You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

8306 lines
314 KiB

/*
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file h264.c
* H.264 / AVC / MPEG4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "dsputil.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "h264.h"
#include "h264data.h"
#include "h264_parser.h"
#include "golomb.h"
#include "cabac.h"
//#undef NDEBUG
#include <assert.h>
static VLC coeff_token_vlc[4];
static VLC chroma_dc_coeff_token_vlc;
static VLC total_zeros_vlc[15];
static VLC chroma_dc_total_zeros_vlc[3];
static VLC run_vlc[6];
static VLC run7_vlc;
static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
static av_always_inline uint32_t pack16to32(int a, int b){
#ifdef WORDS_BIGENDIAN
return (b&0xFFFF) + (a<<16);
#else
return (a&0xFFFF) + (b<<16);
#endif
}
const uint8_t ff_rem6[52]={
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
};
const uint8_t ff_div6[52]={
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
};
/**
* fill a rectangle.
* @param h height of the rectangle, should be a constant
* @param w width of the rectangle, should be a constant
* @param size the size of val (1 or 4), should be a constant
*/
static av_always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){
uint8_t *p= (uint8_t*)vp;
assert(size==1 || size==4);
assert(w<=4);
w *= size;
stride *= size;
assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
assert((stride&(w-1))==0);
if(w==2){
const uint16_t v= size==4 ? val : val*0x0101;
*(uint16_t*)(p + 0*stride)= v;
if(h==1) return;
*(uint16_t*)(p + 1*stride)= v;
if(h==2) return;
*(uint16_t*)(p + 2*stride)= v;
*(uint16_t*)(p + 3*stride)= v;
}else if(w==4){
const uint32_t v= size==4 ? val : val*0x01010101;
*(uint32_t*)(p + 0*stride)= v;
if(h==1) return;
*(uint32_t*)(p + 1*stride)= v;
if(h==2) return;
*(uint32_t*)(p + 2*stride)= v;
*(uint32_t*)(p + 3*stride)= v;
}else if(w==8){
//gcc can't optimize 64bit math on x86_32
#if defined(ARCH_X86_64) || (defined(MP_WORDSIZE) && MP_WORDSIZE >= 64)
const uint64_t v= val*0x0100000001ULL;
*(uint64_t*)(p + 0*stride)= v;
if(h==1) return;
*(uint64_t*)(p + 1*stride)= v;
if(h==2) return;
*(uint64_t*)(p + 2*stride)= v;
*(uint64_t*)(p + 3*stride)= v;
}else if(w==16){
const uint64_t v= val*0x0100000001ULL;
*(uint64_t*)(p + 0+0*stride)= v;
*(uint64_t*)(p + 8+0*stride)= v;
*(uint64_t*)(p + 0+1*stride)= v;
*(uint64_t*)(p + 8+1*stride)= v;
if(h==2) return;
*(uint64_t*)(p + 0+2*stride)= v;
*(uint64_t*)(p + 8+2*stride)= v;
*(uint64_t*)(p + 0+3*stride)= v;
*(uint64_t*)(p + 8+3*stride)= v;
#else
*(uint32_t*)(p + 0+0*stride)= val;
*(uint32_t*)(p + 4+0*stride)= val;
if(h==1) return;
*(uint32_t*)(p + 0+1*stride)= val;
*(uint32_t*)(p + 4+1*stride)= val;
if(h==2) return;
*(uint32_t*)(p + 0+2*stride)= val;
*(uint32_t*)(p + 4+2*stride)= val;
*(uint32_t*)(p + 0+3*stride)= val;
*(uint32_t*)(p + 4+3*stride)= val;
}else if(w==16){
*(uint32_t*)(p + 0+0*stride)= val;
*(uint32_t*)(p + 4+0*stride)= val;
*(uint32_t*)(p + 8+0*stride)= val;
*(uint32_t*)(p +12+0*stride)= val;
*(uint32_t*)(p + 0+1*stride)= val;
*(uint32_t*)(p + 4+1*stride)= val;
*(uint32_t*)(p + 8+1*stride)= val;
*(uint32_t*)(p +12+1*stride)= val;
if(h==2) return;
*(uint32_t*)(p + 0+2*stride)= val;
*(uint32_t*)(p + 4+2*stride)= val;
*(uint32_t*)(p + 8+2*stride)= val;
*(uint32_t*)(p +12+2*stride)= val;
*(uint32_t*)(p + 0+3*stride)= val;
*(uint32_t*)(p + 4+3*stride)= val;
*(uint32_t*)(p + 8+3*stride)= val;
*(uint32_t*)(p +12+3*stride)= val;
#endif
}else
assert(0);
assert(h==4);
}
static void fill_caches(H264Context *h, int mb_type, int for_deblock){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
int topleft_xy, top_xy, topright_xy, left_xy[2];
int topleft_type, top_type, topright_type, left_type[2];
int left_block[8];
int i;
//FIXME deblocking could skip the intra and nnz parts.
if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[mb_xy-s->mb_stride]) && !FRAME_MBAFF)
return;
//wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
top_xy = mb_xy - s->mb_stride;
topleft_xy = top_xy - 1;
topright_xy= top_xy + 1;
left_xy[1] = left_xy[0] = mb_xy-1;
left_block[0]= 0;
left_block[1]= 1;
left_block[2]= 2;
left_block[3]= 3;
left_block[4]= 7;
left_block[5]= 10;
left_block[6]= 8;
left_block[7]= 11;
if(FRAME_MBAFF){
const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
const int top_pair_xy = pair_xy - s->mb_stride;
const int topleft_pair_xy = top_pair_xy - 1;
const int topright_pair_xy = top_pair_xy + 1;
const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
const int bottom = (s->mb_y & 1);
tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
if (bottom
? !curr_mb_frame_flag // bottom macroblock
: (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
) {
top_xy -= s->mb_stride;
}
if (bottom
? !curr_mb_frame_flag // bottom macroblock
: (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
) {
topleft_xy -= s->mb_stride;
}
if (bottom
? !curr_mb_frame_flag // bottom macroblock
: (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
) {
topright_xy -= s->mb_stride;
}
if (left_mb_frame_flag != curr_mb_frame_flag) {
left_xy[1] = left_xy[0] = pair_xy - 1;
if (curr_mb_frame_flag) {
if (bottom) {
left_block[0]= 2;
left_block[1]= 2;
left_block[2]= 3;
left_block[3]= 3;
left_block[4]= 8;
left_block[5]= 11;
left_block[6]= 8;
left_block[7]= 11;
} else {
left_block[0]= 0;
left_block[1]= 0;
left_block[2]= 1;
left_block[3]= 1;
left_block[4]= 7;
left_block[5]= 10;
left_block[6]= 7;
left_block[7]= 10;
}
} else {
left_xy[1] += s->mb_stride;
//left_block[0]= 0;
left_block[1]= 2;
left_block[2]= 0;
left_block[3]= 2;
//left_block[4]= 7;
left_block[5]= 10;
left_block[6]= 7;
left_block[7]= 10;
}
}
}
h->top_mb_xy = top_xy;
h->left_mb_xy[0] = left_xy[0];
h->left_mb_xy[1] = left_xy[1];
if(for_deblock){
topleft_type = 0;
topright_type = 0;
top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
if(FRAME_MBAFF && !IS_INTRA(mb_type)){
int list;
int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
for(i=0; i<16; i++)
h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
for(list=0; list<h->list_count; list++){
if(USES_LIST(mb_type,list)){
uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
}
*(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
*(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
ref += h->b8_stride;
*(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
*(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
}else{
fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
}
}
}
}else{
topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
}
if(IS_INTRA(mb_type)){
h->topleft_samples_available=
h->top_samples_available=
h->left_samples_available= 0xFFFF;
h->topright_samples_available= 0xEEEA;
if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
h->topleft_samples_available= 0xB3FF;
h->top_samples_available= 0x33FF;
h->topright_samples_available= 0x26EA;
}
for(i=0; i<2; i++){
if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
h->topleft_samples_available&= 0xDF5F;
h->left_samples_available&= 0x5F5F;
}
}
if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
h->topleft_samples_available&= 0x7FFF;
if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
h->topright_samples_available&= 0xFBFF;
if(IS_INTRA4x4(mb_type)){
if(IS_INTRA4x4(top_type)){
h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
}else{
int pred;
if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
pred= -1;
else{
pred= 2;
}
h->intra4x4_pred_mode_cache[4+8*0]=
h->intra4x4_pred_mode_cache[5+8*0]=
h->intra4x4_pred_mode_cache[6+8*0]=
h->intra4x4_pred_mode_cache[7+8*0]= pred;
}
for(i=0; i<2; i++){
if(IS_INTRA4x4(left_type[i])){
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
}else{
int pred;
if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
pred= -1;
else{
pred= 2;
}
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
}
}
}
}
/*
0 . T T. T T T T
1 L . .L . . . .
2 L . .L . . . .
3 . T TL . . . .
4 L . .L . . . .
5 L . .. . . . .
*/
//FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
if(top_type){
h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
}else{
h->non_zero_count_cache[4+8*0]=
h->non_zero_count_cache[5+8*0]=
h->non_zero_count_cache[6+8*0]=
h->non_zero_count_cache[7+8*0]=
h->non_zero_count_cache[1+8*0]=
h->non_zero_count_cache[2+8*0]=
h->non_zero_count_cache[1+8*3]=
h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
}
for (i=0; i<2; i++) {
if(left_type[i]){
h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
}else{
h->non_zero_count_cache[3+8*1 + 2*8*i]=
h->non_zero_count_cache[3+8*2 + 2*8*i]=
h->non_zero_count_cache[0+8*1 + 8*i]=
h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
}
}
if( h->pps.cabac ) {
// top_cbp
if(top_type) {
h->top_cbp = h->cbp_table[top_xy];
} else if(IS_INTRA(mb_type)) {
h->top_cbp = 0x1C0;
} else {
h->top_cbp = 0;
}
// left_cbp
if (left_type[0]) {
h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
} else if(IS_INTRA(mb_type)) {
h->left_cbp = 0x1C0;
} else {
h->left_cbp = 0;
}
if (left_type[0]) {
h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
}
if (left_type[1]) {
h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
}
}
#if 1
if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
int list;
for(list=0; list<h->list_count; list++){
if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
/*if(!h->mv_cache_clean[list]){
memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
h->mv_cache_clean[list]= 1;
}*/
continue;
}
h->mv_cache_clean[list]= 0;
if(USES_LIST(top_type, list)){
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
*(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
*(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
*(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
*(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
h->ref_cache[list][scan8[0] + 0 - 1*8]=
h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
h->ref_cache[list][scan8[0] + 2 - 1*8]=
h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
}else{
*(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
*(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
*(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
*(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
*(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
}
for(i=0; i<2; i++){
int cache_idx = scan8[0] - 1 + i*2*8;
if(USES_LIST(left_type[i], list)){
const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
*(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
*(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
}else{
*(uint32_t*)h->mv_cache [list][cache_idx ]=
*(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
h->ref_cache[list][cache_idx ]=
h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
}
}
if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
continue;
if(USES_LIST(topleft_type, list)){
const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
}else{
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
}
if(USES_LIST(topright_type, list)){
const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
*(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
}else{
*(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
}
if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
continue;
h->ref_cache[list][scan8[5 ]+1] =
h->ref_cache[list][scan8[7 ]+1] =
h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
h->ref_cache[list][scan8[4 ]] =
h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
*(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
*(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
*(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
*(uint32_t*)h->mv_cache [list][scan8[4 ]]=
*(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
if( h->pps.cabac ) {
/* XXX beurk, Load mvd */
if(USES_LIST(top_type, list)){
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
*(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
*(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
*(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
*(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
}else{
*(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
*(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
*(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
*(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
}
if(USES_LIST(left_type[0], list)){
const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
}else{
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
}
if(USES_LIST(left_type[1], list)){
const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
}else{
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
}
*(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
*(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
*(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
*(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
*(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
if(h->slice_type == B_TYPE){
fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
if(IS_DIRECT(top_type)){
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
}else if(IS_8X8(top_type)){
int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
}else{
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
}
if(IS_DIRECT(left_type[0]))
h->direct_cache[scan8[0] - 1 + 0*8]= 1;
else if(IS_8X8(left_type[0]))
h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
else
h->direct_cache[scan8[0] - 1 + 0*8]= 0;
if(IS_DIRECT(left_type[1]))
h->direct_cache[scan8[0] - 1 + 2*8]= 1;
else if(IS_8X8(left_type[1]))
h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
else
h->direct_cache[scan8[0] - 1 + 2*8]= 0;
}
}
if(FRAME_MBAFF){
#define MAP_MVS\
MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
if(MB_FIELD){
#define MAP_F2F(idx, mb_type)\
if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
h->ref_cache[list][idx] <<= 1;\
h->mv_cache[list][idx][1] /= 2;\
h->mvd_cache[list][idx][1] /= 2;\
}
MAP_MVS
#undef MAP_F2F
}else{
#define MAP_F2F(idx, mb_type)\
if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
h->ref_cache[list][idx] >>= 1;\
h->mv_cache[list][idx][1] <<= 1;\
h->mvd_cache[list][idx][1] <<= 1;\
}
MAP_MVS
#undef MAP_F2F
}
}
}
}
#endif
h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
}
static inline void write_back_intra_pred_mode(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
}
/**
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
*/
static inline int check_intra4x4_pred_mode(H264Context *h){
MpegEncContext * const s = &h->s;
static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
int i;
if(!(h->top_samples_available&0x8000)){
for(i=0; i<4; i++){
int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
if(status<0){
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
return -1;
} else if(status){
h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
}
}
}
if(!(h->left_samples_available&0x8000)){
for(i=0; i<4; i++){
int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
if(status<0){
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
return -1;
} else if(status){
h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
}
}
}
return 0;
} //FIXME cleanup like next
/**
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
*/
static inline int check_intra_pred_mode(H264Context *h, int mode){
MpegEncContext * const s = &h->s;
static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
if(mode > 6U) {
av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
if(!(h->top_samples_available&0x8000)){
mode= top[ mode ];
if(mode<0){
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
}
if(!(h->left_samples_available&0x8000)){
mode= left[ mode ];
if(mode<0){
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
}
return mode;
}
/**
* gets the predicted intra4x4 prediction mode.
*/
static inline int pred_intra_mode(H264Context *h, int n){
const int index8= scan8[n];
const int left= h->intra4x4_pred_mode_cache[index8 - 1];
const int top = h->intra4x4_pred_mode_cache[index8 - 8];
const int min= FFMIN(left, top);
tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
if(min<0) return DC_PRED;
else return min;
}
static inline void write_back_non_zero_count(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
if(FRAME_MBAFF){
// store all luma nnzs, for deblocking
int v = 0, i;
for(i=0; i<16; i++)
v += (!!h->non_zero_count_cache[scan8[i]]) << i;
*(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
}
}
/**
* gets the predicted number of non zero coefficients.
* @param n block index
*/
static inline int pred_non_zero_count(H264Context *h, int n){
const int index8= scan8[n];
const int left= h->non_zero_count_cache[index8 - 1];
const int top = h->non_zero_count_cache[index8 - 8];
int i= left + top;
if(i<64) i= (i+1)>>1;
tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
return i&31;
}
static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
MpegEncContext *s = &h->s;
/* there is no consistent mapping of mvs to neighboring locations that will
* make mbaff happy, so we can't move all this logic to fill_caches */
if(FRAME_MBAFF){
const uint32_t *mb_types = s->current_picture_ptr->mb_type;
const int16_t *mv;
*(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
*C = h->mv_cache[list][scan8[0]-2];
if(!MB_FIELD
&& (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
if(IS_INTERLACED(mb_types[topright_xy])){
#define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
const int x4 = X4, y4 = Y4;\
const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
if(!USES_LIST(mb_type,list) && !IS_8X8(mb_type))\
return LIST_NOT_USED;\
mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
h->mv_cache[list][scan8[0]-2][0] = mv[0];\
h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
}
}
if(topright_ref == PART_NOT_AVAILABLE
&& ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
&& h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
if(!MB_FIELD
&& IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
}
if(MB_FIELD
&& !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
&& i >= scan8[0]+8){
// leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
SET_DIAG_MV(>>1, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
}
}
#undef SET_DIAG_MV
}
if(topright_ref != PART_NOT_AVAILABLE){
*C= h->mv_cache[list][ i - 8 + part_width ];
return topright_ref;
}else{
tprintf(s->avctx, "topright MV not available\n");
*C= h->mv_cache[list][ i - 8 - 1 ];
return h->ref_cache[list][ i - 8 - 1 ];
}
}
/**
* gets the predicted MV.
* @param n the block index
* @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
const int index8= scan8[n];
const int top_ref= h->ref_cache[list][ index8 - 8 ];
const int left_ref= h->ref_cache[list][ index8 - 1 ];
const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
const int16_t * C;
int diagonal_ref, match_count;
assert(part_width==1 || part_width==2 || part_width==4);
/* mv_cache
B . . A T T T T
U . . L . . , .
U . . L . . . .
U . . L . . , .
. . . L . . . .
*/
diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
if(match_count > 1){ //most common
*mx= mid_pred(A[0], B[0], C[0]);
*my= mid_pred(A[1], B[1], C[1]);
}else if(match_count==1){
if(left_ref==ref){
*mx= A[0];
*my= A[1];
}else if(top_ref==ref){
*mx= B[0];
*my= B[1];
}else{
*mx= C[0];
*my= C[1];
}
}else{
if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
*mx= A[0];
*my= A[1];
}else{
*mx= mid_pred(A[0], B[0], C[0]);
*my= mid_pred(A[1], B[1], C[1]);
}
}
tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
}
/**
* gets the directionally predicted 16x8 MV.
* @param n the block index
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
if(n==0){
const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
if(top_ref == ref){
*mx= B[0];
*my= B[1];
return;
}
}else{
const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
if(left_ref == ref){
*mx= A[0];
*my= A[1];
return;
}
}
//RARE
pred_motion(h, n, 4, list, ref, mx, my);
}
/**
* gets the directionally predicted 8x16 MV.
* @param n the block index
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
if(n==0){
const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
if(left_ref == ref){
*mx= A[0];
*my= A[1];
return;
}
}else{
const int16_t * C;
int diagonal_ref;
diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
if(diagonal_ref == ref){
*mx= C[0];
*my= C[1];
return;
}
}
//RARE
pred_motion(h, n, 2, list, ref, mx, my);
}
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
|| (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
|| (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
*mx = *my = 0;
return;
}
pred_motion(h, 0, 4, 0, 0, mx, my);
return;
}
static inline void direct_dist_scale_factor(H264Context * const h){
const int poc = h->s.current_picture_ptr->poc;
const int poc1 = h->ref_list[1][0].poc;
int i;
for(i=0; i<h->ref_count[0]; i++){
int poc0 = h->ref_list[0][i].poc;
int td = av_clip(poc1 - poc0, -128, 127);
if(td == 0 /* FIXME || pic0 is a long-term ref */){
h->dist_scale_factor[i] = 256;
}else{
int tb = av_clip(poc - poc0, -128, 127);
int tx = (16384 + (FFABS(td) >> 1)) / td;
h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
}
}
if(FRAME_MBAFF){
for(i=0; i<h->ref_count[0]; i++){
h->dist_scale_factor_field[2*i] =
h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
}
}
}
static inline void direct_ref_list_init(H264Context * const h){
MpegEncContext * const s = &h->s;
Picture * const ref1 = &h->ref_list[1][0];
Picture * const cur = s->current_picture_ptr;
int list, i, j;
if(cur->pict_type == I_TYPE)
cur->ref_count[0] = 0;
if(cur->pict_type != B_TYPE)
cur->ref_count[1] = 0;
for(list=0; list<2; list++){
cur->ref_count[list] = h->ref_count[list];
for(j=0; j<h->ref_count[list]; j++)
cur->ref_poc[list][j] = h->ref_list[list][j].poc;
}
if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
return;
for(list=0; list<2; list++){
for(i=0; i<ref1->ref_count[list]; i++){
const int poc = ref1->ref_poc[list][i];
h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
for(j=0; j<h->ref_count[list]; j++)
if(h->ref_list[list][j].poc == poc){
h->map_col_to_list0[list][i] = j;
break;
}
}
}
if(FRAME_MBAFF){
for(list=0; list<2; list++){
for(i=0; i<ref1->ref_count[list]; i++){
j = h->map_col_to_list0[list][i];
h->map_col_to_list0_field[list][2*i] = 2*j;
h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
}
}
}
}
static inline void pred_direct_motion(H264Context * const h, int *mb_type){
MpegEncContext * const s = &h->s;
const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
const int is_b8x8 = IS_8X8(*mb_type);
unsigned int sub_mb_type;
int i8, i4;
#define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
/* FIXME save sub mb types from previous frames (or derive from MVs)
* so we know exactly what block size to use */
sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
*mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
}else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
*mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
}else{
sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
*mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
}
if(!is_b8x8)
*mb_type |= MB_TYPE_DIRECT2;
if(MB_FIELD)
*mb_type |= MB_TYPE_INTERLACED;
tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
if(h->direct_spatial_mv_pred){
int ref[2];
int mv[2][2];
int list;
/* FIXME interlacing + spatial direct uses wrong colocated block positions */
/* ref = min(neighbors) */
for(list=0; list<2; list++){
int refa = h->ref_cache[list][scan8[0] - 1];
int refb = h->ref_cache[list][scan8[0] - 8];
int refc = h->ref_cache[list][scan8[0] - 8 + 4];
if(refc == -2)
refc = h->ref_cache[list][scan8[0] - 8 - 1];
ref[list] = refa;
if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
ref[list] = refb;
if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
ref[list] = refc;
if(ref[list] < 0)
ref[list] = -1;
}
if(ref[0] < 0 && ref[1] < 0){
ref[0] = ref[1] = 0;
mv[0][0] = mv[0][1] =
mv[1][0] = mv[1][1] = 0;
}else{
for(list=0; list<2; list++){
if(ref[list] >= 0)
pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
else
mv[list][0] = mv[list][1] = 0;
}
}
if(ref[1] < 0){
*mb_type &= ~MB_TYPE_P0L1;
sub_mb_type &= ~MB_TYPE_P0L1;
}else if(ref[0] < 0){
*mb_type &= ~MB_TYPE_P0L0;
sub_mb_type &= ~MB_TYPE_P0L0;
}
if(IS_16X16(*mb_type)){
int a=0, b=0;
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
if(!IS_INTRA(mb_type_col)
&& ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
|| (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
&& (h->x264_build>33 || !h->x264_build)))){
if(ref[0] > 0)
a= pack16to32(mv[0][0],mv[0][1]);
if(ref[1] > 0)
b= pack16to32(mv[1][0],mv[1][1]);
}else{
a= pack16to32(mv[0][0],mv[0][1]);
b= pack16to32(mv[1][0],mv[1][1]);
}
fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
}else{
for(i8=0; i8<4; i8++){
const int x8 = i8&1;
const int y8 = i8>>1;
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
continue;
h->sub_mb_type[i8] = sub_mb_type;
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
/* col_zero_flag */
if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
|| (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
&& (h->x264_build>33 || !h->x264_build)))){
const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
if(IS_SUB_8X8(sub_mb_type)){
const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
if(ref[0] == 0)
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
if(ref[1] == 0)
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
}
}else
for(i4=0; i4<4; i4++){
const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
if(ref[0] == 0)
*(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
if(ref[1] == 0)
*(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
}
}
}
}
}
}else{ /* direct temporal mv pred */
const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
const int *dist_scale_factor = h->dist_scale_factor;
if(FRAME_MBAFF){
if(IS_INTERLACED(*mb_type)){
map_col_to_list0[0] = h->map_col_to_list0_field[0];
map_col_to_list0[1] = h->map_col_to_list0_field[1];
dist_scale_factor = h->dist_scale_factor_field;
}
if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
/* FIXME assumes direct_8x8_inference == 1 */
const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
int mb_types_col[2];
int y_shift;
*mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
| (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
| (*mb_type & MB_TYPE_INTERLACED);
sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
if(IS_INTERLACED(*mb_type)){
/* frame to field scaling */
mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
if(s->mb_y&1){
l1ref0 -= 2*h->b8_stride;
l1ref1 -= 2*h->b8_stride;
l1mv0 -= 4*h->b_stride;
l1mv1 -= 4*h->b_stride;
}
y_shift = 0;
if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
&& (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
&& !is_b8x8)
*mb_type |= MB_TYPE_16x8;
else
*mb_type |= MB_TYPE_8x8;
}else{
/* field to frame scaling */
/* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
* but in MBAFF, top and bottom POC are equal */
int dy = (s->mb_y&1) ? 1 : 2;
mb_types_col[0] =
mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
l1ref0 += dy*h->b8_stride;
l1ref1 += dy*h->b8_stride;
l1mv0 += 2*dy*h->b_stride;
l1mv1 += 2*dy*h->b_stride;
y_shift = 2;
if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
&& !is_b8x8)
*mb_type |= MB_TYPE_16x16;
else
*mb_type |= MB_TYPE_8x8;
}
for(i8=0; i8<4; i8++){
const int x8 = i8&1;
const int y8 = i8>>1;
int ref0, scale;
const int16_t (*l1mv)[2]= l1mv0;
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
continue;
h->sub_mb_type[i8] = sub_mb_type;
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
if(IS_INTRA(mb_types_col[y8])){
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
continue;
}
ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
if(ref0 >= 0)
ref0 = map_col_to_list0[0][ref0*2>>y_shift];
else{
ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
l1mv= l1mv1;
}
scale = dist_scale_factor[ref0];
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
{
const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
int my_col = (mv_col[1]<<y_shift)/2;
int mx = (scale * mv_col[0] + 128) >> 8;
int my = (scale * my_col + 128) >> 8;
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
}
}
return;
}
}
/* one-to-one mv scaling */
if(IS_16X16(*mb_type)){
int ref, mv0, mv1;
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
if(IS_INTRA(mb_type_col)){
ref=mv0=mv1=0;
}else{
const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
: map_col_to_list0[1][l1ref1[0]];
const int scale = dist_scale_factor[ref0];
const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
int mv_l0[2];
mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
ref= ref0;
mv0= pack16to32(mv_l0[0],mv_l0[1]);
mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
}
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
}else{
for(i8=0; i8<4; i8++){
const int x8 = i8&1;
const int y8 = i8>>1;
int ref0, scale;
const int16_t (*l1mv)[2]= l1mv0;
if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
continue;
h->sub_mb_type[i8] = sub_mb_type;
fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
if(IS_INTRA(mb_type_col)){
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
continue;
}
ref0 = l1ref0[x8 + y8*h->b8_stride];
if(ref0 >= 0)
ref0 = map_col_to_list0[0][ref0];
else{
ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
l1mv= l1mv1;
}
scale = dist_scale_factor[ref0];
fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
if(IS_SUB_8X8(sub_mb_type)){
const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
int mx = (scale * mv_col[0] + 128) >> 8;
int my = (scale * mv_col[1] + 128) >> 8;
fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
}else
for(i4=0; i4<4; i4++){
const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
*(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
}
}
}
}
}
static inline void write_back_motion(H264Context *h, int mb_type){
MpegEncContext * const s = &h->s;
const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
int list;
if(!USES_LIST(mb_type, 0))
fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
for(list=0; list<h->list_count; list++){
int y;
if(!USES_LIST(mb_type, list))
continue;
for(y=0; y<4; y++){
*(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
*(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
}
if( h->pps.cabac ) {
if(IS_SKIP(mb_type))
fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
else
for(y=0; y<4; y++){
*(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
*(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
}
}
{
int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
}
}
if(h->slice_type == B_TYPE && h->pps.cabac){
if(IS_8X8(mb_type)){
uint8_t *direct_table = &h->direct_table[b8_xy];
direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
}
}
}
/**
* Decodes a network abstraction layer unit.
