mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
936 lines
32 KiB
936 lines
32 KiB
/* |
|
* Copyright (c) 2012 Andrew D'Addesio |
|
* Copyright (c) 2013-2014 Mozilla Corporation |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Opus decoder/parser shared code |
|
*/ |
|
|
|
#include <stdint.h> |
|
|
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/error.h" |
|
#include "libavutil/ffmath.h" |
|
|
|
#include "opus_celt.h" |
|
#include "opustab.h" |
|
#include "internal.h" |
|
#include "vorbis.h" |
|
|
|
static const uint16_t opus_frame_duration[32] = { |
|
480, 960, 1920, 2880, |
|
480, 960, 1920, 2880, |
|
480, 960, 1920, 2880, |
|
480, 960, |
|
480, 960, |
|
120, 240, 480, 960, |
|
120, 240, 480, 960, |
|
120, 240, 480, 960, |
|
120, 240, 480, 960, |
|
}; |
|
|
|
/** |
|
* Read a 1- or 2-byte frame length |
|
*/ |
|
static inline int xiph_lacing_16bit(const uint8_t **ptr, const uint8_t *end) |
|
{ |
|
int val; |
|
|
|
if (*ptr >= end) |
|
return AVERROR_INVALIDDATA; |
|
val = *(*ptr)++; |
|
if (val >= 252) { |
|
if (*ptr >= end) |
|
return AVERROR_INVALIDDATA; |
|
val += 4 * *(*ptr)++; |
|
} |
|
return val; |
|
} |
|
|
|
/** |
|
* Read a multi-byte length (used for code 3 packet padding size) |
|
*/ |
|
static inline int xiph_lacing_full(const uint8_t **ptr, const uint8_t *end) |
|
{ |
|
int val = 0; |
|
int next; |
|
|
|
while (1) { |
|
if (*ptr >= end || val > INT_MAX - 254) |
|
return AVERROR_INVALIDDATA; |
|
next = *(*ptr)++; |
|
val += next; |
|
if (next < 255) |
|
break; |
|
else |
|
val--; |
|
} |
|
return val; |
|
} |
|
|
|
/** |
|
* Parse Opus packet info from raw packet data |
|
*/ |
|
int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size, |
|
int self_delimiting) |
|
{ |
|
const uint8_t *ptr = buf; |
|
const uint8_t *end = buf + buf_size; |
|
int padding = 0; |
|
int frame_bytes, i; |
|
|
|
if (buf_size < 1) |
|
goto fail; |
|
|
|
/* TOC byte */ |
|
i = *ptr++; |
|
pkt->code = (i ) & 0x3; |
|
pkt->stereo = (i >> 2) & 0x1; |
|
pkt->config = (i >> 3) & 0x1F; |
|
|
|
/* code 2 and code 3 packets have at least 1 byte after the TOC */ |
|
if (pkt->code >= 2 && buf_size < 2) |
|
goto fail; |
|
|
|
switch (pkt->code) { |
|
case 0: |
|
/* 1 frame */ |
|
pkt->frame_count = 1; |
|
pkt->vbr = 0; |
|
|
|
if (self_delimiting) { |
|
int len = xiph_lacing_16bit(&ptr, end); |
|
if (len < 0 || len > end - ptr) |
|
goto fail; |
|
end = ptr + len; |
|
buf_size = end - buf; |
|
} |
|
|
|
frame_bytes = end - ptr; |
|
if (frame_bytes > MAX_FRAME_SIZE) |
|
goto fail; |
|
pkt->frame_offset[0] = ptr - buf; |
|
pkt->frame_size[0] = frame_bytes; |
|
break; |
|
case 1: |
|
/* 2 frames, equal size */ |
|
pkt->frame_count = 2; |
|
pkt->vbr = 0; |
|
|
|
if (self_delimiting) { |
|
int len = xiph_lacing_16bit(&ptr, end); |
|
if (len < 0 || 2 * len > end - ptr) |
|
goto fail; |
|
end = ptr + 2 * len; |
|
buf_size = end - buf; |
|
} |
|
|
|
frame_bytes = end - ptr; |
|
if (frame_bytes & 1 || frame_bytes >> 1 > MAX_FRAME_SIZE) |
|
goto fail; |
|
pkt->frame_offset[0] = ptr - buf; |
|
pkt->frame_size[0] = frame_bytes >> 1; |
|
pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0]; |
|
pkt->frame_size[1] = frame_bytes >> 1; |
|
break; |
|
case 2: |
|
/* 2 frames, different sizes */ |
|
pkt->frame_count = 2; |
|
pkt->vbr = 1; |
|
|
|
/* read 1st frame size */ |
|
frame_bytes = xiph_lacing_16bit(&ptr, end); |
|
if (frame_bytes < 0) |
|
goto fail; |
|
|
|
if (self_delimiting) { |
