(int16_t *buf, int start) |
|
{ |
|
int max_exp = 32; |
|
int max_ccr = 0x4000; |
|
int max_eng = 0x7fff; |
|
int index = PITCH_MIN; |
|
int offset = start - PITCH_MIN + 1; |
|
|
|
int ccr, eng, orig_eng, ccr_eng, exp; |
|
int diff, temp; |
|
|
|
int i; |
|
|
|
orig_eng = ff_dot_product(buf + offset, buf + offset, HALF_FRAME_LEN); |
|
|
|
for (i = PITCH_MIN; i <= PITCH_MAX - 3; i++) { |
|
offset--; |
|
|
|
/* Update energy and compute correlation */ |
|
orig_eng += buf[offset] * buf[offset] - |
|
buf[offset + HALF_FRAME_LEN] * buf[offset + HALF_FRAME_LEN]; |
|
ccr = ff_dot_product(buf + start, buf + offset, HALF_FRAME_LEN); |
|
if (ccr <= 0) |
|
continue; |
|
|
|
/* Split into mantissa and exponent to maintain precision */ |
|
exp = ff_g723_1_normalize_bits(ccr, 31); |
|
ccr = av_clipl_int32((int64_t) (ccr << exp) + (1 << 15)) >> 16; |
|
exp <<= 1; |
|
ccr *= ccr; |
|
temp = ff_g723_1_normalize_bits(ccr, 31); |
|
ccr = ccr << temp >> 16; |
|
exp += temp; |
|
|
|
temp = ff_g723_1_normalize_bits(orig_eng, 31); |
|
eng = av_clipl_int32((int64_t) (orig_eng << temp) + (1 << 15)) >> 16; |
|
exp -= temp; |
|
|
|
if (ccr >= eng) { |
|
exp--; |
|
ccr >>= 1; |
|
} |
|
if (exp > max_exp) |
|
continue; |
|
|
|
if (exp + 1 < max_exp) |
|
goto update; |
|
|
|
/* Equalize exponents before comparison */ |
|
if (exp + 1 == max_exp) |
|
temp = max_ccr >> 1; |
|
else |
|
temp = max_ccr; |
|
ccr_eng = ccr * max_eng; |
|
diff = ccr_eng - eng * temp; |
|
if (diff > 0 && (i - index < PITCH_MIN || diff > ccr_eng >> 2)) { |
|
update: |
|
index = i; |
|
max_exp = exp; |
|
max_ccr = ccr; |
|
max_eng = eng; |
|
} |
|
} |
|
return index; |
|
} |
|
|
|
/** |
|
* Compute harmonic noise filter parameters. |
|
* |
|
* @param buf perceptually weighted speech |
|
* @param pitch_lag open loop pitch period |
|
* @param hf harmonic filter parameters |
|
*/ |
|
static void comp_harmonic_coeff(int16_t *buf, int16_t pitch_lag, HFParam *hf) |
|
{ |
|
int ccr, eng, max_ccr, max_eng; |
|
int exp, max, diff; |
|
int energy[15]; |
|
int i, j; |
|
|
|
for (i = 0, j = pitch_lag - 3; j <= pitch_lag + 3; i++, j++) { |
|
/* Compute residual energy */ |
|
energy[i << 1] = ff_dot_product(buf - j, buf - j, SUBFRAME_LEN); |
|
/* Compute correlation */ |
|
energy[(i << 1) + 1] = ff_dot_product(buf, buf - j, SUBFRAME_LEN); |
|
} |
|
|
|
/* Compute target energy */ |
|
energy[14] = ff_dot_product(buf, buf, SUBFRAME_LEN); |
|
|
|
/* Normalize */ |
|
max = 0; |
|
for (i = 0; i < 15; i++) |
|
max = FFMAX(max, FFABS(energy[i])); |
|
|
|
exp = ff_g723_1_normalize_bits(max, 31); |
|
for (i = 0; i < 15; i++) { |
|
energy[i] = av_clipl_int32((int64_t)(energy[i] << exp) + |
|
(1 << 15)) >> 16; |
|
} |
|
|
|
hf->index = -1; |
|
hf->gain = 0; |
|
max_ccr = 1; |
|
max_eng = 0x7fff; |
|
|
|
for (i = 0; i <= 6; i++) { |
|
eng = energy[i << 1]; |
|
ccr = energy[(i << 1) + 1]; |
|
|
|
if (ccr <= 0) |
|
continue; |
|
|
|
ccr = (ccr * ccr + (1 << 14)) >> 15; |
