mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
398 lines
11 KiB
398 lines
11 KiB
/* |
|
* Real Audio 1.0 (14.4K) |
|
* Copyright (c) 2003 the ffmpeg project |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "bitstream.h" |
|
#include "ra144.h" |
|
|
|
#define NBLOCKS 4 ///< number of subblocks within a block |
|
#define BLOCKSIZE 40 ///< subblock size in 16-bit words |
|
#define BUFFERSIZE 146 ///< the size of the adaptive codebook |
|
|
|
|
|
typedef struct { |
|
unsigned int old_energy; ///< previous frame energy |
|
|
|
unsigned int lpc_tables[2][10]; |
|
unsigned int *lpc_coef; ///< LPC coefficients |
|
unsigned int *lpc_coef_old; ///< previous frame LPC coefficients |
|
unsigned int lpc_refl_rms; |
|
unsigned int lpc_refl_rms_old; |
|
|
|
/** the current subblock padded by the last 10 values of the previous one*/ |
|
int16_t curr_sblock[50]; |
|
|
|
/** adaptive codebook. Its size is two units bigger to avoid a |
|
* buffer overflow */ |
|
uint16_t adapt_cb[148]; |
|
} RA144Context; |
|
|
|
static int ra144_decode_init(AVCodecContext * avctx) |
|
{ |
|
RA144Context *ractx = avctx->priv_data; |
|
|
|
ractx->lpc_coef = ractx->lpc_tables[0]; |
|
ractx->lpc_coef_old = ractx->lpc_tables[1]; |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an |
|
* odd way to make the output identical to the binary decoder. |
|
*/ |
|
static int t_sqrt(unsigned int x) |
|
{ |
|
int s = 2; |
|
while (x > 0xfff) { |
|
s++; |
|
x = x >> 2; |
|
} |
|
|
|
return ff_sqrt(x << 20) << s; |
|
} |
|
|
|
/** |
|
* Evaluate the LPC filter coefficients from the reflection coefficients. |
|
* Does the inverse of the eval_refl() function. |
|
*/ |
|
static void eval_coefs(const int *refl, int *coefs) |
|
{ |
|
int buffer[10]; |
|
int *b1 = buffer; |
|
int *b2 = coefs; |
|
int x, y; |
|
|
|
for (x=0; x < 10; x++) { |
|
b1[x] = refl[x] << 4; |
|
|
|
for (y=0; y < x; y++) |
|
b1[y] = ((refl[x] * b2[x-y-1]) >> 12) + b2[y]; |
|
|
|
FFSWAP(int *, b1, b2); |
|
} |
|
|
|
for (x=0; x < 10; x++) |
|
coefs[x] >>= 4; |
|
} |
|
|
|
/** |
|
* Copy the last offset values of *source to *target. If those values are not |
|
* enough to fill the target buffer, fill it with another copy of those values. |
|
*/ |
|
static void copy_and_dup(const int16_t *source, int16_t *target, int offset) |
|
{ |
|
source += BUFFERSIZE - offset; |
|
|
|
if (offset > BLOCKSIZE) { |
|
memcpy(target, source, BLOCKSIZE*sizeof(*target)); |
|
} else { |
|
memcpy(target, source, offset*sizeof(*target)); |
|
memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target)); |
|
} |
|
} |
|
|
|
/** inverse root mean square */ |
|
static int irms(const int16_t *data) |
|
{ |
|
unsigned int i, sum = 0; |
|
|
|
for (i=0; i < BLOCKSIZE; i++) |
|
sum += data[i] * data[i]; |
|
|
|
if (sum == 0) |
|
return 0; /* OOPS - division by zero */ |
|
|
|
return 0x20000000 / (t_sqrt(sum) >> 8); |
|
} |
|
|
|
static void add_wav(int n, int skip_first, int *m, const int16_t *s1, |
|
const int8_t *s2, const int8_t *s3, int16_t *dest) |
|
{ |
|
int i; |
|
int v[3]; |
|
|
|
v[0] = 0; |
|
for (i=!skip_first; i<3; i++) |
|
v[i] = (gain_val_tab[n][i] * m[i]) >> (gain_exp_tab[n][i] + 1); |
|
|
|
for (i=0; i < BLOCKSIZE; i++) |
|
dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12; |
|
} |
|
|
|
/** |
|
* LPC Filter. Each output value is predicted from the 10 previous computed |