|
int len = xiph_lacing_16bit(&ptr, end); |
|
if (len < 0 || len + frame_bytes > end - ptr) |
|
goto fail; |
|
end = ptr + frame_bytes + len; |
|
buf_size = end - buf; |
|
} |
|
|
|
pkt->frame_offset[0] = ptr - buf; |
|
pkt->frame_size[0] = frame_bytes; |
|
|
|
/* calculate 2nd frame size */ |
|
frame_bytes = end - ptr - pkt->frame_size[0]; |
|
if (frame_bytes < 0 || frame_bytes > MAX_FRAME_SIZE) |
|
goto fail; |
|
pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0]; |
|
pkt->frame_size[1] = frame_bytes; |
|
break; |
|
case 3: |
|
/* 1 to 48 frames, can be different sizes */ |
|
i = *ptr++; |
|
pkt->frame_count = (i ) & 0x3F; |
|
padding = (i >> 6) & 0x01; |
|
pkt->vbr = (i >> 7) & 0x01; |
|
|
|
if (pkt->frame_count == 0 || pkt->frame_count > MAX_FRAMES) |
|
goto fail; |
|
|
|
/* read padding size */ |
|
if (padding) { |
|
padding = xiph_lacing_full(&ptr, end); |
|
if (padding < 0) |
|
goto fail; |
|
} |
|
|
|
/* read frame sizes */ |
|
if (pkt->vbr) { |
|
/* for VBR, all frames except the final one have their size coded |
|
in the bitstream. the last frame size is implicit. */ |
|
int total_bytes = 0; |
|
for (i = 0; i < pkt->frame_count - 1; i++) { |
|
frame_bytes = xiph_lacing_16bit(&ptr, end); |
|
if (frame_bytes < 0) |
|
goto fail; |
|
pkt->frame_size[i] = frame_bytes; |
|
total_bytes += frame_bytes; |
|
} |
|
|
|
if (self_delimiting) { |
|
int len = xiph_lacing_16bit(&ptr, end); |
|
if (len < 0 || len + total_bytes + padding > end - ptr) |
|
goto fail; |
|
end = ptr + total_bytes + len + padding; |
|
buf_size = end - buf; |
|
} |
|
|
|
frame_bytes = end - ptr - padding; |
|
if (total_bytes > frame_bytes) |
|
goto fail; |
|
pkt->frame_offset[0] = ptr - buf; |
|
for (i = 1; i < pkt->frame_count; i++) |
|
pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1]; |
|
pkt->frame_size[pkt->frame_count-1] = frame_bytes - total_bytes; |
|
} else { |
|
/* for CBR, the remaining packet bytes are divided evenly between |
|
the frames */ |
|
if (self_delimiting) { |
|
frame_bytes = xiph_lacing_16bit(&ptr, end); |
|
if (frame_bytes < 0 || pkt->frame_count * frame_bytes + padding > end - ptr) |
|
goto fail; |
|
end = ptr + pkt->frame_count * frame_bytes + padding; |
|
buf_size = end - buf; |
|
} else { |
|
frame_bytes = end - ptr - padding; |
|
if (frame_bytes % pkt->frame_count || |
|
frame_bytes / pkt->frame_count > MAX_FRAME_SIZE) |
|
goto fail; |
|
frame_bytes /= pkt->frame_count; |
|
} |
|
|
|
pkt->frame_offset[0] = ptr - buf; |
|
pkt->frame_size[0] = frame_bytes; |
|
for (i = 1; i < pkt->frame_count; i++) { |
|
pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1]; |
|
pkt->frame_size[i] = frame_bytes; |
|
} |
|
} |
|
} |
|
|
|
pkt->packet_size = buf_size; |
|
pkt->data_size = pkt->packet_size - padding; |
|
|
|
/* total packet duration cannot be larger than 120ms */ |
|
pkt->frame_duration = opus_frame_duration[pkt->config]; |
|
if (pkt->frame_duration * pkt->frame_count > MAX_PACKET_DUR) |
|
goto fail; |
|
|
|
/* set mode and bandwidth */ |
|
if (pkt->config < 12) { |
|
pkt->mode = OPUS_MODE_SILK; |
|
pkt->bandwidth = pkt->config >> 2; |
|
} else if (pkt->config < 16) { |
|
pkt->mode = OPUS_MODE_HYBRID; |
|
pkt->bandwidth = OPUS_BANDWIDTH_SUPERWIDEBAND + (pkt->config >= 14); |
|
} else { |
|
pkt->mode = OPUS_MODE_CELT; |
|
pkt->bandwidth = (pkt->config - 16) >> 2; |
|
/* skip medium band */ |
|
if (pkt->bandwidth) |
|
pkt->bandwidth++; |
|
} |
|
|
|
return 0; |