|
diff = ccr * max_eng - eng * max_ccr; |
|
if (diff > 0) { |
|
max_ccr = ccr; |
|
max_eng = eng; |
|
hf->index = i; |
|
} |
|
} |
|
|
|
if (hf->index == -1) { |
|
hf->index = pitch_lag; |
|
return; |
|
} |
|
|
|
eng = energy[14] * max_eng; |
|
eng = (eng >> 2) + (eng >> 3); |
|
ccr = energy[(hf->index << 1) + 1] * energy[(hf->index << 1) + 1]; |
|
if (eng < ccr) { |
|
eng = energy[(hf->index << 1) + 1]; |
|
|
|
if (eng >= max_eng) |
|
hf->gain = 0x2800; |
|
else |
|
hf->gain = ((eng << 15) / max_eng * 0x2800 + (1 << 14)) >> 15; |
|
} |
|
hf->index += pitch_lag - 3; |
|
} |
|
|
|
/** |
|
* Apply the harmonic noise shaping filter. |
|
* |
|
* @param hf filter parameters |
|
*/ |
|
static void harmonic_filter(HFParam *hf, const int16_t *src, int16_t *dest) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < SUBFRAME_LEN; i++) { |
|
int64_t temp = hf->gain * src[i - hf->index] << 1; |
|
dest[i] = av_clipl_int32((src[i] << 16) - temp + (1 << 15)) >> 16; |
|
} |
|
} |
|
|
|
static void harmonic_noise_sub(HFParam *hf, const int16_t *src, int16_t *dest) |
|
{ |
|
int i; |
|
for (i = 0; i < SUBFRAME_LEN; i++) { |
|
int64_t temp = hf->gain * src[i - hf->index] << 1; |
|
dest[i] = av_clipl_int32(((dest[i] - src[i]) << 16) + temp + |
|
(1 << 15)) >> 16; |
|
} |
|
} |
|
|
|
/** |
|
* Combined synthesis and formant perceptual weighting filer. |
|
* |
|
* @param qnt_lpc quantized lpc coefficients |
|
* @param perf_lpc perceptual filter coefficients |
|
* @param perf_fir perceptual filter fir memory |
|
* @param perf_iir perceptual filter iir memory |
|
* @param scale the filter output will be scaled by 2^scale |
|
*/ |
|
static void synth_percept_filter(int16_t *qnt_lpc, int16_t *perf_lpc, |
|
int16_t *perf_fir, int16_t *perf_iir, |
|
const int16_t *src, int16_t *dest, int scale) |
|
{ |
|
int i, j; |
|
int16_t buf_16[SUBFRAME_LEN + LPC_ORDER]; |
|
int64_t buf[SUBFRAME_LEN]; |
|
|
|
int16_t *bptr_16 = buf_16 + LPC_ORDER; |
|
|
|
memcpy(buf_16, perf_fir, sizeof(int16_t) * LPC_ORDER); |
|
memcpy(dest - LPC_ORDER, perf_iir, sizeof(int16_t) * LPC_ORDER); |
|
|
|
for (i = 0; i < SUBFRAME_LEN; i++) { |
|
int64_t temp = 0; |
|
for (j = 1; j <= LPC_ORDER; j++) |
|
temp -= qnt_lpc[j - 1] * bptr_16[i - j]; |
|
|
|
buf[i] = (src[i] << 15) + (temp << 3); |
|
bptr_16[i] = av_clipl_int32(buf[i] + (1 << 15)) >> 16; |
|
} |
|
|
|
for (i = 0; i < SUBFRAME_LEN; i++) { |
|
int64_t fir = 0, iir = 0; |
|
for (j = 1; j <= LPC_ORDER; j++) { |
|
fir -= perf_lpc[j - 1] * bptr_16[i - j]; |
|
iir += perf_lpc[j + LPC_ORDER - 1] * dest[i - j]; |
|
} |
|
dest[i] = av_clipl_int32(((buf[i] + (fir << 3)) << scale) + (iir << 3) + |
|
(1 << 15)) >> 16; |
|
} |
|
memcpy(perf_fir, buf_16 + SUBFRAME_LEN, sizeof(int16_t) * LPC_ORDER); |
|
memcpy(perf_iir, dest + SUBFRAME_LEN - LPC_ORDER, |
|
sizeof(int16_t) * LPC_ORDER); |
|
} |
|
|
|
/** |
|
* Compute the adaptive codebook contribution. |
|
* |
|
* @param buf input signal |
