mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1774 lines
57 KiB
1774 lines
57 KiB
/* |
|
* Monkey's Audio lossless audio decoder |
|
* Copyright (c) 2007 Benjamin Zores <ben@geexbox.org> |
|
* based upon libdemac from Dave Chapman. |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <inttypes.h> |
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/crc.h" |
|
#include "libavutil/opt.h" |
|
#include "lossless_audiodsp.h" |
|
#include "avcodec.h" |
|
#include "bswapdsp.h" |
|
#include "bytestream.h" |
|
#include "codec_internal.h" |
|
#include "decode.h" |
|
#include "get_bits.h" |
|
#include "unary.h" |
|
|
|
/** |
|
* @file |
|
* Monkey's Audio lossless audio decoder |
|
*/ |
|
|
|
#define MAX_CHANNELS 2 |
|
#define MAX_BYTESPERSAMPLE 3 |
|
|
|
#define APE_FRAMECODE_MONO_SILENCE 1 |
|
#define APE_FRAMECODE_STEREO_SILENCE 3 |
|
#define APE_FRAMECODE_PSEUDO_STEREO 4 |
|
|
|
#define HISTORY_SIZE 512 |
|
#define PREDICTOR_ORDER 8 |
|
/** Total size of all predictor histories */ |
|
#define PREDICTOR_SIZE 50 |
|
|
|
#define YDELAYA (18 + PREDICTOR_ORDER*4) |
|
#define YDELAYB (18 + PREDICTOR_ORDER*3) |
|
#define XDELAYA (18 + PREDICTOR_ORDER*2) |
|
#define XDELAYB (18 + PREDICTOR_ORDER) |
|
|
|
#define YADAPTCOEFFSA 18 |
|
#define XADAPTCOEFFSA 14 |
|
#define YADAPTCOEFFSB 10 |
|
#define XADAPTCOEFFSB 5 |
|
|
|
/** |
|
* Possible compression levels |
|
* @{ |
|
*/ |
|
enum APECompressionLevel { |
|
COMPRESSION_LEVEL_FAST = 1000, |
|
COMPRESSION_LEVEL_NORMAL = 2000, |
|
COMPRESSION_LEVEL_HIGH = 3000, |
|
COMPRESSION_LEVEL_EXTRA_HIGH = 4000, |
|
COMPRESSION_LEVEL_INSANE = 5000 |
|
}; |
|
/** @} */ |
|
|
|
#define APE_FILTER_LEVELS 3 |
|
|
|
/** Filter orders depending on compression level */ |
|
static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = { |
|
{ 0, 0, 0 }, |
|
{ 16, 0, 0 }, |
|
{ 64, 0, 0 }, |
|
{ 32, 256, 0 }, |
|
{ 16, 256, 1280 } |
|
}; |
|
|
|
/** Filter fraction bits depending on compression level */ |
|
static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = { |
|
{ 0, 0, 0 }, |
|
{ 11, 0, 0 }, |
|
{ 11, 0, 0 }, |
|
{ 10, 13, 0 }, |
|
{ 11, 13, 15 } |
|
}; |
|
|
|
|
|
/** Filters applied to the decoded data */ |
|
typedef struct APEFilter { |
|
int16_t *coeffs; ///< actual coefficients used in filtering |
|
int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients |
|
int16_t *historybuffer; ///< filter memory |
|
int16_t *delay; ///< filtered values |
|
|
|
uint32_t avg; |
|
} APEFilter; |
|
|
|
typedef struct APERice { |
|
uint32_t k; |
|
uint32_t ksum; |
|
} APERice; |
|
|
|
typedef struct APERangecoder { |
|
uint32_t low; ///< low end of interval |
|
uint32_t range; ///< length of interval |
|
uint32_t help; ///< bytes_to_follow resp. intermediate value |
|
unsigned int buffer; ///< buffer for input/output |
|
} APERangecoder; |
|
|
|
/** Filter histories */ |
|
typedef struct APEPredictor { |
|
int32_t *buf; |
|
|
|
int32_t lastA[2]; |
|
|
|
int32_t filterA[2]; |
|
int32_t filterB[2]; |
|
|
|
uint32_t coeffsA[2][4]; ///< adaption coefficients |
|
uint32_t coeffsB[2][5]; ///< adaption coefficients |
|
int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE]; |
|
|
|
unsigned int sample_pos; |
|
} APEPredictor; |
|
|
|
typedef struct APEPredictor64 { |
|
int64_t *buf; |
|
|
|
int64_t lastA[2]; |
|
|
|
int64_t filterA[2]; |
|
int64_t filterB[2]; |
|
|
|
uint64_t coeffsA[2][4]; ///< adaption coefficients |
|
uint64_t coeffsB[2][5]; ///< adaption coefficients |
|
int64_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE]; |
|
} APEPredictor64; |
|
|
|
/** Decoder context */ |
|
typedef struct APEContext { |
|
AVClass *class; ///< class for AVOptions |
|
AVCodecContext *avctx; |
|
BswapDSPContext bdsp; |
|
LLAudDSPContext adsp; |
|
int channels; |
|
int samples; ///< samples left to decode in current frame |
|
int bps; |
|
|
|
int fileversion; ///< codec version, very important in decoding process |
|
int compression_level; ///< compression levels |
|
int fset; ///< which filter set to use (calculated from compression level) |
|
int flags; ///< global decoder flags |
|
|
|
uint32_t CRC; ///< signalled frame CRC |
|
uint32_t CRC_state; ///< accumulated CRC |
|
int frameflags; ///< frame flags |
|
APEPredictor predictor; ///< predictor used for final reconstruction |
|
APEPredictor64 predictor64; ///< 64bit predictor used for final reconstruction |
|
|
|
int32_t *decoded_buffer; |
|
int decoded_size; |
|
int32_t *decoded[MAX_CHANNELS]; ///< decoded data for each channel |
|
int32_t *interim_buffer; |
|
int interim_size; |
|
int32_t *interim[MAX_CHANNELS]; ///< decoded data for each channel |
|
int blocks_per_loop; ///< maximum number of samples to decode for each call |
|
|
|
int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory |
|
|
|
APERangecoder rc; ///< rangecoder used to decode actual values |
|
APERice riceX; ///< rice code parameters for the second channel |
|
APERice riceY; ///< rice code parameters for the first channel |
|
APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction |
|
GetBitContext gb; |
|
|
|
uint8_t *data; ///< current frame data |
|
uint8_t *data_end; ///< frame data end |
|
int data_size; ///< frame data allocated size |
|
const uint8_t *ptr; ///< current position in frame data |
|
|
|
int error; |
|
int interim_mode; |
|
|
|
void (*entropy_decode_mono)(struct APEContext *ctx, int blockstodecode); |
|
void (*entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode); |
|
void (*predictor_decode_mono)(struct APEContext *ctx, int count); |
|
void (*predictor_decode_stereo)(struct APEContext *ctx, int count); |
|
} APEContext; |
|
|
|
static void ape_apply_filters(APEContext *ctx, int32_t *decoded0, |
|
int32_t *decoded1, int count); |
|
|
|
static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode); |
|
static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode); |
|
static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode); |
|
static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode); |
|
static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode); |
|
static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode); |
|
static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode); |
|
static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode); |
|
static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode); |
|
|
|
static void predictor_decode_mono_3800(APEContext *ctx, int count); |
|
static void predictor_decode_stereo_3800(APEContext *ctx, int count); |
|
static void predictor_decode_mono_3930(APEContext *ctx, int count); |
|
static void predictor_decode_stereo_3930(APEContext *ctx, int count); |
|