* @param consumed is the number of bytes used as input
* @param length is the length of the array
* @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
* @returns decoded bytes, might be src+1 if no escapes
*/
static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
int i, si, di;
uint8_t *dst;
int bufidx;
// src[0]&0x80; //forbidden bit
h->nal_ref_idc= src[0]>>5;
h->nal_unit_type= src[0]&0x1F;
src++; length--;
#if 0
for(i=0; i<length; i++)
printf("%2X ", src[i]);
#endif
for(i=0; i+1<length; i+=2){
if(src[i]) continue;
if(i>0 && src[i-1]==0) i--;
if(i+2<length && src[i+1]==0 && src[i+2]<=3){
if(src[i+2]!=3){
/* startcode, so we must be past the end */
length=i;
}
break;
}
}
if(i>=length-1){ //no escaped 0
*dst_length= length;
*consumed= length+1; //+1 for the header
return src;
}
bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
dst= h->rbsp_buffer[bufidx];
if (dst == NULL){
return NULL;
}
//printf("decoding esc\n");
si=di=0;
while(si<length){
//remove escapes (very rare 1:2^22)
if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
if(src[si+2]==3){ //escape
dst[di++]= 0;
dst[di++]= 0;
si+=3;
continue;
}else //next start code
break;
}
dst[di++]= src[si++];
}
*dst_length= di;
*consumed= si + 1;//+1 for the header
//FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
return dst;
}
/**
* identifies the exact end of the bitstream
* @return the length of the trailing, or 0 if damaged
*/
static int decode_rbsp_trailing(H264Context *h, uint8_t *src){
int v= *src;
int r;
tprintf(h->s.avctx, "rbsp trailing %X\n", v);
for(r=1; r<9; r++){
if(v&1) return r;
v>>=1;
}
return 0;
}
/**
* idct tranforms the 16 dc values and dequantize them.
* @param qp quantization parameter
*/
static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
#define stride 16
int i;
int temp[16]; //FIXME check if this is a good idea
static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
//memset(block, 64, 2*256);
//return;
for(i=0; i<4; i++){
const int offset= y_offset[i];
const int z0= block[offset+stride*0] + block[offset+stride*4];
const int z1= block[offset+stride*0] - block[offset+stride*4];
const int z2= block[offset+stride*1] - block[offset+stride*5];
const int z3= block[offset+stride*1] + block[offset+stride*5];
temp[4*i+0]= z0+z3;
temp[4*i+1]= z1+z2;
temp[4*i+2]= z1-z2;
temp[4*i+3]= z0-z3;
}
for(i=0; i<4; i++){
const int offset= x_offset[i];
const int z0= temp[4*0+i] + temp[4*2+i];
const int z1= temp[4*0+i] - temp[4*2+i];
const int z2= temp[4*1+i] - temp[4*3+i];
const int z3= temp[4*1+i] + temp[4*3+i];
block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
}
}
#if 0
/**
* dct tranforms the 16 dc values.
* @param qp quantization parameter ??? FIXME
*/
static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
// const int qmul= dequant_coeff[qp][0];
int i;
int temp[16]; //FIXME check if this is a good idea
static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
for(i=0; i<4; i++){
const int offset= y_offset[i];
const int z0= block[offset+stride*0] + block[offset+stride*4];
const int z1= block[offset+stride*0] - block[offset+stride*4];
const int z2= block[offset+stride*1] - block[offset+stride*5];
const int z3= block[offset+stride*1] + block[offset+stride*5];
temp[4*i+0]= z0+z3;
temp[4*i+1]= z1+z2;
temp[4*i+2]= z1-z2;
temp[4*i+3]= z0-z3;
}
for(i=0; i<4; i++){
const int offset= x_offset[i];
const int z0= temp[4*0+i] + temp[4*2+i];
const int z1= temp[4*0+i] - temp[4*2+i];
const int z2= temp[4*1+i] - temp[4*3+i];
const int z3= temp[4*1+i] + temp[4*3+i];
block[stride*0 +offset]= (z0 + z3)>>1;
block[stride*2 +offset]= (z1 + z2)>>1;
block[stride*8 +offset]= (z1 - z2)>>1;
block[stride*10+offset]= (z0 - z3)>>1;
}
}
#endif
#undef xStride
#undef stride
static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
const int stride= 16*2;
const int xStride= 16;
int a,b,c,d,e;
a= block[stride*0 + xStride*0];
b= block[stride*0 + xStride*1];
c= block[stride*1 + xStride*0];
d= block[stride*1 + xStride*1];
e= a-b;
a= a+b;
b= c-d;
c= c+d;
block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
}
#if 0
static void chroma_dc_dct_c(DCTELEM *block){
const int stride= 16*2;
const int xStride= 16;
int a,b,c,d,e;
a= block[stride*0 + xStride*0];
b= block[stride*0 + xStride*1];
c= block[stride*1 + xStride*0];
d= block[stride*1 + xStride*1];
e= a-b;
a= a+b;
b= c-d;
c= c+d;
block[stride*0 + xStride*0]= (a+c);
block[stride*0 + xStride*1]= (e+b);
block[stride*1 + xStride*0]= (a-c);
block[stride*1 + xStride*1]= (e-b);
}
#endif
/**
* gets the chroma qp.
*/
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
return h->pps.chroma_qp_table[t][qscale & 0xff];
}
//FIXME need to check that this does not overflow signed 32 bit for low qp, i am not sure, it's very close
//FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
int i;
const int * const quant_table= quant_coeff[qscale];
const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
const unsigned int threshold2= (threshold1<<1);
int last_non_zero;
if(separate_dc){
if(qscale<=18){
//avoid overflows
const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
const unsigned int dc_threshold2= (dc_threshold1<<1);
int level= block[0]*quant_coeff[qscale+18][0];
if(((unsigned)(level+dc_threshold1))>dc_threshold2){
if(level>0){
level= (dc_bias + level)>>(QUANT_SHIFT-2);
block[0]= level;
}else{
level= (dc_bias - level)>>(QUANT_SHIFT-2);
block[0]= -level;
}
// last_non_zero = i;
}else{
block[0]=0;
}
}else{
const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
const unsigned int dc_threshold2= (dc_threshold1<<1);
int level= block[0]*quant_table[0];
if(((unsigned)(level+dc_threshold1))>dc_threshold2){
if(level>0){
level= (dc_bias + level)>>(QUANT_SHIFT+1);
block[0]= level;
}else{
level= (dc_bias - level)>>(QUANT_SHIFT+1);
block[0]= -level;
}
// last_non_zero = i;
}else{
block[0]=0;
}
}
last_non_zero= 0;
i=1;
}else{
last_non_zero= -1;
i=0;
}
for(; i<16; i++){
const int j= scantable[i];
int level= block[j]*quant_table[j];
// if( bias+level >= (1<<(QMAT_SHIFT - 3))
// || bias-level >= (1<<(QMAT_SHIFT - 3))){
if(((unsigned)(level+threshold1))>threshold2){
if(level>0){
level= (bias + level)>>QUANT_SHIFT;
block[j]= level;
}else{
level= (bias - level)>>QUANT_SHIFT;
block[j]= -level;
}
last_non_zero = i;
}else{
block[j]=0;
}
}
return last_non_zero;
}
static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
const uint32_t a= ((uint32_t*)(src-stride))[0];
((uint32_t*)(src+0*stride))[0]= a;
((uint32_t*)(src+1*stride))[0]= a;
((uint32_t*)(src+2*stride))[0]= a;
((uint32_t*)(src+3*stride))[0]= a;
}
static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
}
static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
+ src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
((uint32_t*)(src+0*stride))[0]=
((uint32_t*)(src+1*stride))[0]=
((uint32_t*)(src+2*stride))[0]=
((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
}
static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
((uint32_t*)(src+0*stride))[0]=
((uint32_t*)(src+1*stride))[0]=
((uint32_t*)(src+2*stride))[0]=
((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
}
static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
((uint32_t*)(src+0*stride))[0]=
((uint32_t*)(src+1*stride))[0]=
((uint32_t*)(src+2*stride))[0]=
((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
}
static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
((uint32_t*)(src+0*stride))[0]=
((uint32_t*)(src+1*stride))[0]=
((uint32_t*)(src+2*stride))[0]=
((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
}
#define LOAD_TOP_RIGHT_EDGE\
const int av_unused t4= topright[0];\
const int av_unused t5= topright[1];\
const int av_unused t6= topright[2];\
const int av_unused t7= topright[3];\
#define LOAD_LEFT_EDGE\
const int av_unused l0= src[-1+0*stride];\
const int av_unused l1= src[-1+1*stride];\
const int av_unused l2= src[-1+2*stride];\
const int av_unused l3= src[-1+3*stride];\
#define LOAD_TOP_EDGE\
const int av_unused t0= src[ 0-1*stride];\
const int av_unused t1= src[ 1-1*stride];\
const int av_unused t2= src[ 2-1*stride];\
const int av_unused t3= src[ 3-1*stride];\
static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
const int lt= src[-1-1*stride];
LOAD_TOP_EDGE
LOAD_LEFT_EDGE
src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
src[0+2*stride]=
src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
src[0+1*stride]=
src[1+2*stride]=
src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
src[0+0*stride]=
src[1+1*stride]=
src[2+2*stride]=
src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
src[1+0*stride]=
src[2+1*stride]=
src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
src[2+0*stride]=
src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
}
static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
LOAD_TOP_EDGE
LOAD_TOP_RIGHT_EDGE
// LOAD_LEFT_EDGE
src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
src[1+0*stride]=
src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
src[2+0*stride]=
src[1+1*stride]=
src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
src[3+0*stride]=
src[2+1*stride]=
src[1+2*stride]=
src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
src[3+1*stride]=
src[2+2*stride]=
src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
src[3+2*stride]=
src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
}
static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
const int lt= src[-1-1*stride];
LOAD_TOP_EDGE
LOAD_LEFT_EDGE
src[0+0*stride]=
src[1+2*stride]=(lt + t0 + 1)>>1;
src[1+0*stride]=
src[2+2*stride]=(t0 + t1 + 1)>>1;
src[2+0*stride]=
src[3+2*stride]=(t1 + t2 + 1)>>1;
src[3+0*stride]=(t2 + t3 + 1)>>1;
src[0+1*stride]=
src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
src[1+1*stride]=
src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
src[2+1*stride]=
src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
}
static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
LOAD_TOP_EDGE
LOAD_TOP_RIGHT_EDGE
src[0+0*stride]=(t0 + t1 + 1)>>1;
src[1+0*stride]=
src[0+2*stride]=(t1 + t2 + 1)>>1;
src[2+0*stride]=
src[1+2*stride]=(t2 + t3 + 1)>>1;
src[3+0*stride]=
src[2+2*stride]=(t3 + t4+ 1)>>1;
src[3+2*stride]=(t4 + t5+ 1)>>1;
src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
src[1+1*stride]=
src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
src[2+1*stride]=
src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
src[3+1*stride]=
src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
}
static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
LOAD_LEFT_EDGE
src[0+0*stride]=(l0 + l1 + 1)>>1;
src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
src[2+0*stride]=
src[0+1*stride]=(l1 + l2 + 1)>>1;
src[3+0*stride]=
src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
src[2+1*stride]=
src[0+2*stride]=(l2 + l3 + 1)>>1;
src[3+1*stride]=
src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
src[3+2*stride]=
src[1+3*stride]=
src[0+3*stride]=
src[2+2*stride]=
src[2+3*stride]=
src[3+3*stride]=l3;
}
static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
const int lt= src[-1-1*stride];
LOAD_TOP_EDGE
LOAD_LEFT_EDGE
src[0+0*stride]=
src[2+1*stride]=(lt + l0 + 1)>>1;
src[1+0*stride]=
src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
src[0+1*stride]=
src[2+2*stride]=(l0 + l1 + 1)>>1;
src[1+1*stride]=
src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
src[0+2*stride]=
src[2+3*stride]=(l1 + l2+ 1)>>1;
src[1+2*stride]=
src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
src[0+3*stride]=(l2 + l3 + 1)>>1;
src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
}
void ff_pred16x16_vertical_c(uint8_t *src, int stride){
int i;
const uint32_t a= ((uint32_t*)(src-stride))[0];
const uint32_t b= ((uint32_t*)(src-stride))[1];
const uint32_t c= ((uint32_t*)(src-stride))[2];
const uint32_t d= ((uint32_t*)(src-stride))[3];
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]= a;
((uint32_t*)(src+i*stride))[1]= b;
((uint32_t*)(src+i*stride))[2]= c;
((uint32_t*)(src+i*stride))[3]= d;
}
}
void ff_pred16x16_horizontal_c(uint8_t *src, int stride){
int i;
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]=
((uint32_t*)(src+i*stride))[2]=
((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
}
}
void ff_pred16x16_dc_c(uint8_t *src, int stride){
int i, dc=0;
for(i=0;i<16; i++){
dc+= src[-1+i*stride];
}
for(i=0;i<16; i++){
dc+= src[i-stride];
}
dc= 0x01010101*((dc + 16)>>5);
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]=
((uint32_t*)(src+i*stride))[2]=
((uint32_t*)(src+i*stride))[3]= dc;
}
}
void ff_pred16x16_left_dc_c(uint8_t *src, int stride){
int i, dc=0;
for(i=0;i<16; i++){
dc+= src[-1+i*stride];
}
dc= 0x01010101*((dc + 8)>>4);
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]=
((uint32_t*)(src+i*stride))[2]=
((uint32_t*)(src+i*stride))[3]= dc;
}
}
void ff_pred16x16_top_dc_c(uint8_t *src, int stride){
int i, dc=0;
for(i=0;i<16; i++){
dc+= src[i-stride];
}
dc= 0x01010101*((dc + 8)>>4);
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]=
((uint32_t*)(src+i*stride))[2]=
((uint32_t*)(src+i*stride))[3]= dc;
}
}
void ff_pred16x16_128_dc_c(uint8_t *src, int stride){
int i;
for(i=0; i<16; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]=
((uint32_t*)(src+i*stride))[2]=
((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
}
}
static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
int i, j, k;
int a;
uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
const uint8_t * const src0 = src+7-stride;
const uint8_t *src1 = src+8*stride-1;
const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
int H = src0[1] - src0[-1];
int V = src1[0] - src2[ 0];
for(k=2; k<=8; ++k) {
src1 += stride; src2 -= stride;
H += k*(src0[k] - src0[-k]);
V += k*(src1[0] - src2[ 0]);
}
if(svq3){
H = ( 5*(H/4) ) / 16;
V = ( 5*(V/4) ) / 16;
/* required for 100% accuracy */
i = H; H = V; V = i;
}else{
H = ( 5*H+32 ) >> 6;
V = ( 5*V+32 ) >> 6;
}
a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
for(j=16; j>0; --j) {
int b = a;
a += V;
for(i=-16; i<0; i+=4) {
src[16+i] = cm[ (b ) >> 5 ];
src[17+i] = cm[ (b+ H) >> 5 ];
src[18+i] = cm[ (b+2*H) >> 5 ];
src[19+i] = cm[ (b+3*H) >> 5 ];
b += 4*H;
}
src += stride;
}
}
void ff_pred16x16_plane_c(uint8_t *src, int stride){
pred16x16_plane_compat_c(src, stride, 0);
}
void ff_pred8x8_vertical_c(uint8_t *src, int stride){
int i;
const uint32_t a= ((uint32_t*)(src-stride))[0];
const uint32_t b= ((uint32_t*)(src-stride))[1];
for(i=0; i<8; i++){
((uint32_t*)(src+i*stride))[0]= a;
((uint32_t*)(src+i*stride))[1]= b;
}
}
void ff_pred8x8_horizontal_c(uint8_t *src, int stride){
int i;
for(i=0; i<8; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
}
}
void ff_pred8x8_128_dc_c(uint8_t *src, int stride){
int i;
for(i=0; i<8; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
}
}
void ff_pred8x8_left_dc_c(uint8_t *src, int stride){
int i;
int dc0, dc2;
dc0=dc2=0;
for(i=0;i<4; i++){
dc0+= src[-1+i*stride];
dc2+= src[-1+(i+4)*stride];
}
dc0= 0x01010101*((dc0 + 2)>>2);
dc2= 0x01010101*((dc2 + 2)>>2);
for(i=0; i<4; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]= dc0;
}
for(i=4; i<8; i++){
((uint32_t*)(src+i*stride))[0]=
((uint32_t*)(src+i*stride))[1]= dc2;
}
}
void ff_pred8x8_top_dc_c(uint8_t *src, int stride){
int i;
int dc0, dc1;
dc0=dc1=0;
for(i=0;i<4; i++){
dc0+= src[i-stride];
dc1+= src[4+i-stride];
}
dc0= 0x01010101*((dc0 + 2)>>2);
dc1= 0x01010101*((dc1 + 2)>>2);
for(i=0; i<4; i++){
((uint32_t*)(src+i*stride))[0]= dc0;
((uint32_t*)(src+i*stride))[1]= dc1;
}
for(i=4; i<8; i++){
((uint32_t*)(src+i*stride))[0]= dc0;
((uint32_t*)(src+i*stride))[1]= dc1;
}
}
void ff_pred8x8_dc_c(uint8_t *src, int stride){
int i;
int dc0, dc1, dc2, dc3;
dc0=dc1=dc2=0;
for(i=0;i<4; i++){
dc0+= src[-1+i*stride] + src[i-stride];
dc1+= src[4+i-stride];
dc2+= src[-1+(i+4)*stride];
}
dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
dc0= 0x01010101*((dc0 + 4)>>3);
dc1= 0x01010101*((dc1 + 2)>>2);
dc2= 0x01010101*((dc2 + 2)>>2);
for(i=0; i<4; i++){
((uint32_t*)(src+i*stride))[0]= dc0;
((uint32_t*)(src+i*stride))[1]= dc1;
}
for(i=4; i<8; i++){
((uint32_t*)(src+i*stride))[0]= dc2;
((uint32_t*)(src+i*stride))[1]= dc3;
}
}
void ff_pred8x8_plane_c(uint8_t *src, int stride){
int j, k;
int a;
uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
const uint8_t * const src0 = src+3-stride;
const uint8_t *src1 = src+4*stride-1;
const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
int H = src0[1] - src0[-1];
int V = src1[0] - src2[ 0];
for(k=2; k<=4; ++k) {
src1 += stride; src2 -= stride;
H += k*(src0[k] - src0[-k]);
V += k*(src1[0] - src2[ 0]);
}
H = ( 17*H+16 ) >> 5;
V = ( 17*V+16 ) >> 5;
a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
for(j=8; j>0; --j) {
int b = a;
a += V;
src[0] = cm[ (b ) >> 5 ];
src[1] = cm[ (b+ H) >> 5 ];
src[2] = cm[ (b+2*H) >> 5 ];
src[3] = cm[ (b+3*H) >> 5 ];
src[4] = cm[ (b+4*H) >> 5 ];
src[5] = cm[ (b+5*H) >> 5 ];
src[6] = cm[ (b+6*H) >> 5 ];
src[7] = cm[ (b+7*H) >> 5 ];
src += stride;
}
}
#define SRC(x,y) src[(x)+(y)*stride]
#define PL(y) \
const int l##y = (SRC(-1,y-1) + 2*SRC(-1,y) + SRC(-1,y+1) + 2) >> 2;
#define PREDICT_8x8_LOAD_LEFT \
const int l0 = ((has_topleft ? SRC(-1,-1) : SRC(-1,0)) \
+ 2*SRC(-1,0) + SRC(-1,1) + 2) >> 2; \
PL(1) PL(2) PL(3) PL(4) PL(5) PL(6) \
const int l7 av_unused = (SRC(-1,6) + 3*SRC(-1,7) + 2) >> 2
#define PT(x) \
const int t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
#define PREDICT_8x8_LOAD_TOP \
const int t0 = ((has_topleft ? SRC(-1,-1) : SRC(0,-1)) \
+ 2*SRC(0,-1) + SRC(1,-1) + 2) >> 2; \
PT(1) PT(2) PT(3) PT(4) PT(5) PT(6) \
const int t7 av_unused = ((has_topright ? SRC(8,-1) : SRC(7,-1)) \
+ 2*SRC(7,-1) + SRC(6,-1) + 2) >> 2
#define PTR(x) \
t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
#define PREDICT_8x8_LOAD_TOPRIGHT \
int t8, t9, t10, t11, t12, t13, t14, t15; \
if(has_topright) { \
PTR(8) PTR(9) PTR(10) PTR(11) PTR(12) PTR(13) PTR(14) \
t15 = (SRC(14,-1) + 3*SRC(15,-1) + 2) >> 2; \
} else t8=t9=t10=t11=t12=t13=t14=t15= SRC(7,-1);
#define PREDICT_8x8_LOAD_TOPLEFT \
const int lt = (SRC(-1,0) + 2*SRC(-1,-1) + SRC(0,-1) + 2) >> 2
#define PREDICT_8x8_DC(v) \
int y; \
for( y = 0; y < 8; y++ ) { \
((uint32_t*)src)[0] = \
((uint32_t*)src)[1] = v; \
src += stride; \
}
static void pred8x8l_128_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
PREDICT_8x8_DC(0x80808080);
}
static void pred8x8l_left_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
PREDICT_8x8_LOAD_LEFT;
const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7+4) >> 3) * 0x01010101;
PREDICT_8x8_DC(dc);
}
static void pred8x8l_top_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
PREDICT_8x8_LOAD_TOP;
const uint32_t dc = ((t0+t1+t2+t3+t4+t5+t6+t7+4) >> 3) * 0x01010101;
PREDICT_8x8_DC(dc);
}
static void pred8x8l_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
PREDICT_8x8_LOAD_LEFT;
PREDICT_8x8_LOAD_TOP;
const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7
+t0+t1+t2+t3+t4+t5+t6+t7+8) >> 4) * 0x01010101;
PREDICT_8x8_DC(dc);
}
static void pred8x8l_horizontal_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
PREDICT_8x8_LOAD_LEFT;
#define ROW(y) ((uint32_t*)(src+y*stride))[0] =\
((uint32_t*)(src+y*stride))[1] = 0x01010101 * l##y
ROW(0); ROW(1); ROW(2); ROW(3); ROW(4); ROW(5); ROW(6); ROW(7);
#undef ROW
}
static void pred8x8l_vertical_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
int y;
PREDICT_8x8_LOAD_TOP;
src[0] = t0;
src[1] = t1;
src[2] = t2;
src[3] = t3;
src[4] = t4;
src[5] = t5;
src[6] = t6;
src[7] = t7;
for( y = 1; y < 8; y++ )