|
|
|
fail: |
|
memset(pkt, 0, sizeof(*pkt)); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
static int channel_reorder_vorbis(int nb_channels, int channel_idx) |
|
{ |
|
return ff_vorbis_channel_layout_offsets[nb_channels - 1][channel_idx]; |
|
} |
|
|
|
static int channel_reorder_unknown(int nb_channels, int channel_idx) |
|
{ |
|
return channel_idx; |
|
} |
|
|
|
av_cold int ff_opus_parse_extradata(AVCodecContext *avctx, |
|
OpusContext *s) |
|
{ |
|
static const uint8_t default_channel_map[2] = { 0, 1 }; |
|
|
|
int (*channel_reorder)(int, int) = channel_reorder_unknown; |
|
int channels = avctx->ch_layout.nb_channels; |
|
|
|
const uint8_t *extradata, *channel_map; |
|
int extradata_size; |
|
int version, map_type, streams, stereo_streams, i, j, ret; |
|
AVChannelLayout layout = { 0 }; |
|
|
|
if (!avctx->extradata) { |
|
if (channels > 2) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Multichannel configuration without extradata.\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
extradata = opus_default_extradata; |
|
extradata_size = sizeof(opus_default_extradata); |
|
} else { |
|
extradata = avctx->extradata; |
|
extradata_size = avctx->extradata_size; |
|
} |
|
|
|
if (extradata_size < 19) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n", |
|
extradata_size); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
version = extradata[8]; |
|
if (version > 15) { |
|
avpriv_request_sample(avctx, "Extradata version %d", version); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
avctx->delay = AV_RL16(extradata + 10); |
|
if (avctx->internal) |
|
avctx->internal->skip_samples = avctx->delay; |
|
|
|
channels = avctx->extradata ? extradata[9] : (channels == 1) ? 1 : 2; |
|
if (!channels) { |
|
av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extradata\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->gain_i = AV_RL16(extradata + 16); |
|
if (s->gain_i) |
|
s->gain = ff_exp10(s->gain_i / (20.0 * 256)); |
|
|
|
map_type = extradata[18]; |
|
if (!map_type) { |
|
if (channels > 2) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Channel mapping 0 is only specified for up to 2 channels\n"); |
|
ret = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
layout = (channels == 1) ? (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO : |
|
(AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO; |
|
streams = 1; |
|
stereo_streams = channels - 1; |
|
channel_map = default_channel_map; |
|
} else if (map_type == 1 || map_type == 2 || map_type == 255) { |
|
if (extradata_size < 21 + channels) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n", |
|
extradata_size); |
|
ret = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
|
|
streams = extradata[19]; |
|
stereo_streams = extradata[20]; |
|
if (!streams || stereo_streams > streams || |
|
streams + stereo_streams > 255) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Invalid stream/stereo stream count: %d/%d\n", streams, stereo_streams); |
|
ret = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
|
|
if (map_type == 1) { |
|
if (channels > 8) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Channel mapping 1 is only specified for up to 8 channels\n"); |
|
ret = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
av_channel_layout_copy(&layout, &ff_vorbis_ch_layouts[channels - 1]); |
|
channel_reorder = channel_reorder_vorbis; |
|
} else if (map_type == 2) { |
|