static void predictor_decode_mono_3950(APEContext *ctx, int count); |
|
static void predictor_decode_stereo_3950(APEContext *ctx, int count); |
|
|
|
static av_cold int ape_decode_close(AVCodecContext *avctx) |
|
{ |
|
APEContext *s = avctx->priv_data; |
|
int i; |
|
|
|
for (i = 0; i < APE_FILTER_LEVELS; i++) |
|
av_freep(&s->filterbuf[i]); |
|
|
|
av_freep(&s->decoded_buffer); |
|
av_freep(&s->interim_buffer); |
|
av_freep(&s->data); |
|
s->decoded_size = s->data_size = 0; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int ape_decode_init(AVCodecContext *avctx) |
|
{ |
|
APEContext *s = avctx->priv_data; |
|
int channels = avctx->ch_layout.nb_channels; |
|
int i; |
|
|
|
if (avctx->extradata_size != 6) { |
|
av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
if (channels > 2) { |
|
av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
avctx->bits_per_raw_sample = |
|
s->bps = avctx->bits_per_coded_sample; |
|
switch (s->bps) { |
|
case 8: |
|
avctx->sample_fmt = AV_SAMPLE_FMT_U8P; |
|
s->interim_mode = 0; |
|
break; |
|
case 16: |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16P; |
|
s->interim_mode = 0; |
|
break; |
|
case 24: |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S32P; |
|
s->interim_mode = -1; |
|
break; |
|
default: |
|
avpriv_request_sample(avctx, |
|
"%d bits per coded sample", s->bps); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
s->avctx = avctx; |
|
s->channels = channels; |
|
s->fileversion = AV_RL16(avctx->extradata); |
|
s->compression_level = AV_RL16(avctx->extradata + 2); |
|
s->flags = AV_RL16(avctx->extradata + 4); |
|
|
|
av_log(avctx, AV_LOG_VERBOSE, "Compression Level: %d - Flags: %d\n", |
|
s->compression_level, s->flags); |
|
if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE || |
|
!s->compression_level || |
|
(s->fileversion < 3930 && s->compression_level == COMPRESSION_LEVEL_INSANE)) { |
|
av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n", |
|
s->compression_level); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->fset = s->compression_level / 1000 - 1; |
|
for (i = 0; i < APE_FILTER_LEVELS; i++) { |
|
if (!ape_filter_orders[s->fset][i]) |
|
break; |
|
if (!(s->filterbuf[i] = av_malloc((ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4))) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
if (s->fileversion < 3860) { |
|
s->entropy_decode_mono = entropy_decode_mono_0000; |
|
s->entropy_decode_stereo = entropy_decode_stereo_0000; |
|
} else if (s->fileversion < 3900) { |
|
s->entropy_decode_mono = entropy_decode_mono_3860; |
|
s->entropy_decode_stereo = entropy_decode_stereo_3860; |
|
} else if (s->fileversion < 3930) { |
|
s->entropy_decode_mono = entropy_decode_mono_3900; |
|
s->entropy_decode_stereo = entropy_decode_stereo_3900; |
|
} else if (s->fileversion < 3990) { |
|
s->entropy_decode_mono = entropy_decode_mono_3900; |
|
s->entropy_decode_stereo = entropy_decode_stereo_3930; |
|
} else { |
|
s->entropy_decode_mono = entropy_decode_mono_3990; |
|
s->entropy_decode_stereo = entropy_decode_stereo_3990; |
|
} |
|
|
|
if (s->fileversion < 3930) { |
|
s->predictor_decode_mono = predictor_decode_mono_3800; |
|
s->predictor_decode_stereo = predictor_decode_stereo_3800; |
|
} else if (s->fileversion < 3950) { |
|
s->predictor_decode_mono = predictor_decode_mono_3930; |
|
s->predictor_decode_stereo = predictor_decode_stereo_3930; |
|
} else { |
|
s->predictor_decode_mono = predictor_decode_mono_3950; |
|
s->predictor_decode_stereo = predictor_decode_stereo_3950; |
|
} |
|
|
|
ff_bswapdsp_init(&s->bdsp); |
|
ff_llauddsp_init(&s->adsp); |
|
av_channel_layout_uninit(&avctx->ch_layout); |
|
avctx->ch_layout = (channels == 2) ? (AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO |
|
: (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO; |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* @name APE range decoding functions |
|
* @{ |
|
*/ |
|
|
|
#define CODE_BITS 32 |
|
#define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1)) |
|
#define SHIFT_BITS (CODE_BITS - 9) |
|
#define EXTRA_BITS ((CODE_BITS-2) % 8 + 1) |
|
#define BOTTOM_VALUE (TOP_VALUE >> 8) |
|
|
|
/** Start the decoder */ |
|
static inline void range_start_decoding(APEContext *ctx) |
|
{ |
|
ctx->rc.buffer = bytestream_get_byte(&ctx->ptr); |
|
ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS); |
|
ctx->rc.range = (uint32_t) 1 << EXTRA_BITS; |
|
} |
|
|
|
/** Perform normalization */ |
|
static inline void range_dec_normalize(APEContext *ctx) |
|
{ |
|
while (ctx->rc.range <= BOTTOM_VALUE) { |
|
ctx->rc.buffer <<= 8; |
|
if(ctx->ptr < ctx->data_end) { |
|
ctx->rc.buffer += *ctx->ptr; |
|
ctx->ptr++; |
|
} else { |
|
ctx->error = 1; |
|
} |
|
ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF); |
|
ctx->rc.range <<= 8; |
|
} |
|
} |
|
|
|
/** |
|
* Calculate cumulative frequency for next symbol. Does NO update! |
|
* @param ctx decoder context |
|
* @param tot_f is the total frequency or (code_value)1<<shift |
|
* @return the cumulative frequency |
|
*/ |
|
static inline int range_decode_culfreq(APEContext *ctx, int tot_f) |
|
{ |
|
range_dec_normalize(ctx); |
|
ctx->rc.help = ctx->rc.range / tot_f; |
|
return ctx->rc.low / ctx->rc.help; |
|
} |
|
|
|
/** |
|
* Decode value with given size in bits |
|
* @param ctx decoder context |
|
* @param shift number of bits to decode |
|
*/ |
|
static inline int range_decode_culshift(APEContext *ctx, int shift) |
|
{ |
|
range_dec_normalize(ctx); |
|
ctx->rc.help = ctx->rc.range >> shift; |
|
return ctx->rc.low / ctx->rc.help; |
|
} |
|
|
|
|
|
/** |
|
* Update decoding state |
|
* @param ctx decoder context |
|
* @param sy_f the interval length (frequency of the symbol) |
|
* @param lt_f the lower end (frequency sum of < symbols) |
|
*/ |
|
static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f) |
|
{ |
|
ctx->rc.low -= ctx->rc.help * lt_f; |
|
ctx->rc.range = ctx->rc.help * sy_f; |
|
} |
|
|
|
/** Decode n bits (n <= 16) without modelling */ |
|
static inline int range_decode_bits(APEContext *ctx, int n) |
|
{ |
|
int sym = range_decode_culshift(ctx, n); |
|
range_decode_update(ctx, 1, sym); |
|
return sym; |
|
} |
|
|
|
|
|
#define MODEL_ELEMENTS 64 |
|
|
|
/** |
|
* Fixed probabilities for symbols in Monkey Audio version 3.97 |
|
*/ |
|
static const uint16_t counts_3970[22] = { |
|
0, 14824, 28224, 39348, 47855, 53994, 58171, 60926, |
|
62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419, |
|
65450, 65469, 65480, 65487, 65491, 65493, |
|
}; |
|
|
|
/** |
|
* Probability ranges for symbols in Monkey Audio version 3.97 |
|
*/ |
|
static const uint16_t counts_diff_3970[21] = { |
|
14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756, |
