You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1479 lines
56 KiB

/*
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/h264.h
* H.264 / AVC / MPEG4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#ifndef AVCODEC_H264_H
#define AVCODEC_H264_H
#include "dsputil.h"
#include "cabac.h"
#include "mpegvideo.h"
#include "h264pred.h"
#include "rectangle.h"
#define interlaced_dct interlaced_dct_is_a_bad_name
#define mb_intra mb_intra_is_not_initialized_see_mb_type
#define LUMA_DC_BLOCK_INDEX 25
#define CHROMA_DC_BLOCK_INDEX 26
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
#define COEFF_TOKEN_VLC_BITS 8
#define TOTAL_ZEROS_VLC_BITS 9
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
#define RUN_VLC_BITS 3
#define RUN7_VLC_BITS 6
#define MAX_SPS_COUNT 32
#define MAX_PPS_COUNT 256
#define MAX_MMCO_COUNT 66
#define MAX_DELAYED_PIC_COUNT 16
/* Compiling in interlaced support reduces the speed
* of progressive decoding by about 2%. */
#define ALLOW_INTERLACE
#define ALLOW_NOCHROMA
/**
* The maximum number of slices supported by the decoder.
* must be a power of 2
*/
#define MAX_SLICES 16
#ifdef ALLOW_INTERLACE
#define MB_MBAFF h->mb_mbaff
#define MB_FIELD h->mb_field_decoding_flag
#define FRAME_MBAFF h->mb_aff_frame
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
#else
#define MB_MBAFF 0
#define MB_FIELD 0
#define FRAME_MBAFF 0
#define FIELD_PICTURE 0
#undef IS_INTERLACED
#define IS_INTERLACED(mb_type) 0
#endif
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
#ifdef ALLOW_NOCHROMA
#define CHROMA h->sps.chroma_format_idc
#else
#define CHROMA 1
#endif
#ifndef CABAC
#define CABAC h->pps.cabac
#endif
#define EXTENDED_SAR 255
#define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
#define MB_TYPE_8x8DCT 0x01000000
#define IS_REF0(a) ((a) & MB_TYPE_REF0)
#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
/**
* Value of Picture.reference when Picture is not a reference picture, but
* is held for delayed output.
*/
#define DELAYED_PIC_REF 4
/* NAL unit types */
enum {
NAL_SLICE=1,
NAL_DPA,
NAL_DPB,
NAL_DPC,
NAL_IDR_SLICE,
NAL_SEI,
NAL_SPS,
NAL_PPS,
NAL_AUD,
NAL_END_SEQUENCE,
NAL_END_STREAM,
NAL_FILLER_DATA,
NAL_SPS_EXT,
NAL_AUXILIARY_SLICE=19
};
/**
* SEI message types
*/
typedef enum {
SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
SEI_TYPE_PIC_TIMING = 1, ///< picture timing
SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
} SEI_Type;
/**
* pic_struct in picture timing SEI message
*/
typedef enum {
SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
} SEI_PicStructType;
/**
* Sequence parameter set
*/
typedef struct SPS{
int profile_idc;
int level_idc;
int chroma_format_idc;
int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
int poc_type; ///< pic_order_cnt_type
int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
int delta_pic_order_always_zero_flag;
int offset_for_non_ref_pic;
int offset_for_top_to_bottom_field;
int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
int ref_frame_count; ///< num_ref_frames
int gaps_in_frame_num_allowed_flag;
int mb_width; ///< pic_width_in_mbs_minus1 + 1
int mb_height; ///< pic_height_in_map_units_minus1 + 1
int frame_mbs_only_flag;
int mb_aff; ///<mb_adaptive_frame_field_flag
int direct_8x8_inference_flag;
int crop; ///< frame_cropping_flag
unsigned int crop_left; ///< frame_cropping_rect_left_offset
unsigned int crop_right; ///< frame_cropping_rect_right_offset
unsigned int crop_top; ///< frame_cropping_rect_top_offset
unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
int vui_parameters_present_flag;
AVRational sar;
int video_signal_type_present_flag;
int full_range;
int colour_description_present_flag;
enum AVColorPrimaries color_primaries;
enum AVColorTransferCharacteristic color_trc;
enum AVColorSpace colorspace;
int timing_info_present_flag;
uint32_t num_units_in_tick;
uint32_t time_scale;
int fixed_frame_rate_flag;
short offset_for_ref_frame[256]; //FIXME dyn aloc?