int ambisonic_order = ff_sqrt(channels) - 1; |
|
if (channels != ((ambisonic_order + 1) * (ambisonic_order + 1)) && |
|
channels != ((ambisonic_order + 1) * (ambisonic_order + 1) + 2)) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Channel mapping 2 is only specified for channel counts" |
|
" which can be written as (n + 1)^2 or (n + 1)^2 + 2" |
|
" for nonnegative integer n\n"); |
|
ret = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
if (channels > 227) { |
|
av_log(avctx, AV_LOG_ERROR, "Too many channels\n"); |
|
ret = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
|
|
layout.nb_channels = channels; |
|
if (channels == (ambisonic_order + 1) * (ambisonic_order + 1)) { |
|
layout.order = AV_CHANNEL_ORDER_AMBISONIC; |
|
} else { |
|
layout.order = AV_CHANNEL_ORDER_CUSTOM; |
|
layout.u.map = av_calloc(channels, sizeof(*layout.u.map)); |
|
if (!layout.u.map) { |
|
ret = AVERROR(ENOMEM); |
|
goto fail; |
|
} |
|
for (i = 0; i < channels - 2; i++) |
|
layout.u.map[i].id = AV_CHAN_AMBISONIC_BASE + i; |
|
layout.u.map[channels - 2].id = AV_CHAN_FRONT_LEFT; |
|
layout.u.map[channels - 1].id = AV_CHAN_FRONT_RIGHT; |
|
} |
|
} else { |
|
layout.order = AV_CHANNEL_ORDER_UNSPEC; |
|
layout.nb_channels = channels; |
|
} |
|
|
|
channel_map = extradata + 21; |
|
} else { |
|
avpriv_request_sample(avctx, "Mapping type %d", map_type); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
s->channel_maps = av_calloc(channels, sizeof(*s->channel_maps)); |
|
if (!s->channel_maps) { |
|
ret = AVERROR(ENOMEM); |
|
goto fail; |
|
} |
|
|
|
for (i = 0; i < channels; i++) { |
|
ChannelMap *map = &s->channel_maps[i]; |
|
uint8_t idx = channel_map[channel_reorder(channels, i)]; |
|
|
|
if (idx == 255) { |
|
map->silence = 1; |
|
continue; |
|
} else if (idx >= streams + stereo_streams) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Invalid channel map for output channel %d: %d\n", i, idx); |
|
av_freep(&s->channel_maps); |
|
ret = AVERROR_INVALIDDATA; |
|
goto fail; |
|
} |
|
|
|
/* check that we did not see this index yet */ |
|
map->copy = 0; |
|
for (j = 0; j < i; j++) |
|
if (channel_map[channel_reorder(channels, j)] == idx) { |
|
map->copy = 1; |
|
map->copy_idx = j; |
|
break; |
|
} |
|
|
|
if (idx < 2 * stereo_streams) { |
|
map->stream_idx = idx / 2; |
|
map->channel_idx = idx & 1; |
|
} else { |
|
map->stream_idx = idx - stereo_streams; |
|
map->channel_idx = 0; |
|
} |
|
} |
|
|
|
ret = av_channel_layout_copy(&avctx->ch_layout, &layout); |
|
if (ret < 0) |
|
goto fail; |
|
|
|
s->nb_streams = streams; |
|
s->nb_stereo_streams = stereo_streams; |
|
|
|
return 0; |
|
fail: |
|
av_channel_layout_uninit(&layout); |
|
return ret; |
|
} |
|
|
|
void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc) |
|
{ |
|
float lowband_scratch[8 * 22]; |
|
float norm1[2 * 8 * 100]; |
|
float *norm2 = norm1 + 8 * 100; |
|
|
|
int totalbits = (f->framebits << 3) - f->anticollapse_needed; |
|
|
|
int update_lowband = 1; |
|
int lowband_offset = 0; |
|
|
|
int i, j; |
|
|
|
for (i = f->start_band; i < f->end_band; i++) { |
|
uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; |
|
int band_offset = ff_celt_freq_bands[i] << f->size; |
|
int band_size = ff_celt_freq_range[i] << f->size; |
|
float *X = f->block[0].coeffs + band_offset; |
|
float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL; |
|
float *norm_loc1, *norm_loc2; |
|
|
|
int consumed = opus_rc_tell_frac(rc); |
|