|
1104, 677, 415, 248, 150, 89, 54, 31, |
|
19, 11, 7, 4, 2, |
|
}; |
|
|
|
/** |
|
* Fixed probabilities for symbols in Monkey Audio version 3.98 |
|
*/ |
|
static const uint16_t counts_3980[22] = { |
|
0, 19578, 36160, 48417, 56323, 60899, 63265, 64435, |
|
64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482, |
|
65485, 65488, 65490, 65491, 65492, 65493, |
|
}; |
|
|
|
/** |
|
* Probability ranges for symbols in Monkey Audio version 3.98 |
|
*/ |
|
static const uint16_t counts_diff_3980[21] = { |
|
19578, 16582, 12257, 7906, 4576, 2366, 1170, 536, |
|
261, 119, 65, 31, 19, 10, 6, 3, |
|
3, 2, 1, 1, 1, |
|
}; |
|
|
|
/** |
|
* Decode symbol |
|
* @param ctx decoder context |
|
* @param counts probability range start position |
|
* @param counts_diff probability range widths |
|
*/ |
|
static inline int range_get_symbol(APEContext *ctx, |
|
const uint16_t counts[], |
|
const uint16_t counts_diff[]) |
|
{ |
|
int symbol, cf; |
|
|
|
cf = range_decode_culshift(ctx, 16); |
|
|
|
if(cf > 65492){ |
|
symbol= cf - 65535 + 63; |
|
range_decode_update(ctx, 1, cf); |
|
if(cf > 65535) |
|
ctx->error=1; |
|
return symbol; |
|
} |
|
/* figure out the symbol inefficiently; a binary search would be much better */ |
|
for (symbol = 0; counts[symbol + 1] <= cf; symbol++); |
|
|
|
range_decode_update(ctx, counts_diff[symbol], counts[symbol]); |
|
|
|
return symbol; |
|
} |
|
/** @} */ // group rangecoder |
|
|
|
static inline void update_rice(APERice *rice, unsigned int x) |
|
{ |
|
int lim = rice->k ? (1 << (rice->k + 4)) : 0; |
|
rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5); |
|
|
|
if (rice->ksum < lim) |
|
rice->k--; |
|
else if (rice->ksum >= (1 << (rice->k + 5)) && rice->k < 24) |
|
rice->k++; |
|
} |
|
|
|
static inline int get_rice_ook(GetBitContext *gb, int k) |
|
{ |
|
unsigned int x; |
|
|
|
x = get_unary(gb, 1, get_bits_left(gb)); |
|
|
|
if (k) |
|
x = (x << k) | get_bits(gb, k); |
|
|
|
return x; |
|
} |
|
|
|
static inline int ape_decode_value_3860(APEContext *ctx, GetBitContext *gb, |
|
APERice *rice) |
|
{ |
|
unsigned int x, overflow; |
|
|
|
overflow = get_unary(gb, 1, get_bits_left(gb)); |
|
|
|
if (ctx->fileversion > 3880) { |
|
while (overflow >= 16) { |
|
overflow -= 16; |
|
rice->k += 4; |
|
} |
|
} |
|
|
|
if (!rice->k) |
|
x = overflow; |
|
else if(rice->k <= MIN_CACHE_BITS) { |
|
x = (overflow << rice->k) + get_bits(gb, rice->k); |
|
} else { |
|
av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %"PRIu32"\n", rice->k); |
|
ctx->error = 1; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
rice->ksum += x - (rice->ksum + 8 >> 4); |
|
if (rice->ksum < (rice->k ? 1 << (rice->k + 4) : 0)) |
|
rice->k--; |
|
else if (rice->ksum >= (1 << (rice->k + 5)) && rice->k < 24) |
|
rice->k++; |
|
|
|
/* Convert to signed */ |
|
return ((x >> 1) ^ ((x & 1) - 1)) + 1; |
|
} |
|
|
|
static inline int ape_decode_value_3900(APEContext *ctx, APERice *rice) |
|
{ |
|
unsigned int x, overflow; |
|
int tmpk; |
|
|
|
overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970); |
|
|
|
if (overflow == (MODEL_ELEMENTS - 1)) { |
|
tmpk = range_decode_bits(ctx, 5); |
|
overflow = 0; |
|
} else |
|
tmpk = (rice->k < 1) ? 0 : rice->k - 1; |
|
|
|
if (tmpk <= 16 || ctx->fileversion < 3910) { |
|
if (tmpk > 23) { |
|
av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
x = range_decode_bits(ctx, tmpk); |
|
} else if (tmpk <= 31) { |
|
x = range_decode_bits(ctx, 16); |
|
x |= (range_decode_bits(ctx, tmpk - 16) << 16); |
|
} else { |
|
av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
x += overflow << tmpk; |
|
|
|
update_rice(rice, x); |
|
|
|
/* Convert to signed */ |
|
return ((x >> 1) ^ ((x & 1) - 1)) + 1; |
|
} |
|
|
|
static inline int ape_decode_value_3990(APEContext *ctx, APERice *rice) |
|
{ |
|
unsigned int x, overflow, pivot; |
|
int base; |
|
|
|
pivot = FFMAX(rice->ksum >> 5, 1); |
|
|
|
overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980); |
|
|
|
if (overflow == (MODEL_ELEMENTS - 1)) { |
|
overflow = (unsigned)range_decode_bits(ctx, 16) << 16; |
|
overflow |= range_decode_bits(ctx, 16); |
|
} |
|
|
|
if (pivot < 0x10000) { |
|
base = range_decode_culfreq(ctx, pivot); |
|
range_decode_update(ctx, 1, base); |
|
} else { |
|
int base_hi = pivot, base_lo; |
|
int bbits = 0; |
|
|
|
while (base_hi & ~0xFFFF) { |
|
base_hi >>= 1; |
|
bbits++; |
|
} |
|
base_hi = range_decode_culfreq(ctx, base_hi + 1); |
|
range_decode_update(ctx, 1, base_hi); |
|
base_lo = range_decode_culfreq(ctx, 1 << bbits); |
|
range_decode_update(ctx, 1, base_lo); |
|
|
|
base = (base_hi << bbits) + base_lo; |
|
} |
|
|
|
x = base + overflow * pivot; |
|
|
|
update_rice(rice, x); |
|
|
|
/* Convert to signed */ |
|
return ((x >> 1) ^ ((x & 1) - 1)) + 1; |
|
} |
|
|
|
static int get_k(int ksum) |
|
{ |
|
return av_log2(ksum) + !!ksum; |
|
} |
|
|
|
static void decode_array_0000(APEContext *ctx, GetBitContext *gb, |
|
int32_t *out, APERice *rice, int blockstodecode) |
|
{ |
|
int i; |
|
unsigned ksummax, ksummin; |
|
|
|
rice->ksum = 0; |
|
for (i = 0; i < FFMIN(blockstodecode, 5); i++) { |
|
out[i] = get_rice_ook(&ctx->gb, 10); |
|
rice->ksum += out[i]; |
|
} |
|
|
|
if (blockstodecode <= 5) |
|
goto end; |
|
|
|
rice->k = get_k(rice->ksum / 10); |
|
if (rice->k >= 24) |
|
return; |
|
for (; i < FFMIN(blockstodecode, 64); i++) { |
|
out[i] = get_rice_ook(&ctx->gb, rice->k); |
|
rice->ksum += out[i]; |
|
rice->k = get_k(rice->ksum / ((i + 1) * 2)); |
|
if (rice->k >= 24) |
|
return; |
|
} |
|
|
|
if (blockstodecode <= 64) |
|
goto end; |
|
|
|
rice->k = get_k(rice->ksum >> 7); |
|
ksummax = 1 << rice->k + 7; |
|
ksummin = rice->k ? (1 << rice->k + 6) : 0; |
|
for (; i < blockstodecode; i++) { |
|
if (get_bits_left(&ctx->gb) < 1) { |
|
ctx->error = 1; |
|
return; |
|
} |
|
out[i] = get_rice_ook(&ctx->gb, rice->k); |
|
rice->ksum += out[i] - (unsigned)out[i - 64]; |
|
while (rice->ksum < ksummin) { |
|
rice->k--; |
|
ksummin = rice->k ? ksummin >> 1 : 0; |
|
ksummax >>= 1; |
|
} |
|
while (rice->ksum >= ksummax) { |
|
rice->k++; |
|
if (rice->k > 24) |
|
return; |
|
ksummax <<= 1; |
|
ksummin = ksummin ? ksummin << 1 : 128; |
|
} |
|
} |
|
|
|
end: |
|
for (i = 0; i < blockstodecode; i++) |
|
out[i] = ((out[i] >> 1) ^ ((out[i] & 1) - 1)) + 1; |
|
} |
|
|
|
static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode) |
|
{ |
|
decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY, |
|
blockstodecode); |
|
} |
|
|
|
static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode) |
|
{ |
|
decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY, |
|
blockstodecode); |
|
decode_array_0000(ctx, &ctx->gb, ctx->decoded[1], &ctx->riceX, |