int bitstream_restriction_flag;
int num_reorder_frames;
int scaling_matrix_present;
uint8_t scaling_matrix4[6][16];
uint8_t scaling_matrix8[2][64];
int nal_hrd_parameters_present_flag;
int vcl_hrd_parameters_present_flag;
int pic_struct_present_flag;
int time_offset_length;
int cpb_cnt; ///< See H.264 E.1.2
int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
int residual_color_transform_flag; ///< residual_colour_transform_flag
}SPS;
/**
* Picture parameter set
*/
typedef struct PPS{
unsigned int sps_id;
int cabac; ///< entropy_coding_mode_flag
int pic_order_present; ///< pic_order_present_flag
int slice_group_count; ///< num_slice_groups_minus1 + 1
int mb_slice_group_map_type;
unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
int weighted_pred; ///< weighted_pred_flag
int weighted_bipred_idc;
int init_qp; ///< pic_init_qp_minus26 + 26
int init_qs; ///< pic_init_qs_minus26 + 26
int chroma_qp_index_offset[2];
int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
int constrained_intra_pred; ///< constrained_intra_pred_flag
int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
int transform_8x8_mode; ///< transform_8x8_mode_flag
uint8_t scaling_matrix4[6][16];
uint8_t scaling_matrix8[2][64];
uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
int chroma_qp_diff;
}PPS;
/**
* Memory management control operation opcode.
*/
typedef enum MMCOOpcode{
MMCO_END=0,
MMCO_SHORT2UNUSED,
MMCO_LONG2UNUSED,
MMCO_SHORT2LONG,
MMCO_SET_MAX_LONG,
MMCO_RESET,
MMCO_LONG,
} MMCOOpcode;
/**
* Memory management control operation.
*/
typedef struct MMCO{
MMCOOpcode opcode;
int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
int long_arg; ///< index, pic_num, or num long refs depending on opcode
} MMCO;
/**
* H264Context
*/
typedef struct H264Context{
MpegEncContext s;
int nal_ref_idc;
int nal_unit_type;
uint8_t *rbsp_buffer[2];
unsigned int rbsp_buffer_size[2];
/**
* Used to parse AVC variant of h264
*/
int is_avc; ///< this flag is != 0 if codec is avc1
int got_avcC; ///< flag used to parse avcC data only once
int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
int chroma_qp[2]; //QPc
int qp_thresh; ///< QP threshold to skip loopfilter
int prev_mb_skipped;
int next_mb_skipped;
//prediction stuff
int chroma_pred_mode;
int intra16x16_pred_mode;
int top_mb_xy;
int left_mb_xy[2];
int top_type;
int left_type[2];
int8_t intra4x4_pred_mode_cache[5*8];
int8_t (*intra4x4_pred_mode)[8];
H264PredContext hpc;
unsigned int topleft_samples_available;
unsigned int top_samples_available;
unsigned int topright_samples_available;
unsigned int left_samples_available;
uint8_t (*top_borders[2])[16+2*8];
uint8_t left_border[2*(17+2*9)];
/**
* non zero coeff count cache.
* is 64 if not available.
*/
DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
/*
.UU.YYYY
.UU.YYYY
.vv.YYYY
.VV.YYYY
*/
uint8_t (*non_zero_count)[32];
/**
* Motion vector cache.
*/
DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2];
DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
#define LIST_NOT_USED -1 //FIXME rename?
#define PART_NOT_AVAILABLE -2
/**
* is 1 if the specific list MV&references are set to 0,0,-2.
