mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
279 lines
8.5 KiB
279 lines
8.5 KiB
/* |
|
* AAC encoder utilities |
|
* Copyright (C) 2015 Rostislav Pehlivanov |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* AAC encoder utilities |
|
* @author Rostislav Pehlivanov ( atomnuker gmail com ) |
|
*/ |
|
|
|
#ifndef AVCODEC_AACENC_UTILS_H |
|
#define AVCODEC_AACENC_UTILS_H |
|
|
|
#include "libavutil/ffmath.h" |
|
#include "aac.h" |
|
#include "aacenctab.h" |
|
#include "aactab.h" |
|
|
|
#define ROUND_STANDARD 0.4054f |
|
#define ROUND_TO_ZERO 0.1054f |
|
#define C_QUANT 0.4054f |
|
|
|
static inline void abs_pow34_v(float *out, const float *in, const int size) |
|
{ |
|
int i; |
|
for (i = 0; i < size; i++) { |
|
float a = fabsf(in[i]); |
|
out[i] = sqrtf(a * sqrtf(a)); |
|
} |
|
} |
|
|
|
static inline float pos_pow34(float a) |
|
{ |
|
return sqrtf(a * sqrtf(a)); |
|
} |
|
|
|
/** |
|
* Quantize one coefficient. |
|
* @return absolute value of the quantized coefficient |
|
* @see 3GPP TS26.403 5.6.2 "Scalefactor determination" |
|
*/ |
|
static inline int quant(float coef, const float Q, const float rounding) |
|
{ |
|
float a = coef * Q; |
|
return sqrtf(a * sqrtf(a)) + rounding; |
|
} |
|
|
|
static inline void quantize_bands(int *out, const float *in, const float *scaled, |
|
int size, int is_signed, int maxval, const float Q34, |
|
const float rounding) |
|
{ |
|
int i; |
|
for (i = 0; i < size; i++) { |
|
float qc = scaled[i] * Q34; |
|
int tmp = (int)FFMIN(qc + rounding, (float)maxval); |
|
if (is_signed && in[i] < 0.0f) { |
|
tmp = -tmp; |
|
} |
|
out[i] = tmp; |
|
} |
|
} |
|
|
|
static inline float find_max_val(int group_len, int swb_size, const float *scaled) |
|
{ |
|
float maxval = 0.0f; |
|
int w2, i; |
|
for (w2 = 0; w2 < group_len; w2++) { |
|
for (i = 0; i < swb_size; i++) { |
|
maxval = FFMAX(maxval, scaled[w2*128+i]); |
|
} |
|
} |
|
return maxval; |
|
} |
|
|
|
static inline int find_min_book(float maxval, int sf) |
|
{ |
|
float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512]; |
|
int qmaxval, cb; |
|
qmaxval = maxval * Q34 + C_QUANT; |
|
if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb))) |
|
cb = 11; |
|
else |
|
cb = aac_maxval_cb[qmaxval]; |
|
return cb; |
|
} |
|
|
|
static inline float find_form_factor(int group_len, int swb_size, float thresh, |
|
const float *scaled, float nzslope) { |
|
const float iswb_size = 1.0f / swb_size; |
|
const float iswb_sizem1 = 1.0f / (swb_size - 1); |
|
const float ethresh = thresh; |
|
float form = 0.0f, weight = 0.0f; |
|
int w2, i; |
|
for (w2 = 0; w2 < group_len; w2++) { |
|
float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f; |
|
float nzl = 0; |
|
for (i = 0; i < swb_size; i++) { |
|
float s = fabsf(scaled[w2*128+i]); |
|
maxval = FFMAX(maxval, s); |
|
e += s; |
|
e2 += s *= s; |
|
/* We really don't want a hard non-zero-line count, since |
|
* even below-threshold lines do add up towards band spectral power. |
|
* So, fall steeply towards zero, but smoothly |
|
*/ |
|
if (s >= ethresh) { |
|
nzl += 1.0f; |
|
} else { |
|
if (nzslope == 2.f) |
|
nzl += (s / ethresh) * (s / ethresh); |
|
else |
|
nzl += ff_fast_powf(s / ethresh, nzslope); |
|
} |
|
} |
|
if (e2 > thresh) { |
|
float frm; |
|
e *= iswb_size; |
|
|
|
/** compute variance */ |
|
for (i = 0; i < swb_size; i++) { |
|
float d = fabsf(scaled[w2*128+i]) - e; |
|
var += d*d; |
|
} |
|
var = sqrtf(var * iswb_sizem1); |
|
|
|
e2 *= iswb_size; |
|
frm = e / FFMIN(e+4*var,maxval); |
|
form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl); |
|
weight += e2; |
|
} |
|
} |
|
if (weight > 0) { |
|
return form / weight; |
|
} else { |
|
return 1.0f; |
|
} |
|
} |
|
|
|
/** Return the minimum scalefactor where the quantized coef does not clip. */ |
|
static inline uint8_t coef2minsf(float coef) |
|
{ |
|
return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); |
|
} |
|
|
|