|
blockstodecode); |
|
} |
|
|
|
static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode) |
|
{ |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
|
|
while (blockstodecode--) |
|
*decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY); |
|
} |
|
|
|
static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode) |
|
{ |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
int32_t *decoded1 = ctx->decoded[1]; |
|
int blocks = blockstodecode; |
|
|
|
while (blockstodecode--) |
|
*decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY); |
|
while (blocks--) |
|
*decoded1++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceX); |
|
} |
|
|
|
static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode) |
|
{ |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
|
|
while (blockstodecode--) |
|
*decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY); |
|
} |
|
|
|
static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode) |
|
{ |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
int32_t *decoded1 = ctx->decoded[1]; |
|
int blocks = blockstodecode; |
|
|
|
while (blockstodecode--) |
|
*decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY); |
|
range_dec_normalize(ctx); |
|
// because of some implementation peculiarities we need to backpedal here |
|
ctx->ptr -= 1; |
|
range_start_decoding(ctx); |
|
while (blocks--) |
|
*decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX); |
|
} |
|
|
|
static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode) |
|
{ |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
int32_t *decoded1 = ctx->decoded[1]; |
|
|
|
while (blockstodecode--) { |
|
*decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY); |
|
*decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX); |
|
} |
|
} |
|
|
|
static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode) |
|
{ |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
|
|
while (blockstodecode--) |
|
*decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY); |
|
} |
|
|
|
static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode) |
|
{ |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
int32_t *decoded1 = ctx->decoded[1]; |
|
|
|
while (blockstodecode--) { |
|
*decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY); |
|
*decoded1++ = ape_decode_value_3990(ctx, &ctx->riceX); |
|
} |
|
} |
|
|
|
static int init_entropy_decoder(APEContext *ctx) |
|
{ |
|
/* Read the CRC */ |
|
if (ctx->fileversion >= 3900) { |
|
if (ctx->data_end - ctx->ptr < 6) |
|
return AVERROR_INVALIDDATA; |
|
ctx->CRC = bytestream_get_be32(&ctx->ptr); |
|
} else { |
|
ctx->CRC = get_bits_long(&ctx->gb, 32); |
|
} |
|
|
|
/* Read the frame flags if they exist */ |
|
ctx->frameflags = 0; |
|
ctx->CRC_state = UINT32_MAX; |
|
if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) { |
|
ctx->CRC &= ~0x80000000; |
|
|
|
if (ctx->data_end - ctx->ptr < 6) |
|
return AVERROR_INVALIDDATA; |
|
ctx->frameflags = bytestream_get_be32(&ctx->ptr); |
|
} |
|
|
|
/* Initialize the rice structs */ |
|
ctx->riceX.k = 10; |
|
ctx->riceX.ksum = (1 << ctx->riceX.k) * 16; |
|
ctx->riceY.k = 10; |
|
ctx->riceY.ksum = (1 << ctx->riceY.k) * 16; |
|
|
|
if (ctx->fileversion >= 3900) { |
|
/* The first 8 bits of input are ignored. */ |
|
ctx->ptr++; |
|
|
|
range_start_decoding(ctx); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static const int32_t initial_coeffs_fast_3320[1] = { |
|
375, |
|
}; |
|
|
|
static const int32_t initial_coeffs_a_3800[3] = { |
|
64, 115, 64, |
|
}; |
|
|
|
static const int32_t initial_coeffs_b_3800[2] = { |
|
740, 0 |
|
}; |
|
|
|
static const int32_t initial_coeffs_3930[4] = { |
|
360, 317, -109, 98 |
|
}; |
|
|
|
static const int64_t initial_coeffs_3930_64bit[4] = { |
|
360, 317, -109, 98 |
|
}; |
|
|
|
static void init_predictor_decoder(APEContext *ctx) |
|
{ |
|
APEPredictor *p = &ctx->predictor; |
|
APEPredictor64 *p64 = &ctx->predictor64; |
|
|
|
/* Zero the history buffers */ |
|
memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
|
memset(p64->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p64->historybuffer)); |
|
p->buf = p->historybuffer; |
|
p64->buf = p64->historybuffer; |
|
|
|
/* Initialize and zero the coefficients */ |
|
if (ctx->fileversion < 3930) { |
|
if (ctx->compression_level == COMPRESSION_LEVEL_FAST) { |
|
memcpy(p->coeffsA[0], initial_coeffs_fast_3320, |
|
sizeof(initial_coeffs_fast_3320)); |
|
memcpy(p->coeffsA[1], initial_coeffs_fast_3320, |
|
sizeof(initial_coeffs_fast_3320)); |
|
} else { |
|
memcpy(p->coeffsA[0], initial_coeffs_a_3800, |
|
sizeof(initial_coeffs_a_3800)); |
|
memcpy(p->coeffsA[1], initial_coeffs_a_3800, |
|
sizeof(initial_coeffs_a_3800)); |
|
} |
|
} else { |
|
memcpy(p->coeffsA[0], initial_coeffs_3930, sizeof(initial_coeffs_3930)); |
|
memcpy(p->coeffsA[1], initial_coeffs_3930, sizeof(initial_coeffs_3930)); |
|
memcpy(p64->coeffsA[0], initial_coeffs_3930_64bit, sizeof(initial_coeffs_3930_64bit)); |
|
memcpy(p64->coeffsA[1], initial_coeffs_3930_64bit, sizeof(initial_coeffs_3930_64bit)); |
|
} |
|
memset(p->coeffsB, 0, sizeof(p->coeffsB)); |
|
memset(p64->coeffsB, 0, sizeof(p64->coeffsB)); |
|
if (ctx->fileversion < 3930) { |
|
memcpy(p->coeffsB[0], initial_coeffs_b_3800, |
|
sizeof(initial_coeffs_b_3800)); |
|
memcpy(p->coeffsB[1], initial_coeffs_b_3800, |
|
sizeof(initial_coeffs_b_3800)); |
|
} |
|
|
|
p->filterA[0] = p->filterA[1] = 0; |
|
p->filterB[0] = p->filterB[1] = 0; |
|
p->lastA[0] = p->lastA[1] = 0; |
|
|
|
p64->filterA[0] = p64->filterA[1] = 0; |
|
p64->filterB[0] = p64->filterB[1] = 0; |
|
p64->lastA[0] = p64->lastA[1] = 0; |
|
|
|
p->sample_pos = 0; |
|
} |
|
|
|
/** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */ |
|
static inline int APESIGN(int32_t x) { |
|
return (x < 0) - (x > 0); |
|
} |
|
|
|
static av_always_inline int filter_fast_3320(APEPredictor *p, |
|
const int decoded, const int filter, |
|
const int delayA) |
|
{ |
|
int32_t predictionA; |
|
|
|
p->buf[delayA] = p->lastA[filter]; |
|
if (p->sample_pos < 3) { |
|
p->lastA[filter] = decoded; |
|
p->filterA[filter] = decoded; |
|
return decoded; |
|
} |
|
|
|
predictionA = p->buf[delayA] * 2U - p->buf[delayA - 1]; |
|
p->lastA[filter] = decoded + (unsigned)((int32_t)(predictionA * p->coeffsA[filter][0]) >> 9); |
|
|
|
if ((decoded ^ predictionA) > 0) |
|
p->coeffsA[filter][0]++; |
|
else |
|
p->coeffsA[filter][0]--; |
|
|
|
p->filterA[filter] += (unsigned)p->lastA[filter]; |
|
|
|
return p->filterA[filter]; |
|
} |
|
|
|
static av_always_inline int filter_3800(APEPredictor *p, |
|
const unsigned decoded, const int filter, |
|
const int delayA, const int delayB, |
|