*(uint64_t*)(src+y*stride) = *(uint64_t*)src;
}
static void pred8x8l_down_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
PREDICT_8x8_LOAD_TOP;
PREDICT_8x8_LOAD_TOPRIGHT;
SRC(0,0)= (t0 + 2*t1 + t2 + 2) >> 2;
SRC(0,1)=SRC(1,0)= (t1 + 2*t2 + t3 + 2) >> 2;
SRC(0,2)=SRC(1,1)=SRC(2,0)= (t2 + 2*t3 + t4 + 2) >> 2;
SRC(0,3)=SRC(1,2)=SRC(2,1)=SRC(3,0)= (t3 + 2*t4 + t5 + 2) >> 2;
SRC(0,4)=SRC(1,3)=SRC(2,2)=SRC(3,1)=SRC(4,0)= (t4 + 2*t5 + t6 + 2) >> 2;
SRC(0,5)=SRC(1,4)=SRC(2,3)=SRC(3,2)=SRC(4,1)=SRC(5,0)= (t5 + 2*t6 + t7 + 2) >> 2;
SRC(0,6)=SRC(1,5)=SRC(2,4)=SRC(3,3)=SRC(4,2)=SRC(5,1)=SRC(6,0)= (t6 + 2*t7 + t8 + 2) >> 2;
SRC(0,7)=SRC(1,6)=SRC(2,5)=SRC(3,4)=SRC(4,3)=SRC(5,2)=SRC(6,1)=SRC(7,0)= (t7 + 2*t8 + t9 + 2) >> 2;
SRC(1,7)=SRC(2,6)=SRC(3,5)=SRC(4,4)=SRC(5,3)=SRC(6,2)=SRC(7,1)= (t8 + 2*t9 + t10 + 2) >> 2;
SRC(2,7)=SRC(3,6)=SRC(4,5)=SRC(5,4)=SRC(6,3)=SRC(7,2)= (t9 + 2*t10 + t11 + 2) >> 2;
SRC(3,7)=SRC(4,6)=SRC(5,5)=SRC(6,4)=SRC(7,3)= (t10 + 2*t11 + t12 + 2) >> 2;
SRC(4,7)=SRC(5,6)=SRC(6,5)=SRC(7,4)= (t11 + 2*t12 + t13 + 2) >> 2;
SRC(5,7)=SRC(6,6)=SRC(7,5)= (t12 + 2*t13 + t14 + 2) >> 2;
SRC(6,7)=SRC(7,6)= (t13 + 2*t14 + t15 + 2) >> 2;
SRC(7,7)= (t14 + 3*t15 + 2) >> 2;
}
static void pred8x8l_down_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
PREDICT_8x8_LOAD_TOP;
PREDICT_8x8_LOAD_LEFT;
PREDICT_8x8_LOAD_TOPLEFT;
SRC(0,7)= (l7 + 2*l6 + l5 + 2) >> 2;
SRC(0,6)=SRC(1,7)= (l6 + 2*l5 + l4 + 2) >> 2;
SRC(0,5)=SRC(1,6)=SRC(2,7)= (l5 + 2*l4 + l3 + 2) >> 2;
SRC(0,4)=SRC(1,5)=SRC(2,6)=SRC(3,7)= (l4 + 2*l3 + l2 + 2) >> 2;
SRC(0,3)=SRC(1,4)=SRC(2,5)=SRC(3,6)=SRC(4,7)= (l3 + 2*l2 + l1 + 2) >> 2;
SRC(0,2)=SRC(1,3)=SRC(2,4)=SRC(3,5)=SRC(4,6)=SRC(5,7)= (l2 + 2*l1 + l0 + 2) >> 2;
SRC(0,1)=SRC(1,2)=SRC(2,3)=SRC(3,4)=SRC(4,5)=SRC(5,6)=SRC(6,7)= (l1 + 2*l0 + lt + 2) >> 2;
SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)=SRC(4,4)=SRC(5,5)=SRC(6,6)=SRC(7,7)= (l0 + 2*lt + t0 + 2) >> 2;
SRC(1,0)=SRC(2,1)=SRC(3,2)=SRC(4,3)=SRC(5,4)=SRC(6,5)=SRC(7,6)= (lt + 2*t0 + t1 + 2) >> 2;
SRC(2,0)=SRC(3,1)=SRC(4,2)=SRC(5,3)=SRC(6,4)=SRC(7,5)= (t0 + 2*t1 + t2 + 2) >> 2;
SRC(3,0)=SRC(4,1)=SRC(5,2)=SRC(6,3)=SRC(7,4)= (t1 + 2*t2 + t3 + 2) >> 2;
SRC(4,0)=SRC(5,1)=SRC(6,2)=SRC(7,3)= (t2 + 2*t3 + t4 + 2) >> 2;
SRC(5,0)=SRC(6,1)=SRC(7,2)= (t3 + 2*t4 + t5 + 2) >> 2;
SRC(6,0)=SRC(7,1)= (t4 + 2*t5 + t6 + 2) >> 2;
SRC(7,0)= (t5 + 2*t6 + t7 + 2) >> 2;
}
static void pred8x8l_vertical_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
PREDICT_8x8_LOAD_TOP;
PREDICT_8x8_LOAD_LEFT;
PREDICT_8x8_LOAD_TOPLEFT;
SRC(0,6)= (l5 + 2*l4 + l3 + 2) >> 2;
SRC(0,7)= (l6 + 2*l5 + l4 + 2) >> 2;
SRC(0,4)=SRC(1,6)= (l3 + 2*l2 + l1 + 2) >> 2;
SRC(0,5)=SRC(1,7)= (l4 + 2*l3 + l2 + 2) >> 2;
SRC(0,2)=SRC(1,4)=SRC(2,6)= (l1 + 2*l0 + lt + 2) >> 2;
SRC(0,3)=SRC(1,5)=SRC(2,7)= (l2 + 2*l1 + l0 + 2) >> 2;
SRC(0,1)=SRC(1,3)=SRC(2,5)=SRC(3,7)= (l0 + 2*lt + t0 + 2) >> 2;
SRC(0,0)=SRC(1,2)=SRC(2,4)=SRC(3,6)= (lt + t0 + 1) >> 1;
SRC(1,1)=SRC(2,3)=SRC(3,5)=SRC(4,7)= (lt + 2*t0 + t1 + 2) >> 2;
SRC(1,0)=SRC(2,2)=SRC(3,4)=SRC(4,6)= (t0 + t1 + 1) >> 1;
SRC(2,1)=SRC(3,3)=SRC(4,5)=SRC(5,7)= (t0 + 2*t1 + t2 + 2) >> 2;
SRC(2,0)=SRC(3,2)=SRC(4,4)=SRC(5,6)= (t1 + t2 + 1) >> 1;
SRC(3,1)=SRC(4,3)=SRC(5,5)=SRC(6,7)= (t1 + 2*t2 + t3 + 2) >> 2;
SRC(3,0)=SRC(4,2)=SRC(5,4)=SRC(6,6)= (t2 + t3 + 1) >> 1;
SRC(4,1)=SRC(5,3)=SRC(6,5)=SRC(7,7)= (t2 + 2*t3 + t4 + 2) >> 2;
SRC(4,0)=SRC(5,2)=SRC(6,4)=SRC(7,6)= (t3 + t4 + 1) >> 1;
SRC(5,1)=SRC(6,3)=SRC(7,5)= (t3 + 2*t4 + t5 + 2) >> 2;
SRC(5,0)=SRC(6,2)=SRC(7,4)= (t4 + t5 + 1) >> 1;
SRC(6,1)=SRC(7,3)= (t4 + 2*t5 + t6 + 2) >> 2;
SRC(6,0)=SRC(7,2)= (t5 + t6 + 1) >> 1;
SRC(7,1)= (t5 + 2*t6 + t7 + 2) >> 2;
SRC(7,0)= (t6 + t7 + 1) >> 1;
}
static void pred8x8l_horizontal_down_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
PREDICT_8x8_LOAD_TOP;
PREDICT_8x8_LOAD_LEFT;
PREDICT_8x8_LOAD_TOPLEFT;
SRC(0,7)= (l6 + l7 + 1) >> 1;
SRC(1,7)= (l5 + 2*l6 + l7 + 2) >> 2;
SRC(0,6)=SRC(2,7)= (l5 + l6 + 1) >> 1;
SRC(1,6)=SRC(3,7)= (l4 + 2*l5 + l6 + 2) >> 2;
SRC(0,5)=SRC(2,6)=SRC(4,7)= (l4 + l5 + 1) >> 1;
SRC(1,5)=SRC(3,6)=SRC(5,7)= (l3 + 2*l4 + l5 + 2) >> 2;
SRC(0,4)=SRC(2,5)=SRC(4,6)=SRC(6,7)= (l3 + l4 + 1) >> 1;
SRC(1,4)=SRC(3,5)=SRC(5,6)=SRC(7,7)= (l2 + 2*l3 + l4 + 2) >> 2;
SRC(0,3)=SRC(2,4)=SRC(4,5)=SRC(6,6)= (l2 + l3 + 1) >> 1;
SRC(1,3)=SRC(3,4)=SRC(5,5)=SRC(7,6)= (l1 + 2*l2 + l3 + 2) >> 2;
SRC(0,2)=SRC(2,3)=SRC(4,4)=SRC(6,5)= (l1 + l2 + 1) >> 1;
SRC(1,2)=SRC(3,3)=SRC(5,4)=SRC(7,5)= (l0 + 2*l1 + l2 + 2) >> 2;
SRC(0,1)=SRC(2,2)=SRC(4,3)=SRC(6,4)= (l0 + l1 + 1) >> 1;
SRC(1,1)=SRC(3,2)=SRC(5,3)=SRC(7,4)= (lt + 2*l0 + l1 + 2) >> 2;
SRC(0,0)=SRC(2,1)=SRC(4,2)=SRC(6,3)= (lt + l0 + 1) >> 1;
SRC(1,0)=SRC(3,1)=SRC(5,2)=SRC(7,3)= (l0 + 2*lt + t0 + 2) >> 2;
SRC(2,0)=SRC(4,1)=SRC(6,2)= (t1 + 2*t0 + lt + 2) >> 2;
SRC(3,0)=SRC(5,1)=SRC(7,2)= (t2 + 2*t1 + t0 + 2) >> 2;
SRC(4,0)=SRC(6,1)= (t3 + 2*t2 + t1 + 2) >> 2;
SRC(5,0)=SRC(7,1)= (t4 + 2*t3 + t2 + 2) >> 2;
SRC(6,0)= (t5 + 2*t4 + t3 + 2) >> 2;
SRC(7,0)= (t6 + 2*t5 + t4 + 2) >> 2;
}
static void pred8x8l_vertical_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
PREDICT_8x8_LOAD_TOP;
PREDICT_8x8_LOAD_TOPRIGHT;
SRC(0,0)= (t0 + t1 + 1) >> 1;
SRC(0,1)= (t0 + 2*t1 + t2 + 2) >> 2;
SRC(0,2)=SRC(1,0)= (t1 + t2 + 1) >> 1;
SRC(0,3)=SRC(1,1)= (t1 + 2*t2 + t3 + 2) >> 2;
SRC(0,4)=SRC(1,2)=SRC(2,0)= (t2 + t3 + 1) >> 1;
SRC(0,5)=SRC(1,3)=SRC(2,1)= (t2 + 2*t3 + t4 + 2) >> 2;
SRC(0,6)=SRC(1,4)=SRC(2,2)=SRC(3,0)= (t3 + t4 + 1) >> 1;
SRC(0,7)=SRC(1,5)=SRC(2,3)=SRC(3,1)= (t3 + 2*t4 + t5 + 2) >> 2;
SRC(1,6)=SRC(2,4)=SRC(3,2)=SRC(4,0)= (t4 + t5 + 1) >> 1;
SRC(1,7)=SRC(2,5)=SRC(3,3)=SRC(4,1)= (t4 + 2*t5 + t6 + 2) >> 2;
SRC(2,6)=SRC(3,4)=SRC(4,2)=SRC(5,0)= (t5 + t6 + 1) >> 1;
SRC(2,7)=SRC(3,5)=SRC(4,3)=SRC(5,1)= (t5 + 2*t6 + t7 + 2) >> 2;
SRC(3,6)=SRC(4,4)=SRC(5,2)=SRC(6,0)= (t6 + t7 + 1) >> 1;
SRC(3,7)=SRC(4,5)=SRC(5,3)=SRC(6,1)= (t6 + 2*t7 + t8 + 2) >> 2;
SRC(4,6)=SRC(5,4)=SRC(6,2)=SRC(7,0)= (t7 + t8 + 1) >> 1;
SRC(4,7)=SRC(5,5)=SRC(6,3)=SRC(7,1)= (t7 + 2*t8 + t9 + 2) >> 2;
SRC(5,6)=SRC(6,4)=SRC(7,2)= (t8 + t9 + 1) >> 1;
SRC(5,7)=SRC(6,5)=SRC(7,3)= (t8 + 2*t9 + t10 + 2) >> 2;
SRC(6,6)=SRC(7,4)= (t9 + t10 + 1) >> 1;
SRC(6,7)=SRC(7,5)= (t9 + 2*t10 + t11 + 2) >> 2;
SRC(7,6)= (t10 + t11 + 1) >> 1;
SRC(7,7)= (t10 + 2*t11 + t12 + 2) >> 2;
}
static void pred8x8l_horizontal_up_c(uint8_t *src, int has_topleft, int has_topright, int stride)
{
PREDICT_8x8_LOAD_LEFT;
SRC(0,0)= (l0 + l1 + 1) >> 1;
SRC(1,0)= (l0 + 2*l1 + l2 + 2) >> 2;
SRC(0,1)=SRC(2,0)= (l1 + l2 + 1) >> 1;
SRC(1,1)=SRC(3,0)= (l1 + 2*l2 + l3 + 2) >> 2;
SRC(0,2)=SRC(2,1)=SRC(4,0)= (l2 + l3 + 1) >> 1;
SRC(1,2)=SRC(3,1)=SRC(5,0)= (l2 + 2*l3 + l4 + 2) >> 2;
SRC(0,3)=SRC(2,2)=SRC(4,1)=SRC(6,0)= (l3 + l4 + 1) >> 1;
SRC(1,3)=SRC(3,2)=SRC(5,1)=SRC(7,0)= (l3 + 2*l4 + l5 + 2) >> 2;
SRC(0,4)=SRC(2,3)=SRC(4,2)=SRC(6,1)= (l4 + l5 + 1) >> 1;
SRC(1,4)=SRC(3,3)=SRC(5,2)=SRC(7,1)= (l4 + 2*l5 + l6 + 2) >> 2;
SRC(0,5)=SRC(2,4)=SRC(4,3)=SRC(6,2)= (l5 + l6 + 1) >> 1;
SRC(1,5)=SRC(3,4)=SRC(5,3)=SRC(7,2)= (l5 + 2*l6 + l7 + 2) >> 2;
SRC(0,6)=SRC(2,5)=SRC(4,4)=SRC(6,3)= (l6 + l7 + 1) >> 1;
SRC(1,6)=SRC(3,5)=SRC(5,4)=SRC(7,3)= (l6 + 3*l7 + 2) >> 2;
SRC(0,7)=SRC(1,7)=SRC(2,6)=SRC(2,7)=SRC(3,6)=
SRC(3,7)=SRC(4,5)=SRC(4,6)=SRC(4,7)=SRC(5,5)=
SRC(5,6)=SRC(5,7)=SRC(6,4)=SRC(6,5)=SRC(6,6)=
SRC(6,7)=SRC(7,4)=SRC(7,5)=SRC(7,6)=SRC(7,7)= l7;
}
#undef PREDICT_8x8_LOAD_LEFT
#undef PREDICT_8x8_LOAD_TOP
#undef PREDICT_8x8_LOAD_TOPLEFT
#undef PREDICT_8x8_LOAD_TOPRIGHT
#undef PREDICT_8x8_DC
#undef PTR
#undef PT
#undef PL
#undef SRC
static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
int src_x_offset, int src_y_offset,
qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
MpegEncContext * const s = &h->s;
const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
const int luma_xy= (mx&3) + ((my&3)<<2);
uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
uint8_t * src_cb, * src_cr;
int extra_width= h->emu_edge_width;
int extra_height= h->emu_edge_height;
int emu=0;
const int full_mx= mx>>2;
const int full_my= my>>2;
const int pic_width = 16*s->mb_width;
const int pic_height = 16*s->mb_height >> MB_MBAFF;
if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
return;
if(mx&7) extra_width -= 3;
if(my&7) extra_height -= 3;
if( full_mx < 0-extra_width
|| full_my < 0-extra_height
|| full_mx + 16/*FIXME*/ > pic_width + extra_width
|| full_my + 16/*FIXME*/ > pic_height + extra_height){
ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
emu=1;
}
qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
if(!square){
qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
}
if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
if(MB_MBAFF){
// chroma offset when predicting from a field of opposite parity
my += 2 * ((s->mb_y & 1) - (h->ref_cache[list][scan8[n]] & 1));
emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
}
src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
if(emu){
ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
src_cb= s->edge_emu_buffer;
}
chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
if(emu){
ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
src_cr= s->edge_emu_buffer;
}
chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
}
static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
int list0, int list1){
MpegEncContext * const s = &h->s;
qpel_mc_func *qpix_op= qpix_put;
h264_chroma_mc_func chroma_op= chroma_put;
dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
dest_cb += x_offset + y_offset*h->mb_uvlinesize;
dest_cr += x_offset + y_offset*h->mb_uvlinesize;
x_offset += 8*s->mb_x;
y_offset += 8*(s->mb_y >> MB_MBAFF);
if(list0){
Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op);
qpix_op= qpix_avg;
chroma_op= chroma_avg;
}
if(list1){
Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op);
}
}
static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
int list0, int list1){
MpegEncContext * const s = &h->s;
dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
dest_cb += x_offset + y_offset*h->mb_uvlinesize;
dest_cr += x_offset + y_offset*h->mb_uvlinesize;
x_offset += 8*s->mb_x;
y_offset += 8*(s->mb_y >> MB_MBAFF);
if(list0 && list1){
/* don't optimize for luma-only case, since B-frames usually
* use implicit weights => chroma too. */
uint8_t *tmp_cb = s->obmc_scratchpad;
uint8_t *tmp_cr = s->obmc_scratchpad + 8;
uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
int refn0 = h->ref_cache[0][ scan8[n] ];
int refn1 = h->ref_cache[1][ scan8[n] ];
mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
dest_y, dest_cb, dest_cr,
x_offset, y_offset, qpix_put, chroma_put);
mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
tmp_y, tmp_cb, tmp_cr,
x_offset, y_offset, qpix_put, chroma_put);
if(h->use_weight == 2){
int weight0 = h->implicit_weight[refn0][refn1];
int weight1 = 64 - weight0;
luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
}else{
luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
h->luma_weight[0][refn0], h->luma_weight[1][refn1],
h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
}
}else{
int list = list1 ? 1 : 0;
int refn = h->ref_cache[list][ scan8[n] ];
Picture *ref= &h->ref_list[list][refn];
mc_dir_part(h, ref, n, square, chroma_height, delta, list,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put, chroma_put);
luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
h->luma_weight[list][refn], h->luma_offset[list][refn]);
if(h->use_weight_chroma){
chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
}
}
}
static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
h264_weight_func *weight_op, h264_biweight_func *weight_avg,
int list0, int list1){
if((h->use_weight==2 && list0 && list1
&& (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
|| h->use_weight==1)
mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
x_offset, y_offset, qpix_put, chroma_put,
weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
else
mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
}
static inline void prefetch_motion(H264Context *h, int list){
/* fetch pixels for estimated mv 4 macroblocks ahead
* optimized for 64byte cache lines */
MpegEncContext * const s = &h->s;
const int refn = h->ref_cache[list][scan8[0]];
if(refn >= 0){
const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
uint8_t **src= h->ref_list[list][refn].data;
int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
s->dsp.prefetch(src[0]+off, s->linesize, 4);
off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
}
}
static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
h264_weight_func *weight_op, h264_biweight_func *weight_avg){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
const int mb_type= s->current_picture.mb_type[mb_xy];
assert(IS_INTER(mb_type));
prefetch_motion(h, 0);
if(IS_16X16(mb_type)){
mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
&weight_op[0], &weight_avg[0],
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
}else if(IS_16X8(mb_type)){
mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
&weight_op[1], &weight_avg[1],
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
&weight_op[1], &weight_avg[1],
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
}else if(IS_8X16(mb_type)){
mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
&weight_op[2], &weight_avg[2],
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
&weight_op[2], &weight_avg[2],
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
}else{
int i;
assert(IS_8X8(mb_type));
for(i=0; i<4; i++){
const int sub_mb_type= h->sub_mb_type[i];
const int n= 4*i;
int x_offset= (i&1)<<2;
int y_offset= (i&2)<<1;
if(IS_SUB_8X8(sub_mb_type)){
mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
&weight_op[3], &weight_avg[3],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
}else if(IS_SUB_8X4(sub_mb_type)){
mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
&weight_op[4], &weight_avg[4],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
&weight_op[4], &weight_avg[4],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
}else if(IS_SUB_4X8(sub_mb_type)){
mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
&weight_op[5], &weight_avg[5],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
&weight_op[5], &weight_avg[5],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
}else{
int j;
assert(IS_SUB_4X4(sub_mb_type));
for(j=0; j<4; j++){
int sub_x_offset= x_offset + 2*(j&1);
int sub_y_offset= y_offset + (j&2);
mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
&weight_op[6], &weight_avg[6],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
}
}
}
}
prefetch_motion(h, 1);
}
static void decode_init_vlc(void){
static int done = 0;
if (!done) {
int i;
done = 1;
init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
&chroma_dc_coeff_token_len [0], 1, 1,
&chroma_dc_coeff_token_bits[0], 1, 1, 1);
for(i=0; i<4; i++){
init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
&coeff_token_len [i][0], 1, 1,
&coeff_token_bits[i][0], 1, 1, 1);
}
for(i=0; i<3; i++){
init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
&chroma_dc_total_zeros_len [i][0], 1, 1,
&chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
}
for(i=0; i<15; i++){
init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
&total_zeros_len [i][0], 1, 1,
&total_zeros_bits[i][0], 1, 1, 1);
}
for(i=0; i<6; i++){
init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
&run_len [i][0], 1, 1,
&run_bits[i][0], 1, 1, 1);
}
init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
&run_len [6][0], 1, 1,
&run_bits[6][0], 1, 1, 1);
}
}
/**
* Sets the intra prediction function pointers.
*/
static void init_pred_ptrs(H264Context *h){
// MpegEncContext * const s = &h->s;
h->pred4x4[VERT_PRED ]= pred4x4_vertical_c;
h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c;
h->pred4x4[DC_PRED ]= pred4x4_dc_c;
h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c;
h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c;
h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c;
h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c;
h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c;
h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c;
h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c;
h->pred8x8l[VERT_PRED ]= pred8x8l_vertical_c;
h->pred8x8l[HOR_PRED ]= pred8x8l_horizontal_c;
h->pred8x8l[DC_PRED ]= pred8x8l_dc_c;
h->pred8x8l[DIAG_DOWN_LEFT_PRED ]= pred8x8l_down_left_c;
h->pred8x8l[DIAG_DOWN_RIGHT_PRED]= pred8x8l_down_right_c;
h->pred8x8l[VERT_RIGHT_PRED ]= pred8x8l_vertical_right_c;
h->pred8x8l[HOR_DOWN_PRED ]= pred8x8l_horizontal_down_c;
h->pred8x8l[VERT_LEFT_PRED ]= pred8x8l_vertical_left_c;
h->pred8x8l[HOR_UP_PRED ]= pred8x8l_horizontal_up_c;
h->pred8x8l[LEFT_DC_PRED ]= pred8x8l_left_dc_c;
h->pred8x8l[TOP_DC_PRED ]= pred8x8l_top_dc_c;
h->pred8x8l[DC_128_PRED ]= pred8x8l_128_dc_c;
h->pred8x8[DC_PRED8x8 ]= ff_pred8x8_dc_c;
h->pred8x8[VERT_PRED8x8 ]= ff_pred8x8_vertical_c;
h->pred8x8[HOR_PRED8x8 ]= ff_pred8x8_horizontal_c;
h->pred8x8[PLANE_PRED8x8 ]= ff_pred8x8_plane_c;
h->pred8x8[LEFT_DC_PRED8x8]= ff_pred8x8_left_dc_c;
h->pred8x8[TOP_DC_PRED8x8 ]= ff_pred8x8_top_dc_c;
h->pred8x8[DC_128_PRED8x8 ]= ff_pred8x8_128_dc_c;
h->pred16x16[DC_PRED8x8 ]= ff_pred16x16_dc_c;
h->pred16x16[VERT_PRED8x8 ]= ff_pred16x16_vertical_c;
h->pred16x16[HOR_PRED8x8 ]= ff_pred16x16_horizontal_c;
h->pred16x16[PLANE_PRED8x8 ]= ff_pred16x16_plane_c;
h->pred16x16[LEFT_DC_PRED8x8]= ff_pred16x16_left_dc_c;
h->pred16x16[TOP_DC_PRED8x8 ]= ff_pred16x16_top_dc_c;
h->pred16x16[DC_128_PRED8x8 ]= ff_pred16x16_128_dc_c;
}
static void free_tables(H264Context *h){
int i;
av_freep(&h->intra4x4_pred_mode);
av_freep(&h->chroma_pred_mode_table);
av_freep(&h->cbp_table);
av_freep(&h->mvd_table[0]);
av_freep(&h->mvd_table[1]);
av_freep(&h->direct_table);
av_freep(&h->non_zero_count);
av_freep(&h->slice_table_base);
av_freep(&h->top_borders[1]);
av_freep(&h->top_borders[0]);
h->slice_table= NULL;
av_freep(&h->mb2b_xy);
av_freep(&h->mb2b8_xy);
av_freep(&h->s.obmc_scratchpad);
for(i = 0; i < MAX_SPS_COUNT; i++)
av_freep(h->sps_buffers + i);
for(i = 0; i < MAX_PPS_COUNT; i++)
av_freep(h->pps_buffers + i);
}
static void init_dequant8_coeff_table(H264Context *h){
int i,q,x;
const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
h->dequant8_coeff[0] = h->dequant8_buffer[0];
h->dequant8_coeff[1] = h->dequant8_buffer[1];
for(i=0; i<2; i++ ){
if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
h->dequant8_coeff[1] = h->dequant8_buffer[0];
break;
}
for(q=0; q<52; q++){
int shift = ff_div6[q];
int idx = ff_rem6[q];
for(x=0; x<64; x++)
h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
h->pps.scaling_matrix8[i][x]) << shift;
}
}
}
static void init_dequant4_coeff_table(H264Context *h){
int i,j,q,x;
const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
for(i=0; i<6; i++ ){
h->dequant4_coeff[i] = h->dequant4_buffer[i];
for(j=0; j<i; j++){
if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
h->dequant4_coeff[i] = h->dequant4_buffer[j];
break;
}
}
if(j<i)
continue;
for(q=0; q<52; q++){
int shift = ff_div6[q] + 2;
int idx = ff_rem6[q];
for(x=0; x<16; x++)
h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
h->pps.scaling_matrix4[i][x]) << shift;
}
}
}
static void init_dequant_tables(H264Context *h){
int i,x;
init_dequant4_coeff_table(h);
if(h->pps.transform_8x8_mode)
init_dequant8_coeff_table(h);
if(h->sps.transform_bypass){
for(i=0; i<6; i++)
for(x=0; x<16; x++)
h->dequant4_coeff[i][0][x] = 1<<6;
if(h->pps.transform_8x8_mode)
for(i=0; i<2; i++)
for(x=0; x<64; x++)
h->dequant8_coeff[i][0][x] = 1<<6;
}
}
/**
* allocates tables.