|
* @param index the current subframe index |
|
*/ |
|
static void acb_search(G723_1_ChannelContext *p, int16_t *residual, |
|
int16_t *impulse_resp, const int16_t *buf, |
|
int index) |
|
{ |
|
int16_t flt_buf[PITCH_ORDER][SUBFRAME_LEN]; |
|
|
|
const int16_t *cb_tbl = adaptive_cb_gain85; |
|
|
|
int ccr_buf[PITCH_ORDER * SUBFRAMES << 2]; |
|
|
|
int pitch_lag = p->pitch_lag[index >> 1]; |
|
int acb_lag = 1; |
|
int acb_gain = 0; |
|
int odd_frame = index & 1; |
|
int iter = 3 + odd_frame; |
|
int count = 0; |
|
int tbl_size = 85; |
|
|
|
int i, j, k, l, max; |
|
int64_t temp; |
|
|
|
if (!odd_frame) { |
|
if (pitch_lag == PITCH_MIN) |
|
pitch_lag++; |
|
else |
|
pitch_lag = FFMIN(pitch_lag, PITCH_MAX - 5); |
|
} |
|
|
|
for (i = 0; i < iter; i++) { |
|
ff_g723_1_get_residual(residual, p->prev_excitation, pitch_lag + i - 1); |
|
|
|
for (j = 0; j < SUBFRAME_LEN; j++) { |
|
temp = 0; |
|
for (k = 0; k <= j; k++) |
|
temp += residual[PITCH_ORDER - 1 + k] * impulse_resp[j - k]; |
|
flt_buf[PITCH_ORDER - 1][j] = av_clipl_int32((temp << 1) + |
|
(1 << 15)) >> 16; |
|
} |
|
|
|
for (j = PITCH_ORDER - 2; j >= 0; j--) { |
|
flt_buf[j][0] = ((residual[j] << 13) + (1 << 14)) >> 15; |
|
for (k = 1; k < SUBFRAME_LEN; k++) { |
|
temp = (flt_buf[j + 1][k - 1] << 15) + |
|
residual[j] * impulse_resp[k]; |
|
flt_buf[j][k] = av_clipl_int32((temp << 1) + (1 << 15)) >> 16; |
|
} |
|
} |
|
|
|
/* Compute crosscorrelation with the signal */ |
|
for (j = 0; j < PITCH_ORDER; j++) { |
|
temp = ff_dot_product(buf, flt_buf[j], SUBFRAME_LEN); |
|
ccr_buf[count++] = av_clipl_int32(temp << 1); |
|
} |
|
|
|
/* Compute energies */ |
|
for (j = 0; j < PITCH_ORDER; j++) { |
|
ccr_buf[count++] = ff_g723_1_dot_product(flt_buf[j], flt_buf[j], |
|
SUBFRAME_LEN); |
|
} |
|
|
|
for (j = 1; j < PITCH_ORDER; j++) { |
|
for (k = 0; k < j; k++) { |
|
temp = ff_dot_product(flt_buf[j], flt_buf[k], SUBFRAME_LEN); |
|
ccr_buf[count++] = av_clipl_int32(temp << 2); |
|
} |
|
} |
|
} |
|
|
|
/* Normalize and shorten */ |
|
max = 0; |
|
for (i = 0; i < 20 * iter; i++) |
|
max = FFMAX(max, FFABS(ccr_buf[i])); |
|
|
|
temp = ff_g723_1_normalize_bits(max, 31); |
|
|
|
for (i = 0; i < 20 * iter; i++) |
|
ccr_buf[i] = av_clipl_int32((int64_t) (ccr_buf[i] << temp) + |
|
(1 << 15)) >> 16; |
|
|
|
max = 0; |
|
for (i = 0; i < iter; i++) { |
|
/* Select quantization table */ |
|
if (!odd_frame && pitch_lag + i - 1 >= SUBFRAME_LEN - 2 || |
|
odd_frame && pitch_lag >= SUBFRAME_LEN - 2) { |
|
cb_tbl = adaptive_cb_gain170; |
|
tbl_size = 170; |
|
} |
|
|
|
for (j = 0, k = 0; j < tbl_size; j++, k += 20) { |
|
temp = 0; |
|
for (l = 0; l < 20; l++) |
|
temp += ccr_buf[20 * i + l] * cb_tbl[k + l]; |
|
temp = av_clipl_int32(temp); |
|
|
|
if (temp > max) { |
|
max = temp; |
|
acb_gain = j; |
|
acb_lag = i; |
|
} |
|
} |
|
} |
|
|
|
if (!odd_frame) { |
|
pitch_lag += acb_lag - 1; |
|
acb_lag = 1; |
|
} |
|
|
|
p->pitch_lag[index >> 1] = pitch_lag; |