|
* ones. It overwrites the input with the output. |
|
* |
|
* @param in the input of the filter. It should be an array of size len + 10. |
|
* The 10 first input values are used to evaluate the first filtered one. |
|
*/ |
|
static void lpc_filter(const int16_t *lpc_coefs, uint16_t *in, int len) |
|
{ |
|
int x, i; |
|
int16_t *ptr = in; |
|
|
|
for (i=0; i<len; i++) { |
|
int sum = 0; |
|
int new_val; |
|
|
|
for(x=0; x<10; x++) |
|
sum += lpc_coefs[9-x] * ptr[x]; |
|
|
|
sum >>= 12; |
|
|
|
new_val = ptr[10] - sum; |
|
|
|
if (new_val < -32768 || new_val > 32767) { |
|
memset(in, 0, 100); |
|
return; |
|
} |
|
|
|
ptr[10] = new_val; |
|
ptr++; |
|
} |
|
} |
|
|
|
static unsigned int rescale_rms(unsigned int rms, unsigned int energy) |
|
{ |
|
return (rms * energy) >> 10; |
|
} |
|
|
|
static unsigned int rms(const int *data) |
|
{ |
|
int x; |
|
unsigned int res = 0x10000; |
|
int b = 0; |
|
|
|
for (x=0; x<10; x++) { |
|
res = (((0x1000000 - data[x]*data[x]) >> 12) * res) >> 12; |
|
|
|
if (res == 0) |
|
return 0; |
|
|
|
while (res <= 0x3fff) { |
|
b++; |
|
res <<= 2; |
|
} |
|
} |
|
|
|
res = t_sqrt(res); |
|
|
|
res >>= (b + 10); |
|
return res; |
|
} |
|
|
|
static void do_output_subblock(RA144Context *ractx, |
|
const uint16_t *lpc_coefs, int gval, |
|
GetBitContext *gb) |
|
{ |
|
uint16_t buffer_a[40]; |
|
uint16_t *block; |
|
int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none |
|
int gain = get_bits(gb, 8); |
|
int cb1_idx = get_bits(gb, 7); |
|
int cb2_idx = get_bits(gb, 7); |
|
int m[3]; |
|
|
|
if (cba_idx) { |
|
cba_idx += BLOCKSIZE/2 - 1; |
|
copy_and_dup(ractx->adapt_cb, buffer_a, cba_idx); |
|
m[0] = (irms(buffer_a) * gval) >> 12; |
|
} else { |
|
m[0] = 0; |
|
} |
|
|
|
m[1] = ((cb1_base[cb1_idx] >> 4) * gval) >> 8; |
|
m[2] = ((cb2_base[cb2_idx] >> 4) * gval) >> 8; |
|
|
|
memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE, |
|
(BUFFERSIZE - BLOCKSIZE) * 2); |
|
|
|
block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE; |
|
|
|
add_wav(gain, cba_idx, m, buffer_a, cb1_vects[cb1_idx], cb2_vects[cb2_idx], |
|
block); |
|
|
|
memcpy(ractx->curr_sblock, ractx->curr_sblock + 40, |
|
10*sizeof(*ractx->curr_sblock)); |
|
memcpy(ractx->curr_sblock + 10, block, |
|
BLOCKSIZE*sizeof(*ractx->curr_sblock)); |
|
|
|
lpc_filter(lpc_coefs, ractx->curr_sblock, BLOCKSIZE); |
|
} |
|
|
|
static void int_to_int16(int16_t *out, const int *inp) |
|
{ |
|
int i; |
|
|
|
for (i=0; i<30; i++) |
|
*(out++) = *(inp++); |
|
} |
|
|
|
/** |
|
* Evaluate the reflection coefficients from the filter coefficients. |
|
* Does the inverse of the eval_coefs() function. |
|
* |
|
* @return 1 if one of the reflection coefficients is of magnitude greater than |
|
* 4095, 0 if not. |
|
*/ |
|
static int eval_refl(const int16_t *coefs, int *refl, RA144Context *ractx) |
|
{ |
|
int retval = 0; |
|
int b, c, i; |
|
unsigned int u; |
|
int buffer1[10]; |
|
int buffer2[10]; |
|
int *bp1 = buffer1; |
|
int *bp2 = buffer2; |
|
|
|
for (i=0; i < 10; i++) |
|
buffer2[i] = coefs[i]; |
|
|
|
u = refl[9] = bp2[9]; |
|
|
|
if (u + 0x1000 > 0x1fff) { |
|
av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n"); |
|
return 1; |
|
} |
|
|
|
for (c=8; c >= 0; c--) { |
|
if (u == 0x1000) |
|
u++; |
|
|
|
if (u == 0xfffff000) |
|
u--; |
|
|
|
b = 0x1000-((u * u) >> 12); |
|
|