int effective_lowband = -1; |
|
int b = 0; |
|
|
|
/* Compute how many bits we want to allocate to this band */ |
|
if (i != f->start_band) |
|
f->remaining -= consumed; |
|
f->remaining2 = totalbits - consumed - 1; |
|
if (i <= f->coded_bands - 1) { |
|
int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i); |
|
b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14); |
|
} |
|
|
|
if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] || |
|
i == f->start_band + 1) && (update_lowband || lowband_offset == 0)) |
|
lowband_offset = i; |
|
|
|
if (i == f->start_band + 1) { |
|
/* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into |
|
the second to ensure the second band never has to use the LCG. */ |
|
int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size; |
|
|
|
memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float)); |
|
|
|
if (f->channels == 2) |
|
memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float)); |
|
} |
|
|
|
/* Get a conservative estimate of the collapse_mask's for the bands we're |
|
going to be folding from. */ |
|
if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE || |
|
f->blocks > 1 || f->tf_change[i] < 0)) { |
|
int foldstart, foldend; |
|
|
|
/* This ensures we never repeat spectral content within one band */ |
|
effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band], |
|
ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]); |
|
foldstart = lowband_offset; |
|
while (ff_celt_freq_bands[--foldstart] > effective_lowband); |
|
foldend = lowband_offset - 1; |
|
while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]); |
|
|
|
cm[0] = cm[1] = 0; |
|
for (j = foldstart; j < foldend; j++) { |
|
cm[0] |= f->block[0].collapse_masks[j]; |
|
cm[1] |= f->block[f->channels - 1].collapse_masks[j]; |
|
} |
|
} |
|
|
|
if (f->dual_stereo && i == f->intensity_stereo) { |
|
/* Switch off dual stereo to do intensity */ |
|
f->dual_stereo = 0; |
|
for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++) |
|
norm1[j] = (norm1[j] + norm2[j]) / 2; |
|
} |
|
|
|
norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL; |
|
norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL; |
|
|
|
if (f->dual_stereo) { |
|
cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1, |
|
f->blocks, norm_loc1, f->size, |
|
norm1 + band_offset, 0, 1.0f, |
|
lowband_scratch, cm[0]); |
|
|
|
cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1, |
|
f->blocks, norm_loc2, f->size, |
|
norm2 + band_offset, 0, 1.0f, |
|
lowband_scratch, cm[1]); |
|
} else { |
|
cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, Y, band_size, b >> 0, |
|
f->blocks, norm_loc1, f->size, |
|
norm1 + band_offset, 0, 1.0f, |
|
lowband_scratch, cm[0] | cm[1]); |
|
cm[1] = cm[0]; |
|
} |
|
|
|
f->block[0].collapse_masks[i] = (uint8_t)cm[0]; |
|
f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1]; |
|
f->remaining += f->pulses[i] + consumed; |
|
|
|
/* Update the folding position only as long as we have 1 bit/sample depth */ |
|
update_lowband = (b > band_size << 3); |
|
} |
|
} |
|
|
|
#define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2) |
|
|
|
void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode) |
|
{ |
|
int i, j, low, high, total, done, bandbits, remaining, tbits_8ths; |
|
int skip_startband = f->start_band; |
|
int skip_bit = 0; |
|
int intensitystereo_bit = 0; |
|
int dualstereo_bit = 0; |
|
int dynalloc = 6; |
|
int extrabits = 0; |