|
p->subframe[index].ad_cb_lag = acb_lag; |
|
p->subframe[index].ad_cb_gain = acb_gain; |
|
} |
|
|
|
/** |
|
* Subtract the adaptive codebook contribution from the input |
|
* to obtain the residual. |
|
* |
|
* @param buf target vector |
|
*/ |
|
static void sub_acb_contrib(const int16_t *residual, const int16_t *impulse_resp, |
|
int16_t *buf) |
|
{ |
|
int i, j; |
|
/* Subtract adaptive CB contribution to obtain the residual */ |
|
for (i = 0; i < SUBFRAME_LEN; i++) { |
|
int64_t temp = buf[i] << 14; |
|
for (j = 0; j <= i; j++) |
|
temp -= residual[j] * impulse_resp[i - j]; |
|
|
|
buf[i] = av_clipl_int32((temp << 2) + (1 << 15)) >> 16; |
|
} |
|
} |
|
|
|
/** |
|
* Quantize the residual signal using the fixed codebook (MP-MLQ). |
|
* |
|
* @param optim optimized fixed codebook parameters |
|
* @param buf excitation vector |
|
*/ |
|
static void get_fcb_param(FCBParam *optim, int16_t *impulse_resp, |
|
int16_t *buf, int pulse_cnt, int pitch_lag) |
|
{ |
|
FCBParam param; |
|
int16_t impulse_r[SUBFRAME_LEN]; |
|
int16_t temp_corr[SUBFRAME_LEN]; |
|
int16_t impulse_corr[SUBFRAME_LEN]; |
|
|
|
int ccr1[SUBFRAME_LEN]; |
|
int ccr2[SUBFRAME_LEN]; |
|
int amp, err, max, max_amp_index, min, scale, i, j, k, l; |
|
|
|
int64_t temp; |
|
|
|
/* Update impulse response */ |
|
memcpy(impulse_r, impulse_resp, sizeof(int16_t) * SUBFRAME_LEN); |
|
param.dirac_train = 0; |
|
if (pitch_lag < SUBFRAME_LEN - 2) { |
|
param.dirac_train = 1; |
|
ff_g723_1_gen_dirac_train(impulse_r, pitch_lag); |
|
} |
|
|
|
for (i = 0; i < SUBFRAME_LEN; i++) |
|
temp_corr[i] = impulse_r[i] >> 1; |
|
|
|
/* Compute impulse response autocorrelation */ |
|
temp = ff_g723_1_dot_product(temp_corr, temp_corr, SUBFRAME_LEN); |
|
|
|
scale = ff_g723_1_normalize_bits(temp, 31); |
|
impulse_corr[0] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16; |
|
|
|
for (i = 1; i < SUBFRAME_LEN; i++) { |
|
temp = ff_g723_1_dot_product(temp_corr + i, temp_corr, |
|
SUBFRAME_LEN - i); |
|
impulse_corr[i] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16; |
|
} |
|
|
|
/* Compute crosscorrelation of impulse response with residual signal */ |
|
scale -= 4; |
|
for (i = 0; i < SUBFRAME_LEN; i++) { |
|
temp = ff_g723_1_dot_product(buf + i, impulse_r, SUBFRAME_LEN - i); |
|
if (scale < 0) |
|
ccr1[i] = temp >> -scale; |
|
else |
|
ccr1[i] = av_clipl_int32(temp << scale); |
|
} |
|
|
|
/* Search loop */ |
|
for (i = 0; i < GRID_SIZE; i++) { |
|
/* Maximize the crosscorrelation */ |
|
max = 0; |
|
for (j = i; j < SUBFRAME_LEN; j += GRID_SIZE) { |
|
temp = FFABS(ccr1[j]); |
|
if (temp >= max) { |
|
max = temp; |
|
param.pulse_pos[0] = j; |
|
} |
|
} |
|
|
|
/* Quantize the gain (max crosscorrelation/impulse_corr[0]) */ |
|
amp = max; |
|
min = 1 << 30; |
|
max_amp_index = GAIN_LEVELS - 2; |
|
for (j = max_amp_index; j >= 2; j--) { |
|
temp = av_clipl_int32((int64_t) fixed_cb_gain[j] * |
|
impulse_corr[0] << 1); |