* needs width/height
*/
static int alloc_tables(H264Context *h){
MpegEncContext * const s = &h->s;
const int big_mb_num= s->mb_stride * (s->mb_height+1);
int x,y;
CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
CHECKED_ALLOCZ(h->top_borders[0] , s->mb_width * (16+8+8) * sizeof(uint8_t))
CHECKED_ALLOCZ(h->top_borders[1] , s->mb_width * (16+8+8) * sizeof(uint8_t))
CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
if( h->pps.cabac ) {
CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
}
memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
for(y=0; y<s->mb_height; y++){
for(x=0; x<s->mb_width; x++){
const int mb_xy= x + y*s->mb_stride;
const int b_xy = 4*x + 4*y*h->b_stride;
const int b8_xy= 2*x + 2*y*h->b8_stride;
h->mb2b_xy [mb_xy]= b_xy;
h->mb2b8_xy[mb_xy]= b8_xy;
}
}
s->obmc_scratchpad = NULL;
if(!h->dequant4_coeff[0])
init_dequant_tables(h);
return 0;
fail:
free_tables(h);
return -1;
}
static void common_init(H264Context *h){
MpegEncContext * const s = &h->s;
s->width = s->avctx->width;
s->height = s->avctx->height;
s->codec_id= s->avctx->codec->id;
init_pred_ptrs(h);
h->dequant_coeff_pps= -1;
s->unrestricted_mv=1;
s->decode=1; //FIXME
memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
}
static int decode_init(AVCodecContext *avctx){
H264Context *h= avctx->priv_data;
MpegEncContext * const s = &h->s;
MPV_decode_defaults(s);
s->avctx = avctx;
common_init(h);
s->out_format = FMT_H264;
s->workaround_bugs= avctx->workaround_bugs;
// set defaults
// s->decode_mb= ff_h263_decode_mb;
s->quarter_sample = 1;
s->low_delay= 1;
avctx->pix_fmt= PIX_FMT_YUV420P;
decode_init_vlc();
if(avctx->extradata_size > 0 && avctx->extradata &&
*(char *)avctx->extradata == 1){
h->is_avc = 1;
h->got_avcC = 0;
} else {
h->is_avc = 0;
}
return 0;
}
static int frame_start(H264Context *h){
MpegEncContext * const s = &h->s;
int i;
if(MPV_frame_start(s, s->avctx) < 0)
return -1;
ff_er_frame_start(s);
assert(s->linesize && s->uvlinesize);
for(i=0; i<16; i++){
h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
}
for(i=0; i<4; i++){
h->block_offset[16+i]=
h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
h->block_offset[24+16+i]=
h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
}
/* can't be in alloc_tables because linesize isn't known there.
* FIXME: redo bipred weight to not require extra buffer? */
if(!s->obmc_scratchpad)
s->obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
/* some macroblocks will be accessed before they're available */
if(FRAME_MBAFF)
memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
// s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
return 0;
}
static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
MpegEncContext * const s = &h->s;
int i;
src_y -= linesize;
src_cb -= uvlinesize;
src_cr -= uvlinesize;
// There are two lines saved, the line above the the top macroblock of a pair,
// and the line above the bottom macroblock
h->left_border[0]= h->top_borders[0][s->mb_x][15];
for(i=1; i<17; i++){
h->left_border[i]= src_y[15+i* linesize];
}
*(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
*(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
for(i=1; i<9; i++){
h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
}
*(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
*(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
}
}
static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
MpegEncContext * const s = &h->s;
int temp8, i;
uint64_t temp64;
int deblock_left;
int deblock_top;
int mb_xy;
if(h->deblocking_filter == 2) {
mb_xy = s->mb_x + s->mb_y*s->mb_stride;
deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
} else {
deblock_left = (s->mb_x > 0);
deblock_top = (s->mb_y > 0);
}
src_y -= linesize + 1;
src_cb -= uvlinesize + 1;
src_cr -= uvlinesize + 1;
#define XCHG(a,b,t,xchg)\
t= a;\
if(xchg)\
a= b;\
b= t;
if(deblock_left){
for(i = !deblock_top; i<17; i++){
XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
}
}
if(deblock_top){
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
if(s->mb_x+1 < s->mb_width){
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
}
}
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
if(deblock_left){
for(i = !deblock_top; i<9; i++){
XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
}
}
if(deblock_top){
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
}
}
}
static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
MpegEncContext * const s = &h->s;
int i;
src_y -= 2 * linesize;
src_cb -= 2 * uvlinesize;
src_cr -= 2 * uvlinesize;
// There are two lines saved, the line above the the top macroblock of a pair,
// and the line above the bottom macroblock
h->left_border[0]= h->top_borders[0][s->mb_x][15];
h->left_border[1]= h->top_borders[1][s->mb_x][15];
for(i=2; i<34; i++){
h->left_border[i]= src_y[15+i* linesize];
}
*(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
*(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
*(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
*(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
for(i=2; i<18; i++){
h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
}
*(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
*(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
*(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
*(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
}
}
static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
MpegEncContext * const s = &h->s;
int temp8, i;
uint64_t temp64;
int deblock_left = (s->mb_x > 0);
int deblock_top = (s->mb_y > 1);
tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
src_y -= 2 * linesize + 1;
src_cb -= 2 * uvlinesize + 1;
src_cr -= 2 * uvlinesize + 1;
#define XCHG(a,b,t,xchg)\
t= a;\
if(xchg)\
a= b;\
b= t;
if(deblock_left){
for(i = (!deblock_top)<<1; i<34; i++){
XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
}
}
if(deblock_top){
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
if(s->mb_x+1 < s->mb_width){
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
}
}
if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
if(deblock_left){
for(i = (!deblock_top) << 1; i<18; i++){
XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
}
}
if(deblock_top){
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
}
}
}
static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
MpegEncContext * const s = &h->s;
const int mb_x= s->mb_x;
const int mb_y= s->mb_y;
const int mb_xy= mb_x + mb_y*s->mb_stride;
const int mb_type= s->current_picture.mb_type[mb_xy];
uint8_t *dest_y, *dest_cb, *dest_cr;
int linesize, uvlinesize /*dct_offset*/;
int i;
int *block_offset = &h->block_offset[0];
const unsigned int bottom = mb_y & 1;
const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
if (!simple && MB_FIELD) {
linesize = h->mb_linesize = s->linesize * 2;
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
block_offset = &h->block_offset[24];
if(mb_y&1){ //FIXME move out of this func?
dest_y -= s->linesize*15;
dest_cb-= s->uvlinesize*7;
dest_cr-= s->uvlinesize*7;
}
if(FRAME_MBAFF) {
int list;
for(list=0; list<h->list_count; list++){
if(!USES_LIST(mb_type, list))
continue;
if(IS_16X16(mb_type)){
int8_t *ref = &h->ref_cache[list][scan8[0]];
fill_rectangle(ref, 4, 4, 8, 16+*ref^(s->mb_y&1), 1);
}else{
for(i=0; i<16; i+=4){
//FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
int ref = h->ref_cache[list][scan8[i]];
if(ref >= 0)
fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, 16+ref^(s->mb_y&1), 1);
}
}
}
}
} else {
linesize = h->mb_linesize = s->linesize;
uvlinesize = h->mb_uvlinesize = s->uvlinesize;
// dct_offset = s->linesize * 16;
}
if(transform_bypass){
idct_dc_add =
idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
}else if(IS_8x8DCT(mb_type)){
idct_dc_add = s->dsp.h264_idct8_dc_add;
idct_add = s->dsp.h264_idct8_add;
}else{
idct_dc_add = s->dsp.h264_idct_dc_add;
idct_add = s->dsp.h264_idct_add;
}
if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
&& (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
int mbt_y = mb_y&~1;
uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
}
if (!simple && IS_INTRA_PCM(mb_type)) {
unsigned int x, y;
// The pixels are stored in h->mb array in the same order as levels,
// copy them in output in the correct order.
for(i=0; i<16; i++) {
for (y=0; y<4; y++) {
for (x=0; x<4; x++) {
*(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
}
}
}
for(i=16; i<16+4; i++) {
for (y=0; y<4; y++) {
for (x=0; x<4; x++) {
*(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
}
}
}
for(i=20; i<20+4; i++) {
for (y=0; y<4; y++) {
for (x=0; x<4; x++) {
*(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
}
}
}
} else {
if(IS_INTRA(mb_type)){
if(h->deblocking_filter && (simple || !FRAME_MBAFF))
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
}
if(IS_INTRA4x4(mb_type)){
if(simple || !s->encoding){
if(IS_8x8DCT(mb_type)){
for(i=0; i<16; i+=4){
uint8_t * const ptr= dest_y + block_offset[i];
const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
const int nnz = h->non_zero_count_cache[ scan8[i] ];
h->pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
(h->topright_samples_available<<i)&0x4000, linesize);
if(nnz){
if(nnz == 1 && h->mb[i*16])
idct_dc_add(ptr, h->mb + i*16, linesize);
else
idct_add(ptr, h->mb + i*16, linesize);
}
}
}else
for(i=0; i<16; i++){
uint8_t * const ptr= dest_y + block_offset[i];
uint8_t *topright;
const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
int nnz, tr;
if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
const int topright_avail= (h->topright_samples_available<<i)&0x8000;
assert(mb_y || linesize <= block_offset[i]);
if(!topright_avail){
tr= ptr[3 - linesize]*0x01010101;
topright= (uint8_t*) &tr;
}else
topright= ptr + 4 - linesize;
}else
topright= NULL;
h->pred4x4[ dir ](ptr, topright, linesize);
nnz = h->non_zero_count_cache[ scan8[i] ];
if(nnz){
if(is_h264){
if(nnz == 1 && h->mb[i*16])
idct_dc_add(ptr, h->mb + i*16, linesize);
else
idct_add(ptr, h->mb + i*16, linesize);
}else
svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
}
}
}
}else{
h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
if(is_h264){
if(!transform_bypass)
h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[IS_INTRA(mb_type) ? 0:3][s->qscale][0]);
}else
svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
}
if(h->deblocking_filter && (simple || !FRAME_MBAFF))
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
}else if(is_h264){
hl_motion(h, dest_y, dest_cb, dest_cr,
s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
}
if(!IS_INTRA4x4(mb_type)){
if(is_h264){
if(IS_INTRA16x16(mb_type)){
for(i=0; i<16; i++){
if(h->non_zero_count_cache[ scan8[i] ])
idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
else if(h->mb[i*16])
idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
}
}else{
const int di = IS_8x8DCT(mb_type) ? 4 : 1;
for(i=0; i<16; i+=di){
int nnz = h->non_zero_count_cache[ scan8[i] ];
if(nnz){
if(nnz==1 && h->mb[i*16])
idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
else
idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
}
}
}
}else{
for(i=0; i<16; i++){
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
uint8_t * const ptr= dest_y + block_offset[i];
svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
}
}
}
}
if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
uint8_t *dest[2] = {dest_cb, dest_cr};
if(transform_bypass){
idct_add = idct_dc_add = s->dsp.add_pixels4;
}else{
idct_add = s->dsp.h264_idct_add;
idct_dc_add = s->dsp.h264_idct_dc_add;
chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
}
if(is_h264){
for(i=16; i<16+8; i++){
if(h->non_zero_count_cache[ scan8[i] ])
idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
else if(h->mb[i*16])
idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
}
}else{
for(i=16; i<16+8; i++){
if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
}
}
}
}
}
if(h->deblocking_filter) {
if (!simple && FRAME_MBAFF) {
//FIXME try deblocking one mb at a time?
// the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
const int mb_y = s->mb_y - 1;
uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
const int mb_xy= mb_x + mb_y*s->mb_stride;
const int mb_type_top = s->current_picture.mb_type[mb_xy];
const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
if (!bottom) return;
pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
if(IS_INTRA(mb_type_top | mb_type_bottom))
xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
// deblock a pair
// top
s->mb_y--;
tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
// bottom
s->mb_y++;
tprintf(h->s.avctx, "call mbaff filter_mb\n");
fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
} else {
tprintf(h->s.avctx, "call filter_mb\n");
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
}
}
}
/**
* Process a macroblock; this case avoids checks for expensive uncommon cases.
*/
static void hl_decode_mb_simple(H264Context *h){
hl_decode_mb_internal(h, 1);
}
/**
* Process a macroblock; this handles edge cases, such as interlacing.
*/
static void av_noinline hl_decode_mb_complex(H264Context *h){
hl_decode_mb_internal(h, 0);
}
static void hl_decode_mb(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_x= s->mb_x;
const int mb_y= s->mb_y;
const int mb_xy= mb_x + mb_y*s->mb_stride;
const int mb_type= s->current_picture.mb_type[mb_xy];
int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 || (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || s->encoding;
if(!s->decode)
return;
if (is_complex)
hl_decode_mb_complex(h);
else hl_decode_mb_simple(h);
}
/**
* fills the default_ref_list.
*/
static int fill_default_ref_list(H264Context *h){
MpegEncContext * const s = &h->s;
int i;
int smallest_poc_greater_than_current = -1;
Picture sorted_short_ref[32];
if(h->slice_type==B_TYPE){
int out_i;
int limit= INT_MIN;
/* sort frame according to poc in B slice */
for(out_i=0; out_i<h->short_ref_count; out_i++){
int best_i=INT_MIN;
int best_poc=INT_MAX;
for(i=0; i<h->short_ref_count; i++){
const int poc= h->short_ref[i]->poc;
if(poc > limit && poc < best_poc){
best_poc= poc;
best_i= i;
}
}
assert(best_i != INT_MIN);
limit= best_poc;
sorted_short_ref[out_i]= *h->short_ref[best_i];
tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
if (-1 == smallest_poc_greater_than_current) {
if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
smallest_poc_greater_than_current = out_i;
}
}
}
}
if(s->picture_structure == PICT_FRAME){
if(h->slice_type==B_TYPE){
int list;
tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
// find the largest poc
for(list=0; list<2; list++){
int index = 0;
int j= -99;
int step= list ? -1 : 1;
for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
while(j<0 || j>= h->short_ref_count){
if(j != -99 && step == (list ? -1 : 1))
return -1;
step = -step;
j= smallest_poc_greater_than_current + (step>>1);
}
if(sorted_short_ref[j].reference != 3) continue;
h->default_ref_list[list][index ]= sorted_short_ref[j];
h->default_ref_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
}
for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
if(h->long_ref[i] == NULL) continue;
if(h->long_ref[i]->reference != 3) continue;
h->default_ref_list[ list ][index ]= *h->long_ref[i];
h->default_ref_list[ list ][index++].pic_id= i;;
}
if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){
// swap the two first elements of L1 when
// L0 and L1 are identical
Picture temp= h->default_ref_list[1][0];
h->default_ref_list[1][0] = h->default_ref_list[1][1];
h->default_ref_list[1][1] = temp;
}
if(index < h->ref_count[ list ])
memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
}
}else{
int index=0;
for(i=0; i<h->short_ref_count; i++){
if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
h->default_ref_list[0][index ]= *h->short_ref[i];
h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
}
for(i = 0; i < 16; i++){
if(h->long_ref[i] == NULL) continue;
if(h->long_ref[i]->reference != 3) continue;
h->default_ref_list[0][index ]= *h->long_ref[i];
h->default_ref_list[0][index++].pic_id= i;;
}
if(index < h->ref_count[0])
memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
}
}else{ //FIELD
if(h->slice_type==B_TYPE){
}else{
//FIXME second field balh
}
}
#ifdef TRACE
for (i=0; i<h->ref_count[0]; i++) {
tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
}
if(h->slice_type==B_TYPE){
for (i=0; i<h->ref_count[1]; i++) {
tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]);
}
}
#endif
return 0;
}
static void print_short_term(H264Context *h);
static void print_long_term(H264Context *h);
static int decode_ref_pic_list_reordering(H264Context *h){
MpegEncContext * const s = &h->s;
int list, index;
print_short_term(h);
print_long_term(h);
if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move before func
for(list=0; list<h->list_count; list++){
memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
if(get_bits1(&s->gb)){
int pred= h->curr_pic_num;
for(index=0; ; index++){
unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
unsigned int pic_id;
int i;
Picture *ref = NULL;
if(reordering_of_pic_nums_idc==3)
break;
if(index >= h->ref_count[list]){
av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
return -1;
}
if(reordering_of_pic_nums_idc<3){
if(reordering_of_pic_nums_idc<2){
const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
if(abs_diff_pic_num >= h->max_pic_num){
av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
return -1;
}
if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
else pred+= abs_diff_pic_num;
pred &= h->max_pic_num - 1;
for(i= h->short_ref_count-1; i>=0; i--){
ref = h->short_ref[i];
assert(ref->reference == 3);
assert(!ref->long_ref);
if(ref->data[0] != NULL && ref->frame_num == pred && ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
break;
}
if(i>=0)
ref->pic_id= ref->frame_num;
}else{
pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
if(pic_id>31){
av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
return -1;
}
ref = h->long_ref[pic_id];
if(ref){
ref->pic_id= pic_id;
assert(ref->reference == 3);
assert(ref->long_ref);
i=0;
}else{
i=-1;
}
}
if (i < 0) {
av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
} else {
for(i=index; i+1<h->ref_count[list]; i++){
if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
break;
}
for(; i > index; i--){
h->ref_list[list][i]= h->ref_list[list][i-1];
}
h->ref_list[list][index]= *ref;
}
}else{
av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
return -1;
}
}
}
}
for(list=0; list<h->list_count; list++){
for(index= 0; index < h->ref_count[list]; index++){
if(!h->ref_list[list][index].data[0])
h->ref_list[list][index]= s->current_picture;
}
}
if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
direct_dist_scale_factor(h);
direct_ref_list_init(h);
return 0;
}
static void fill_mbaff_ref_list(H264Context *h){
int list, i, j;
for(list=0; list<2; list++){ //FIXME try list_count
for(i=0; i<h->ref_count[list]; i++){
Picture *frame = &h->ref_list[list][i];
Picture *field = &h->ref_list[list][16+2*i];
field[0] = *frame;
for(j=0; j<3; j++)
field[0].linesize[j] <<= 1;
field[1] = field[0];
for(j=0; j<3; j++)
field[1].data[j] += frame->linesize[j];
h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
for(j=0; j<2; j++){
h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
}
}
}
for(j=0; j<h->ref_count[1]; j++){
for(i=0; i<h->ref_count[0]; i++)
h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
}
}
static int pred_weight_table(H264Context *h){
MpegEncContext * const s = &h->s;
int list, i;
int luma_def, chroma_def;
h->use_weight= 0;
h->use_weight_chroma= 0;
h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
luma_def = 1<<h->luma_log2_weight_denom;
chroma_def = 1<<h->chroma_log2_weight_denom;
for(list=0; list<2; list++){
for(i=0; i<h->ref_count[list]; i++){
int luma_weight_flag, chroma_weight_flag;
luma_weight_flag= get_bits1(&s->gb);
if(luma_weight_flag){
h->luma_weight[list][i]= get_se_golomb(&s->gb);
h->luma_offset[list][i]= get_se_golomb(&s->gb);
if( h->luma_weight[list][i] != luma_def
|| h->luma_offset[list][i] != 0)
h->use_weight= 1;
}else{
h->luma_weight[list][i]= luma_def;
h->luma_offset[list][i]= 0;
}
chroma_weight_flag= get_bits1(&s->gb);
if(chroma_weight_flag){
int j;
for(j=0; j<2; j++){
h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
if( h->chroma_weight[list][i][j] != chroma_def
|| h->chroma_offset[list][i][j] != 0)
h->use_weight_chroma= 1;
}
}else{
int j;
for(j=0; j<2; j++){
h->chroma_weight[list][i][j]= chroma_def;
h->chroma_offset[list][i][j]= 0;
}
}
}
if(h->slice_type != B_TYPE) break;
}
h->use_weight= h->use_weight || h->use_weight_chroma;
return 0;
}
static void implicit_weight_table(H264Context *h){
MpegEncContext * const s = &h->s;
int ref0, ref1;
int cur_poc = s->current_picture_ptr->poc;
if( h->ref_count[0] == 1 && h->ref_count[1] == 1
&& h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
h->use_weight= 0;
h->use_weight_chroma= 0;
return;
}
h->use_weight= 2;
h->use_weight_chroma= 2;
h->luma_log2_weight_denom= 5;
h->chroma_log2_weight_denom= 5;
for(ref0=0; ref0 < h->ref_count[0]; ref0++){
int poc0 = h->ref_list[0][ref0].poc;
for(ref1=0; ref1 < h->ref_count[1]; ref1++){
int poc1 = h->ref_list[1][ref1].poc;
int td = av_clip(poc1 - poc0, -128, 127);
if(td){
int tb = av_clip(cur_poc - poc0, -128, 127);
int tx = (16384 + (FFABS(td) >> 1)) / td;
int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
if(dist_scale_factor < -64 || dist_scale_factor > 128)
h->implicit_weight[ref0][ref1] = 32;
else
h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
}else
h->implicit_weight[ref0][ref1] = 32;
}
}
}
static inline void unreference_pic(H264Context *h, Picture *pic){
int i;
pic->reference=0;
if(pic == h->delayed_output_pic)
pic->reference=1;
else{
for(i = 0; h->delayed_pic[i]; i++)
if(pic == h->delayed_pic[i]){
pic->reference=1;
break;
}
}
}
/**
* instantaneous decoder refresh.
*/
static void idr(H264Context *h){
int i;
for(i=0; i<16; i++){
if (h->long_ref[i] != NULL) {
unreference_pic(h, h->long_ref[i]);
h->long_ref[i]= NULL;
}
}
h->long_ref_count=0;
for(i=0; i<h->short_ref_count; i++){
unreference_pic(h, h->short_ref[i]);
h->short_ref[i]= NULL;
}
h->short_ref_count=0;
}
/* forget old pics after a seek */
static void flush_dpb(AVCodecContext *avctx){
H264Context *h= avctx->priv_data;
int i;
for(i=0; i<16; i++) {
if(h->delayed_pic[i])
h->delayed_pic[i]->reference= 0;
h->delayed_pic[i]= NULL;
}
if(h->delayed_output_pic)
h->delayed_output_pic->reference= 0;
h->delayed_output_pic= NULL;
idr(h);
if(h->s.current_picture_ptr)
h->s.current_picture_ptr->reference= 0;
}
/**
*
* @return the removed picture or NULL if an error occurs
*/
static Picture * remove_short(H264Context *h, int frame_num){
MpegEncContext * const s = &h->s;
int i;
if(s->avctx->debug&FF_DEBUG_MMCO)
av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
for(i=0; i<h->short_ref_count; i++){
Picture *pic= h->short_ref[i];
if(s->avctx->debug&FF_DEBUG_MMCO)
av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
if(pic->frame_num == frame_num){
h->short_ref[i]= NULL;
memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
h->short_ref_count--;
return pic;
}
}
return NULL;
}
/**
*
* @return the removed picture or NULL if an error occurs
*/
static Picture * remove_long(H264Context *h, int i){
Picture *pic;
pic= h->long_ref[i];
h->long_ref[i]= NULL;
if(pic) h->long_ref_count--;
return pic;
}
/**
* print short term list
*/
static void print_short_term(H264Context *h) {
uint32_t i;
if(h->s.avctx->debug&FF_DEBUG_MMCO) {
av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
for(i=0; i<h->short_ref_count; i++){
Picture *pic= h->short_ref[i];
av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
}
}
}
/**
* print long term list
*/
static void print_long_term(H264Context *h) {
uint32_t i;
if(h->s.avctx->debug&FF_DEBUG_MMCO) {
av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
for(i = 0; i < 16; i++){
Picture *pic= h->long_ref[i];
if (pic) {
av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
}
}
}
}
/**
* Executes the reference picture marking (memory management control operations).