|
|
|
int boost[CELT_MAX_BANDS] = { 0 }; |
|
int trim_offset[CELT_MAX_BANDS]; |
|
int threshold[CELT_MAX_BANDS]; |
|
int bits1[CELT_MAX_BANDS]; |
|
int bits2[CELT_MAX_BANDS]; |
|
|
|
/* Spread */ |
|
if (opus_rc_tell(rc) + 4 <= f->framebits) { |
|
if (encode) |
|
ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread); |
|
else |
|
f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread); |
|
} else { |
|
f->spread = CELT_SPREAD_NORMAL; |
|
} |
|
|
|
/* Initialize static allocation caps */ |
|
for (i = 0; i < CELT_MAX_BANDS; i++) |
|
f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]); |
|
|
|
/* Band boosts */ |
|
tbits_8ths = f->framebits << 3; |
|
for (i = f->start_band; i < f->end_band; i++) { |
|
int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size; |
|
int b_dynalloc = dynalloc; |
|
int boost_amount = f->alloc_boost[i]; |
|
quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta)); |
|
|
|
while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) { |
|
int is_boost; |
|
if (encode) { |
|
is_boost = boost_amount--; |
|
ff_opus_rc_enc_log(rc, is_boost, b_dynalloc); |
|
} else { |
|
is_boost = ff_opus_rc_dec_log(rc, b_dynalloc); |
|
} |
|
|
|
if (!is_boost) |
|
break; |
|
|
|
boost[i] += quanta; |
|
tbits_8ths -= quanta; |
|
|
|
b_dynalloc = 1; |
|
} |
|
|
|
if (boost[i]) |
|
dynalloc = FFMAX(dynalloc - 1, 2); |
|
} |
|
|
|
/* Allocation trim */ |
|
if (!encode) |
|
f->alloc_trim = 5; |
|
if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths) |
|
if (encode) |
|
ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim); |
|
else |
|
f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim); |
|
|
|
/* Anti-collapse bit reservation */ |
|
tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1; |
|
f->anticollapse_needed = 0; |
|
if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3)) |
|
f->anticollapse_needed = 1 << 3; |
|
tbits_8ths -= f->anticollapse_needed; |
|
|
|
/* Band skip bit reservation */ |
|
if (tbits_8ths >= 1 << 3) |
|
skip_bit = 1 << 3; |
|
tbits_8ths -= skip_bit; |
|
|
|
/* Intensity/dual stereo bit reservation */ |
|
if (f->channels == 2) { |
|
intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band]; |
|
if (intensitystereo_bit <= tbits_8ths) { |
|
tbits_8ths -= intensitystereo_bit; |
|
if (tbits_8ths >= 1 << 3) { |
|
dualstereo_bit = 1 << 3; |
|
tbits_8ths -= 1 << 3; |
|
} |
|
} else { |
|
intensitystereo_bit = 0; |
|
} |
|
} |
|
|
|
/* Trim offsets */ |
|
for (i = f->start_band; i < f->end_band; i++) { |
|
int trim = f->alloc_trim - 5 - f->size; |
|
int band = ff_celt_freq_range[i] * (f->end_band - i - 1); |
|
int duration = f->size + 3; |
|
int scale = duration + f->channels - 1; |
|
|
|
/* PVQ minimum allocation threshold, below this value the band is |
|
* skipped */ |
|
threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4, |
|
f->channels << 3); |
|
|
|
trim_offset[i] = trim * (band << scale) >> 6; |
|
|
|
if (ff_celt_freq_range[i] << f->size == 1) |
|
trim_offset[i] -= f->channels << 3; |
|
} |
|
|
|
/* Bisection */ |
|
low = 1; |
|
high = CELT_VECTORS - 1; |
|
while (low <= high) { |
|
int center = (low + high) >> 1; |
|
done = total = 0; |
|
|
|
for (i = f->end_band - 1; i >= f->start_band; i--) { |
|
bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]); |
|
|
|
if (bandbits) |
|
bandbits = FFMAX(bandbits + trim_offset[i], 0); |
|
bandbits += boost[i]; |
|
|
|
if (bandbits >= threshold[i] || done) { |