const int start, const int shift) |
|
{ |
|
int32_t predictionA, predictionB, sign; |
|
int32_t d0, d1, d2, d3, d4; |
|
|
|
p->buf[delayA] = p->lastA[filter]; |
|
p->buf[delayB] = p->filterB[filter]; |
|
if (p->sample_pos < start) { |
|
predictionA = decoded + p->filterA[filter]; |
|
p->lastA[filter] = decoded; |
|
p->filterB[filter] = decoded; |
|
p->filterA[filter] = predictionA; |
|
return predictionA; |
|
} |
|
d2 = p->buf[delayA]; |
|
d1 = (p->buf[delayA] - (unsigned)p->buf[delayA - 1]) * 2; |
|
d0 = p->buf[delayA] + ((p->buf[delayA - 2] - (unsigned)p->buf[delayA - 1]) * 8); |
|
d3 = p->buf[delayB] * 2U - p->buf[delayB - 1]; |
|
d4 = p->buf[delayB]; |
|
|
|
predictionA = d0 * p->coeffsA[filter][0] + |
|
d1 * p->coeffsA[filter][1] + |
|
d2 * p->coeffsA[filter][2]; |
|
|
|
sign = APESIGN(decoded); |
|
p->coeffsA[filter][0] += (((d0 >> 30) & 2) - 1) * sign; |
|
p->coeffsA[filter][1] += (((d1 >> 28) & 8) - 4) * sign; |
|
p->coeffsA[filter][2] += (((d2 >> 28) & 8) - 4) * sign; |
|
|
|
predictionB = d3 * p->coeffsB[filter][0] - |
|
d4 * p->coeffsB[filter][1]; |
|
p->lastA[filter] = decoded + (predictionA >> 11); |
|
sign = APESIGN(p->lastA[filter]); |
|
p->coeffsB[filter][0] += (((d3 >> 29) & 4) - 2) * sign; |
|
p->coeffsB[filter][1] -= (((d4 >> 30) & 2) - 1) * sign; |
|
|
|
p->filterB[filter] = p->lastA[filter] + (unsigned)(predictionB >> shift); |
|
p->filterA[filter] = p->filterB[filter] + (unsigned)((int)(p->filterA[filter] * 31U) >> 5); |
|
|
|
return p->filterA[filter]; |
|
} |
|
|
|
static void long_filter_high_3800(int32_t *buffer, int order, int shift, int length) |
|
{ |
|
int i, j; |
|
int32_t dotprod, sign; |
|
int32_t coeffs[256], delay[256+256], *delayp = delay; |
|
|
|
if (order >= length) |
|
return; |
|
|
|
memset(coeffs, 0, order * sizeof(*coeffs)); |
|
for (i = 0; i < order; i++) |
|
delay[i] = buffer[i]; |
|
for (i = order; i < length; i++) { |
|
dotprod = 0; |
|
sign = APESIGN(buffer[i]); |
|
if (sign == 1) { |
|
for (j = 0; j < order; j++) { |
|
dotprod += delayp[j] * (unsigned)coeffs[j]; |
|
coeffs[j] += (delayp[j] >> 31) | 1; |
|
} |
|
} else if (sign == -1) { |
|
for (j = 0; j < order; j++) { |
|
dotprod += delayp[j] * (unsigned)coeffs[j]; |
|
coeffs[j] -= (delayp[j] >> 31) | 1; |
|
} |
|
} else { |
|
for (j = 0; j < order; j++) { |
|
dotprod += delayp[j] * (unsigned)coeffs[j]; |
|
} |
|
} |
|
buffer[i] -= (unsigned)(dotprod >> shift); |
|
delayp ++; |
|
delayp[order - 1] = buffer[i]; |
|
if (delayp - delay == 256) { |
|
memcpy(delay, delayp, sizeof(*delay)*256); |
|
delayp = delay; |
|
} |
|
} |
|
} |
|
|
|
static void long_filter_ehigh_3830(int32_t *buffer, int length) |
|
{ |
|
int i, j; |
|
int32_t dotprod, sign; |
|
int32_t delay[8] = { 0 }; |
|
uint32_t coeffs[8] = { 0 }; |
|
|
|
for (i = 0; i < length; i++) { |
|
dotprod = 0; |
|
sign = APESIGN(buffer[i]); |
|
for (j = 7; j >= 0; j--) { |
|
dotprod += delay[j] * coeffs[j]; |
|
coeffs[j] += ((delay[j] >> 31) | 1) * sign; |
|
} |
|
for (j = 7; j > 0; j--) |
|
delay[j] = delay[j - 1]; |
|
delay[0] = buffer[i]; |
|
buffer[i] -= (unsigned)(dotprod >> 9); |
|
} |
|
} |
|
|
|
static void predictor_decode_stereo_3800(APEContext *ctx, int count) |
|
{ |
|
APEPredictor *p = &ctx->predictor; |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
int32_t *decoded1 = ctx->decoded[1]; |
|
int start = 4, shift = 10; |
|
|
|
if (ctx->compression_level == COMPRESSION_LEVEL_HIGH) { |
|
start = 16; |
|
long_filter_high_3800(decoded0, 16, 9, count); |
|
long_filter_high_3800(decoded1, 16, 9, count); |
|
} else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) { |
|
int order = 128, shift2 = 11; |
|
|
|
if (ctx->fileversion >= 3830) { |
|
order <<= 1; |
|
shift++; |
|
shift2++; |
|
long_filter_ehigh_3830(decoded0 + order, count - order); |
|
long_filter_ehigh_3830(decoded1 + order, count - order); |
|
} |
|
start = order; |
|
long_filter_high_3800(decoded0, order, shift2, count); |
|
long_filter_high_3800(decoded1, order, shift2, count); |
|
} |
|
|
|
while (count--) { |
|
int X = *decoded0, Y = *decoded1; |
|
if (ctx->compression_level == COMPRESSION_LEVEL_FAST) { |
|
*decoded0 = filter_fast_3320(p, Y, 0, YDELAYA); |
|
decoded0++; |
|
*decoded1 = filter_fast_3320(p, X, 1, XDELAYA); |
|
decoded1++; |
|
} else { |
|
*decoded0 = filter_3800(p, Y, 0, YDELAYA, YDELAYB, |
|
start, shift); |
|
decoded0++; |
|
*decoded1 = filter_3800(p, X, 1, XDELAYA, XDELAYB, |
|
start, shift); |
|
decoded1++; |
|
} |
|
|
|
/* Combined */ |
|
p->buf++; |
|
p->sample_pos++; |
|
|
|
/* Have we filled the history buffer? */ |
|
if (p->buf == p->historybuffer + HISTORY_SIZE) { |
|
memmove(p->historybuffer, p->buf, |
|
PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
|
p->buf = p->historybuffer; |
|
} |
|
} |
|
} |
|
|
|
static void predictor_decode_mono_3800(APEContext *ctx, int count) |
|
{ |
|
APEPredictor *p = &ctx->predictor; |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
int start = 4, shift = 10; |
|
|
|
if (ctx->compression_level == COMPRESSION_LEVEL_HIGH) { |
|
start = 16; |
|
long_filter_high_3800(decoded0, 16, 9, count); |
|
} else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) { |
|
int order = 128, shift2 = 11; |
|
|
|
if (ctx->fileversion >= 3830) { |
|
order <<= 1; |
|
shift++; |
|
shift2++; |
|
long_filter_ehigh_3830(decoded0 + order, count - order); |
|
} |
|
start = order; |
|
long_filter_high_3800(decoded0, order, shift2, count); |
|
} |
|
|
|
while (count--) { |
|
if (ctx->compression_level == COMPRESSION_LEVEL_FAST) { |
|
*decoded0 = filter_fast_3320(p, *decoded0, 0, YDELAYA); |
|
decoded0++; |
|
} else { |
|
*decoded0 = filter_3800(p, *decoded0, 0, YDELAYA, YDELAYB, |
|
start, shift); |
|
decoded0++; |
|
} |
|
|
|
/* Combined */ |
|
p->buf++; |
|
p->sample_pos++; |
|
|
|
/* Have we filled the history buffer? */ |
|
if (p->buf == p->historybuffer + HISTORY_SIZE) { |
|
memmove(p->historybuffer, p->buf, |
|
PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
|
p->buf = p->historybuffer; |
|
} |
|
} |
|
} |
|
|
|
static av_always_inline int predictor_update_3930(APEPredictor *p, |
|
const int decoded, const int filter, |
|
const int delayA) |
|
{ |
|
int32_t predictionA, sign; |
|
uint32_t d0, d1, d2, d3; |
|
|
|
p->buf[delayA] = p->lastA[filter]; |
|
d0 = p->buf[delayA ]; |
|
d1 = p->buf[delayA ] - (unsigned)p->buf[delayA - 1]; |
|
d2 = p->buf[delayA - 1] - (unsigned)p->buf[delayA - 2]; |
|
d3 = p->buf[delayA - 2] - (unsigned)p->buf[delayA - 3]; |
|
|
|
predictionA = d0 * p->coeffsA[filter][0] + |
|
d1 * p->coeffsA[filter][1] + |
|
d2 * p->coeffsA[filter][2] + |
|
d3 * p->coeffsA[filter][3]; |
|
|
|
p->lastA[filter] = decoded + (predictionA >> 9); |
|