*/
int mv_cache_clean[2];
/**
* number of neighbors (top and/or left) that used 8x8 dct
*/
int neighbor_transform_size;
/**
* block_offset[ 0..23] for frame macroblocks
* block_offset[24..47] for field macroblocks
*/
int block_offset[2*(16+8)];
uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
uint32_t *mb2b8_xy;
int b_stride; //FIXME use s->b4_stride
int b8_stride;
int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
int mb_uvlinesize;
int emu_edge_width;
int emu_edge_height;
int halfpel_flag;
int thirdpel_flag;
int unknown_svq3_flag;
int next_slice_index;
SPS *sps_buffers[MAX_SPS_COUNT];
SPS sps; ///< current sps
PPS *pps_buffers[MAX_PPS_COUNT];
/**
* current pps
*/
PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
uint32_t dequant4_buffer[6][52][16];
uint32_t dequant8_buffer[2][52][64];
uint32_t (*dequant4_coeff[6])[16];
uint32_t (*dequant8_coeff[2])[64];
int dequant_coeff_pps; ///< reinit tables when pps changes
int slice_num;
uint16_t *slice_table_base;
uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
int slice_type;
int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
int slice_type_fixed;
//interlacing specific flags
int mb_aff_frame;
int mb_field_decoding_flag;
int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
//POC stuff
int poc_lsb;
int poc_msb;
int delta_poc_bottom;
int delta_poc[2];
int frame_num;
int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
int frame_num_offset; ///< for POC type 2
int prev_frame_num_offset; ///< for POC type 2
int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
/**
* frame_num for frames or 2*frame_num+1 for field pics.
*/
int curr_pic_num;
/**
* max_frame_num or 2*max_frame_num for field pics.
*/
int max_pic_num;
//Weighted pred stuff
int use_weight;
int use_weight_chroma;
int luma_log2_weight_denom;
int chroma_log2_weight_denom;
int luma_weight[2][48];
int luma_offset[2][48];
int chroma_weight[2][48][2];
int chroma_offset[2][48][2];
int implicit_weight[48][48];
//deblock
int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
int slice_alpha_c0_offset;
int slice_beta_offset;
int redundant_pic_count;
int direct_spatial_mv_pred;
int col_parity;
int col_fieldoff;
int dist_scale_factor[16];
int dist_scale_factor_field[2][32];
int map_col_to_list0[2][16+32];
int map_col_to_list0_field[2][2][16+32];
/**
* num_ref_idx_l0/1_active_minus1 + 1
*/
unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
unsigned int list_count;
uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
Picture *short_ref[32];
Picture *long_ref[32];
Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
Reordered version of default_ref_list
according to picture reordering in slice header */
int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
int outputed_poc;
/**
* memory management control operations buffer.
*/
MMCO mmco[MAX_MMCO_COUNT];
int mmco_index;
int long_ref_count; ///< number of actual long term references
int short_ref_count; ///< number of actual short term references
//data partitioning
GetBitContext intra_gb;
GetBitContext inter_gb;
GetBitContext *intra_gb_ptr;
GetBitContext *inter_gb_ptr;
DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
/**
* Cabac
*/
CABACContext cabac;
uint8_t cabac_state[460];
int cabac_init_idc;
/* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
uint16_t *cbp_table;
int cbp;
int top_cbp;
int left_cbp;
/* chroma_pred_mode for i4x4 or i16x16, else 0 */
uint8_t *chroma_pred_mode_table;
int last_qscale_diff;
int16_t (*mvd_table[2])[2];
DECLARE_ALIGNED_16(int16_t, mvd_cache)[2][5*8][2];
uint8_t *direct_table;
uint8_t direct_cache[5*8];
uint8_t zigzag_scan[16];
uint8_t zigzag_scan8x8[64];
uint8_t zigzag_scan8x8_cavlc[64];
uint8_t field_scan[16];
uint8_t field_scan8x8[64];
uint8_t field_scan8x8_cavlc[64];
const uint8_t *zigzag_scan_q0;
const uint8_t *zigzag_scan8x8_q0;
const uint8_t *zigzag_scan8x8_cavlc_q0;
const uint8_t *field_scan_q0;
const uint8_t *field_scan8x8_q0;
const uint8_t *field_scan8x8_cavlc_q0;
int x264_build;
/**
* @defgroup multithreading Members for slice based multithreading
* @{
*/
struct H264Context *thread_context[MAX_THREADS];
/**
* current slice number, used to initalize slice_num of each thread/context
*/
int current_slice;
/**
* Max number of threads / contexts.