*/
static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
MpegEncContext * const s = &h->s;
int i, j;
int current_is_long=0;
Picture *pic;
if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
for(i=0; i<mmco_count; i++){
if(s->avctx->debug&FF_DEBUG_MMCO)
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
switch(mmco[i].opcode){
case MMCO_SHORT2UNUSED:
pic= remove_short(h, mmco[i].short_frame_num);
if(pic)
unreference_pic(h, pic);
else if(s->avctx->debug&FF_DEBUG_MMCO)
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_short() failure\n");
break;
case MMCO_SHORT2LONG:
pic= remove_long(h, mmco[i].long_index);
if(pic) unreference_pic(h, pic);
h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
if (h->long_ref[ mmco[i].long_index ]){
h->long_ref[ mmco[i].long_index ]->long_ref=1;
h->long_ref_count++;
}
break;
case MMCO_LONG2UNUSED:
pic= remove_long(h, mmco[i].long_index);
if(pic)
unreference_pic(h, pic);
else if(s->avctx->debug&FF_DEBUG_MMCO)
av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_long() failure\n");
break;
case MMCO_LONG:
pic= remove_long(h, mmco[i].long_index);
if(pic) unreference_pic(h, pic);
h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
h->long_ref[ mmco[i].long_index ]->long_ref=1;
h->long_ref_count++;
current_is_long=1;
break;
case MMCO_SET_MAX_LONG:
assert(mmco[i].long_index <= 16);
// just remove the long term which index is greater than new max
for(j = mmco[i].long_index; j<16; j++){
pic = remove_long(h, j);
if (pic) unreference_pic(h, pic);
}
break;
case MMCO_RESET:
while(h->short_ref_count){
pic= remove_short(h, h->short_ref[0]->frame_num);
if(pic) unreference_pic(h, pic);
}
for(j = 0; j < 16; j++) {
pic= remove_long(h, j);
if(pic) unreference_pic(h, pic);
}
break;
default: assert(0);
}
}
if(!current_is_long){
pic= remove_short(h, s->current_picture_ptr->frame_num);
if(pic){
unreference_pic(h, pic);
av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
}
if(h->short_ref_count)
memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
h->short_ref[0]= s->current_picture_ptr;
h->short_ref[0]->long_ref=0;
h->short_ref_count++;
}
print_short_term(h);
print_long_term(h);
return 0;
}
static int decode_ref_pic_marking(H264Context *h, GetBitContext *gb){
MpegEncContext * const s = &h->s;
int i;
if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
s->broken_link= get_bits1(gb) -1;
h->mmco[0].long_index= get_bits1(gb) - 1; // current_long_term_idx
if(h->mmco[0].long_index == -1)
h->mmco_index= 0;
else{
h->mmco[0].opcode= MMCO_LONG;
h->mmco_index= 1;
}
}else{
if(get_bits1(gb)){ // adaptive_ref_pic_marking_mode_flag
for(i= 0; i<MAX_MMCO_COUNT; i++) {
MMCOOpcode opcode= get_ue_golomb(gb);
h->mmco[i].opcode= opcode;
if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
/* if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
return -1;
}*/
}
if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
unsigned int long_index= get_ue_golomb(gb);
if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ long_index >= 16){
av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
return -1;
}
h->mmco[i].long_index= long_index;
}
if(opcode > (unsigned)MMCO_LONG){
av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
return -1;
}
if(opcode == MMCO_END)
break;
}
h->mmco_index= i;
}else{
assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
h->mmco[0].opcode= MMCO_SHORT2UNUSED;
h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
h->mmco_index= 1;
}else
h->mmco_index= 0;
}
}
return 0;
}
static int init_poc(H264Context *h){
MpegEncContext * const s = &h->s;
const int max_frame_num= 1<<h->sps.log2_max_frame_num;
int field_poc[2];
if(h->nal_unit_type == NAL_IDR_SLICE){
h->frame_num_offset= 0;
}else{
if(h->frame_num < h->prev_frame_num)
h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
else
h->frame_num_offset= h->prev_frame_num_offset;
}
if(h->sps.poc_type==0){
const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
if(h->nal_unit_type == NAL_IDR_SLICE){
h->prev_poc_msb=
h->prev_poc_lsb= 0;
}
if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
h->poc_msb = h->prev_poc_msb + max_poc_lsb;
else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
h->poc_msb = h->prev_poc_msb - max_poc_lsb;
else
h->poc_msb = h->prev_poc_msb;
//printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
field_poc[0] =
field_poc[1] = h->poc_msb + h->poc_lsb;
if(s->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc_bottom;
}else if(h->sps.poc_type==1){
int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
int i;
if(h->sps.poc_cycle_length != 0)
abs_frame_num = h->frame_num_offset + h->frame_num;
else
abs_frame_num = 0;
if(h->nal_ref_idc==0 && abs_frame_num > 0)
abs_frame_num--;
expected_delta_per_poc_cycle = 0;
for(i=0; i < h->sps.poc_cycle_length; i++)
expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
if(abs_frame_num > 0){
int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
for(i = 0; i <= frame_num_in_poc_cycle; i++)
expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
} else
expectedpoc = 0;
if(h->nal_ref_idc == 0)
expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
field_poc[0] = expectedpoc + h->delta_poc[0];
field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
if(s->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc[1];
}else{
int poc;
if(h->nal_unit_type == NAL_IDR_SLICE){
poc= 0;
}else{
if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
}
field_poc[0]= poc;
field_poc[1]= poc;
}
if(s->picture_structure != PICT_BOTTOM_FIELD)
s->current_picture_ptr->field_poc[0]= field_poc[0];
if(s->picture_structure != PICT_TOP_FIELD)
s->current_picture_ptr->field_poc[1]= field_poc[1];
if(s->picture_structure == PICT_FRAME) // FIXME field pix?
s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
return 0;
}
/**
* initialize scan tables
*/
static void init_scan_tables(H264Context *h){
MpegEncContext * const s = &h->s;
int i;
if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
}else{
for(i=0; i<16; i++){
#define T(x) (x>>2) | ((x<<2) & 0xF)
h->zigzag_scan[i] = T(zigzag_scan[i]);
h-> field_scan[i] = T( field_scan[i]);
#undef T
}
}
if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
}else{
for(i=0; i<64; i++){
#define T(x) (x>>3) | ((x&7)<<3)
h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
h->field_scan8x8[i] = T(field_scan8x8[i]);
h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
#undef T
}
}
if(h->sps.transform_bypass){ //FIXME same ugly
h->zigzag_scan_q0 = zigzag_scan;
h->zigzag_scan8x8_q0 = zigzag_scan8x8;
h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
h->field_scan_q0 = field_scan;
h->field_scan8x8_q0 = field_scan8x8;
h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
}else{
h->zigzag_scan_q0 = h->zigzag_scan;
h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
h->field_scan_q0 = h->field_scan;
h->field_scan8x8_q0 = h->field_scan8x8;
h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
}
}
/**
* decodes a slice header.
* this will allso call MPV_common_init() and frame_start() as needed
*/
static int decode_slice_header(H264Context *h){
MpegEncContext * const s = &h->s;
unsigned int first_mb_in_slice;
unsigned int pps_id;
int num_ref_idx_active_override_flag;
static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
unsigned int slice_type, tmp;
int default_ref_list_done = 0;
s->current_picture.reference= h->nal_ref_idc != 0;
s->dropable= h->nal_ref_idc == 0;
first_mb_in_slice= get_ue_golomb(&s->gb);
if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){
h->slice_num = 0;
s->current_picture_ptr= NULL;
}
slice_type= get_ue_golomb(&s->gb);
if(slice_type > 9){
av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
return -1;
}
if(slice_type > 4){
slice_type -= 5;
h->slice_type_fixed=1;
}else
h->slice_type_fixed=0;
slice_type= slice_type_map[ slice_type ];
if (slice_type == I_TYPE
|| (h->slice_num != 0 && slice_type == h->slice_type) ) {
default_ref_list_done = 1;
}
h->slice_type= slice_type;
s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though
pps_id= get_ue_golomb(&s->gb);
if(pps_id>=MAX_PPS_COUNT){
av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
return -1;
}
if(!h->pps_buffers[pps_id]) {
av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
return -1;
}
h->pps= *h->pps_buffers[pps_id];
if(!h->sps_buffers[h->pps.sps_id]) {
av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
return -1;
}
h->sps = *h->sps_buffers[h->pps.sps_id];
if(h->dequant_coeff_pps != pps_id){
h->dequant_coeff_pps = pps_id;
init_dequant_tables(h);
}
s->mb_width= h->sps.mb_width;
s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
h->b_stride= s->mb_width*4;
h->b8_stride= s->mb_width*2;
s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
if(h->sps.frame_mbs_only_flag)
s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom);
else
s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck
if (s->context_initialized
&& ( s->width != s->avctx->width || s->height != s->avctx->height)) {
free_tables(h);
MPV_common_end(s);
}
if (!s->context_initialized) {
if (MPV_common_init(s) < 0)
return -1;
init_scan_tables(h);
alloc_tables(h);
s->avctx->width = s->width;
s->avctx->height = s->height;
s->avctx->sample_aspect_ratio= h->sps.sar;
if(!s->avctx->sample_aspect_ratio.den)
s->avctx->sample_aspect_ratio.den = 1;
if(h->sps.timing_info_present_flag){
s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
if(h->x264_build > 0 && h->x264_build < 44)
s->avctx->time_base.den *= 2;
av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
}
}
if(h->slice_num == 0){
if(frame_start(h) < 0)
return -1;
}
s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
h->mb_mbaff = 0;
h->mb_aff_frame = 0;
if(h->sps.frame_mbs_only_flag){
s->picture_structure= PICT_FRAME;
}else{
if(get_bits1(&s->gb)) { //field_pic_flag
s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
av_log(h->s.avctx, AV_LOG_ERROR, "PAFF interlacing is not implemented\n");
} else {
s->picture_structure= PICT_FRAME;
h->mb_aff_frame = h->sps.mb_aff;
}
}
assert(s->mb_num == s->mb_width * s->mb_height);
if(first_mb_in_slice << h->mb_aff_frame >= s->mb_num ||
first_mb_in_slice >= s->mb_num){
av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
return -1;
}
s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << h->mb_aff_frame;
assert(s->mb_y < s->mb_height);
if(s->picture_structure==PICT_FRAME){
h->curr_pic_num= h->frame_num;
h->max_pic_num= 1<< h->sps.log2_max_frame_num;
}else{
h->curr_pic_num= 2*h->frame_num;
h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
}
if(h->nal_unit_type == NAL_IDR_SLICE){
get_ue_golomb(&s->gb); /* idr_pic_id */
}
if(h->sps.poc_type==0){
h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
h->delta_poc_bottom= get_se_golomb(&s->gb);
}
}
if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
h->delta_poc[0]= get_se_golomb(&s->gb);
if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
h->delta_poc[1]= get_se_golomb(&s->gb);
}
init_poc(h);
if(h->pps.redundant_pic_cnt_present){
h->redundant_pic_count= get_ue_golomb(&s->gb);
}
//set defaults, might be overriden a few line later
h->ref_count[0]= h->pps.ref_count[0];
h->ref_count[1]= h->pps.ref_count[1];
if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
if(h->slice_type == B_TYPE){
h->direct_spatial_mv_pred= get_bits1(&s->gb);
if(h->sps.mb_aff && h->direct_spatial_mv_pred)
av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + spatial direct mode is not implemented\n");
}
num_ref_idx_active_override_flag= get_bits1(&s->gb);
if(num_ref_idx_active_override_flag){
h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
if(h->slice_type==B_TYPE)
h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
h->ref_count[0]= h->ref_count[1]= 1;
return -1;
}
}
if(h->slice_type == B_TYPE)
h->list_count= 2;
else
h->list_count= 1;
}else
h->list_count= 0;
if(!default_ref_list_done){
fill_default_ref_list(h);
}
if(decode_ref_pic_list_reordering(h) < 0)
return -1;
if( (h->pps.weighted_pred && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE ))
|| (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
pred_weight_table(h);
else if(h->pps.weighted_bipred_idc==2 && h->slice_type==B_TYPE)
implicit_weight_table(h);
else
h->use_weight = 0;
if(s->current_picture.reference)
decode_ref_pic_marking(h, &s->gb);
if(FRAME_MBAFF)
fill_mbaff_ref_list(h);
if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE && h->pps.cabac ){
tmp = get_ue_golomb(&s->gb);
if(tmp > 2){
av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
return -1;
}
h->cabac_init_idc= tmp;
}
h->last_qscale_diff = 0;
tmp = h->pps.init_qp + get_se_golomb(&s->gb);
if(tmp>51){
av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
return -1;
}
s->qscale= tmp;
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
//FIXME qscale / qp ... stuff
if(h->slice_type == SP_TYPE){
get_bits1(&s->gb); /* sp_for_switch_flag */
}
if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
get_se_golomb(&s->gb); /* slice_qs_delta */
}
h->deblocking_filter = 1;
h->slice_alpha_c0_offset = 0;
h->slice_beta_offset = 0;
if( h->pps.deblocking_filter_parameters_present ) {
tmp= get_ue_golomb(&s->gb);
if(tmp > 2){
av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
return -1;
}
h->deblocking_filter= tmp;
if(h->deblocking_filter < 2)
h->deblocking_filter^= 1; // 1<->0
if( h->deblocking_filter ) {
h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
}
}
if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type != I_TYPE)
||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type == B_TYPE)
||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
h->deblocking_filter= 0;
#if 0 //FMO
if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
slice_group_change_cycle= get_bits(&s->gb, ?);
#endif
h->slice_num++;
h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
h->emu_edge_height= FRAME_MBAFF ? 0 : h->emu_edge_width;
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s\n",
h->slice_num,
(s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
first_mb_in_slice,
av_get_pict_type_char(h->slice_type),
pps_id, h->frame_num,
s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
h->ref_count[0], h->ref_count[1],
s->qscale,
h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
h->use_weight,
h->use_weight==1 && h->use_weight_chroma ? "c" : ""
);
}
if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !s->current_picture.reference){
s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
}else{
s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
}
return 0;
}
/**
*
*/
static inline int get_level_prefix(GetBitContext *gb){
unsigned int buf;
int log;
OPEN_READER(re, gb);
UPDATE_CACHE(re, gb);
buf=GET_CACHE(re, gb);
log= 32 - av_log2(buf);
#ifdef TRACE
print_bin(buf>>(32-log), log);
av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
#endif
LAST_SKIP_BITS(re, gb, log);
CLOSE_READER(re, gb);
return log-1;
}
static inline int get_dct8x8_allowed(H264Context *h){
int i;
for(i=0; i<4; i++){
if(!IS_SUB_8X8(h->sub_mb_type[i])
|| (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
return 0;
}
return 1;
}
/**
* decodes a residual block.
* @param n block index
* @param scantable scantable
* @param max_coeff number of coefficients in the block
* @return <0 if an error occured
*/
static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
MpegEncContext * const s = &h->s;
static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
int level[16];
int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
//FIXME put trailing_onex into the context
if(n == CHROMA_DC_BLOCK_INDEX){
coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
total_coeff= coeff_token>>2;
}else{
if(n == LUMA_DC_BLOCK_INDEX){
total_coeff= pred_non_zero_count(h, 0);
coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
total_coeff= coeff_token>>2;
}else{
total_coeff= pred_non_zero_count(h, n);
coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
total_coeff= coeff_token>>2;
h->non_zero_count_cache[ scan8[n] ]= total_coeff;
}
}
//FIXME set last_non_zero?
if(total_coeff==0)
return 0;
if(total_coeff > (unsigned)max_coeff) {
av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
return -1;
}
trailing_ones= coeff_token&3;
tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
assert(total_coeff<=16);
for(i=0; i<trailing_ones; i++){
level[i]= 1 - 2*get_bits1(gb);
}
if(i<total_coeff) {
int level_code, mask;
int suffix_length = total_coeff > 10 && trailing_ones < 3;
int prefix= get_level_prefix(gb);
//first coefficient has suffix_length equal to 0 or 1
if(prefix<14){ //FIXME try to build a large unified VLC table for all this
if(suffix_length)
level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
else
level_code= (prefix<<suffix_length); //part
}else if(prefix==14){
if(suffix_length)
level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
else
level_code= prefix + get_bits(gb, 4); //part
}else if(prefix==15){
level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
}else{
av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
if(trailing_ones < 3) level_code += 2;
suffix_length = 1;
if(level_code > 5)
suffix_length++;
mask= -(level_code&1);
level[i]= (((2+level_code)>>1) ^ mask) - mask;
i++;
//remaining coefficients have suffix_length > 0
for(;i<total_coeff;i++) {
static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
prefix = get_level_prefix(gb);
if(prefix<15){
level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
}else if(prefix==15){
level_code = (prefix<<suffix_length) + get_bits(gb, 12);
}else{
av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
mask= -(level_code&1);
level[i]= (((2+level_code)>>1) ^ mask) - mask;
if(level_code > suffix_limit[suffix_length])
suffix_length++;
}
}
if(total_coeff == max_coeff)
zeros_left=0;
else{
if(n == CHROMA_DC_BLOCK_INDEX)
zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
else
zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
}
coeff_num = zeros_left + total_coeff - 1;
j = scantable[coeff_num];
if(n > 24){
block[j] = level[0];
for(i=1;i<total_coeff;i++) {
if(zeros_left <= 0)
run_before = 0;
else if(zeros_left < 7){
run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
}else{
run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
}
zeros_left -= run_before;
coeff_num -= 1 + run_before;
j= scantable[ coeff_num ];
block[j]= level[i];
}
}else{
block[j] = (level[0] * qmul[j] + 32)>>6;
for(i=1;i<total_coeff;i++) {
if(zeros_left <= 0)
run_before = 0;
else if(zeros_left < 7){
run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
}else{
run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
}
zeros_left -= run_before;
coeff_num -= 1 + run_before;
j= scantable[ coeff_num ];
block[j]= (level[i] * qmul[j] + 32)>>6;
}
}
if(zeros_left<0){
av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
return 0;
}
static void predict_field_decoding_flag(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
? s->current_picture.mb_type[mb_xy-1]
: (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
? s->current_picture.mb_type[mb_xy-s->mb_stride]
: 0;
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
}
/**
* decodes a P_SKIP or B_SKIP macroblock
*/
static void decode_mb_skip(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
int mb_type=0;
memset(h->non_zero_count[mb_xy], 0, 16);
memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
if(MB_FIELD)
mb_type|= MB_TYPE_INTERLACED;
if( h->slice_type == B_TYPE )
{
// just for fill_caches. pred_direct_motion will set the real mb_type
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
pred_direct_motion(h, &mb_type);
mb_type|= MB_TYPE_SKIP;
}
else
{
int mx, my;
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
pred_pskip_motion(h, &mx, &my);
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
}
write_back_motion(h, mb_type);
s->current_picture.mb_type[mb_xy]= mb_type;
s->current_picture.qscale_table[mb_xy]= s->qscale;
h->slice_table[ mb_xy ]= h->slice_num;
h->prev_mb_skipped= 1;
}
/**
* decodes a macroblock
* @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
*/
static int decode_mb_cavlc(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
int partition_count;
unsigned int mb_type, cbp;
int dct8x8_allowed= h->pps.transform_8x8_mode;
s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
cbp = 0; /* avoid warning. FIXME: find a solution without slowing
down the code */
if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
if(s->mb_skip_run==-1)
s->mb_skip_run= get_ue_golomb(&s->gb);
if (s->mb_skip_run--) {
if(FRAME_MBAFF && (s->mb_y&1) == 0){
if(s->mb_skip_run==0)
h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
else
predict_field_decoding_flag(h);
}
decode_mb_skip(h);
return 0;
}
}
if(FRAME_MBAFF){
if( (s->mb_y&1) == 0 )
h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
}else
h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
h->prev_mb_skipped= 0;
mb_type= get_ue_golomb(&s->gb);
if(h->slice_type == B_TYPE){
if(mb_type < 23){
partition_count= b_mb_type_info[mb_type].partition_count;
mb_type= b_mb_type_info[mb_type].type;
}else{
mb_type -= 23;
goto decode_intra_mb;
}
}else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
if(mb_type < 5){
partition_count= p_mb_type_info[mb_type].partition_count;
mb_type= p_mb_type_info[mb_type].type;
}else{
mb_type -= 5;
goto decode_intra_mb;
}
}else{
assert(h->slice_type == I_TYPE);
decode_intra_mb:
if(mb_type > 25){
av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
return -1;
}
partition_count=0;
cbp= i_mb_type_info[mb_type].cbp;
h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
mb_type= i_mb_type_info[mb_type].type;
}
if(MB_FIELD)
mb_type |= MB_TYPE_INTERLACED;
h->slice_table[ mb_xy ]= h->slice_num;
if(IS_INTRA_PCM(mb_type)){
unsigned int x, y;
// We assume these blocks are very rare so we do not optimize it.
align_get_bits(&s->gb);
// The pixels are stored in the same order as levels in h->mb array.
for(y=0; y<16; y++){
const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
for(x=0; x<16; x++){
tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8);
}
}
for(y=0; y<8; y++){
const int index= 256 + 4*(y&3) + 32*(y>>2);
for(x=0; x<8; x++){
tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
}
}
for(y=0; y<8; y++){
const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
for(x=0; x<8; x++){
tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
}
}
// In deblocking, the quantizer is 0
s->current_picture.qscale_table[mb_xy]= 0;
h->chroma_qp[0] = get_chroma_qp(h, 0, 0);
h->chroma_qp[1] = get_chroma_qp(h, 1, 0);
// All coeffs are present
memset(h->non_zero_count[mb_xy], 16, 16);
s->current_picture.mb_type[mb_xy]= mb_type;
return 0;
}
if(MB_MBAFF){
h->ref_count[0] <<= 1;
h->ref_count[1] <<= 1;
}
fill_caches(h, mb_type, 0);
//mb_pred
if(IS_INTRA(mb_type)){
int pred_mode;
// init_top_left_availability(h);
if(IS_INTRA4x4(mb_type)){
int i;
int di = 1;
if(dct8x8_allowed && get_bits1(&s->gb)){
mb_type |= MB_TYPE_8x8DCT;
di = 4;
}
// fill_intra4x4_pred_table(h);
for(i=0; i<16; i+=di){
int mode= pred_intra_mode(h, i);
if(!get_bits1(&s->gb)){
const int rem_mode= get_bits(&s->gb, 3);
mode = rem_mode + (rem_mode >= mode);
}
if(di==4)
fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
else
h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
}
write_back_intra_pred_mode(h);
if( check_intra4x4_pred_mode(h) < 0)
return -1;
}else{
h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
if(h->intra16x16_pred_mode < 0)
return -1;
}
pred_mode= check_intra_pred_mode(h, get_ue_golomb(&s->gb));
if(pred_mode < 0)
return -1;
h->chroma_pred_mode= pred_mode;
}else if(partition_count==4){
int i, j, sub_partition_count[4], list, ref[2][4];
if(h->slice_type == B_TYPE){
for(i=0; i<4; i++){
h->sub_mb_type[i]= get_ue_golomb(&s->gb);
if(h->sub_mb_type[i] >=13){
av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
return -1;
}
sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
}
if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
|| IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
pred_direct_motion(h, &mb_type);
h->ref_cache[0][scan8[4]] =
h->ref_cache[1][scan8[4]] =
h->ref_cache[0][scan8[12]] =
h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
}
}else{
assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
for(i=0; i<4; i++){
h->sub_mb_type[i]= get_ue_golomb(&s->gb);
if(h->sub_mb_type[i] >=4){
av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
return -1;
}
sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
}
}
for(list=0; list<h->list_count; list++){
int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
for(i=0; i<4; i++){
if(IS_DIRECT(h->sub_mb_type[i])) continue;
if(IS_DIR(h->sub_mb_type[i], 0, list)){
unsigned int tmp = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
if(tmp>=ref_count){
av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
return -1;
}
ref[list][i]= tmp;
}else{
//FIXME
ref[list][i] = -1;
}
}
}
if(dct8x8_allowed)
dct8x8_allowed = get_dct8x8_allowed(h);
for(list=0; list<h->list_count; list++){
for(i=0; i<4; i++){
if(IS_DIRECT(h->sub_mb_type[i])) {
h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
continue;
}
h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
if(IS_DIR(h->sub_mb_type[i], 0, list)){
const int sub_mb_type= h->sub_mb_type[i];
const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
for(j=0; j<sub_partition_count[i]; j++){
int mx, my;
const int index= 4*i + block_width*j;
int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
mx += get_se_golomb(&s->gb);
my += get_se_golomb(&s->gb);
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
if(IS_SUB_8X8(sub_mb_type)){
mv_cache[ 1 ][0]=
mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
mv_cache[ 1 ][1]=
mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
}else if(IS_SUB_8X4(sub_mb_type)){
mv_cache[ 1 ][0]= mx;
mv_cache[ 1 ][1]= my;
}else if(IS_SUB_4X8(sub_mb_type)){
mv_cache[ 8 ][0]= mx;
mv_cache[ 8 ][1]= my;
}
mv_cache[ 0 ][0]= mx;
mv_cache[ 0 ][1]= my;
}
}else{
uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
p[0] = p[1]=
p[8] = p[9]= 0;
}
}
}
}else if(IS_DIRECT(mb_type)){
pred_direct_motion(h, &mb_type);
dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
}else{
int list, mx, my, i;
//FIXME we should set ref_idx_l? to 0 if we use that later ...