|
temp = FFABS(temp - amp); |
|
if (temp < min) { |
|
min = temp; |
|
max_amp_index = j; |
|
} |
|
} |
|
|
|
max_amp_index--; |
|
/* Select additional gain values */ |
|
for (j = 1; j < 5; j++) { |
|
for (k = i; k < SUBFRAME_LEN; k += GRID_SIZE) { |
|
temp_corr[k] = 0; |
|
ccr2[k] = ccr1[k]; |
|
} |
|
param.amp_index = max_amp_index + j - 2; |
|
amp = fixed_cb_gain[param.amp_index]; |
|
|
|
param.pulse_sign[0] = (ccr2[param.pulse_pos[0]] < 0) ? -amp : amp; |
|
temp_corr[param.pulse_pos[0]] = 1; |
|
|
|
for (k = 1; k < pulse_cnt; k++) { |
|
max = INT_MIN; |
|
for (l = i; l < SUBFRAME_LEN; l += GRID_SIZE) { |
|
if (temp_corr[l]) |
|
continue; |
|
temp = impulse_corr[FFABS(l - param.pulse_pos[k - 1])]; |
|
temp = av_clipl_int32((int64_t) temp * |
|
param.pulse_sign[k - 1] << 1); |
|
ccr2[l] -= temp; |
|
temp = FFABS(ccr2[l]); |
|
if (temp > max) { |
|
max = temp; |
|
param.pulse_pos[k] = l; |
|
} |
|
} |
|
|
|
param.pulse_sign[k] = (ccr2[param.pulse_pos[k]] < 0) ? |
|
-amp : amp; |
|
temp_corr[param.pulse_pos[k]] = 1; |
|
} |
|
|
|
/* Create the error vector */ |
|
memset(temp_corr, 0, sizeof(int16_t) * SUBFRAME_LEN); |
|
|
|
for (k = 0; k < pulse_cnt; k++) |
|
temp_corr[param.pulse_pos[k]] = param.pulse_sign[k]; |
|
|
|
for (k = SUBFRAME_LEN - 1; k >= 0; k--) { |
|
temp = 0; |
|
for (l = 0; l <= k; l++) { |
|
int prod = av_clipl_int32((int64_t) temp_corr[l] * |
|
impulse_r[k - l] << 1); |
|
temp = av_clipl_int32(temp + prod); |
|
} |
|
temp_corr[k] = temp << 2 >> 16; |
|
} |
|
|
|
/* Compute square of error */ |
|
err = 0; |
|
for (k = 0; k < SUBFRAME_LEN; k++) { |
|
int64_t prod; |
|
prod = av_clipl_int32((int64_t) buf[k] * temp_corr[k] << 1); |
|
err = av_clipl_int32(err - prod); |
|
prod = av_clipl_int32((int64_t) temp_corr[k] * temp_corr[k]); |
|
err = av_clipl_int32(err + prod); |
|
} |
|
|
|
/* Minimize */ |
|
if (err < optim->min_err) { |
|
optim->min_err = err; |
|
optim->grid_index = i; |
|
optim->amp_index = param.amp_index; |
|
optim->dirac_train = param.dirac_train; |
|
|
|
for (k = 0; k < pulse_cnt; k++) { |
|
optim->pulse_sign[k] = param.pulse_sign[k]; |
|
optim->pulse_pos[k] = param.pulse_pos[k]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Encode the pulse position and gain of the current subframe. |
|
* |
|
* @param optim optimized fixed CB parameters |
|
* @param buf excitation vector |
|
*/ |
|
static void pack_fcb_param(G723_1_Subframe *subfrm, FCBParam *optim, |
|
int16_t *buf, int pulse_cnt) |
|
{ |
|
int i, j; |
|
|
|
j = PULSE_MAX - pulse_cnt; |
|
|
|
subfrm->pulse_sign = 0; |
|
subfrm->pulse_pos = 0; |
|
|
|
for (i = 0; i < SUBFRAME_LEN >> 1; i++) { |
|
int val = buf[optim->grid_index + (i << 1)]; |
|
if (!val) { |
|
subfrm->pulse_pos += combinatorial_table[j][i]; |
|
} else { |
|
subfrm->pulse_sign <<= 1; |
|
if (val < 0) |
|
subfrm->pulse_sign++; |
|
j++; |
|
|
|
if (j == PULSE_MAX) |
|
break; |
|
} |
|
} |
|
subfrm->amp_index = optim->amp_index; |