|
done = 1; |
|
total += FFMIN(bandbits, f->caps[i]); |
|
} else if (bandbits >= f->channels << 3) { |
|
total += f->channels << 3; |
|
} |
|
} |
|
|
|
if (total > tbits_8ths) |
|
high = center - 1; |
|
else |
|
low = center + 1; |
|
} |
|
high = low--; |
|
|
|
/* Bisection */ |
|
for (i = f->start_band; i < f->end_band; i++) { |
|
bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]); |
|
bits2[i] = high >= CELT_VECTORS ? f->caps[i] : |
|
NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]); |
|
|
|
if (bits1[i]) |
|
bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0); |
|
if (bits2[i]) |
|
bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0); |
|
|
|
if (low) |
|
bits1[i] += boost[i]; |
|
bits2[i] += boost[i]; |
|
|
|
if (boost[i]) |
|
skip_startband = i; |
|
bits2[i] = FFMAX(bits2[i] - bits1[i], 0); |
|
} |
|
|
|
/* Bisection */ |
|
low = 0; |
|
high = 1 << CELT_ALLOC_STEPS; |
|
for (i = 0; i < CELT_ALLOC_STEPS; i++) { |
|
int center = (low + high) >> 1; |
|
done = total = 0; |
|
|
|
for (j = f->end_band - 1; j >= f->start_band; j--) { |
|
bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS); |
|
|
|
if (bandbits >= threshold[j] || done) { |
|
done = 1; |
|
total += FFMIN(bandbits, f->caps[j]); |
|
} else if (bandbits >= f->channels << 3) |
|
total += f->channels << 3; |
|
} |
|
if (total > tbits_8ths) |
|
high = center; |
|
else |
|
low = center; |
|
} |
|
|
|
/* Bisection */ |
|
done = total = 0; |
|
for (i = f->end_band - 1; i >= f->start_band; i--) { |
|
bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS); |
|
|
|
if (bandbits >= threshold[i] || done) |
|
done = 1; |
|
else |
|
bandbits = (bandbits >= f->channels << 3) ? |
|
f->channels << 3 : 0; |
|
|
|
bandbits = FFMIN(bandbits, f->caps[i]); |
|
f->pulses[i] = bandbits; |
|
total += bandbits; |
|
} |
|
|
|
/* Band skipping */ |
|
for (f->coded_bands = f->end_band; ; f->coded_bands--) { |
|
int allocation; |
|
j = f->coded_bands - 1; |
|
|
|
if (j == skip_startband) { |
|
/* all remaining bands are not skipped */ |
|
tbits_8ths += skip_bit; |
|
break; |
|
} |
|
|
|
/* determine the number of bits available for coding "do not skip" markers */ |
|
remaining = tbits_8ths - total; |
|
bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); |
|
remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); |
|
allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j]; |
|
allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0); |
|
|
|
/* a "do not skip" marker is only coded if the allocation is |
|
* above the chosen threshold */ |
|
if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) { |
|
int do_not_skip; |
|
if (encode) { |
|
do_not_skip = f->coded_bands <= f->skip_band_floor; |
|
ff_opus_rc_enc_log(rc, do_not_skip, 1); |
|
} else { |
|
do_not_skip = ff_opus_rc_dec_log(rc, 1); |
|
} |
|
|
|
if (do_not_skip) |
|
break; |
|
|
|
total += 1 << 3; |
|
allocation -= 1 << 3; |
|
} |
|
|
|
/* the band is skipped, so reclaim its bits */ |
|
total -= f->pulses[j]; |
|
if (intensitystereo_bit) { |
|
total -= intensitystereo_bit; |
|
intensitystereo_bit = ff_celt_log2_frac[j - f->start_band]; |
|
total += intensitystereo_bit; |
|
} |
|
|
|
total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0; |
|
} |
|
|
|
/* IS start band */ |
|
if (encode) { |
|
if (intensitystereo_bit) { |
|
f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands); |
|
ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band); |