|
if (b == 0) |
|
b++; |
|
|
|
for (u=0; u<=c; u++) |
|
bp1[u] = ((bp2[u] - ((refl[c+1] * bp2[c-u]) >> 12)) * (0x1000000 / b)) >> 12; |
|
|
|
refl[c] = u = bp1[c]; |
|
|
|
if ((u + 0x1000) > 0x1fff) |
|
retval = 1; |
|
|
|
FFSWAP(int *, bp1, bp2); |
|
} |
|
return retval; |
|
} |
|
|
|
static int interp(RA144Context *ractx, int16_t *out, int block_num, |
|
int copynew, int energy) |
|
{ |
|
int work[10]; |
|
int a = block_num + 1; |
|
int b = NBLOCKS - a; |
|
int x; |
|
|
|
// Interpolate block coefficients from the this frame forth block and |
|
// last frame forth block |
|
for (x=0; x<30; x++) |
|
out[x] = (a * ractx->lpc_coef[x] + b * ractx->lpc_coef_old[x])>> 2; |
|
|
|
if (eval_refl(out, work, ractx)) { |
|
// The interpolated coefficients are unstable, copy either new or old |
|
// coefficients |
|
if (copynew) { |
|
int_to_int16(out, ractx->lpc_coef); |
|
return rescale_rms(ractx->lpc_refl_rms, energy); |
|
} else { |
|
int_to_int16(out, ractx->lpc_coef_old); |
|
return rescale_rms(ractx->lpc_refl_rms_old, energy); |
|
} |
|
} else { |
|
return rescale_rms(rms(work), energy); |
|
} |
|
} |
|
|
|
/* Uncompress one block (20 bytes -> 160*2 bytes) */ |
|
static int ra144_decode_frame(AVCodecContext * avctx, |
|
void *vdata, int *data_size, |
|
const uint8_t * buf, int buf_size) |
|
{ |
|
static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2}; |
|
unsigned int refl_rms[4]; // RMS of the reflection coefficients |
|
uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block |
|
unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame |
|
int i, c; |
|
int16_t *data = vdata; |
|
unsigned int energy; |
|
|
|
RA144Context *ractx = avctx->priv_data; |
|
GetBitContext gb; |
|
|
|
if(buf_size < 20) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Frame too small (%d bytes). Truncated file?\n", buf_size); |
|
*data_size = 0; |
|
return buf_size; |
|
} |
|
init_get_bits(&gb, buf, 20 * 8); |
|
|
|
for (i=0; i<10; i++) |
|
// "<< 1"? Doesn't this make one value out of two of the table useless? |
|
lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i]) << 1]; |
|
|
|
eval_coefs(lpc_refl, ractx->lpc_coef); |
|
ractx->lpc_refl_rms = rms(lpc_refl); |
|
|
|
energy = energy_tab[get_bits(&gb, 5) << 1]; // Useless table entries? |
|
|
|
refl_rms[0] = interp(ractx, block_coefs[0], 0, 0, ractx->old_energy); |
|
refl_rms[1] = interp(ractx, block_coefs[1], 1, energy > ractx->old_energy, |
|
t_sqrt(energy*ractx->old_energy) >> 12); |
|
refl_rms[2] = interp(ractx, block_coefs[2], 2, 1, energy); |
|
refl_rms[3] = rescale_rms(ractx->lpc_refl_rms, energy); |
|
|
|
int_to_int16(block_coefs[3], ractx->lpc_coef); |
|
|
|
for (c=0; c<4; c++) { |
|
do_output_subblock(ractx, block_coefs[c], refl_rms[c], &gb); |
|
|
|
for (i=0; i<BLOCKSIZE; i++) |
|
*data++ = av_clip_int16(ractx->curr_sblock[i + 10] << 2); |
|
} |
|
|
|
ractx->old_energy = energy; |
|
ractx->lpc_refl_rms_old = ractx->lpc_refl_rms; |
|
|
|
FFSWAP(unsigned int *, ractx->lpc_coef_old, ractx->lpc_coef); |
|
|
|
*data_size = 2*160; |
|
return 20; |
|
} |
|
|
|
AVCodec ra_144_decoder = |
|
{ |
|
"real_144", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_RA_144, |
|
sizeof(RA144Context), |
|
ra144_decode_init, |
|
NULL, |
|
NULL, |
|
ra144_decode_frame, |
|
.long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"), |
|
};
|
|
|