|
subfrm->grid_index = optim->grid_index; |
|
subfrm->dirac_train = optim->dirac_train; |
|
} |
|
|
|
/** |
|
* Compute the fixed codebook excitation. |
|
* |
|
* @param buf target vector |
|
* @param impulse_resp impulse response of the combined filter |
|
*/ |
|
static void fcb_search(G723_1_ChannelContext *p, int16_t *impulse_resp, |
|
int16_t *buf, int index) |
|
{ |
|
FCBParam optim; |
|
int pulse_cnt = pulses[index]; |
|
int i; |
|
|
|
optim.min_err = 1 << 30; |
|
get_fcb_param(&optim, impulse_resp, buf, pulse_cnt, SUBFRAME_LEN); |
|
|
|
if (p->pitch_lag[index >> 1] < SUBFRAME_LEN - 2) { |
|
get_fcb_param(&optim, impulse_resp, buf, pulse_cnt, |
|
p->pitch_lag[index >> 1]); |
|
} |
|
|
|
/* Reconstruct the excitation */ |
|
memset(buf, 0, sizeof(int16_t) * SUBFRAME_LEN); |
|
for (i = 0; i < pulse_cnt; i++) |
|
buf[optim.pulse_pos[i]] = optim.pulse_sign[i]; |
|
|
|
pack_fcb_param(&p->subframe[index], &optim, buf, pulse_cnt); |
|
|
|
if (optim.dirac_train) |
|
ff_g723_1_gen_dirac_train(buf, p->pitch_lag[index >> 1]); |
|
} |
|
|
|
/** |
|
* Pack the frame parameters into output bitstream. |
|
* |
|
* @param frame output buffer |
|
* @param size size of the buffer |
|
*/ |
|
static int pack_bitstream(G723_1_ChannelContext *p, AVPacket *avpkt) |
|
{ |
|
PutBitContext pb; |
|
int info_bits = 0; |
|
int i, temp; |
|
|
|
init_put_bits(&pb, avpkt->data, avpkt->size); |
|
|
|
put_bits(&pb, 2, info_bits); |
|
|
|
put_bits(&pb, 8, p->lsp_index[2]); |
|
put_bits(&pb, 8, p->lsp_index[1]); |
|
put_bits(&pb, 8, p->lsp_index[0]); |
|
|
|
put_bits(&pb, 7, p->pitch_lag[0] - PITCH_MIN); |
|
put_bits(&pb, 2, p->subframe[1].ad_cb_lag); |
|
put_bits(&pb, 7, p->pitch_lag[1] - PITCH_MIN); |
|
put_bits(&pb, 2, p->subframe[3].ad_cb_lag); |
|
|
|
/* Write 12 bit combined gain */ |
|
for (i = 0; i < SUBFRAMES; i++) { |
|
temp = p->subframe[i].ad_cb_gain * GAIN_LEVELS + |
|
p->subframe[i].amp_index; |
|
if (p->cur_rate == RATE_6300) |
|
temp += p->subframe[i].dirac_train << 11; |
|
put_bits(&pb, 12, temp); |
|
} |
|
|
|
put_bits(&pb, 1, p->subframe[0].grid_index); |
|
put_bits(&pb, 1, p->subframe[1].grid_index); |
|
put_bits(&pb, 1, p->subframe[2].grid_index); |
|
put_bits(&pb, 1, p->subframe[3].grid_index); |
|
|
|
if (p->cur_rate == RATE_6300) { |
|
skip_put_bits(&pb, 1); /* reserved bit */ |
|
|
|
/* Write 13 bit combined position index */ |
|
temp = (p->subframe[0].pulse_pos >> 16) * 810 + |
|
(p->subframe[1].pulse_pos >> 14) * 90 + |
|
(p->subframe[2].pulse_pos >> 16) * 9 + |
|
(p->subframe[3].pulse_pos >> 14); |
|
put_bits(&pb, 13, temp); |
|
|
|
put_bits(&pb, 16, p->subframe[0].pulse_pos & 0xffff); |
|
put_bits(&pb, 14, p->subframe[1].pulse_pos & 0x3fff); |
|
put_bits(&pb, 16, p->subframe[2].pulse_pos & 0xffff); |
|
put_bits(&pb, 14, p->subframe[3].pulse_pos & 0x3fff); |
|
|
|
put_bits(&pb, 6, p->subframe[0].pulse_sign); |
|
put_bits(&pb, 5, p->subframe[1].pulse_sign); |
|