if(IS_16X16(mb_type)){
for(list=0; list<h->list_count; list++){
unsigned int val;
if(IS_DIR(mb_type, 0, list)){
val= get_te0_golomb(&s->gb, h->ref_count[list]);
if(val >= h->ref_count[list]){
av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
return -1;
}
}else
val= LIST_NOT_USED&0xFF;
fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
}
for(list=0; list<h->list_count; list++){
unsigned int val;
if(IS_DIR(mb_type, 0, list)){
pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
mx += get_se_golomb(&s->gb);
my += get_se_golomb(&s->gb);
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
val= pack16to32(mx,my);
}else
val=0;
fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4);
}
}
else if(IS_16X8(mb_type)){
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
unsigned int val;
if(IS_DIR(mb_type, i, list)){
val= get_te0_golomb(&s->gb, h->ref_count[list]);
if(val >= h->ref_count[list]){
av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
return -1;
}
}else
val= LIST_NOT_USED&0xFF;
fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
}
}
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
unsigned int val;
if(IS_DIR(mb_type, i, list)){
pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
mx += get_se_golomb(&s->gb);
my += get_se_golomb(&s->gb);
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
val= pack16to32(mx,my);
}else
val=0;
fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
}
}
}else{
assert(IS_8X16(mb_type));
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
unsigned int val;
if(IS_DIR(mb_type, i, list)){ //FIXME optimize
val= get_te0_golomb(&s->gb, h->ref_count[list]);
if(val >= h->ref_count[list]){
av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
return -1;
}
}else
val= LIST_NOT_USED&0xFF;
fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
}
}
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
unsigned int val;
if(IS_DIR(mb_type, i, list)){
pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
mx += get_se_golomb(&s->gb);
my += get_se_golomb(&s->gb);
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
val= pack16to32(mx,my);
}else
val=0;
fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
}
}
}
}
if(IS_INTER(mb_type))
write_back_motion(h, mb_type);
if(!IS_INTRA16x16(mb_type)){
cbp= get_ue_golomb(&s->gb);
if(cbp > 47){
av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
return -1;
}
if(IS_INTRA4x4(mb_type))
cbp= golomb_to_intra4x4_cbp[cbp];
else
cbp= golomb_to_inter_cbp[cbp];
}
h->cbp = cbp;
if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
if(get_bits1(&s->gb))
mb_type |= MB_TYPE_8x8DCT;
}
s->current_picture.mb_type[mb_xy]= mb_type;
if(cbp || IS_INTRA16x16(mb_type)){
int i8x8, i4x4, chroma_idx;
int dquant;
GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
const uint8_t *scan, *scan8x8, *dc_scan;
// fill_non_zero_count_cache(h);
if(IS_INTERLACED(mb_type)){
scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
scan= s->qscale ? h->field_scan : h->field_scan_q0;
dc_scan= luma_dc_field_scan;
}else{
scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
dc_scan= luma_dc_zigzag_scan;
}
dquant= get_se_golomb(&s->gb);
if( dquant > 25 || dquant < -26 ){
av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
return -1;
}
s->qscale += dquant;
if(((unsigned)s->qscale) > 51){
if(s->qscale<0) s->qscale+= 52;
else s->qscale-= 52;
}
h->chroma_qp[0]= get_chroma_qp(h, 0, s->qscale);
h->chroma_qp[1]= get_chroma_qp(h, 1, s->qscale);
if(IS_INTRA16x16(mb_type)){
if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
return -1; //FIXME continue if partitioned and other return -1 too
}
assert((cbp&15) == 0 || (cbp&15) == 15);
if(cbp&15){
for(i8x8=0; i8x8<4; i8x8++){
for(i4x4=0; i4x4<4; i4x4++){
const int index= i4x4 + 4*i8x8;
if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
return -1;
}
}
}
}else{
fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
}
}else{
for(i8x8=0; i8x8<4; i8x8++){
if(cbp & (1<<i8x8)){
if(IS_8x8DCT(mb_type)){
DCTELEM *buf = &h->mb[64*i8x8];
uint8_t *nnz;
for(i4x4=0; i4x4<4; i4x4++){
if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
return -1;
}
nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
nnz[0] += nnz[1] + nnz[8] + nnz[9];
}else{
for(i4x4=0; i4x4<4; i4x4++){
const int index= i4x4 + 4*i8x8;
if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
return -1;
}
}
}
}else{
uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
}
}
}
if(cbp&0x30){
for(chroma_idx=0; chroma_idx<2; chroma_idx++)
if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
return -1;
}
}
if(cbp&0x20){
for(chroma_idx=0; chroma_idx<2; chroma_idx++){
const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]];
for(i4x4=0; i4x4<4; i4x4++){
const int index= 16 + 4*chroma_idx + i4x4;
if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, qmul, 15) < 0){
return -1;
}
}
}
}else{
uint8_t * const nnz= &h->non_zero_count_cache[0];
nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
}
}else{
uint8_t * const nnz= &h->non_zero_count_cache[0];
fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
}
s->current_picture.qscale_table[mb_xy]= s->qscale;
write_back_non_zero_count(h);
if(MB_MBAFF){
h->ref_count[0] >>= 1;
h->ref_count[1] >>= 1;
}
return 0;
}
static int decode_cabac_field_decoding_flag(H264Context *h) {
MpegEncContext * const s = &h->s;
const int mb_x = s->mb_x;
const int mb_y = s->mb_y & ~1;
const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
unsigned int ctx = 0;
if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
ctx += 1;
}
if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
ctx += 1;
}
return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] );
}
static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
uint8_t *state= &h->cabac_state[ctx_base];
int mb_type;
if(intra_slice){
MpegEncContext * const s = &h->s;
const int mba_xy = h->left_mb_xy[0];
const int mbb_xy = h->top_mb_xy;
int ctx=0;
if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
ctx++;
if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
ctx++;
if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 )
return 0; /* I4x4 */
state += 2;
}else{
if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 )
return 0; /* I4x4 */
}
if( get_cabac_terminate( &h->cabac ) )
return 25; /* PCM */
mb_type = 1; /* I16x16 */
mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */
if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */
mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] );
mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] );
mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] );
return mb_type;
}
static int decode_cabac_mb_type( H264Context *h ) {
MpegEncContext * const s = &h->s;
if( h->slice_type == I_TYPE ) {
return decode_cabac_intra_mb_type(h, 3, 1);
} else if( h->slice_type == P_TYPE ) {
if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
/* P-type */
if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
/* P_L0_D16x16, P_8x8 */
return 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
} else {
/* P_L0_D8x16, P_L0_D16x8 */
return 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
}
} else {
return decode_cabac_intra_mb_type(h, 17, 0) + 5;
}
} else if( h->slice_type == B_TYPE ) {
const int mba_xy = h->left_mb_xy[0];
const int mbb_xy = h->top_mb_xy;
int ctx = 0;
int bits;
if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
ctx++;
if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
ctx++;
if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) )
return 0; /* B_Direct_16x16 */
if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
}
bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
if( bits < 8 )
return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
else if( bits == 13 ) {
return decode_cabac_intra_mb_type(h, 32, 0) + 23;
} else if( bits == 14 )
return 11; /* B_L1_L0_8x16 */
else if( bits == 15 )
return 22; /* B_8x8 */
bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
} else {
/* TODO SI/SP frames? */
return -1;
}
}
static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) {
MpegEncContext * const s = &h->s;
int mba_xy, mbb_xy;
int ctx = 0;
if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches?
int mb_xy = mb_x + (mb_y&~1)*s->mb_stride;
mba_xy = mb_xy - 1;
if( (mb_y&1)
&& h->slice_table[mba_xy] == h->slice_num
&& MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) )
mba_xy += s->mb_stride;
if( MB_FIELD ){
mbb_xy = mb_xy - s->mb_stride;
if( !(mb_y&1)
&& h->slice_table[mbb_xy] == h->slice_num
&& IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) )
mbb_xy -= s->mb_stride;
}else
mbb_xy = mb_x + (mb_y-1)*s->mb_stride;
}else{
int mb_xy = mb_x + mb_y*s->mb_stride;
mba_xy = mb_xy - 1;
mbb_xy = mb_xy - s->mb_stride;
}
if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
ctx++;
if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
ctx++;
if( h->slice_type == B_TYPE )
ctx += 13;
return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] );
}
static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
int mode = 0;
if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
return pred_mode;
mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
if( mode >= pred_mode )
return mode + 1;
else
return mode;
}
static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
const int mba_xy = h->left_mb_xy[0];
const int mbb_xy = h->top_mb_xy;
int ctx = 0;
/* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
ctx++;
if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
ctx++;
if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
return 0;
if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
return 1;
if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
return 2;
else
return 3;
}
static const uint8_t block_idx_x[16] = {
0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3
};
static const uint8_t block_idx_y[16] = {
0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3
};
static const uint8_t block_idx_xy[4][4] = {
{ 0, 2, 8, 10},
{ 1, 3, 9, 11},
{ 4, 6, 12, 14},
{ 5, 7, 13, 15}
};
static int decode_cabac_mb_cbp_luma( H264Context *h) {
int cbp = 0;
int cbp_b = -1;
int i8x8;
if( h->slice_table[h->top_mb_xy] == h->slice_num ) {
cbp_b = h->top_cbp;
tprintf(h->s.avctx, "cbp_b = top_cbp = %x\n", cbp_b);
}
for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
int cbp_a = -1;
int x, y;
int ctx = 0;
x = block_idx_x[4*i8x8];
y = block_idx_y[4*i8x8];
if( x > 0 )
cbp_a = cbp;
else if( h->slice_table[h->left_mb_xy[0]] == h->slice_num ) {
cbp_a = h->left_cbp;
tprintf(h->s.avctx, "cbp_a = left_cbp = %x\n", cbp_a);
}
if( y > 0 )
cbp_b = cbp;
/* No need to test for skip as we put 0 for skip block */
/* No need to test for IPCM as we put 1 for IPCM block */
if( cbp_a >= 0 ) {
int i8x8a = block_idx_xy[(x-1)&0x03][y]/4;
if( ((cbp_a >> i8x8a)&0x01) == 0 )
ctx++;
}
if( cbp_b >= 0 ) {
int i8x8b = block_idx_xy[x][(y-1)&0x03]/4;
if( ((cbp_b >> i8x8b)&0x01) == 0 )
ctx += 2;
}
if( get_cabac( &h->cabac, &h->cabac_state[73 + ctx] ) ) {
cbp |= 1 << i8x8;
}
}
return cbp;
}
static int decode_cabac_mb_cbp_chroma( H264Context *h) {
int ctx;
int cbp_a, cbp_b;
cbp_a = (h->left_cbp>>4)&0x03;
cbp_b = (h-> top_cbp>>4)&0x03;
ctx = 0;
if( cbp_a > 0 ) ctx++;
if( cbp_b > 0 ) ctx += 2;
if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
return 0;
ctx = 4;
if( cbp_a == 2 ) ctx++;
if( cbp_b == 2 ) ctx += 2;
return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] );
}
static int decode_cabac_mb_dqp( H264Context *h) {
MpegEncContext * const s = &h->s;
int mbn_xy;
int ctx = 0;
int val = 0;
if( s->mb_x > 0 )
mbn_xy = s->mb_x + s->mb_y*s->mb_stride - 1;
else
mbn_xy = s->mb_width - 1 + (s->mb_y-1)*s->mb_stride;
if( h->last_qscale_diff != 0 )
ctx++;
while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
if( ctx < 2 )
ctx = 2;
else
ctx = 3;
val++;
if(val > 102) //prevent infinite loop
return INT_MIN;
}
if( val&0x01 )
return (val + 1)/2;
else
return -(val + 1)/2;
}
static int decode_cabac_p_mb_sub_type( H264Context *h ) {
if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
return 0; /* 8x8 */
if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
return 1; /* 8x4 */
if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
return 2; /* 4x8 */
return 3; /* 4x4 */
}
static int decode_cabac_b_mb_sub_type( H264Context *h ) {
int type;
if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
return 0; /* B_Direct_8x8 */
if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
type = 3;
if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
type += 4;
}
type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
type += get_cabac( &h->cabac, &h->cabac_state[39] );
return type;
}
static inline int decode_cabac_mb_transform_size( H264Context *h ) {
return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
}
static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
int refa = h->ref_cache[list][scan8[n] - 1];
int refb = h->ref_cache[list][scan8[n] - 8];
int ref = 0;
int ctx = 0;
if( h->slice_type == B_TYPE) {
if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
ctx++;
if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
ctx += 2;
} else {
if( refa > 0 )
ctx++;
if( refb > 0 )
ctx += 2;
}
while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
ref++;
if( ctx < 4 )
ctx = 4;
else
ctx = 5;
if(ref >= 32 /*h->ref_list[list]*/){
av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_ref\n");
return 0; //FIXME we should return -1 and check the return everywhere
}
}
return ref;
}
static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
abs( h->mvd_cache[list][scan8[n] - 8][l] );
int ctxbase = (l == 0) ? 40 : 47;
int ctx, mvd;
if( amvd < 3 )
ctx = 0;
else if( amvd > 32 )
ctx = 2;
else
ctx = 1;
if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
return 0;
mvd= 1;
ctx= 3;
while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
mvd++;
if( ctx < 6 )
ctx++;
}
if( mvd >= 9 ) {
int k = 3;
while( get_cabac_bypass( &h->cabac ) ) {
mvd += 1 << k;
k++;
if(k>24){
av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n");
return INT_MIN;
}
}
while( k-- ) {
if( get_cabac_bypass( &h->cabac ) )
mvd += 1 << k;
}
}
return get_cabac_bypass_sign( &h->cabac, -mvd );
}
static inline int get_cabac_cbf_ctx( H264Context *h, int cat, int idx ) {
int nza, nzb;
int ctx = 0;
if( cat == 0 ) {
nza = h->left_cbp&0x100;
nzb = h-> top_cbp&0x100;
} else if( cat == 1 || cat == 2 ) {
nza = h->non_zero_count_cache[scan8[idx] - 1];
nzb = h->non_zero_count_cache[scan8[idx] - 8];
} else if( cat == 3 ) {
nza = (h->left_cbp>>(6+idx))&0x01;
nzb = (h-> top_cbp>>(6+idx))&0x01;
} else {
assert(cat == 4);
nza = h->non_zero_count_cache[scan8[16+idx] - 1];
nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
}
if( nza > 0 )
ctx++;
if( nzb > 0 )
ctx += 2;
return ctx + 4 * cat;
}
static const attribute_used uint8_t last_coeff_flag_offset_8x8[63] = {
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
};
static void decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff) {
const int mb_xy = h->s.mb_x + h->s.mb_y*h->s.mb_stride;
static const int significant_coeff_flag_offset[2][6] = {
{ 105+0, 105+15, 105+29, 105+44, 105+47, 402 },
{ 277+0, 277+15, 277+29, 277+44, 277+47, 436 }
};
static const int last_coeff_flag_offset[2][6] = {
{ 166+0, 166+15, 166+29, 166+44, 166+47, 417 },
{ 338+0, 338+15, 338+29, 338+44, 338+47, 451 }
};
static const int coeff_abs_level_m1_offset[6] = {
227+0, 227+10, 227+20, 227+30, 227+39, 426
};
static const uint8_t significant_coeff_flag_offset_8x8[2][63] = {
{ 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 },
{ 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11,
9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9,
9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 }
};
int index[64];
int av_unused last;
int coeff_count = 0;
int abslevel1 = 1;
int abslevelgt1 = 0;
uint8_t *significant_coeff_ctx_base;
uint8_t *last_coeff_ctx_base;
uint8_t *abs_level_m1_ctx_base;
#ifndef ARCH_X86
#define CABAC_ON_STACK
#endif
#ifdef CABAC_ON_STACK
#define CC &cc
CABACContext cc;
cc.range = h->cabac.range;
cc.low = h->cabac.low;
cc.bytestream= h->cabac.bytestream;
#else
#define CC &h->cabac
#endif
/* cat: 0-> DC 16x16 n = 0
* 1-> AC 16x16 n = luma4x4idx
* 2-> Luma4x4 n = luma4x4idx
* 3-> DC Chroma n = iCbCr
* 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
* 5-> Luma8x8 n = 4 * luma8x8idx
*/
/* read coded block flag */
if( cat != 5 ) {
if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n ) ] ) == 0 ) {
if( cat == 1 || cat == 2 )
h->non_zero_count_cache[scan8[n]] = 0;
else if( cat == 4 )
h->non_zero_count_cache[scan8[16+n]] = 0;
#ifdef CABAC_ON_STACK
h->cabac.range = cc.range ;
h->cabac.low = cc.low ;
h->cabac.bytestream= cc.bytestream;
#endif
return;
}
}
significant_coeff_ctx_base = h->cabac_state
+ significant_coeff_flag_offset[MB_FIELD][cat];
last_coeff_ctx_base = h->cabac_state
+ last_coeff_flag_offset[MB_FIELD][cat];
abs_level_m1_ctx_base = h->cabac_state
+ coeff_abs_level_m1_offset[cat];
if( cat == 5 ) {
#define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
for(last= 0; last < coefs; last++) { \
uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
if( get_cabac( CC, sig_ctx )) { \
uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
index[coeff_count++] = last; \
if( get_cabac( CC, last_ctx ) ) { \
last= max_coeff; \
break; \
} \
} \
}\
if( last == max_coeff -1 ) {\
index[coeff_count++] = last;\
}
const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD];
#if defined(ARCH_X86) && defined(CONFIG_7REGS) && defined(HAVE_EBX_AVAILABLE) && !defined(BROKEN_RELOCATIONS)
coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off);
} else {
coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index);
#else
DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] );
} else {
DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
#endif
}
assert(coeff_count > 0);
if( cat == 0 )
h->cbp_table[mb_xy] |= 0x100;
else if( cat == 1 || cat == 2 )
h->non_zero_count_cache[scan8[n]] = coeff_count;
else if( cat == 3 )
h->cbp_table[mb_xy] |= 0x40 << n;
else if( cat == 4 )
h->non_zero_count_cache[scan8[16+n]] = coeff_count;
else {
assert( cat == 5 );
fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
}
for( coeff_count--; coeff_count >= 0; coeff_count-- ) {
uint8_t *ctx = (abslevelgt1 != 0 ? 0 : FFMIN( 4, abslevel1 )) + abs_level_m1_ctx_base;
int j= scantable[index[coeff_count]];
if( get_cabac( CC, ctx ) == 0 ) {
if( !qmul ) {
block[j] = get_cabac_bypass_sign( CC, -1);
}else{
block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;;
}
abslevel1++;
} else {
int coeff_abs = 2;
ctx = 5 + FFMIN( 4, abslevelgt1 ) + abs_level_m1_ctx_base;
while( coeff_abs < 15 && get_cabac( CC, ctx ) ) {
coeff_abs++;
}
if( coeff_abs >= 15 ) {
int j = 0;
while( get_cabac_bypass( CC ) ) {
j++;
}
coeff_abs=1;
while( j-- ) {
coeff_abs += coeff_abs + get_cabac_bypass( CC );
}
coeff_abs+= 14;
}
if( !qmul ) {
if( get_cabac_bypass( CC ) ) block[j] = -coeff_abs;
else block[j] = coeff_abs;
}else{
if( get_cabac_bypass( CC ) ) block[j] = (-coeff_abs * qmul[j] + 32) >> 6;
else block[j] = ( coeff_abs * qmul[j] + 32) >> 6;
}
abslevelgt1++;
}
}
#ifdef CABAC_ON_STACK
h->cabac.range = cc.range ;
h->cabac.low = cc.low ;
h->cabac.bytestream= cc.bytestream;
#endif
}
static inline void compute_mb_neighbors(H264Context *h)
{
MpegEncContext * const s = &h->s;
const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
h->top_mb_xy = mb_xy - s->mb_stride;
h->left_mb_xy[0] = mb_xy - 1;
if(FRAME_MBAFF){
const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
const int top_pair_xy = pair_xy - s->mb_stride;
const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
const int curr_mb_frame_flag = !MB_FIELD;
const int bottom = (s->mb_y & 1);
if (bottom
? !curr_mb_frame_flag // bottom macroblock
: (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
) {
h->top_mb_xy -= s->mb_stride;
}
if (left_mb_frame_flag != curr_mb_frame_flag) {
h->left_mb_xy[0] = pair_xy - 1;
}
}
return;
}
/**
* decodes a macroblock
* @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
*/
static int decode_mb_cabac(H264Context *h) {
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
int mb_type, partition_count, cbp = 0;
int dct8x8_allowed= h->pps.transform_8x8_mode;
s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE ) {
int skip;
/* a skipped mb needs the aff flag from the following mb */
if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 )
predict_field_decoding_flag(h);
if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
skip = h->next_mb_skipped;
else
skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
/* read skip flags */
if( skip ) {
if( FRAME_MBAFF && (s->mb_y&1)==0 ){
s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP;
h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
if(h->next_mb_skipped)
predict_field_decoding_flag(h);
else
h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
}
decode_mb_skip(h);
h->cbp_table[mb_xy] = 0;
h->chroma_pred_mode_table[mb_xy] = 0;
h->last_qscale_diff = 0;
return 0;
}
}
if(FRAME_MBAFF){
if( (s->mb_y&1) == 0 )
h->mb_mbaff =
h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
}else
h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
h->prev_mb_skipped = 0;
compute_mb_neighbors(h);
if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) {
av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" );
return -1;
}
if( h->slice_type == B_TYPE ) {
if( mb_type < 23 ){
partition_count= b_mb_type_info[mb_type].partition_count;
mb_type= b_mb_type_info[mb_type].type;
}else{
mb_type -= 23;
goto decode_intra_mb;
}
} else if( h->slice_type == P_TYPE ) {
if( mb_type < 5) {
partition_count= p_mb_type_info[mb_type].partition_count;
mb_type= p_mb_type_info[mb_type].type;
} else {
mb_type -= 5;
goto decode_intra_mb;
}
} else {
assert(h->slice_type == I_TYPE);
decode_intra_mb:
partition_count = 0;
cbp= i_mb_type_info[mb_type].cbp;
h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
mb_type= i_mb_type_info[mb_type].type;
}
if(MB_FIELD)
mb_type |= MB_TYPE_INTERLACED;
h->slice_table[ mb_xy ]= h->slice_num;
if(IS_INTRA_PCM(mb_type)) {
const uint8_t *ptr;
unsigned int x, y;
// We assume these blocks are very rare so we do not optimize it.
// FIXME The two following lines get the bitstream position in the cabac
// decode, I think it should be done by a function in cabac.h (or cabac.c).
ptr= h->cabac.bytestream;
if(h->cabac.low&0x1) ptr--;
if(CABAC_BITS==16){
if(h->cabac.low&0x1FF) ptr--;
}
// The pixels are stored in the same order as levels in h->mb array.