p->filterA[filter] = p->lastA[filter] + ((int)(p->filterA[filter] * 31U) >> 5); |
|
|
|
sign = APESIGN(decoded); |
|
p->coeffsA[filter][0] += (((int32_t)d0 < 0) * 2 - 1) * sign; |
|
p->coeffsA[filter][1] += (((int32_t)d1 < 0) * 2 - 1) * sign; |
|
p->coeffsA[filter][2] += (((int32_t)d2 < 0) * 2 - 1) * sign; |
|
p->coeffsA[filter][3] += (((int32_t)d3 < 0) * 2 - 1) * sign; |
|
|
|
return p->filterA[filter]; |
|
} |
|
|
|
static void predictor_decode_stereo_3930(APEContext *ctx, int count) |
|
{ |
|
APEPredictor *p = &ctx->predictor; |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
int32_t *decoded1 = ctx->decoded[1]; |
|
|
|
ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count); |
|
|
|
while (count--) { |
|
/* Predictor Y */ |
|
int Y = *decoded1, X = *decoded0; |
|
*decoded0 = predictor_update_3930(p, Y, 0, YDELAYA); |
|
decoded0++; |
|
*decoded1 = predictor_update_3930(p, X, 1, XDELAYA); |
|
decoded1++; |
|
|
|
/* Combined */ |
|
p->buf++; |
|
|
|
/* Have we filled the history buffer? */ |
|
if (p->buf == p->historybuffer + HISTORY_SIZE) { |
|
memmove(p->historybuffer, p->buf, |
|
PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
|
p->buf = p->historybuffer; |
|
} |
|
} |
|
} |
|
|
|
static void predictor_decode_mono_3930(APEContext *ctx, int count) |
|
{ |
|
APEPredictor *p = &ctx->predictor; |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
|
|
ape_apply_filters(ctx, ctx->decoded[0], NULL, count); |
|
|
|
while (count--) { |
|
*decoded0 = predictor_update_3930(p, *decoded0, 0, YDELAYA); |
|
decoded0++; |
|
|
|
p->buf++; |
|
|
|
/* Have we filled the history buffer? */ |
|
if (p->buf == p->historybuffer + HISTORY_SIZE) { |
|
memmove(p->historybuffer, p->buf, |
|
PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
|
p->buf = p->historybuffer; |
|
} |
|
} |
|
} |
|
|
|
static av_always_inline int predictor_update_filter(APEPredictor64 *p, |
|
const int decoded, const int filter, |
|
const int delayA, const int delayB, |
|
const int adaptA, const int adaptB, |
|
int interim_mode) |
|
{ |
|
int64_t predictionA, predictionB; |
|
int32_t sign; |
|
|
|
p->buf[delayA] = p->lastA[filter]; |
|
p->buf[adaptA] = APESIGN(p->buf[delayA]); |
|
p->buf[delayA - 1] = p->buf[delayA] - (uint64_t)p->buf[delayA - 1]; |
|
p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]); |
|
|
|
predictionA = p->buf[delayA ] * p->coeffsA[filter][0] + |
|
p->buf[delayA - 1] * p->coeffsA[filter][1] + |
|
p->buf[delayA - 2] * p->coeffsA[filter][2] + |
|
p->buf[delayA - 3] * p->coeffsA[filter][3]; |
|
|
|
/* Apply a scaled first-order filter compression */ |
|
p->buf[delayB] = p->filterA[filter ^ 1] - ((int64_t)(p->filterB[filter] * 31ULL) >> 5); |
|
p->buf[adaptB] = APESIGN(p->buf[delayB]); |
|
p->buf[delayB - 1] = p->buf[delayB] - (uint64_t)p->buf[delayB - 1]; |
|
p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]); |
|
p->filterB[filter] = p->filterA[filter ^ 1]; |
|
|
|
predictionB = p->buf[delayB ] * p->coeffsB[filter][0] + |
|
p->buf[delayB - 1] * p->coeffsB[filter][1] + |
|
p->buf[delayB - 2] * p->coeffsB[filter][2] + |
|
p->buf[delayB - 3] * p->coeffsB[filter][3] + |
|
p->buf[delayB - 4] * p->coeffsB[filter][4]; |
|
|
|
if (interim_mode < 1) { |
|
predictionA = (int32_t)predictionA; |
|
predictionB = (int32_t)predictionB; |
|
p->lastA[filter] = (int32_t)(decoded + (unsigned)((int32_t)(predictionA + (predictionB >> 1)) >> 10)); |
|
} else { |
|
p->lastA[filter] = decoded + ((int64_t)((uint64_t)predictionA + (predictionB >> 1)) >> 10); |
|
} |
|
p->filterA[filter] = p->lastA[filter] + ((int64_t)(p->filterA[filter] * 31ULL) >> 5); |
|
|
|
sign = APESIGN(decoded); |
|
p->coeffsA[filter][0] += p->buf[adaptA ] * sign; |
|
p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign; |
|
p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign; |
|
p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign; |
|
p->coeffsB[filter][0] += p->buf[adaptB ] * sign; |
|
p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign; |
|
p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign; |
|
p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign; |
|
p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign; |
|
|
|
return p->filterA[filter]; |
|
} |
|
|
|
static void predictor_decode_stereo_3950(APEContext *ctx, int count) |
|
{ |
|
APEPredictor64 *p_default = &ctx->predictor64; |
|
APEPredictor64 p_interim; |
|
int lcount = count; |
|
int num_passes = 1; |
|
|
|
ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count); |
|
if (ctx->interim_mode == -1) { |
|
p_interim = *p_default; |
|
num_passes ++; |
|
memcpy(ctx->interim[0], ctx->decoded[0], sizeof(*ctx->interim[0])*count); |
|
memcpy(ctx->interim[1], ctx->decoded[1], sizeof(*ctx->interim[1])*count); |
|
} |
|
|
|
for (int pass = 0; pass < num_passes; pass++) { |
|
int32_t *decoded0, *decoded1; |
|
int interim_mode = ctx->interim_mode > 0 || pass; |
|
APEPredictor64 *p; |
|
|
|
if (pass) { |
|
p = &p_interim; |
|
decoded0 = ctx->interim[0]; |
|
decoded1 = ctx->interim[1]; |
|
} else { |
|
p = p_default; |
|
decoded0 = ctx->decoded[0]; |
|
decoded1 = ctx->decoded[1]; |
|
} |
|
p->buf = p->historybuffer; |
|
|
|
count = lcount; |
|
while (count--) { |
|
/* Predictor Y */ |
|
int32_t a0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, |
|
YADAPTCOEFFSA, YADAPTCOEFFSB, |
|
interim_mode); |
|
int32_t a1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, |
|
XADAPTCOEFFSA, XADAPTCOEFFSB, |
|
interim_mode); |
|
*decoded0++ = a0; |
|
*decoded1++ = a1; |
|
if (num_passes > 1) { |
|
int32_t left = a1 - (unsigned)(a0 / 2); |
|
int32_t right = left + a0; |
|
|
|
if (FFMAX(FFABS(left), FFABS(right)) > (1<<23)) { |
|
ctx->interim_mode = !interim_mode; |
|
av_log(ctx->avctx, AV_LOG_VERBOSE, "Interim mode: %d\n", ctx->interim_mode); |
|
break; |
|
} |
|
} |
|
|
|
/* Combined */ |
|
p->buf++; |
|
|
|
/* Have we filled the history buffer? */ |
|
if (p->buf == p->historybuffer + HISTORY_SIZE) { |
|
memmove(p->historybuffer, p->buf, |
|
PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
|
p->buf = p->historybuffer; |
|
} |
|
} |
|
} |
|
if (num_passes > 1 && ctx->interim_mode > 0) { |
|
memcpy(ctx->decoded[0], ctx->interim[0], sizeof(*ctx->interim[0])*lcount); |
|
memcpy(ctx->decoded[1], ctx->interim[1], sizeof(*ctx->interim[1])*lcount); |
|
*p_default = p_interim; |
|
p_default->buf = p_default->historybuffer; |
|
} |
|
} |
|
|
|
static void predictor_decode_mono_3950(APEContext *ctx, int count) |
|
{ |
|
APEPredictor64 *p = &ctx->predictor64; |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
int32_t predictionA, currentA, A, sign; |
|
|
|
ape_apply_filters(ctx, ctx->decoded[0], NULL, count); |
|
|
|
currentA = p->lastA[0]; |