put_bits(&pb, 6, p->subframe[2].pulse_sign); |
|
put_bits(&pb, 5, p->subframe[3].pulse_sign); |
|
} |
|
|
|
flush_put_bits(&pb); |
|
return frame_size[info_bits]; |
|
} |
|
|
|
static int g723_1_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
|
const AVFrame *frame, int *got_packet_ptr) |
|
{ |
|
G723_1_Context *s = avctx->priv_data; |
|
G723_1_ChannelContext *p = &s->ch[0]; |
|
int16_t unq_lpc[LPC_ORDER * SUBFRAMES]; |
|
int16_t qnt_lpc[LPC_ORDER * SUBFRAMES]; |
|
int16_t cur_lsp[LPC_ORDER]; |
|
int16_t weighted_lpc[LPC_ORDER * SUBFRAMES << 1]; |
|
int16_t vector[FRAME_LEN + PITCH_MAX]; |
|
int offset, ret, i, j; |
|
int16_t *in, *start; |
|
HFParam hf[4]; |
|
|
|
/* duplicate input */ |
|
start = in = av_malloc(frame->nb_samples * sizeof(int16_t)); |
|
if (!in) |
|
return AVERROR(ENOMEM); |
|
memcpy(in, frame->data[0], frame->nb_samples * sizeof(int16_t)); |
|
|
|
highpass_filter(in, &p->hpf_fir_mem, &p->hpf_iir_mem); |
|
|
|
memcpy(vector, p->prev_data, HALF_FRAME_LEN * sizeof(int16_t)); |
|
memcpy(vector + HALF_FRAME_LEN, in, FRAME_LEN * sizeof(int16_t)); |
|
|
|
comp_lpc_coeff(vector, unq_lpc); |
|
lpc2lsp(&unq_lpc[LPC_ORDER * 3], p->prev_lsp, cur_lsp); |
|
lsp_quantize(p->lsp_index, cur_lsp, p->prev_lsp); |
|
|
|
/* Update memory */ |
|
memcpy(vector + LPC_ORDER, p->prev_data + SUBFRAME_LEN, |
|
sizeof(int16_t) * SUBFRAME_LEN); |
|
memcpy(vector + LPC_ORDER + SUBFRAME_LEN, in, |
|
sizeof(int16_t) * (HALF_FRAME_LEN + SUBFRAME_LEN)); |
|
memcpy(p->prev_data, in + HALF_FRAME_LEN, |
|
sizeof(int16_t) * HALF_FRAME_LEN); |
|
memcpy(in, vector + LPC_ORDER, sizeof(int16_t) * FRAME_LEN); |
|
|
|
perceptual_filter(p, weighted_lpc, unq_lpc, vector); |
|
|
|
memcpy(in, vector + LPC_ORDER, sizeof(int16_t) * FRAME_LEN); |
|
memcpy(vector, p->prev_weight_sig, sizeof(int16_t) * PITCH_MAX); |
|
memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN); |
|
|
|
ff_g723_1_scale_vector(vector, vector, FRAME_LEN + PITCH_MAX); |
|
|
|
p->pitch_lag[0] = estimate_pitch(vector, PITCH_MAX); |
|
p->pitch_lag[1] = estimate_pitch(vector, PITCH_MAX + HALF_FRAME_LEN); |
|
|
|
for (i = PITCH_MAX, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) |
|
comp_harmonic_coeff(vector + i, p->pitch_lag[j >> 1], hf + j); |
|
|
|
memcpy(vector, p->prev_weight_sig, sizeof(int16_t) * PITCH_MAX); |
|
memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN); |
|
memcpy(p->prev_weight_sig, vector + FRAME_LEN, sizeof(int16_t) * PITCH_MAX); |
|
|
|
for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) |
|
harmonic_filter(hf + j, vector + PITCH_MAX + i, in + i); |
|
|
|
ff_g723_1_inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, 0); |
|
ff_g723_1_lsp_interpolate(qnt_lpc, cur_lsp, p->prev_lsp); |
|
|
|
memcpy(p->prev_lsp, cur_lsp, sizeof(int16_t) * LPC_ORDER); |
|
|
|
offset = 0; |
|
for (i = 0; i < SUBFRAMES; i++) { |
|
int16_t impulse_resp[SUBFRAME_LEN]; |
|
int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1]; |