* This is equal to AVCodecContext.thread_count unless
* multithreaded decoding is impossible, in which case it is
* reduced to 1.
*/
int max_contexts;
/**
* 1 if the single thread fallback warning has already been
* displayed, 0 otherwise.
*/
int single_decode_warning;
int last_slice_type;
/** @} */
int mb_xy;
uint32_t svq3_watermark_key;
/**
* pic_struct in picture timing SEI message
*/
SEI_PicStructType sei_pic_struct;
/**
* Complement sei_pic_struct
* SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
* However, soft telecined frames may have these values.
* This is used in an attempt to flag soft telecine progressive.
*/
int prev_interlaced_frame;
/**
* Bit set of clock types for fields/frames in picture timing SEI message.
* For each found ct_type, appropriate bit is set (e.g., bit 1 for
* interlaced).
*/
int sei_ct_type;
/**
* dpb_output_delay in picture timing SEI message, see H.264 C.2.2
*/
int sei_dpb_output_delay;
/**
* cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
*/
int sei_cpb_removal_delay;
/**
* recovery_frame_cnt from SEI message
*
* Set to -1 if no recovery point SEI message found or to number of frames
* before playback synchronizes. Frames having recovery point are key
* frames.
*/
int sei_recovery_frame_cnt;
int is_complex;
int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
// Timestamp stuff
int sei_buffering_period_present; ///< Buffering period SEI flag
int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
}H264Context;
extern const uint8_t ff_h264_chroma_qp[52];
void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
/**
* Decode SEI
*/
int ff_h264_decode_sei(H264Context *h);
/**
* Decode SPS
*/
int ff_h264_decode_seq_parameter_set(H264Context *h);
/**
* Decode PPS
*/
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
/**
* Decodes a network abstraction layer unit.
* @param consumed is the number of bytes used as input
* @param length is the length of the array
* @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
* @returns decoded bytes, might be src+1 if no escapes
*/
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
/**
* identifies the exact end of the bitstream
* @return the length of the trailing, or 0 if damaged
*/
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
/**
* frees any data that may have been allocated in the H264 context like SPS, PPS etc.
*/
av_cold void ff_h264_free_context(H264Context *h);
/**
* reconstructs bitstream slice_type.
*/
int ff_h264_get_slice_type(const H264Context *h);
/**
* allocates tables.
* needs width/height
*/
int ff_h264_alloc_tables(H264Context *h);
/**
* fills the default_ref_list.
*/
int ff_h264_fill_default_ref_list(H264Context *h);
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
void ff_h264_fill_mbaff_ref_list(H264Context *h);
void ff_h264_remove_all_refs(H264Context *h);
/**
* Executes the reference picture marking (memory management control operations).
*/
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
/**
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
/**
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
void ff_h264_write_back_intra_pred_mode(H264Context *h);
void ff_h264_hl_decode_mb(H264Context *h);
int ff_h264_frame_start(H264Context *h);
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
av_cold void ff_h264_decode_init_vlc(void);
/**
* decodes a macroblock
* @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
*/
int ff_h264_decode_mb_cavlc(H264Context *h);
/**
* decodes a CABAC coded macroblock
* @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
*/
int ff_h264_decode_mb_cabac(H264Context *h);
void ff_h264_init_cabac_states(H264Context *h);
void ff_h264_direct_dist_scale_factor(H264Context * const h);
void ff_h264_direct_ref_list_init(H264Context * const h);
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
/**
* Reset SEI values at the beginning of the frame.
*
* @param h H.264 context.