/** Return the maximum scalefactor where the quantized coef is not zero. */ |
|
static inline uint8_t coef2maxsf(float coef) |
|
{ |
|
return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); |
|
} |
|
|
|
/* |
|
* Returns the closest possible index to an array of float values, given a value. |
|
*/ |
|
static inline int quant_array_idx(const float val, const float *arr, const int num) |
|
{ |
|
int i, index = 0; |
|
float quant_min_err = INFINITY; |
|
for (i = 0; i < num; i++) { |
|
float error = (val - arr[i])*(val - arr[i]); |
|
if (error < quant_min_err) { |
|
quant_min_err = error; |
|
index = i; |
|
} |
|
} |
|
return index; |
|
} |
|
|
|
/** |
|
* approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f))) |
|
*/ |
|
static av_always_inline float bval2bmax(float b) |
|
{ |
|
return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f); |
|
} |
|
|
|
/* |
|
* Compute a nextband map to be used with SF delta constraint utilities. |
|
* The nextband array should contain 128 elements, and positions that don't |
|
* map to valid, nonzero bands of the form w*16+g (with w being the initial |
|
* window of the window group, only) are left indetermined. |
|
*/ |
|
static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband) |
|
{ |
|
unsigned char prevband = 0; |
|
int w, g; |
|
/** Just a safe default */ |
|
for (g = 0; g < 128; g++) |
|
nextband[g] = g; |
|
|
|
/** Now really navigate the nonzero band chain */ |
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { |
|
for (g = 0; g < sce->ics.num_swb; g++) { |
|
if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT) |
|
prevband = nextband[prevband] = w*16+g; |
|
} |
|
} |
|
nextband[prevband] = prevband; /* terminate */ |
|
} |
|
|
|
/* |
|
* Updates nextband to reflect a removed band (equivalent to |
|
* calling ff_init_nextband_map after marking a band as zero) |
|
*/ |
|
static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band) |
|
{ |
|
nextband[prevband] = nextband[band]; |
|
} |
|
|
|
/* |
|
* Checks whether the specified band could be removed without inducing |
|
* scalefactor delta that violates SF delta encoding constraints. |
|
* prev_sf has to be the scalefactor of the previous nonzero, nonspecial |
|
* band, in encoding order, or negative if there was no such band. |
|
*/ |
|
static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce, |
|
const uint8_t *nextband, int prev_sf, int band) |
|
{ |
|
return prev_sf >= 0 |
|
&& sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF) |
|
&& sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF); |
|
} |
|
|
|
/* |
|
* Checks whether the specified band's scalefactor could be replaced |
|
* with another one without violating SF delta encoding constraints. |
|
* prev_sf has to be the scalefactor of the previous nonzero, nonsepcial |
|
* band, in encoding order, or negative if there was no such band. |
|
*/ |
|
static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce, |
|
const uint8_t *nextband, int prev_sf, int new_sf, int band) |
|
{ |
|
return new_sf >= (prev_sf - SCALE_MAX_DIFF) |
|
&& new_sf <= (prev_sf + SCALE_MAX_DIFF) |
|
&& sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF) |
|
&& sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF); |
|
} |
|
|
|
/** |
|
* linear congruential pseudorandom number generator |
|
* |
|
* @param previous_val pointer to the current state of the generator |
|
* |
|
* @return Returns a 32-bit pseudorandom integer |
|
*/ |
|
static av_always_inline int lcg_random(unsigned previous_val) |
|
{ |
|
union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 }; |
|
return v.s; |
|
} |
|
|
|
#define ERROR_IF(cond, ...) \ |
|
if (cond) { \ |
|
av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \ |
|
return AVERROR(EINVAL); \ |
|
} |
|
|
|
#define WARN_IF(cond, ...) \ |
|
if (cond) { \ |
|
av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \ |
|
} |
|
|
|
#endif /* AVCODEC_AACENC_UTILS_H */
|
|
|