|
int16_t flt_in[SUBFRAME_LEN]; |
|
int16_t zero[LPC_ORDER], fir[LPC_ORDER], iir[LPC_ORDER]; |
|
|
|
/** |
|
* Compute the combined impulse response of the synthesis filter, |
|
* formant perceptual weighting filter and harmonic noise shaping filter |
|
*/ |
|
memset(zero, 0, sizeof(int16_t) * LPC_ORDER); |
|
memset(vector, 0, sizeof(int16_t) * PITCH_MAX); |
|
memset(flt_in, 0, sizeof(int16_t) * SUBFRAME_LEN); |
|
|
|
flt_in[0] = 1 << 13; /* Unit impulse */ |
|
synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1), |
|
zero, zero, flt_in, vector + PITCH_MAX, 1); |
|
harmonic_filter(hf + i, vector + PITCH_MAX, impulse_resp); |
|
|
|
/* Compute the combined zero input response */ |
|
flt_in[0] = 0; |
|
memcpy(fir, p->perf_fir_mem, sizeof(int16_t) * LPC_ORDER); |
|
memcpy(iir, p->perf_iir_mem, sizeof(int16_t) * LPC_ORDER); |
|
|
|
synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1), |
|
fir, iir, flt_in, vector + PITCH_MAX, 0); |
|
memcpy(vector, p->harmonic_mem, sizeof(int16_t) * PITCH_MAX); |
|
harmonic_noise_sub(hf + i, vector + PITCH_MAX, in); |
|
|
|
acb_search(p, residual, impulse_resp, in, i); |
|
ff_g723_1_gen_acb_excitation(residual, p->prev_excitation, |
|
p->pitch_lag[i >> 1], &p->subframe[i], |
|
p->cur_rate); |
|
sub_acb_contrib(residual, impulse_resp, in); |
|
|
|
fcb_search(p, impulse_resp, in, i); |
|
|
|
/* Reconstruct the excitation */ |
|
ff_g723_1_gen_acb_excitation(impulse_resp, p->prev_excitation, |
|
p->pitch_lag[i >> 1], &p->subframe[i], |
|
RATE_6300); |
|
|
|
memmove(p->prev_excitation, p->prev_excitation + SUBFRAME_LEN, |
|
sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN)); |
|
for (j = 0; j < SUBFRAME_LEN; j++) |
|
in[j] = av_clip_int16((in[j] << 1) + impulse_resp[j]); |
|
memcpy(p->prev_excitation + PITCH_MAX - SUBFRAME_LEN, in, |
|
sizeof(int16_t) * SUBFRAME_LEN); |
|
|
|
/* Update filter memories */ |
|
synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1), |
|
p->perf_fir_mem, p->perf_iir_mem, |
|
in, vector + PITCH_MAX, 0); |
|
memmove(p->harmonic_mem, p->harmonic_mem + SUBFRAME_LEN, |
|
sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN)); |
|
memcpy(p->harmonic_mem + PITCH_MAX - SUBFRAME_LEN, vector + PITCH_MAX, |
|
sizeof(int16_t) * SUBFRAME_LEN); |
|
|
|
in += SUBFRAME_LEN; |
|
offset += LPC_ORDER; |
|
} |
|
|
|
av_free(start); |
|
|
|
if ((ret = ff_alloc_packet2(avctx, avpkt, 24, 0)) < 0) |
|
return ret; |
|
|
|
*got_packet_ptr = 1; |
|
avpkt->size = pack_bitstream(p, avpkt); |
|
return 0; |
|
} |
|
|
|
AVCodec ff_g723_1_encoder = { |
|
.name = "g723_1", |
|
.long_name = NULL_IF_CONFIG_SMALL("G.723.1"), |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_G723_1, |
|
.priv_data_size = sizeof(G723_1_Context), |
|
.init = g723_1_encode_init, |
|
.encode2 = g723_1_encode_frame, |
|
.sample_fmts = (const enum AVSampleFormat[]) { |
|
AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE |
|
}, |
|
};
|
|
|