*/
void ff_h264_reset_sei(H264Context *h);
/*
o-o o-o
/ / /
o-o o-o
,---'
o-o o-o
/ / /
o-o o-o
*/
//This table must be here because scan8[constant] must be known at compiletime
static const uint8_t scan8[16 + 2*4]={
4+1*8, 5+1*8, 4+2*8, 5+2*8,
6+1*8, 7+1*8, 6+2*8, 7+2*8,
4+3*8, 5+3*8, 4+4*8, 5+4*8,
6+3*8, 7+3*8, 6+4*8, 7+4*8,
1+1*8, 2+1*8,
1+2*8, 2+2*8,
1+4*8, 2+4*8,
1+5*8, 2+5*8,
};
static av_always_inline uint32_t pack16to32(int a, int b){
#if HAVE_BIGENDIAN
return (b&0xFFFF) + (a<<16);
#else
return (a&0xFFFF) + (b<<16);
#endif
}
/**
* gets the chroma qp.
*/
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
return h->pps.chroma_qp_table[t][qscale];
}
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
static void fill_decode_caches(H264Context *h, int mb_type){
MpegEncContext * const s = &h->s;
const int mb_xy= h->mb_xy;
int topleft_xy, top_xy, topright_xy, left_xy[2];
int topleft_type, top_type, topright_type, left_type[2];
const uint8_t * left_block;
int topleft_partition= -1;
int i;
static const uint8_t left_block_options[4][16]={
{0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
{2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
{0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
{0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
};
top_xy = mb_xy - (s->mb_stride << MB_FIELD);
/* Wow, what a mess, why didn't they simplify the interlacing & intra
* stuff, I can't imagine that these complex rules are worth it. */
topleft_xy = top_xy - 1;
topright_xy= top_xy + 1;
left_xy[1] = left_xy[0] = mb_xy-1;
left_block = left_block_options[0];
if(FRAME_MBAFF){
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
if(s->mb_y&1){
if (left_mb_field_flag != curr_mb_field_flag) {
left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
if (curr_mb_field_flag) {
left_xy[1] += s->mb_stride;
left_block = left_block_options[3];
} else {
topleft_xy += s->mb_stride;
// take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
topleft_partition = 0;
left_block = left_block_options[1];
}
}
}else{
if(curr_mb_field_flag){
topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
}
if (left_mb_field_flag != curr_mb_field_flag) {
left_xy[1] = left_xy[0] = mb_xy - 1;
if (curr_mb_field_flag) {
left_xy[1] += s->mb_stride;
left_block = left_block_options[3];
} else {
left_block = left_block_options[2];
}
}
}
}
h->top_mb_xy = top_xy;
h->left_mb_xy[0] = left_xy[0];
h->left_mb_xy[1] = left_xy[1];
topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
if(IS_INTRA(mb_type)){
int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
h->topleft_samples_available=
h->top_samples_available=
h->left_samples_available= 0xFFFF;
h->topright_samples_available= 0xEEEA;
if(!(top_type & type_mask)){
h->topleft_samples_available= 0xB3FF;
h->top_samples_available= 0x33FF;
h->topright_samples_available= 0x26EA;
}
if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
if(IS_INTERLACED(mb_type)){
if(!(left_type[0] & type_mask)){
h->topleft_samples_available&= 0xDFFF;
h->left_samples_available&= 0x5FFF;
}
if(!(left_type[1] & type_mask)){
h->topleft_samples_available&= 0xFF5F;
h->left_samples_available&= 0xFF5F;
}
}else{
int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
assert(left_xy[0] == left_xy[1]);
if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
h->topleft_samples_available&= 0xDF5F;
h->left_samples_available&= 0x5F5F;
}
}
}else{
if(!(left_type[0] & type_mask)){
h->topleft_samples_available&= 0xDF5F;
h->left_samples_available&= 0x5F5F;
}
}
if(!(topleft_type & type_mask))
h->topleft_samples_available&= 0x7FFF;
if(!(topright_type & type_mask))
h->topright_samples_available&= 0xFBFF;
if(IS_INTRA4x4(mb_type)){
if(IS_INTRA4x4(top_type)){
h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
}else{
int pred;
if(!(top_type & type_mask))
pred= -1;
else{
pred= 2;
}
h->intra4x4_pred_mode_cache[4+8*0]=
h->intra4x4_pred_mode_cache[5+8*0]=
h->intra4x4_pred_mode_cache[6+8*0]=
h->intra4x4_pred_mode_cache[7+8*0]= pred;
}
for(i=0; i<2; i++){
if(IS_INTRA4x4(left_type[i])){
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
}else{
int pred;
if(!(left_type[i] & type_mask))
pred= -1;
else{
pred= 2;
}
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
}
}
}
}
/*
0 . T T. T T T T
1 L . .L . . . .
2 L . .L . . . .
3 . T TL . . . .