|
} |
|
} else { |
|
f->intensity_stereo = f->dual_stereo = 0; |
|
if (intensitystereo_bit) |
|
f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band); |
|
} |
|
|
|
/* DS flag */ |
|
if (f->intensity_stereo <= f->start_band) |
|
tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */ |
|
else if (dualstereo_bit) |
|
if (encode) |
|
ff_opus_rc_enc_log(rc, f->dual_stereo, 1); |
|
else |
|
f->dual_stereo = ff_opus_rc_dec_log(rc, 1); |
|
|
|
/* Supply the remaining bits in this frame to lower bands */ |
|
remaining = tbits_8ths - total; |
|
bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); |
|
remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); |
|
for (i = f->start_band; i < f->coded_bands; i++) { |
|
const int bits = FFMIN(remaining, ff_celt_freq_range[i]); |
|
f->pulses[i] += bits + bandbits * ff_celt_freq_range[i]; |
|
remaining -= bits; |
|
} |
|
|
|
/* Finally determine the allocation */ |
|
for (i = f->start_band; i < f->coded_bands; i++) { |
|
int N = ff_celt_freq_range[i] << f->size; |
|
int prev_extra = extrabits; |
|
f->pulses[i] += extrabits; |
|
|
|
if (N > 1) { |
|
int dof; /* degrees of freedom */ |
|
int temp; /* dof * channels * log(dof) */ |
|
int fine_bits; |
|
int max_bits; |
|
int offset; /* fine energy quantization offset, i.e. |
|
* extra bits assigned over the standard |
|
* totalbits/dof */ |
|
|
|
extrabits = FFMAX(f->pulses[i] - f->caps[i], 0); |
|
f->pulses[i] -= extrabits; |
|
|
|
/* intensity stereo makes use of an extra degree of freedom */ |
|
dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo); |
|
temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3)); |
|
offset = (temp >> 1) - dof * CELT_FINE_OFFSET; |
|
if (N == 2) /* dof=2 is the only case that doesn't fit the model */ |
|
offset += dof << 1; |
|
|
|
/* grant an additional bias for the first and second pulses */ |
|
if (f->pulses[i] + offset < 2 * (dof << 3)) |
|
offset += temp >> 2; |
|
else if (f->pulses[i] + offset < 3 * (dof << 3)) |
|
offset += temp >> 3; |
|
|
|
fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3); |
|
max_bits = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS); |
|
max_bits = FFMAX(max_bits, 0); |
|
f->fine_bits[i] = av_clip(fine_bits, 0, max_bits); |
|
|
|
/* If fine_bits was rounded down or capped, |
|
* give priority for the final fine energy pass */ |
|
f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset); |
|
|
|
/* the remaining bits are assigned to PVQ */ |
|
f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3; |
|
} else { |
|
/* all bits go to fine energy except for the sign bit */ |
|
extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0); |
|
f->pulses[i] -= extrabits; |
|
f->fine_bits[i] = 0; |
|
f->fine_priority[i] = 1; |
|
} |
|
|
|
/* hand back a limited number of extra fine energy bits to this band */ |
|
if (extrabits > 0) { |
|
int fineextra = FFMIN(extrabits >> (f->channels + 2), |
|
CELT_MAX_FINE_BITS - f->fine_bits[i]); |
|
f->fine_bits[i] += fineextra; |
|
|
|
fineextra <<= f->channels + 2; |
|
f->fine_priority[i] = (fineextra >= extrabits - prev_extra); |
|
extrabits -= fineextra; |
|
} |
|
} |
|
f->remaining = extrabits; |
|
|
|
/* skipped bands dedicate all of their bits for fine energy */ |
|
for (; i < f->end_band; i++) { |
|
f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3; |
|
f->pulses[i] = 0; |
|
f->fine_priority[i] = f->fine_bits[i] < 1; |
|
} |
|
}
|
|
|