mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2452 lines
84 KiB
2452 lines
84 KiB
/* |
|
* Copyright (C) 2016 foo86 |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/channel_layout.h" |
|
#include "dcaadpcm.h" |
|
#include "dcadec.h" |
|
#include "dcadata.h" |
|
#include "dcahuff.h" |
|
#include "dcamath.h" |
|
#include "dca_syncwords.h" |
|
#include "decode.h" |
|
|
|
#if ARCH_ARM |
|
#include "arm/dca.h" |
|
#endif |
|
|
|
enum HeaderType { |
|
HEADER_CORE, |
|
HEADER_XCH, |
|
HEADER_XXCH |
|
}; |
|
|
|
static const int8_t prm_ch_to_spkr_map[DCA_AMODE_COUNT][5] = { |
|
{ DCA_SPEAKER_C, -1, -1, -1, -1 }, |
|
{ DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, |
|
{ DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, |
|
{ DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, |
|
{ DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 }, |
|
{ DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R , -1, -1 }, |
|
{ DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Cs, -1, -1 }, |
|
{ DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R , DCA_SPEAKER_Cs, -1 }, |
|
{ DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Ls, DCA_SPEAKER_Rs, -1 }, |
|
{ DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Ls, DCA_SPEAKER_Rs } |
|
}; |
|
|
|
static const uint8_t audio_mode_ch_mask[DCA_AMODE_COUNT] = { |
|
DCA_SPEAKER_LAYOUT_MONO, |
|
DCA_SPEAKER_LAYOUT_STEREO, |
|
DCA_SPEAKER_LAYOUT_STEREO, |
|
DCA_SPEAKER_LAYOUT_STEREO, |
|
DCA_SPEAKER_LAYOUT_STEREO, |
|
DCA_SPEAKER_LAYOUT_3_0, |
|
DCA_SPEAKER_LAYOUT_2_1, |
|
DCA_SPEAKER_LAYOUT_3_1, |
|
DCA_SPEAKER_LAYOUT_2_2, |
|
DCA_SPEAKER_LAYOUT_5POINT0 |
|
}; |
|
|
|
static const uint8_t block_code_nbits[7] = { |
|
7, 10, 12, 13, 15, 17, 19 |
|
}; |
|
|
|
static int dca_get_vlc(GetBitContext *s, const VLC *vlc) |
|
{ |
|
return get_vlc2(s, vlc->table, vlc->bits, 2); |
|
} |
|
|
|
static void get_array(GetBitContext *s, int32_t *array, int size, int n) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < size; i++) |
|
array[i] = get_sbits(s, n); |
|
} |
|
|
|
// 5.3.1 - Bit stream header |
|
static int parse_frame_header(DCACoreDecoder *s) |
|
{ |
|
DCACoreFrameHeader h = { 0 }; |
|
int err = ff_dca_parse_core_frame_header(&h, &s->gb); |
|
|
|
if (err < 0) { |
|
switch (err) { |
|
case DCA_PARSE_ERROR_DEFICIT_SAMPLES: |
|
av_log(s->avctx, AV_LOG_ERROR, "Deficit samples are not supported\n"); |
|
return h.normal_frame ? AVERROR_INVALIDDATA : AVERROR_PATCHWELCOME; |
|
|
|
case DCA_PARSE_ERROR_PCM_BLOCKS: |
|
av_log(s->avctx, AV_LOG_ERROR, "Unsupported number of PCM sample blocks (%d)\n", h.npcmblocks); |
|
return (h.npcmblocks < 6 || h.normal_frame) ? AVERROR_INVALIDDATA : AVERROR_PATCHWELCOME; |
|
|
|
case DCA_PARSE_ERROR_FRAME_SIZE: |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid core frame size (%d bytes)\n", h.frame_size); |
|
return AVERROR_INVALIDDATA; |
|
|
|
case DCA_PARSE_ERROR_AMODE: |
|
av_log(s->avctx, AV_LOG_ERROR, "Unsupported audio channel arrangement (%d)\n", h.audio_mode); |
|
return AVERROR_PATCHWELCOME; |
|
|
|
case DCA_PARSE_ERROR_SAMPLE_RATE: |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid core audio sampling frequency\n"); |
|
return AVERROR_INVALIDDATA; |
|
|
|
case DCA_PARSE_ERROR_RESERVED_BIT: |
|
av_log(s->avctx, AV_LOG_ERROR, "Reserved bit set\n"); |
|
return AVERROR_INVALIDDATA; |
|
|
|
case DCA_PARSE_ERROR_LFE_FLAG: |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid low frequency effects flag\n"); |
|
return AVERROR_INVALIDDATA; |
|
|
|
case DCA_PARSE_ERROR_PCM_RES: |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid source PCM resolution\n"); |
|
return AVERROR_INVALIDDATA; |
|
|
|
default: |
|
av_log(s->avctx, AV_LOG_ERROR, "Unknown core frame header error\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
s->crc_present = h.crc_present; |
|
s->npcmblocks = h.npcmblocks; |
|
s->frame_size = h.frame_size; |
|
s->audio_mode = h.audio_mode; |
|
s->sample_rate = ff_dca_sample_rates[h.sr_code]; |
|
s->bit_rate = ff_dca_bit_rates[h.br_code]; |
|
s->drc_present = h.drc_present; |
|
s->ts_present = h.ts_present; |