4 L . .L . . . .
5 L . .. . . . .
*/
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
if(top_type){
*(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
}else {
h->non_zero_count_cache[1+8*0]=
h->non_zero_count_cache[2+8*0]=
h->non_zero_count_cache[1+8*3]=
h->non_zero_count_cache[2+8*3]=
*(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
}
for (i=0; i<2; i++) {
if(left_type[i]){
h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
}else{
h->non_zero_count_cache[3+8*1 + 2*8*i]=
h->non_zero_count_cache[3+8*2 + 2*8*i]=
h->non_zero_count_cache[0+8*1 + 8*i]=
h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
}
}
if( CABAC ) {
// top_cbp
if(top_type) {
h->top_cbp = h->cbp_table[top_xy];
} else if(IS_INTRA(mb_type)) {
h->top_cbp = 0x1C0;
} else {
h->top_cbp = 0;
}
// left_cbp
if (left_type[0]) {
h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
} else if(IS_INTRA(mb_type)) {
h->left_cbp = 0x1C0;
} else {
h->left_cbp = 0;
}
if (left_type[0]) {
h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
}
if (left_type[1]) {
h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
}
}
#if 1
if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
int list;
for(list=0; list<h->list_count; list++){
if(!USES_LIST(mb_type, list)){
/*if(!h->mv_cache_clean[list]){
memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
h->mv_cache_clean[list]= 1;
}*/
continue;
}
assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
h->mv_cache_clean[list]= 0;
if(USES_LIST(top_type, list)){
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
h->ref_cache[list][scan8[0] + 0 - 1*8]=
h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
h->ref_cache[list][scan8[0] + 2 - 1*8]=
h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
}else{
AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
*(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
}
for(i=0; i<2; i++){
int cache_idx = scan8[0] - 1 + i*2*8;
if(USES_LIST(left_type[i], list)){
const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
*(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
*(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
}else{
*(uint32_t*)h->mv_cache [list][cache_idx ]=
*(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
h->ref_cache[list][cache_idx ]=
h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
}
}
if(USES_LIST(topleft_type, list)){
const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
}else{
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
}
if(USES_LIST(topright_type, list)){
const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
*(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
}else{
*(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
}
if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
continue;
if(!IS_DIRECT(mb_type)) {
h->ref_cache[list][scan8[5 ]+1] =
h->ref_cache[list][scan8[7 ]+1] =
h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
h->ref_cache[list][scan8[4 ]] =
h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
*(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
*(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
*(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
*(uint32_t*)h->mv_cache [list][scan8[4 ]]=
*(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
if( CABAC ) {
/* XXX beurk, Load mvd */
if(USES_LIST(top_type, list)){
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
AV_COPY128(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
}else{
AV_ZERO128(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
}
if(USES_LIST(left_type[0], list)){
const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
}else{
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
}
if(USES_LIST(left_type[1], list)){
const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
}else{
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
}
*(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
*(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
*(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
*(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
*(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
if(h->slice_type_nos == FF_B_TYPE){
fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
if(IS_DIRECT(top_type)){
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
}else if(IS_8X8(top_type)){
int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
}else{
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
}
if(IS_DIRECT(left_type[0]))
h->direct_cache[scan8[0] - 1 + 0*8]= 1;
else if(IS_8X8(left_type[0]))
h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
else
h->direct_cache[scan8[0] - 1 + 0*8]= 0;
if(IS_DIRECT(left_type[1]))
h->direct_cache[scan8[0] - 1 + 2*8]= 1;
else if(IS_8X8(left_type[1]))
h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
else
h->direct_cache[scan8[0] - 1 + 2*8]= 0;
}
}
}
if(FRAME_MBAFF){
#define MAP_MVS\
MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
if(MB_FIELD){
#define MAP_F2F(idx, mb_type)\
if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
h->ref_cache[list][idx] <<= 1;\
h->mv_cache[list][idx][1] /= 2;\
h->mvd_cache[list][idx][1] /= 2;\
}
MAP_MVS
#undef MAP_F2F
}else{
#define MAP_F2F(idx, mb_type)\
if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
h->ref_cache[list][idx] >>= 1;\
h->mv_cache[list][idx][1] <<= 1;\
h->mvd_cache[list][idx][1] <<= 1;\
}
MAP_MVS
#undef MAP_F2F
}
}
}
}
#endif
h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
}
/**
*
* @returns non zero if the loop filter can be skiped
*/
static int fill_filter_caches(H264Context *h, int mb_type){
MpegEncContext * const s = &h->s;
const int mb_xy= h->mb_xy;
int top_xy, left_xy[2];
int top_type, left_type[2];
int i;
top_xy = mb_xy - (s->mb_stride << MB_FIELD);
//FIXME deblocking could skip the intra and nnz parts.
/* Wow, what a mess, why didn't they simplify the interlacing & intra
* stuff, I can't imagine that these complex rules are worth it. */
left_xy[1] = left_xy[0] = mb_xy-1;
if(FRAME_MBAFF){
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
if(s->mb_y&1){
if (left_mb_field_flag != curr_mb_field_flag) {
left_xy[0] -= s->mb_stride;
}
}else{
if(curr_mb_field_flag){
top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
}
if (left_mb_field_flag != curr_mb_field_flag) {
left_xy[1] += s->mb_stride;
}
}
}
h->top_mb_xy = top_xy;
h->left_mb_xy[0] = left_xy[0];
h->left_mb_xy[1] = left_xy[1];
{
//for sufficiently low qp, filtering wouldn't do anything
//this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
int qp = s->current_picture.qscale_table[mb_xy];
if(qp <= qp_thresh
&& (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
&& (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
if(!FRAME_MBAFF)
return 1;
if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[1] ] + 1)>>1) <= qp_thresh)
&& (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh))
return 1;
}
}
if(h->deblocking_filter == 2){
h->top_type = top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
}else{
h->top_type = top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
}
if(IS_INTRA(mb_type))
return 0;
AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
*((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
*((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
h->cbp= h->cbp_table[mb_xy];
{
int list;
for(list=0; list<h->list_count; list++){
int8_t *ref;
int y, b_stride;
int16_t (*mv_dst)[2];
int16_t (*mv_src)[2];
if(!USES_LIST(mb_type, list)){
fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
*(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
*(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
*(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
*(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
continue;
}
ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
{
int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
*(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
*(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
ref += h->b8_stride;
*(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
*(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
}
b_stride = h->b_stride;
mv_dst = &h->mv_cache[list][scan8[0]];
mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
for(y=0; y<4; y++){
AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
}
}
}
/*
0 . T T. T T T T
1 L . .L . . . .
2 L . .L . . . .
3 . T TL . . . .