|
|
|
while (count--) { |
|
A = *decoded0; |
|
|
|
p->buf[YDELAYA] = currentA; |
|
p->buf[YDELAYA - 1] = p->buf[YDELAYA] - (uint64_t)p->buf[YDELAYA - 1]; |
|
|
|
predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] + |
|
p->buf[YDELAYA - 1] * p->coeffsA[0][1] + |
|
p->buf[YDELAYA - 2] * p->coeffsA[0][2] + |
|
p->buf[YDELAYA - 3] * p->coeffsA[0][3]; |
|
|
|
currentA = A + (uint64_t)(predictionA >> 10); |
|
|
|
p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]); |
|
p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]); |
|
|
|
sign = APESIGN(A); |
|
p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign; |
|
p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign; |
|
p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign; |
|
p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign; |
|
|
|
p->buf++; |
|
|
|
/* Have we filled the history buffer? */ |
|
if (p->buf == p->historybuffer + HISTORY_SIZE) { |
|
memmove(p->historybuffer, p->buf, |
|
PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
|
p->buf = p->historybuffer; |
|
} |
|
|
|
p->filterA[0] = currentA + (uint64_t)((int64_t)(p->filterA[0] * 31U) >> 5); |
|
*(decoded0++) = p->filterA[0]; |
|
} |
|
|
|
p->lastA[0] = currentA; |
|
} |
|
|
|
static void do_init_filter(APEFilter *f, int16_t *buf, int order) |
|
{ |
|
f->coeffs = buf; |
|
f->historybuffer = buf + order; |
|
f->delay = f->historybuffer + order * 2; |
|
f->adaptcoeffs = f->historybuffer + order; |
|
|
|
memset(f->historybuffer, 0, (order * 2) * sizeof(*f->historybuffer)); |
|
memset(f->coeffs, 0, order * sizeof(*f->coeffs)); |
|
f->avg = 0; |
|
} |
|
|
|
static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order) |
|
{ |
|
do_init_filter(&f[0], buf, order); |
|
do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order); |
|
} |
|
|
|
static void do_apply_filter(APEContext *ctx, int version, APEFilter *f, |
|
int32_t *data, int count, int order, int fracbits) |
|
{ |
|
int res; |
|
unsigned absres; |
|
|
|
while (count--) { |
|
/* round fixedpoint scalar product */ |
|
res = ctx->adsp.scalarproduct_and_madd_int16(f->coeffs, |
|
f->delay - order, |
|
f->adaptcoeffs - order, |
|
order, APESIGN(*data)); |
|
res = (int64_t)(res + (1LL << (fracbits - 1))) >> fracbits; |
|
res += (unsigned)*data; |
|
*data++ = res; |
|
|
|
/* Update the output history */ |
|
*f->delay++ = av_clip_int16(res); |
|
|
|
if (version < 3980) { |
|
/* Version ??? to < 3.98 files (untested) */ |
|
f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4; |
|
f->adaptcoeffs[-4] >>= 1; |
|
f->adaptcoeffs[-8] >>= 1; |
|
} else { |
|
/* Version 3.98 and later files */ |
|
|
|
/* Update the adaption coefficients */ |
|
absres = FFABSU(res); |
|
if (absres) |
|
*f->adaptcoeffs = APESIGN(res) * |
|
(8 << ((absres > f->avg * 3LL) + (absres > (f->avg + f->avg / 3)))); |
|
/* equivalent to the following code |
|
if (absres <= f->avg * 4 / 3) |
|
*f->adaptcoeffs = APESIGN(res) * 8; |
|
else if (absres <= f->avg * 3) |
|
*f->adaptcoeffs = APESIGN(res) * 16; |
|
else |
|
*f->adaptcoeffs = APESIGN(res) * 32; |
|
*/ |
|
else |
|
*f->adaptcoeffs = 0; |
|
|
|
f->avg += (int)(absres - (unsigned)f->avg) / 16; |
|
|
|
f->adaptcoeffs[-1] >>= 1; |
|
f->adaptcoeffs[-2] >>= 1; |
|
f->adaptcoeffs[-8] >>= 1; |
|
} |
|
|
|
f->adaptcoeffs++; |
|
|
|
/* Have we filled the history buffer? */ |
|
if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) { |
|
memmove(f->historybuffer, f->delay - (order * 2), |
|
(order * 2) * sizeof(*f->historybuffer)); |
|
f->delay = f->historybuffer + order * 2; |
|
f->adaptcoeffs = f->historybuffer + order; |
|
} |
|
} |
|
} |
|
|
|
static void apply_filter(APEContext *ctx, APEFilter *f, |
|
int32_t *data0, int32_t *data1, |
|
int count, int order, int fracbits) |
|
{ |
|
do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits); |
|
if (data1) |
|
do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits); |
|
} |
|
|
|
static void ape_apply_filters(APEContext *ctx, int32_t *decoded0, |
|
int32_t *decoded1, int count) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < APE_FILTER_LEVELS; i++) { |
|
if (!ape_filter_orders[ctx->fset][i]) |
|
break; |
|
apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, |
|
ape_filter_orders[ctx->fset][i], |
|
ape_filter_fracbits[ctx->fset][i]); |
|
} |
|
} |
|
|
|
static int init_frame_decoder(APEContext *ctx) |
|
{ |
|
int i, ret; |
|
if ((ret = init_entropy_decoder(ctx)) < 0) |
|
return ret; |
|
init_predictor_decoder(ctx); |
|
|
|
for (i = 0; i < APE_FILTER_LEVELS; i++) { |
|
if (!ape_filter_orders[ctx->fset][i]) |
|
break; |
|
init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], |
|
ape_filter_orders[ctx->fset][i]); |
|
} |
|
return 0; |
|
} |
|
|
|
static void ape_unpack_mono(APEContext *ctx, int count) |
|
{ |
|
if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { |
|
/* We are pure silence, so we're done. */ |
|
av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n"); |
|
return; |
|
} |
|
|
|
ctx->entropy_decode_mono(ctx, count); |
|
if (ctx->error) |
|
return; |
|
|
|
/* Now apply the predictor decoding */ |
|
ctx->predictor_decode_mono(ctx, count); |
|
|
|
/* Pseudo-stereo - just copy left channel to right channel */ |
|
if (ctx->channels == 2) { |
|
memcpy(ctx->decoded[1], ctx->decoded[0], count * sizeof(*ctx->decoded[1])); |
|
} |
|
} |
|
|
|
static void ape_unpack_stereo(APEContext *ctx, int count) |
|
{ |
|
unsigned left, right; |
|
int32_t *decoded0 = ctx->decoded[0]; |
|
int32_t *decoded1 = ctx->decoded[1]; |
|
|
|
if ((ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) == APE_FRAMECODE_STEREO_SILENCE) { |
|
/* We are pure silence, so we're done. */ |
|
av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n"); |
|
return; |
|
} |
|
|
|
ctx->entropy_decode_stereo(ctx, count); |
|
if (ctx->error) |
|
return; |
|
|
|
/* Now apply the predictor decoding */ |
|
ctx->predictor_decode_stereo(ctx, count); |
|
|
|
/* Decorrelate and scale to output depth */ |
|
while (count--) { |
|
left = *decoded1 - (unsigned)(*decoded0 / 2); |
|
right = left + *decoded0; |
|
|
|
*(decoded0++) = left; |
|
*(decoded1++) = right; |
|
} |
|
} |
|
|
|
static int ape_decode_frame(AVCodecContext *avctx, AVFrame *frame, |
|
int *got_frame_ptr, AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
APEContext *s = avctx->priv_data; |
|
uint8_t *sample8; |
|
int16_t *sample16; |
|
int32_t *sample24; |
|
int i, ch, ret; |
|
int blockstodecode; |
|
uint64_t decoded_buffer_size; |
|
|
|
/* this should never be negative, but bad things will happen if it is, so |
|
check it just to make sure. */ |
|
av_assert0(s->samples >= 0); |
|
|
|
if(!s->samples){ |
|