for(y=0; y<16; y++){
const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
for(x=0; x<16; x++){
tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", *ptr);
h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++;
}
}
for(y=0; y<8; y++){
const int index= 256 + 4*(y&3) + 32*(y>>2);
for(x=0; x<8; x++){
tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", *ptr);
h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
}
}
for(y=0; y<8; y++){
const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
for(x=0; x<8; x++){
tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", *ptr);
h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
}
}
ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
// All blocks are present
h->cbp_table[mb_xy] = 0x1ef;
h->chroma_pred_mode_table[mb_xy] = 0;
// In deblocking, the quantizer is 0
s->current_picture.qscale_table[mb_xy]= 0;
h->chroma_qp[0] = get_chroma_qp(h, 0, 0);
h->chroma_qp[1] = get_chroma_qp(h, 1, 0);
// All coeffs are present
memset(h->non_zero_count[mb_xy], 16, 16);
s->current_picture.mb_type[mb_xy]= mb_type;
return 0;
}
if(MB_MBAFF){
h->ref_count[0] <<= 1;
h->ref_count[1] <<= 1;
}
fill_caches(h, mb_type, 0);
if( IS_INTRA( mb_type ) ) {
int i, pred_mode;
if( IS_INTRA4x4( mb_type ) ) {
if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
mb_type |= MB_TYPE_8x8DCT;
for( i = 0; i < 16; i+=4 ) {
int pred = pred_intra_mode( h, i );
int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
}
} else {
for( i = 0; i < 16; i++ ) {
int pred = pred_intra_mode( h, i );
h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
//av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
}
}
write_back_intra_pred_mode(h);
if( check_intra4x4_pred_mode(h) < 0 ) return -1;
} else {
h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
if( h->intra16x16_pred_mode < 0 ) return -1;
}
h->chroma_pred_mode_table[mb_xy] =
pred_mode = decode_cabac_mb_chroma_pre_mode( h );
pred_mode= check_intra_pred_mode( h, pred_mode );
if( pred_mode < 0 ) return -1;
h->chroma_pred_mode= pred_mode;
} else if( partition_count == 4 ) {
int i, j, sub_partition_count[4], list, ref[2][4];
if( h->slice_type == B_TYPE ) {
for( i = 0; i < 4; i++ ) {
h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
}
if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
pred_direct_motion(h, &mb_type);
h->ref_cache[0][scan8[4]] =
h->ref_cache[1][scan8[4]] =
h->ref_cache[0][scan8[12]] =
h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
for( i = 0; i < 4; i++ )
if( IS_DIRECT(h->sub_mb_type[i]) )
fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
}
}
} else {
for( i = 0; i < 4; i++ ) {
h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
}
}
for( list = 0; list < h->list_count; list++ ) {
for( i = 0; i < 4; i++ ) {
if(IS_DIRECT(h->sub_mb_type[i])) continue;
if(IS_DIR(h->sub_mb_type[i], 0, list)){
if( h->ref_count[list] > 1 )
ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
else
ref[list][i] = 0;
} else {
ref[list][i] = -1;
}
h->ref_cache[list][ scan8[4*i]+1 ]=
h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
}
}
if(dct8x8_allowed)
dct8x8_allowed = get_dct8x8_allowed(h);
for(list=0; list<h->list_count; list++){
for(i=0; i<4; i++){
h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
if(IS_DIRECT(h->sub_mb_type[i])){
fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
continue;
}
if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
const int sub_mb_type= h->sub_mb_type[i];
const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
for(j=0; j<sub_partition_count[i]; j++){
int mpx, mpy;
int mx, my;
const int index= 4*i + block_width*j;
int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
if(IS_SUB_8X8(sub_mb_type)){
mv_cache[ 1 ][0]=
mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
mv_cache[ 1 ][1]=
mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
mvd_cache[ 1 ][0]=
mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
mvd_cache[ 1 ][1]=
mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
}else if(IS_SUB_8X4(sub_mb_type)){
mv_cache[ 1 ][0]= mx;
mv_cache[ 1 ][1]= my;
mvd_cache[ 1 ][0]= mx - mpx;
mvd_cache[ 1 ][1]= my - mpy;
}else if(IS_SUB_4X8(sub_mb_type)){
mv_cache[ 8 ][0]= mx;
mv_cache[ 8 ][1]= my;
mvd_cache[ 8 ][0]= mx - mpx;
mvd_cache[ 8 ][1]= my - mpy;
}
mv_cache[ 0 ][0]= mx;
mv_cache[ 0 ][1]= my;
mvd_cache[ 0 ][0]= mx - mpx;
mvd_cache[ 0 ][1]= my - mpy;
}
}else{
uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
p[0] = p[1] = p[8] = p[9] = 0;
pd[0]= pd[1]= pd[8]= pd[9]= 0;
}
}
}
} else if( IS_DIRECT(mb_type) ) {
pred_direct_motion(h, &mb_type);
fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
} else {
int list, mx, my, i, mpx, mpy;
if(IS_16X16(mb_type)){
for(list=0; list<h->list_count; list++){
if(IS_DIR(mb_type, 0, list)){
const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
}else
fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too
}
for(list=0; list<h->list_count; list++){
if(IS_DIR(mb_type, 0, list)){
pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
}else
fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
}
}
else if(IS_16X8(mb_type)){
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){
const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
}else
fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
}
}
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){
pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
}else{
fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
}
}
}
}else{
assert(IS_8X16(mb_type));
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){ //FIXME optimize
const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
}else
fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
}
}
for(list=0; list<h->list_count; list++){
for(i=0; i<2; i++){
if(IS_DIR(mb_type, i, list)){
pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
tprintf(s->avctx, "final mv:%d %d\n", mx, my);
fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
}else{
fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
}
}
}
}
}
if( IS_INTER( mb_type ) ) {
h->chroma_pred_mode_table[mb_xy] = 0;
write_back_motion( h, mb_type );
}
if( !IS_INTRA16x16( mb_type ) ) {
cbp = decode_cabac_mb_cbp_luma( h );
cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
}
h->cbp_table[mb_xy] = h->cbp = cbp;
if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
if( decode_cabac_mb_transform_size( h ) )
mb_type |= MB_TYPE_8x8DCT;
}
s->current_picture.mb_type[mb_xy]= mb_type;
if( cbp || IS_INTRA16x16( mb_type ) ) {
const uint8_t *scan, *scan8x8, *dc_scan;
int dqp;
if(IS_INTERLACED(mb_type)){
scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
scan= s->qscale ? h->field_scan : h->field_scan_q0;
dc_scan= luma_dc_field_scan;
}else{
scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
dc_scan= luma_dc_zigzag_scan;
}
h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
if( dqp == INT_MIN ){
av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
return -1;
}
s->qscale += dqp;
if(((unsigned)s->qscale) > 51){
if(s->qscale<0) s->qscale+= 52;
else s->qscale-= 52;
}
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
if( IS_INTRA16x16( mb_type ) ) {
int i;
//av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16);
if( cbp&15 ) {
for( i = 0; i < 16; i++ ) {
//av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, h->dequant4_coeff[0][s->qscale], 15);
}
} else {
fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
}
} else {
int i8x8, i4x4;
for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
if( cbp & (1<<i8x8) ) {
if( IS_8x8DCT(mb_type) ) {
decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64);
} else
for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
const int index = 4*i8x8 + i4x4;
//av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
//START_TIMER
decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16);
//STOP_TIMER("decode_residual")
}
} else {
uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
}
}
}
if( cbp&0x30 ){
int c;
for( c = 0; c < 2; c++ ) {
//av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4);
}
}
if( cbp&0x20 ) {
int c, i;
for( c = 0; c < 2; c++ ) {
const uint32_t *qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[c]];
for( i = 0; i < 4; i++ ) {
const int index = 16 + 4 * c + i;
//av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, qmul, 15);
}
}
} else {
uint8_t * const nnz= &h->non_zero_count_cache[0];
nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
}
} else {
uint8_t * const nnz= &h->non_zero_count_cache[0];
fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
h->last_qscale_diff = 0;
}
s->current_picture.qscale_table[mb_xy]= s->qscale;
write_back_non_zero_count(h);
if(MB_MBAFF){
h->ref_count[0] >>= 1;
h->ref_count[1] >>= 1;
}
return 0;
}
static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
int i, d;
const int index_a = qp + h->slice_alpha_c0_offset;
const int alpha = (alpha_table+52)[index_a];
const int beta = (beta_table+52)[qp + h->slice_beta_offset];
if( bS[0] < 4 ) {
int8_t tc[4];
for(i=0; i<4; i++)
tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
} else {
/* 16px edge length, because bS=4 is triggered by being at
* the edge of an intra MB, so all 4 bS are the same */
for( d = 0; d < 16; d++ ) {
const int p0 = pix[-1];
const int p1 = pix[-2];
const int p2 = pix[-3];
const int q0 = pix[0];
const int q1 = pix[1];
const int q2 = pix[2];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
if( FFABS( p2 - p0 ) < beta)
{
const int p3 = pix[-4];
/* p0', p1', p2' */
pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
} else {
/* p0' */
pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
}
if( FFABS( q2 - q0 ) < beta)
{
const int q3 = pix[3];
/* q0', q1', q2' */
pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
} else {
/* q0' */
pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
}else{
/* p0', q0' */
pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
tprintf(h->s.avctx, "filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
}
pix += stride;
}
}
}
static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
int i;
const int index_a = qp + h->slice_alpha_c0_offset;
const int alpha = (alpha_table+52)[index_a];
const int beta = (beta_table+52)[qp + h->slice_beta_offset];
if( bS[0] < 4 ) {
int8_t tc[4];
for(i=0; i<4; i++)
tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
} else {
h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
}
}
static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
int i;
for( i = 0; i < 16; i++, pix += stride) {
int index_a;
int alpha;
int beta;
int qp_index;
int bS_index = (i >> 1);
if (!MB_FIELD) {
bS_index &= ~1;
bS_index |= (i & 1);
}
if( bS[bS_index] == 0 ) {
continue;
}
qp_index = MB_FIELD ? (i >> 3) : (i & 1);
index_a = qp[qp_index] + h->slice_alpha_c0_offset;
alpha = (alpha_table+52)[index_a];
beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
if( bS[bS_index] < 4 ) {
const int tc0 = (tc0_table+52)[index_a][bS[bS_index] - 1];
const int p0 = pix[-1];
const int p1 = pix[-2];
const int p2 = pix[-3];
const int q0 = pix[0];
const int q1 = pix[1];
const int q2 = pix[2];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
int tc = tc0;
int i_delta;
if( FFABS( p2 - p0 ) < beta ) {
pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
tc++;
}
if( FFABS( q2 - q0 ) < beta ) {
pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
tc++;
}
i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
}
}else{
const int p0 = pix[-1];
const int p1 = pix[-2];
const int p2 = pix[-3];
const int q0 = pix[0];
const int q1 = pix[1];
const int q2 = pix[2];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
if( FFABS( p2 - p0 ) < beta)
{
const int p3 = pix[-4];
/* p0', p1', p2' */
pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
} else {
/* p0' */
pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
}
if( FFABS( q2 - q0 ) < beta)
{
const int q3 = pix[3];
/* q0', q1', q2' */
pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
} else {
/* q0' */
pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
}else{
/* p0', q0' */
pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
}
}
}
}
static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
int i;
for( i = 0; i < 8; i++, pix += stride) {
int index_a;
int alpha;
int beta;
int qp_index;
int bS_index = i;
if( bS[bS_index] == 0 ) {
continue;
}
qp_index = MB_FIELD ? (i >> 2) : (i & 1);
index_a = qp[qp_index] + h->slice_alpha_c0_offset;
alpha = (alpha_table+52)[index_a];
beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
if( bS[bS_index] < 4 ) {
const int tc = (tc0_table+52)[index_a][bS[bS_index] - 1] + 1;
const int p0 = pix[-1];
const int p1 = pix[-2];
const int q0 = pix[0];
const int q1 = pix[1];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
}
}else{
const int p0 = pix[-1];
const int p1 = pix[-2];
const int q0 = pix[0];
const int q1 = pix[1];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
}
}
}
}
static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
int i, d;
const int index_a = qp + h->slice_alpha_c0_offset;
const int alpha = (alpha_table+52)[index_a];
const int beta = (beta_table+52)[qp + h->slice_beta_offset];
const int pix_next = stride;
if( bS[0] < 4 ) {
int8_t tc[4];
for(i=0; i<4; i++)
tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
} else {
/* 16px edge length, see filter_mb_edgev */
for( d = 0; d < 16; d++ ) {
const int p0 = pix[-1*pix_next];
const int p1 = pix[-2*pix_next];
const int p2 = pix[-3*pix_next];
const int q0 = pix[0];
const int q1 = pix[1*pix_next];
const int q2 = pix[2*pix_next];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
const int p3 = pix[-4*pix_next];
const int q3 = pix[ 3*pix_next];
if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
if( FFABS( p2 - p0 ) < beta) {
/* p0', p1', p2' */
pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
} else {
/* p0' */
pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
}
if( FFABS( q2 - q0 ) < beta) {
/* q0', q1', q2' */
pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
} else {
/* q0' */
pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
}else{
/* p0', q0' */
pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
tprintf(h->s.avctx, "filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
}
pix++;
}
}
}
static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
int i;
const int index_a = qp + h->slice_alpha_c0_offset;
const int alpha = (alpha_table+52)[index_a];
const int beta = (beta_table+52)[qp + h->slice_beta_offset];
if( bS[0] < 4 ) {
int8_t tc[4];
for(i=0; i<4; i++)
tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
} else {
h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
}
}
static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
MpegEncContext * const s = &h->s;
int mb_xy, mb_type;
int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
mb_xy = mb_x + mb_y*s->mb_stride;
if(mb_x==0 || mb_y==0 || !s->dsp.h264_loop_filter_strength || h->pps.chroma_qp_diff ||
(h->deblocking_filter == 2 && (h->slice_table[mb_xy] != h->slice_table[h->top_mb_xy] ||
h->slice_table[mb_xy] != h->slice_table[mb_xy - 1]))) {
filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
return;
}
assert(!FRAME_MBAFF);
mb_type = s->current_picture.mb_type[mb_xy];
qp = s->current_picture.qscale_table[mb_xy];
qp0 = s->current_picture.qscale_table[mb_xy-1];
qp1 = s->current_picture.qscale_table[h->top_mb_xy];
qpc = get_chroma_qp( h, 0, qp );
qpc0 = get_chroma_qp( h, 0, qp0 );
qpc1 = get_chroma_qp( h, 0, qp1 );
qp0 = (qp + qp0 + 1) >> 1;
qp1 = (qp + qp1 + 1) >> 1;
qpc0 = (qpc + qpc0 + 1) >> 1;
qpc1 = (qpc + qpc1 + 1) >> 1;
qp_thresh = 15 - h->slice_alpha_c0_offset;
if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
return;
if( IS_INTRA(mb_type) ) {
int16_t bS4[4] = {4,4,4,4};
int16_t bS3[4] = {3,3,3,3};
if( IS_8x8DCT(mb_type) ) {
filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bS4, qp1 );
filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
} else {
filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
filter_mb_edgev( h, &img_y[4*1], linesize, bS3, qp );
filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
filter_mb_edgev( h, &img_y[4*3], linesize, bS3, qp );
filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bS4, qp1 );
filter_mb_edgeh( h, &img_y[4*1*linesize], linesize, bS3, qp );
filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
filter_mb_edgeh( h, &img_y[4*3*linesize], linesize, bS3, qp );
}
filter_mb_edgecv( h, &img_cb[2*0], uvlinesize, bS4, qpc0 );
filter_mb_edgecv( h, &img_cb[2*2], uvlinesize, bS3, qpc );
filter_mb_edgecv( h, &img_cr[2*0], uvlinesize, bS4, qpc0 );
filter_mb_edgecv( h, &img_cr[2*2], uvlinesize, bS3, qpc );
filter_mb_edgech( h, &img_cb[2*0*uvlinesize], uvlinesize, bS4, qpc1 );
filter_mb_edgech( h, &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc );
filter_mb_edgech( h, &img_cr[2*0*uvlinesize], uvlinesize, bS4, qpc1 );
filter_mb_edgech( h, &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc );
return;
} else {
DECLARE_ALIGNED_8(int16_t, bS[2][4][4]);
uint64_t (*bSv)[4] = (uint64_t(*)[4])bS;
int edges;
if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
edges = 4;
bSv[0][0] = bSv[0][2] = bSv[1][0] = bSv[1][2] = 0x0002000200020002ULL;
} else {
int mask_edge1 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 :
(mb_type & MB_TYPE_16x8) ? 1 : 0;
int mask_edge0 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16))
&& (s->current_picture.mb_type[mb_xy-1] & (MB_TYPE_16x16 | MB_TYPE_8x16))
? 3 : 0;
int step = IS_8x8DCT(mb_type) ? 2 : 1;
edges = (mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
(h->slice_type == B_TYPE), edges, step, mask_edge0, mask_edge1 );
}
if( IS_INTRA(s->current_picture.mb_type[mb_xy-1]) )
bSv[0][0] = 0x0004000400040004ULL;
if( IS_INTRA(s->current_picture.mb_type[h->top_mb_xy]) )
bSv[1][0] = 0x0004000400040004ULL;
#define FILTER(hv,dir,edge)\
if(bSv[dir][edge]) {\
filter_mb_edge##hv( h, &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir );\
if(!(edge&1)) {\
filter_mb_edgec##hv( h, &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
filter_mb_edgec##hv( h, &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
}\
}
if( edges == 1 ) {
FILTER(v,0,0);
FILTER(h,1,0);
} else if( IS_8x8DCT(mb_type) ) {
FILTER(v,0,0);
FILTER(v,0,2);
FILTER(h,1,0);
FILTER(h,1,2);
} else {
FILTER(v,0,0);
FILTER(v,0,1);
FILTER(v,0,2);
FILTER(v,0,3);
FILTER(h,1,0);
FILTER(h,1,1);
FILTER(h,1,2);
FILTER(h,1,3);
}
#undef FILTER
}
}
static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
MpegEncContext * const s = &h->s;
const int mb_xy= mb_x + mb_y*s->mb_stride;
const int mb_type = s->current_picture.mb_type[mb_xy];
const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
int first_vertical_edge_done = 0;
int dir;
/* FIXME: A given frame may occupy more than one position in
* the reference list. So ref2frm should be populated with
* frame numbers, not indices. */
static const int ref2frm[34] = {-1,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31};
//for sufficiently low qp, filtering wouldn't do anything
//this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
if(!FRAME_MBAFF){
int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX(0, FFMAX(h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]));
int qp = s->current_picture.qscale_table[mb_xy];
if(qp <= qp_thresh
&& (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
&& (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
return;
}
}
if (FRAME_MBAFF
// left mb is in picture
&& h->slice_table[mb_xy-1] != 255
// and current and left pair do not have the same interlaced type
&& (IS_INTERLACED(mb_type) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
// and left mb is in the same slice if deblocking_filter == 2
&& (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
/* First vertical edge is different in MBAFF frames
* There are 8 different bS to compute and 2 different Qp
*/
const int pair_xy = mb_x + (mb_y&~1)*s->mb_stride;
const int left_mb_xy[2] = { pair_xy-1, pair_xy-1+s->mb_stride };
int16_t bS[8];
int qp[2];
int bqp[2];
int rqp[2];
int mb_qp, mbn0_qp, mbn1_qp;
int i;
first_vertical_edge_done = 1;
if( IS_INTRA(mb_type) )
bS[0] = bS[1] = bS[2] = bS[3] = bS[4] = bS[5] = bS[6] = bS[7] = 4;
else {
for( i = 0; i < 8; i++ ) {
int mbn_xy = MB_FIELD ? left_mb_xy[i>>2] : left_mb_xy[i&1];
if( IS_INTRA( s->current_picture.mb_type[mbn_xy] ) )
bS[i] = 4;
else if( h->non_zero_count_cache[12+8*(i>>1)] != 0 ||
/* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */
h->non_zero_count[mbn_xy][MB_FIELD ? i&3 : (i>>2)+(mb_y&1)*2] )
bS[i] = 2;
else
bS[i] = 1;
}
}
mb_qp = s->current_picture.qscale_table[mb_xy];
mbn0_qp = s->current_picture.qscale_table[left_mb_xy[0]];
mbn1_qp = s->current_picture.qscale_table[left_mb_xy[1]];
qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
bqp[0] = ( get_chroma_qp( h, 0, mb_qp ) +
get_chroma_qp( h, 0, mbn0_qp ) + 1 ) >> 1;
rqp[0] = ( get_chroma_qp( h, 1, mb_qp ) +
get_chroma_qp( h, 1, mbn0_qp ) + 1 ) >> 1;
qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
bqp[1] = ( get_chroma_qp( h, 0, mb_qp ) +
get_chroma_qp( h, 0, mbn1_qp ) + 1 ) >> 1;
rqp[1] = ( get_chroma_qp( h, 1, mb_qp ) +
get_chroma_qp( h, 1, mbn1_qp ) + 1 ) >> 1;
/* Filter edge */
tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPb:%d/%d QPr:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], bqp[0], bqp[1], rqp[0], rqp[1], linesize, uvlinesize);
{ int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, bqp );
filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, rqp );
}
/* dir : 0 -> vertical edge, 1 -> horizontal edge */
for( dir = 0; dir < 2; dir++ )
{
int edge;
const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
const int mbm_type = s->current_picture.mb_type[mbm_xy];
int start = h->slice_table[mbm_xy] == 255 ? 1 : 0;
const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
== (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
// how often to recheck mv-based bS when iterating between edges
const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
(mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
// how often to recheck mv-based bS when iterating along each edge
const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
if (first_vertical_edge_done) {
start = 1;
first_vertical_edge_done = 0;
}
if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
start = 1;
if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && start == 0
&& !IS_INTERLACED(mb_type)
&& IS_INTERLACED(mbm_type)
) {
// This is a special case in the norm where the filtering must
// be done twice (one each of the field) even if we are in a
// frame macroblock.
//
static const int nnz_idx[4] = {4,5,6,3};
unsigned int tmp_linesize = 2 * linesize;
unsigned int tmp_uvlinesize = 2 * uvlinesize;
int mbn_xy = mb_xy - 2 * s->mb_stride;
int qp;
int i, j;
int16_t bS[4];
for(j=0; j<2; j++, mbn_xy += s->mb_stride){
if( IS_INTRA(mb_type) ||
IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
bS[0] = bS[1] = bS[2] = bS[3] = 3;
} else {
const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy];
for( i = 0; i < 4; i++ ) {
if( h->non_zero_count_cache[scan8[0]+i] != 0 ||
mbn_nnz[nnz_idx[i]] != 0 )
bS[i] = 2;
else
bS[i] = 1;
}
}
// Do not use s->qscale as luma quantizer because it has not the same
// value in IPCM macroblocks.
qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
filter_mb_edgeh( h, &img_y[j*linesize], tmp_linesize, bS, qp );
filter_mb_edgech( h, &img_cb[j*uvlinesize], tmp_uvlinesize, bS,
( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
filter_mb_edgech( h, &img_cr[j*uvlinesize], tmp_uvlinesize, bS,
( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
}
start = 1;
}
/* Calculate bS */
for( edge = start; edge < edges; edge++ ) {
/* mbn_xy: neighbor macroblock */
const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
const int mbn_type = s->current_picture.mb_type[mbn_xy];
int16_t bS[4];
int qp;
if( (edge&1) && IS_8x8DCT(mb_type) )
continue;
if( IS_INTRA(mb_type) ||
IS_INTRA(mbn_type) ) {
int value;
if (edge == 0) {
if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
|| ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
) {
value = 4;
} else {
value = 3;
}
} else {
value = 3;
}
bS[0] = bS[1] = bS[2] = bS[3] = value;
} else {
int i, l;
int mv_done;
if( edge & mask_edge ) {
bS[0] = bS[1] = bS[2] = bS[3] = 0;
mv_done = 1;
}
else if( FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbn_type)) {
bS[0] = bS[1] = bS[2] = bS[3] = 1;
mv_done = 1;
}
else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
int b_idx= 8 + 4 + edge * (dir ? 8:1);
int bn_idx= b_idx - (dir ? 8:1);
int v = 0;
for( l = 0; !v && l < 1 + (h->slice_type == B_TYPE); l++ ) {
v |= ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit;
}
bS[0] = bS[1] = bS[2] = bS[3] = v;
mv_done = 1;
}
else
mv_done = 0;
for( i = 0; i < 4; i++ ) {
int x = dir == 0 ? edge : i;
int y = dir == 0 ? i : edge;
int b_idx= 8 + 4 + x + 8*y;
int bn_idx= b_idx - (dir ? 8:1);
if( h->non_zero_count_cache[b_idx] != 0 ||
h->non_zero_count_cache[bn_idx] != 0 ) {
bS[i] = 2;
}
else if(!mv_done)
{
bS[i] = 0;
for( l = 0; l < 1 + (h->slice_type == B_TYPE); l++ ) {
if( ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit ) {
bS[i] = 1;
break;
}
}
}
}
if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
continue;
}
/* Filter edge */
// Do not use s->qscale as luma quantizer because it has not the same
// value in IPCM macroblocks.
qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
//tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
if( dir == 0 ) {
filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
if( (edge&1) == 0 ) {
filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS,
( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS,
( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
}
} else {
filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
if( (edge&1) == 0 ) {
filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS,
( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS,
( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
}
}
}
}
}
static int decode_slice(H264Context *h){
MpegEncContext * const s = &h->s;
const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
s->mb_skip_run= -1;
if( h->pps.cabac ) {
int i;
/* realign */
align_get_bits( &s->gb );
/* init cabac */
ff_init_cabac_states( &h->cabac);
ff_init_cabac_decoder( &h->cabac,
s->gb.buffer + get_bits_count(&s->gb)/8,
( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
/* calculate pre-state */
for( i= 0; i < 460; i++ ) {
int pre;
if( h->slice_type == I_TYPE )
pre = av_clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
else
pre = av_clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
if( pre <= 63 )
h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
else
h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
}
for(;;){
//START_TIMER
int ret = decode_mb_cabac(h);
int eos;
//STOP_TIMER("decode_mb_cabac")
if(ret>=0) hl_decode_mb(h);
if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
s->mb_y++;
if(ret>=0) ret = decode_mb_cabac(h);
if(ret>=0) hl_decode_mb(h);
s->mb_y--;
}
eos = get_cabac_terminate( &h->cabac );
if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
if( ++s->mb_x >= s->mb_width ) {
s->mb_x = 0;
ff_draw_horiz_band(s, 16*s->mb_y, 16);
++s->mb_y;
if(FRAME_MBAFF) {
++s->mb_y;
}
}
if( eos || s->mb_y >= s->mb_height ) {
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return 0;
}
}
} else {
for(;;){
int ret = decode_mb_cavlc(h);
if(ret>=0) hl_decode_mb(h);
if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
s->mb_y++;
ret = decode_mb_cavlc(h);
if(ret>=0) hl_decode_mb(h);
s->mb_y--;
}
if(ret<0){
av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
if(++s->mb_x >= s->mb_width){
s->mb_x=0;
ff_draw_horiz_band(s, 16*s->mb_y, 16);
++s->mb_y;
if(FRAME_MBAFF) {
++s->mb_y;
}
if(s->mb_y >= s->mb_height){
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return 0;
}else{
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return -1;
}
}
}
if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return 0;
}else{
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
}
}
}
#if 0
for(;s->mb_y < s->mb_height; s->mb_y++){
for(;s->mb_x < s->mb_width; s->mb_x++){
int ret= decode_mb(h);
hl_decode_mb(h);
if(ret<0){
av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
if(++s->mb_x >= s->mb_width){
s->mb_x=0;
if(++s->mb_y >= s->mb_height){
if(get_bits_count(s->gb) == s->gb.size_in_bits){
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return 0;
}else{
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return -1;
}
}
}
if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
if(get_bits_count(s->gb) == s->gb.size_in_bits){
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
return 0;
}else{
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
return -1;
}
}
}
s->mb_x=0;
ff_draw_horiz_band(s, 16*s->mb_y, 16);
}
#endif
return -1; //not reached
}
static int decode_unregistered_user_data(H264Context *h, int size){
MpegEncContext * const s = &h->s;
uint8_t user_data[16+256];
int e, build, i;
if(size<16)
return -1;
for(i=0; i<sizeof(user_data)-1 && i<size; i++){
user_data[i]= get_bits(&s->gb, 8);
}
user_data[i]= 0;
e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
if(e==1 && build>=0)
h->x264_build= build;
if(s->avctx->debug & FF_DEBUG_BUGS)
av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
for(; i<size; i++)
skip_bits(&s->gb, 8);
return 0;
}
static int decode_sei(H264Context *h){
MpegEncContext * const s = &h->s;
while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
int size, type;
type=0;
do{
type+= show_bits(&s->gb, 8);
}while(get_bits(&s->gb, 8) == 255);
size=0;
do{
size+= show_bits(&s->gb, 8);
}while(get_bits(&s->gb, 8) == 255);
switch(type){
case 5:
if(decode_unregistered_user_data(h, size) < 0)
return -1;
break;
default:
skip_bits(&s->gb, 8*size);
}
//FIXME check bits here
align_get_bits(&s->gb);
}
return 0;
}
static inline void decode_hrd_parameters(H264Context *h, SPS *sps){
MpegEncContext * const s = &h->s;
int cpb_count, i;
cpb_count = get_ue_golomb(&s->gb) + 1;
get_bits(&s->gb, 4); /* bit_rate_scale */
get_bits(&s->gb, 4); /* cpb_size_scale */
for(i=0; i<cpb_count; i++){
get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
get_bits1(&s->gb); /* cbr_flag */
}
get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */
get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */
get_bits(&s->gb, 5); /* time_offset_length */
}
static inline int decode_vui_parameters(H264Context *h, SPS *sps){
MpegEncContext * const s = &h->s;
int aspect_ratio_info_present_flag;
unsigned int aspect_ratio_idc;
int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag;
aspect_ratio_info_present_flag= get_bits1(&s->gb);
if( aspect_ratio_info_present_flag ) {
aspect_ratio_idc= get_bits(&s->gb, 8);
if( aspect_ratio_idc == EXTENDED_SAR ) {
sps->sar.num= get_bits(&s->gb, 16);
sps->sar.den= get_bits(&s->gb, 16);
}else if(aspect_ratio_idc < 14){
sps->sar= pixel_aspect[aspect_ratio_idc];
}else{
av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
return -1;
}
}else{
sps->sar.num=
sps->sar.den= 0;
}
// s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
get_bits1(&s->gb); /* overscan_appropriate_flag */
}
if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
get_bits(&s->gb, 3); /* video_format */
get_bits1(&s->gb); /* video_full_range_flag */
if(get_bits1(&s->gb)){ /* colour_description_present_flag */
get_bits(&s->gb, 8); /* colour_primaries */
get_bits(&s->gb, 8); /* transfer_characteristics */
get_bits(&s->gb, 8); /* matrix_coefficients */
}
}
if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
}
sps->timing_info_present_flag = get_bits1(&s->gb);
if(sps->timing_info_present_flag){
sps->num_units_in_tick = get_bits_long(&s->gb, 32);
sps->time_scale = get_bits_long(&s->gb, 32);
sps->fixed_frame_rate_flag = get_bits1(&s->gb);
}
nal_hrd_parameters_present_flag = get_bits1(&s->gb);
if(nal_hrd_parameters_present_flag)
decode_hrd_parameters(h, sps);
vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
if(vcl_hrd_parameters_present_flag)
decode_hrd_parameters(h, sps);
if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag)
get_bits1(&s->gb); /* low_delay_hrd_flag */
get_bits1(&s->gb); /* pic_struct_present_flag */
sps->bitstream_restriction_flag = get_bits1(&s->gb);
if(sps->bitstream_restriction_flag){
unsigned int num_reorder_frames;
get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
num_reorder_frames= get_ue_golomb(&s->gb);
get_ue_golomb(&s->gb); /*max_dec_frame_buffering*/
if(num_reorder_frames > 16 /*max_dec_frame_buffering || max_dec_frame_buffering > 16*/){
av_log(h->s.avctx, AV_LOG_ERROR, "illegal num_reorder_frames %d\n", num_reorder_frames);
return -1;
}
sps->num_reorder_frames= num_reorder_frames;
}
return 0;
}
static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
const uint8_t *jvt_list, const uint8_t *fallback_list){
MpegEncContext * const s = &h->s;
int i, last = 8, next = 8;
const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
memcpy(factors, fallback_list, size*sizeof(uint8_t));
else
for(i=0;i<size;i++){
if(next)
next = (last + get_se_golomb(&s->gb)) & 0xff;
if(!i && !next){ /* matrix not written, we use the preset one */
memcpy(factors, jvt_list, size*sizeof(uint8_t));
break;
}
last = factors[scan[i]] = next ? next : last;
}
}
static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
MpegEncContext * const s = &h->s;
int fallback_sps = !is_sps && sps->scaling_matrix_present;
const uint8_t *fallback[4] = {
fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
};
if(get_bits1(&s->gb)){
sps->scaling_matrix_present |= is_sps;
decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
if(is_sps || pps->transform_8x8_mode){
decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
}
} else if(fallback_sps) {
memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t));
memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t));
}
}
/**
* Returns and optionally allocates SPS / PPS structures in the supplied array 'vec'
*/
static void *
alloc_parameter_set(H264Context *h, void **vec, const unsigned int id, const unsigned int max,
const size_t size, const char *name)
{
if(id>=max) {
av_log(h->s.avctx, AV_LOG_ERROR, "%s_id (%d) out of range\n", name, id);
return NULL;
}
if(!vec[id]) {
vec[id] = av_mallocz(size);
if(vec[id] == NULL)
av_log(h->s.avctx, AV_LOG_ERROR, "cannot allocate memory for %s\n", name);
}
return vec[id];
}
static inline int decode_seq_parameter_set(H264Context *h){
MpegEncContext * const s = &h->s;
int profile_idc, level_idc;
unsigned int sps_id, tmp, mb_width, mb_height;
int i;
SPS *sps;
profile_idc= get_bits(&s->gb, 8);
get_bits1(&s->gb); //constraint_set0_flag
get_bits1(&s->gb); //constraint_set1_flag
get_bits1(&s->gb); //constraint_set2_flag
get_bits1(&s->gb); //constraint_set3_flag
get_bits(&s->gb, 4); // reserved
level_idc= get_bits(&s->gb, 8);
sps_id= get_ue_golomb(&s->gb);
sps = alloc_parameter_set(h, (void **)h->sps_buffers, sps_id, MAX_SPS_COUNT, sizeof(SPS), "sps");
if(sps == NULL)
return -1;
sps->profile_idc= profile_idc;
sps->level_idc= level_idc;
if(sps->profile_idc >= 100){ //high profile
if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc
get_bits1(&s->gb); //residual_color_transform_flag
get_ue_golomb(&s->gb); //bit_depth_luma_minus8
get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
sps->transform_bypass = get_bits1(&s->gb);
decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
}else
sps->scaling_matrix_present = 0;
sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
sps->poc_type= get_ue_golomb(&s->gb);
if(sps->poc_type == 0){ //FIXME #define
sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
} else if(sps->poc_type == 1){//FIXME #define
sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
tmp= get_ue_golomb(&s->gb);
if(tmp >= sizeof(sps->offset_for_ref_frame) / sizeof(sps->offset_for_ref_frame[0])){
av_log(h->s.avctx, AV_LOG_ERROR, "poc_cycle_length overflow %u\n", tmp);
return -1;
}
sps->poc_cycle_length= tmp;
for(i=0; i<sps->poc_cycle_length; i++)
sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
}else if(sps->poc_type != 2){
av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
return -1;
}
tmp= get_ue_golomb(&s->gb);
if(tmp > MAX_PICTURE_COUNT-2){
av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
}
sps->ref_frame_count= tmp;
sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
mb_width= get_ue_golomb(&s->gb) + 1;
mb_height= get_ue_golomb(&s->gb) + 1;
if(mb_width >= INT_MAX/16 || mb_height >= INT_MAX/16 ||
avcodec_check_dimensions(NULL, 16*mb_width, 16*mb_height)){
av_log(h->s.avctx, AV_LOG_ERROR, "mb_width/height overflow\n");
return -1;
}
sps->mb_width = mb_width;
sps->mb_height= mb_height;
sps->frame_mbs_only_flag= get_bits1(&s->gb);
if(!sps->frame_mbs_only_flag)
sps->mb_aff= get_bits1(&s->gb);
else
sps->mb_aff= 0;
sps->direct_8x8_inference_flag= get_bits1(&s->gb);
#ifndef ALLOW_INTERLACE
if(sps->mb_aff)
av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF support not included; enable it at compile-time.\n");
#endif
if(!sps->direct_8x8_inference_flag && sps->mb_aff)
av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + !direct_8x8_inference is not implemented\n");
sps->crop= get_bits1(&s->gb);
if(sps->crop){
sps->crop_left = get_ue_golomb(&s->gb);
sps->crop_right = get_ue_golomb(&s->gb);
sps->crop_top = get_ue_golomb(&s->gb);
sps->crop_bottom= get_ue_golomb(&s->gb);
if(sps->crop_left || sps->crop_top){
av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
}
}else{
sps->crop_left =
sps->crop_right =
sps->crop_top =
sps->crop_bottom= 0;
}
sps->vui_parameters_present_flag= get_bits1(&s->gb);
if( sps->vui_parameters_present_flag )
decode_vui_parameters(h, sps);
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
sps_id, sps->profile_idc, sps->level_idc,
sps->poc_type,
sps->ref_frame_count,
sps->mb_width, sps->mb_height,
sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
sps->direct_8x8_inference_flag ? "8B8" : "",
sps->crop_left, sps->crop_right,
sps->crop_top, sps->crop_bottom,
sps->vui_parameters_present_flag ? "VUI" : ""
);
}
return 0;
}
static void
build_qp_table(PPS *pps, int t, int index)
{
int i;
for(i = 0; i < 255; i++)
pps->chroma_qp_table[t][i & 0xff] = chroma_qp[av_clip(i + index, 0, 51)];
}
static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
MpegEncContext * const s = &h->s;
unsigned int tmp, pps_id= get_ue_golomb(&s->gb);
PPS *pps;
pps = alloc_parameter_set(h, (void **)h->pps_buffers, pps_id, MAX_PPS_COUNT, sizeof(PPS), "pps");
if(pps == NULL)
return -1;
tmp= get_ue_golomb(&s->gb);
if(tmp>=MAX_SPS_COUNT || h->sps_buffers[tmp] == NULL){
av_log(h->s.avctx, AV_LOG_ERROR, "sps_id out of range\n");
return -1;
}
pps->sps_id= tmp;
pps->cabac= get_bits1(&s->gb);
pps->pic_order_present= get_bits1(&s->gb);
pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
if(pps->slice_group_count > 1 ){
pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
switch(pps->mb_slice_group_map_type){
case 0:
#if 0
| for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
| run_length[ i ] |1 |ue(v) |
#endif
break;
case 2:
#if 0
| for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
|{ | | |
| top_left_mb[ i ] |1 |ue(v) |
| bottom_right_mb[ i ] |1 |ue(v) |
| } | | |
#endif
break;
case 3:
case 4:
case 5:
#if 0
| slice_group_change_direction_flag |1 |u(1) |
| slice_group_change_rate_minus1 |1 |ue(v) |
#endif
break;
case 6:
#if 0
| slice_group_id_cnt_minus1 |1 |ue(v) |
| for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
|) | | |
| slice_group_id[ i ] |1 |u(v) |
#endif
break;
}
}
pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
if(pps->ref_count[0]-1 > 32-1 || pps->ref_count[1]-1 > 32-1){
av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
pps->ref_count[0]= pps->ref_count[1]= 1;
return -1;
}
pps->weighted_pred= get_bits1(&s->gb);
pps->weighted_bipred_idc= get_bits(&s->gb, 2);
pps->init_qp= get_se_golomb(&s->gb) + 26;
pps->init_qs= get_se_golomb(&s->gb) + 26;
pps->chroma_qp_index_offset[0]= get_se_golomb(&s->gb);
pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
pps->constrained_intra_pred= get_bits1(&s->gb);
pps->redundant_pic_cnt_present = get_bits1(&s->gb);
pps->transform_8x8_mode= 0;
h->dequant_coeff_pps= -1; //contents of sps/pps can change even if id doesn't, so reinit
memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t));
memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t));
if(get_bits_count(&s->gb) < bit_length){
pps->transform_8x8_mode= get_bits1(&s->gb);
decode_scaling_matrices(h, h->sps_buffers[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
pps->chroma_qp_index_offset[1]= get_se_golomb(&s->gb); //second_chroma_qp_index_offset
} else {
pps->chroma_qp_index_offset[1]= pps->chroma_qp_index_offset[0];
}
build_qp_table(pps, 0, pps->chroma_qp_index_offset[0]);
if(pps->chroma_qp_index_offset[0] != pps->chroma_qp_index_offset[1]) {
build_qp_table(pps, 1, pps->chroma_qp_index_offset[1]);
h->pps.chroma_qp_diff= 1;
} else
memcpy(pps->chroma_qp_table[1], pps->chroma_qp_table[0], 256);
if(s->avctx->debug&FF_DEBUG_PICT_INFO){
av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%u sps:%u %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d/%d %s %s %s %s\n",
pps_id, pps->sps_id,
pps->cabac ? "CABAC" : "CAVLC",
pps->slice_group_count,
pps->ref_count[0], pps->ref_count[1],
pps->weighted_pred ? "weighted" : "",
pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset[0], pps->chroma_qp_index_offset[1],
pps->deblocking_filter_parameters_present ? "LPAR" : "",
pps->constrained_intra_pred ? "CONSTR" : "",
pps->redundant_pic_cnt_present ? "REDU" : "",
pps->transform_8x8_mode ? "8x8DCT" : ""
);
}
return 0;
}
static int decode_nal_units(H264Context *h, uint8_t *buf, int buf_size){
MpegEncContext * const s = &h->s;
AVCodecContext * const avctx= s->avctx;
int buf_index=0;
#if 0
int i;
for(i=0; i<50; i++){
av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
}
#endif
if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
h->slice_num = 0;
s->current_picture_ptr= NULL;
}
for(;;){
int consumed;
int dst_length;
int bit_length;
uint8_t *ptr;
int i, nalsize = 0;
if(h->is_avc) {
if(buf_index >= buf_size) break;
nalsize = 0;
for(i = 0; i < h->nal_length_size; i++)
nalsize = (nalsize << 8) | buf[buf_index++];
if(nalsize <= 1 || (nalsize+buf_index > buf_size)){
if(nalsize == 1){
buf_index++;
continue;
}else{
av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
break;
}
}
} else {
// start code prefix search
for(; buf_index + 3 < buf_size; buf_index++){
// This should always succeed in the first iteration.
if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
break;
}
if(buf_index+3 >= buf_size) break;
buf_index+=3;
}
ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
if (ptr==NULL || dst_length < 0){
return -1;
}
while(ptr[dst_length - 1] == 0 && dst_length > 0)
dst_length--;
bit_length= !dst_length ? 0 : (8*dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1));
if(s->avctx->debug&FF_DEBUG_STARTCODE){
av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", h->nal_unit_type, buf_index, buf_size, dst_length);
}
if (h->is_avc && (nalsize != consumed))
av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
buf_index += consumed;
if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
continue;
switch(h->nal_unit_type){
case NAL_IDR_SLICE:
idr(h); //FIXME ensure we don't loose some frames if there is reordering
case NAL_SLICE:
init_get_bits(&s->gb, ptr, bit_length);
h->intra_gb_ptr=
h->inter_gb_ptr= &s->gb;
s->data_partitioning = 0;
if(decode_slice_header(h) < 0){
av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
break;
}
s->current_picture_ptr->key_frame= (h->nal_unit_type == NAL_IDR_SLICE);
if(h->redundant_pic_count==0 && s->hurry_up < 5
&& (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc)
&& (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE)
&& (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE)
&& avctx->skip_frame < AVDISCARD_ALL)
decode_slice(h);
break;
case NAL_DPA:
init_get_bits(&s->gb, ptr, bit_length);
h->intra_gb_ptr=
h->inter_gb_ptr= NULL;
s->data_partitioning = 1;
if(decode_slice_header(h) < 0){
av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
}
break;
case NAL_DPB:
init_get_bits(&h->intra_gb, ptr, bit_length);
h->intra_gb_ptr= &h->intra_gb;
break;
case NAL_DPC:
init_get_bits(&h->inter_gb, ptr, bit_length);
h->inter_gb_ptr= &h->inter_gb;
if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning
&& s->context_initialized
&& s->hurry_up < 5
&& (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc)
&& (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE)
&& (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE)
&& avctx->skip_frame < AVDISCARD_ALL)
decode_slice(h);
break;
case NAL_SEI:
init_get_bits(&s->gb, ptr, bit_length);
decode_sei(h);
break;
case NAL_SPS:
init_get_bits(&s->gb, ptr, bit_length);
decode_seq_parameter_set(h);
if(s->flags& CODEC_FLAG_LOW_DELAY)
s->low_delay=1;
if(avctx->has_b_frames < 2)
avctx->has_b_frames= !s->low_delay;
break;
case NAL_PPS:
init_get_bits(&s->gb, ptr, bit_length);
decode_picture_parameter_set(h, bit_length);
break;
case NAL_AUD:
case NAL_END_SEQUENCE:
case NAL_END_STREAM:
case NAL_FILLER_DATA:
case NAL_SPS_EXT:
case NAL_AUXILIARY_SLICE:
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown NAL code: %d (%d bits)\n", h->nal_unit_type, bit_length);
}
}
return buf_index;
}
/**
* returns the number of bytes consumed for building the current frame
*/
static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
if(s->flags&CODEC_FLAG_TRUNCATED){
pos -= s->parse_context.last_index;
if(pos<0) pos=0; // FIXME remove (unneeded?)
return pos;
}else{
if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
if(pos+10>buf_size) pos=buf_size; // oops ;)
return pos;
}
}
static int decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
uint8_t *buf, int buf_size)
{
H264Context *h = avctx->priv_data;
MpegEncContext *s = &h->s;
AVFrame *pict = data;
int buf_index;
s->flags= avctx->flags;
s->flags2= avctx->flags2;
/* no supplementary picture */
if (buf_size == 0) {
Picture *out;
int i, out_idx;
//FIXME factorize this with the output code below
out = h->delayed_pic[0];
out_idx = 0;
for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
if(h->delayed_pic[i]->poc < out->poc){
out = h->delayed_pic[i];
out_idx = i;
}
for(i=out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i+1];
if(out){
*data_size = sizeof(AVFrame);
*pict= *(AVFrame*)out;
}
return 0;
}
if(s->flags&CODEC_FLAG_TRUNCATED){
int next= ff_h264_find_frame_end(h, buf, buf_size);
if( ff_combine_frame(&s->parse_context, next, (const uint8_t **)&buf, &buf_size) < 0 )
return buf_size;
//printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
}
if(h->is_avc && !h->got_avcC) {
int i, cnt, nalsize;
unsigned char *p = avctx->extradata;
if(avctx->extradata_size < 7) {
av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
return -1;
}
if(*p != 1) {
av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
return -1;
}
/* sps and pps in the avcC always have length coded with 2 bytes,
so put a fake nal_length_size = 2 while parsing them */
h->nal_length_size = 2;
// Decode sps from avcC
cnt = *(p+5) & 0x1f; // Number of sps
p += 6;
for (i = 0; i < cnt; i++) {
nalsize = AV_RB16(p) + 2;
if(decode_nal_units(h, p, nalsize) < 0) {
av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
return -1;
}
p += nalsize;
}
// Decode pps from avcC
cnt = *(p++); // Number of pps
for (i = 0; i < cnt; i++) {
nalsize = AV_RB16(p) + 2;
if(decode_nal_units(h, p, nalsize) != nalsize) {
av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
return -1;
}
p += nalsize;
}
// Now store right nal length size, that will be use to parse all other nals
h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
// Do not reparse avcC
h->got_avcC = 1;
}
if(avctx->frame_number==0 && !h->is_avc && s->avctx->extradata_size){
if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
return -1;
}
buf_index=decode_nal_units(h, buf, buf_size);
if(buf_index < 0)
return -1;
if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
av_log(avctx, AV_LOG_ERROR, "no frame!\n");
return -1;
}
if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
Picture *out = s->current_picture_ptr;
Picture *cur = s->current_picture_ptr;
Picture *prev = h->delayed_output_pic;
int i, pics, cross_idr, out_of_order, out_idx;
s->mb_y= 0;
s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
s->current_picture_ptr->pict_type= s->pict_type;
h->prev_frame_num_offset= h->frame_num_offset;
h->prev_frame_num= h->frame_num;
if(s->current_picture_ptr->reference){
h->prev_poc_msb= h->poc_msb;
h->prev_poc_lsb= h->poc_lsb;
}
if(s->current_picture_ptr->reference)
execute_ref_pic_marking(h, h->mmco, h->mmco_index);
ff_er_frame_end(s);
MPV_frame_end(s);
//FIXME do something with unavailable reference frames
#if 0 //decode order
*data_size = sizeof(AVFrame);
#else
/* Sort B-frames into display order */
if(h->sps.bitstream_restriction_flag
&& s->avctx->has_b_frames < h->sps.num_reorder_frames){
s->avctx->has_b_frames = h->sps.num_reorder_frames;
s->low_delay = 0;
}
pics = 0;
while(h->delayed_pic[pics]) pics++;
assert(pics+1 < sizeof(h->delayed_pic) / sizeof(h->delayed_pic[0]));
h->delayed_pic[pics++] = cur;
if(cur->reference == 0)
cur->reference = 1;
cross_idr = 0;
for(i=0; h->delayed_pic[i]; i++)
if(h->delayed_pic[i]->key_frame || h->delayed_pic[i]->poc==0)
cross_idr = 1;
out = h->delayed_pic[0];
out_idx = 0;
for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
if(h->delayed_pic[i]->poc < out->poc){
out = h->delayed_pic[i];
out_idx = i;
}
out_of_order = !cross_idr && prev && out->poc < prev->poc;
if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
{ }
else if(prev && pics <= s->avctx->has_b_frames)
out = prev;
else if((out_of_order && pics-1 == s->avctx->has_b_frames && pics < 15)
|| (s->low_delay &&
((!cross_idr && prev && out->poc > prev->poc + 2)
|| cur->pict_type == B_TYPE)))
{
s->low_delay = 0;
s->avctx->has_b_frames++;
out = prev;
}
else if(out_of_order)
out = prev;
if(out_of_order || pics > s->avctx->has_b_frames){
for(i=out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i+1];
}
if(prev == out)
*data_size = 0;
else
*data_size = sizeof(AVFrame);
if(prev && prev != out && prev->reference == 1)
prev->reference = 0;
h->delayed_output_pic = out;
#endif
if(out)
*pict= *(AVFrame*)out;
else
av_log(avctx, AV_LOG_DEBUG, "no picture\n");
}
assert(pict->data[0] || !*data_size);
ff_print_debug_info(s, pict);
//printf("out %d\n", (int)pict->data[0]);
#if 0 //?
/* Return the Picture timestamp as the frame number */
/* we substract 1 because it is added on utils.c */
avctx->frame_number = s->picture_number - 1;
#endif
return get_consumed_bytes(s, buf_index, buf_size);
}
#if 0
static inline void fill_mb_avail(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
if(s->mb_y){
h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
}else{
h->mb_avail[0]=
h->mb_avail[1]=
h->mb_avail[2]= 0;
}
h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
h->mb_avail[4]= 1; //FIXME move out
h->mb_avail[5]= 0; //FIXME move out
}
#endif
#if 0 //selftest
#undef random
#define COUNT 8000
#define SIZE (COUNT*40)
int main(){
int i;
uint8_t temp[SIZE];
PutBitContext pb;
GetBitContext gb;
// int int_temp[10000];
DSPContext dsp;
AVCodecContext avctx;
dsputil_init(&dsp, &avctx);
init_put_bits(&pb, temp, SIZE);
printf("testing unsigned exp golomb\n");
for(i=0; i<COUNT; i++){
START_TIMER
set_ue_golomb(&pb, i);
STOP_TIMER("set_ue_golomb");
}
flush_put_bits(&pb);
init_get_bits(&gb, temp, 8*SIZE);
for(i=0; i<COUNT; i++){
int j, s;
s= show_bits(&gb, 24);
START_TIMER
j= get_ue_golomb(&gb);
if(j != i){
printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
// return -1;
}
STOP_TIMER("get_ue_golomb");
}
init_put_bits(&pb, temp, SIZE);
printf("testing signed exp golomb\n");
for(i=0; i<COUNT; i++){
START_TIMER
set_se_golomb(&pb, i - COUNT/2);
STOP_TIMER("set_se_golomb");
}
flush_put_bits(&pb);
init_get_bits(&gb, temp, 8*SIZE);
for(i=0; i<COUNT; i++){
int j, s;
s= show_bits(&gb, 24);
START_TIMER
j= get_se_golomb(&gb);
if(j != i - COUNT/2){
printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
// return -1;
}
STOP_TIMER("get_se_golomb");
}
printf("testing 4x4 (I)DCT\n");
DCTELEM block[16];
uint8_t src[16], ref[16];
uint64_t error= 0, max_error=0;
for(i=0; i<COUNT; i++){
int j;
// printf("%d %d %d\n", r1, r2, (r2-r1)*16);
for(j=0; j<16; j++){
ref[j]= random()%255;
src[j]= random()%255;
}
h264_diff_dct_c(block, src, ref, 4);
//normalize
for(j=0; j<16; j++){
// printf("%d ", block[j]);
block[j]= block[j]*4;
if(j&1) block[j]= (block[j]*4 + 2)/5;
if(j&4) block[j]= (block[j]*4 + 2)/5;
}
// printf("\n");
s->dsp.h264_idct_add(ref, block, 4);
/* for(j=0; j<16; j++){
printf("%d ", ref[j]);
}
printf("\n");*/
for(j=0; j<16; j++){
int diff= FFABS(src[j] - ref[j]);
error+= diff*diff;
max_error= FFMAX(max_error, diff);
}
}
printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
#if 0
printf("testing quantizer\n");
for(qp=0; qp<52; qp++){
for(i=0; i<16; i++)
src1_block[i]= src2_block[i]= random()%255;
}
#endif
printf("Testing NAL layer\n");
uint8_t bitstream[COUNT];
uint8_t nal[COUNT*2];
H264Context h;
memset(&h, 0, sizeof(H264Context));
for(i=0; i<COUNT; i++){
int zeros= i;
int nal_length;
int consumed;
int out_length;
uint8_t *out;
int j;
for(j=0; j<COUNT; j++){
bitstream[j]= (random() % 255) + 1;
}
for(j=0; j<zeros; j++){
int pos= random() % COUNT;
while(bitstream[pos] == 0){
pos++;
pos %= COUNT;
}
bitstream[pos]=0;
}
START_TIMER
nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
if(nal_length<0){
printf("encoding failed\n");
return -1;
}
out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
STOP_TIMER("NAL")
if(out_length != COUNT){
printf("incorrect length %d %d\n", out_length, COUNT);
return -1;
}
if(consumed != nal_length){
printf("incorrect consumed length %d %d\n", nal_length, consumed);
return -1;
}
if(memcmp(bitstream, out, COUNT)){
printf("mismatch\n");
return -1;
}
}
printf("Testing RBSP\n");
return 0;
}
#endif
static int decode_end(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
MpegEncContext *s = &h->s;
av_freep(&h->rbsp_buffer[0]);
av_freep(&h->rbsp_buffer[1]);
free_tables(h); //FIXME cleanup init stuff perhaps
MPV_common_end(s);
// memset(h, 0, sizeof(H264Context));
return 0;
}
AVCodec h264_decoder = {
"h264",
CODEC_TYPE_VIDEO,
CODEC_ID_H264,
sizeof(H264Context),
decode_init,
NULL,
decode_end,
decode_frame,
/*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED | CODEC_CAP_DELAY,
.flush= flush_dpb,
};
#include "svq3.c"