4 L . .L . . . .
5 L . .. . . . .
*/
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
if(top_type){
*(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
}
if(left_type[0]){
h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
}
// CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
if(!CABAC && h->pps.transform_8x8_mode){
if(IS_8x8DCT(top_type)){
h->non_zero_count_cache[4+8*0]=
h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
h->non_zero_count_cache[6+8*0]=
h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
}
if(IS_8x8DCT(left_type[0])){
h->non_zero_count_cache[3+8*1]=
h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
}
if(IS_8x8DCT(left_type[1])){
h->non_zero_count_cache[3+8*3]=
h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
}
if(IS_8x8DCT(mb_type)){
h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
}
}
if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
int list;
for(list=0; list<h->list_count; list++){
if(USES_LIST(top_type, list)){
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
h->ref_cache[list][scan8[0] + 0 - 1*8]=
h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
h->ref_cache[list][scan8[0] + 2 - 1*8]=
h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
}else{
AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
*(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((LIST_NOT_USED)&0xFF)*0x01010101;
}
if(!IS_INTERLACED(mb_type^left_type[0])){
if(USES_LIST(left_type[0], list)){
const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*0];
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 8 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*1];
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 +16 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*2];
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 +24 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*3];
h->ref_cache[list][scan8[0] - 1 + 0 ]=
h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*0]];
h->ref_cache[list][scan8[0] - 1 +16 ]=
h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*1]];
}else{
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0 ]=
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 8 ]=
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 +16 ]=
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 +24 ]= 0;
h->ref_cache[list][scan8[0] - 1 + 0 ]=
h->ref_cache[list][scan8[0] - 1 + 8 ]=
h->ref_cache[list][scan8[0] - 1 + 16 ]=
h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
}
}
}
}
return 0;
}
/**
* gets the predicted intra4x4 prediction mode.
*/
static inline int pred_intra_mode(H264Context *h, int n){
const int index8= scan8[n];
const int left= h->intra4x4_pred_mode_cache[index8 - 1];
const int top = h->intra4x4_pred_mode_cache[index8 - 8];
const int min= FFMIN(left, top);
tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
if(min<0) return DC_PRED;
else return min;
}
static inline void write_back_non_zero_count(H264Context *h){
const int mb_xy= h->mb_xy;
AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
*((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
*((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
}
static inline void write_back_motion(H264Context *h, int mb_type){
MpegEncContext * const s = &h->s;
const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
int list;
if(!USES_LIST(mb_type, 0))
fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
for(list=0; list<h->list_count; list++){
int y, b_stride;
int16_t (*mv_dst)[2];
int16_t (*mv_src)[2];
if(!USES_LIST(mb_type, list))
continue;
b_stride = h->b_stride;
mv_dst = &s->current_picture.motion_val[list][b_xy];
mv_src = &h->mv_cache[list][scan8[0]];
for(y=0; y<4; y++){
AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
}
if( CABAC ) {
int16_t (*mvd_dst)[2] = &h->mvd_table[list][b_xy];
int16_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
if(IS_SKIP(mb_type))
fill_rectangle(mvd_dst, 4, 4, h->b_stride, 0, 4);
else
for(y=0; y<4; y++){
AV_COPY128(mvd_dst + y*b_stride, mvd_src + 8*y);
}
}
{
int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
}
}
if(h->slice_type_nos == FF_B_TYPE && CABAC){
if(IS_8X8(mb_type)){
uint8_t *direct_table = &h->direct_table[b8_xy];
direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
}
}
}
static inline int get_dct8x8_allowed(H264Context *h){
if(h->sps.direct_8x8_inference_flag)
return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
else
return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
}
static void predict_field_decoding_flag(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= h->mb_xy;
int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
? s->current_picture.mb_type[mb_xy-1]
: (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
? s->current_picture.mb_type[mb_xy-s->mb_stride]
: 0;
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
}
/**
* decodes a P_SKIP or B_SKIP macroblock
*/
static void decode_mb_skip(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= h->mb_xy;
int mb_type=0;
memset(h->non_zero_count[mb_xy], 0, 32);
memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
if(MB_FIELD)
mb_type|= MB_TYPE_INTERLACED;
if( h->slice_type_nos == FF_B_TYPE )
{
// just for fill_caches. pred_direct_motion will set the real mb_type
mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
ff_h264_pred_direct_motion(h, &mb_type);
mb_type|= MB_TYPE_SKIP;
}
else
{
int mx, my;
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
pred_pskip_motion(h, &mx, &my);
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
}
write_back_motion(h, mb_type);
s->current_picture.mb_type[mb_xy]= mb_type;
s->current_picture.qscale_table[mb_xy]= s->qscale;
h->slice_table[ mb_xy ]= h->slice_num;
h->prev_mb_skipped= 1;
}
#include "h264_mvpred.h" //For pred_pskip_motion()
#endif /* AVCODEC_H264_H */