uint32_t nblocks, offset; |
|
int buf_size; |
|
|
|
if (!avpkt->size) { |
|
*got_frame_ptr = 0; |
|
return 0; |
|
} |
|
if (avpkt->size < 8) { |
|
av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
buf_size = avpkt->size & ~3; |
|
if (buf_size != avpkt->size) { |
|
av_log(avctx, AV_LOG_WARNING, "packet size is not a multiple of 4. " |
|
"extra bytes at the end will be skipped.\n"); |
|
} |
|
if (s->fileversion < 3950) // previous versions overread two bytes |
|
buf_size += 2; |
|
av_fast_padded_malloc(&s->data, &s->data_size, buf_size); |
|
if (!s->data) |
|
return AVERROR(ENOMEM); |
|
s->bdsp.bswap_buf((uint32_t *) s->data, (const uint32_t *) buf, |
|
buf_size >> 2); |
|
memset(s->data + (buf_size & ~3), 0, buf_size & 3); |
|
s->ptr = s->data; |
|
s->data_end = s->data + buf_size; |
|
|
|
nblocks = bytestream_get_be32(&s->ptr); |
|
offset = bytestream_get_be32(&s->ptr); |
|
if (s->fileversion >= 3900) { |
|
if (offset > 3) { |
|
av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n"); |
|
av_freep(&s->data); |
|
s->data_size = 0; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (s->data_end - s->ptr < offset) { |
|
av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->ptr += offset; |
|
} else { |
|
if ((ret = init_get_bits8(&s->gb, s->ptr, s->data_end - s->ptr)) < 0) |
|
return ret; |
|
if (s->fileversion > 3800) |
|
skip_bits_long(&s->gb, offset * 8); |
|
else |
|
skip_bits_long(&s->gb, offset); |
|
} |
|
|
|
if (!nblocks || nblocks > INT_MAX / 2 / sizeof(*s->decoded_buffer) - 8) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %"PRIu32".\n", |
|
nblocks); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* Initialize the frame decoder */ |
|
if (init_frame_decoder(s) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->samples = nblocks; |
|
} |
|
|
|
if (!s->data) { |
|
*got_frame_ptr = 0; |
|
return avpkt->size; |
|
} |
|
|
|
blockstodecode = FFMIN(s->blocks_per_loop, s->samples); |
|
// for old files coefficients were not interleaved, |
|
// so we need to decode all of them at once |
|
if (s->fileversion < 3930) |
|
blockstodecode = s->samples; |
|
|
|
/* reallocate decoded sample buffer if needed */ |
|
decoded_buffer_size = 2LL * FFALIGN(blockstodecode, 8) * sizeof(*s->decoded_buffer); |
|
av_assert0(decoded_buffer_size <= INT_MAX); |
|
|
|
/* get output buffer */ |
|
frame->nb_samples = blockstodecode; |
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) { |
|
s->samples=0; |
|
return ret; |
|
} |
|
|
|
av_fast_malloc(&s->decoded_buffer, &s->decoded_size, decoded_buffer_size); |
|
if (!s->decoded_buffer) |
|
return AVERROR(ENOMEM); |
|
memset(s->decoded_buffer, 0, decoded_buffer_size); |
|
s->decoded[0] = s->decoded_buffer; |
|
s->decoded[1] = s->decoded_buffer + FFALIGN(blockstodecode, 8); |
|
|
|
if (s->interim_mode < 0) { |
|
av_fast_malloc(&s->interim_buffer, &s->interim_size, decoded_buffer_size); |
|
if (!s->interim_buffer) |
|
return AVERROR(ENOMEM); |
|
memset(s->interim_buffer, 0, decoded_buffer_size); |
|
s->interim[0] = s->interim_buffer; |
|
s->interim[1] = s->interim_buffer + FFALIGN(blockstodecode, 8); |
|
} else { |
|
av_freep(&s->interim_buffer); |
|
s->interim_size = 0; |
|
memset(s->interim, 0, sizeof(s->interim)); |
|
} |
|
|
|
s->error=0; |
|
|
|
if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO)) |
|
ape_unpack_mono(s, blockstodecode); |
|
else |
|
ape_unpack_stereo(s, blockstodecode); |
|
|
|
if (s->error) { |
|
s->samples=0; |
|
av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
switch (s->bps) { |
|
case 8: |
|
for (ch = 0; ch < s->channels; ch++) { |
|
sample8 = (uint8_t *)frame->data[ch]; |
|
for (i = 0; i < blockstodecode; i++) |
|
*sample8++ = (s->decoded[ch][i] + 0x80U) & 0xff; |
|
} |
|
break; |
|
case 16: |
|
for (ch = 0; ch < s->channels; ch++) { |
|
sample16 = (int16_t *)frame->data[ch]; |
|
for (i = 0; i < blockstodecode; i++) |
|
*sample16++ = s->decoded[ch][i]; |
|
} |
|
break; |
|
case 24: |
|
for (ch = 0; ch < s->channels; ch++) { |
|
sample24 = (int32_t *)frame->data[ch]; |
|
for (i = 0; i < blockstodecode; i++) |
|
*sample24++ = s->decoded[ch][i] * 256U; |
|
} |
|
break; |
|
} |
|
|
|
s->samples -= blockstodecode; |
|
|
|
if (avctx->err_recognition & AV_EF_CRCCHECK && |
|
s->fileversion >= 3900) { |
|
uint32_t crc = s->CRC_state; |
|
const AVCRC *crc_tab = av_crc_get_table(AV_CRC_32_IEEE_LE); |
|
int stride = s->bps == 24 ? 4 : (s->bps>>3); |
|
int offset = s->bps == 24; |
|
int bytes = s->bps >> 3; |
|
|
|
for (i = 0; i < blockstodecode; i++) { |
|
for (ch = 0; ch < s->channels; ch++) { |
|
#if HAVE_BIGENDIAN |
|
uint8_t *smp_native = frame->data[ch] + i*stride; |
|
uint8_t smp[4]; |
|
for(int j = 0; j<stride; j++) |
|
smp[j] = smp_native[stride-j-1]; |
|
#else |
|
uint8_t *smp = frame->data[ch] + i*stride; |
|
#endif |
|
crc = av_crc(crc_tab, crc, smp+offset, bytes); |
|
} |
|
} |
|
|
|
if (!s->samples && (~crc >> 1) ^ s->CRC) { |
|
av_log(avctx, AV_LOG_ERROR, "CRC mismatch! Previously decoded " |
|
"frames may have been affected as well.\n"); |
|
if (avctx->err_recognition & AV_EF_EXPLODE) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->CRC_state = crc; |
|
} |
|
|
|
*got_frame_ptr = 1; |
|
|
|
return !s->samples ? avpkt->size : 0; |
|
} |
|
|
|
static void ape_flush(AVCodecContext *avctx) |
|
{ |
|
APEContext *s = avctx->priv_data; |
|
s->samples= 0; |
|
} |
|
|
|
#define OFFSET(x) offsetof(APEContext, x) |
|
#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM) |
|
static const AVOption options[] = { |
|
{ "max_samples", "maximum number of samples decoded per call", OFFSET(blocks_per_loop), AV_OPT_TYPE_INT, { .i64 = 4608 }, 1, INT_MAX, PAR, "max_samples" }, |
|
{ "all", "no maximum. decode all samples for each packet at once", 0, AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX, PAR, "max_samples" }, |
|
{ NULL}, |
|
}; |
|
|
|
static const AVClass ape_decoder_class = { |
|
.class_name = "APE decoder", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
const FFCodec ff_ape_decoder = { |
|
.p.name = "ape", |
|
CODEC_LONG_NAME("Monkey's Audio"), |
|
.p.type = AVMEDIA_TYPE_AUDIO, |
|
.p.id = AV_CODEC_ID_APE, |
|
.priv_data_size = sizeof(APEContext), |
|
.init = ape_decode_init, |
|
.close = ape_decode_close, |
|
FF_CODEC_DECODE_CB(ape_decode_frame), |
|
.p.capabilities = |
|
#if FF_API_SUBFRAMES |
|
AV_CODEC_CAP_SUBFRAMES | |
|
#endif |
|
AV_CODEC_CAP_DELAY | |
|
AV_CODEC_CAP_DR1, |
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
|
.flush = ape_flush, |
|
.p.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P, |
|
AV_SAMPLE_FMT_S16P, |
|
AV_SAMPLE_FMT_S32P, |
|
AV_SAMPLE_FMT_NONE }, |
|
.p.priv_class = &ape_decoder_class, |
|
};
|
|
|