|
s->aux_present = h.aux_present; |
|
s->ext_audio_type = h.ext_audio_type; |
|
s->ext_audio_present = h.ext_audio_present; |
|
s->sync_ssf = h.sync_ssf; |
|
s->lfe_present = h.lfe_present; |
|
s->predictor_history = h.predictor_history; |
|
s->filter_perfect = h.filter_perfect; |
|
s->source_pcm_res = ff_dca_bits_per_sample[h.pcmr_code]; |
|
s->es_format = h.pcmr_code & 1; |
|
s->sumdiff_front = h.sumdiff_front; |
|
s->sumdiff_surround = h.sumdiff_surround; |
|
|
|
return 0; |
|
} |
|
|
|
// 5.3.2 - Primary audio coding header |
|
static int parse_coding_header(DCACoreDecoder *s, enum HeaderType header, int xch_base) |
|
{ |
|
int n, ch, nchannels, header_size = 0, header_pos = get_bits_count(&s->gb); |
|
unsigned int mask, index; |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
switch (header) { |
|
case HEADER_CORE: |
|
// Number of subframes |
|
s->nsubframes = get_bits(&s->gb, 4) + 1; |
|
|
|
// Number of primary audio channels |
|
s->nchannels = get_bits(&s->gb, 3) + 1; |
|
if (s->nchannels != ff_dca_channels[s->audio_mode]) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of primary audio channels (%d) for audio channel arrangement (%d)\n", s->nchannels, s->audio_mode); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
av_assert1(s->nchannels <= DCA_CHANNELS - 2); |
|
|
|
s->ch_mask = audio_mode_ch_mask[s->audio_mode]; |
|
|
|
// Add LFE channel if present |
|
if (s->lfe_present) |
|
s->ch_mask |= DCA_SPEAKER_MASK_LFE1; |
|
break; |
|
|
|
case HEADER_XCH: |
|
s->nchannels = ff_dca_channels[s->audio_mode] + 1; |
|
av_assert1(s->nchannels <= DCA_CHANNELS - 1); |
|
s->ch_mask |= DCA_SPEAKER_MASK_Cs; |
|
break; |
|
|
|
case HEADER_XXCH: |
|
// Channel set header length |
|
header_size = get_bits(&s->gb, 7) + 1; |
|
|
|
// Check CRC |
|
if (s->xxch_crc_present |
|
&& ff_dca_check_crc(s->avctx, &s->gb, header_pos, header_pos + header_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH channel set header checksum\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Number of channels in a channel set |
|
nchannels = get_bits(&s->gb, 3) + 1; |
|
if (nchannels > DCA_XXCH_CHANNELS_MAX) { |
|
avpriv_request_sample(s->avctx, "%d XXCH channels", nchannels); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
s->nchannels = ff_dca_channels[s->audio_mode] + nchannels; |
|
av_assert1(s->nchannels <= DCA_CHANNELS); |
|
|
|
// Loudspeaker layout mask |
|
mask = get_bits_long(&s->gb, s->xxch_mask_nbits - DCA_SPEAKER_Cs); |
|
s->xxch_spkr_mask = mask << DCA_SPEAKER_Cs; |
|
|
|
if (av_popcount(s->xxch_spkr_mask) != nchannels) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH speaker layout mask (%#x)\n", s->xxch_spkr_mask); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (s->xxch_core_mask & s->xxch_spkr_mask) { |
|
av_log(s->avctx, AV_LOG_ERROR, "XXCH speaker layout mask (%#x) overlaps with core (%#x)\n", s->xxch_spkr_mask, s->xxch_core_mask); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Combine core and XXCH masks together |
|
s->ch_mask = s->xxch_core_mask | s->xxch_spkr_mask; |
|
|
|
// Downmix coefficients present in stream |
|
if (get_bits1(&s->gb)) { |
|
int *coeff_ptr = s->xxch_dmix_coeff; |
|
|
|
// Downmix already performed by encoder |
|
s->xxch_dmix_embedded = get_bits1(&s->gb); |
|
|
|
// Downmix scale factor |
|
index = get_bits(&s->gb, 6) * 4 - FF_DCA_DMIXTABLE_OFFSET - 3; |
|
if (index >= FF_DCA_INV_DMIXTABLE_SIZE) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix scale index (%d)\n", index); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->xxch_dmix_scale_inv = ff_dca_inv_dmixtable[index]; |
|
|
|
// Downmix channel mapping mask |
|
for (ch = 0; ch < nchannels; ch++) { |
|
mask = get_bits_long(&s->gb, s->xxch_mask_nbits); |
|
if ((mask & s->xxch_core_mask) != mask) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix channel mapping mask (%#x)\n", mask); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->xxch_dmix_mask[ch] = mask; |
|
} |
|
|
|
// Downmix coefficients |
|
for (ch = 0; ch < nchannels; ch++) { |
|
for (n = 0; n < s->xxch_mask_nbits; n++) { |
|
if (s->xxch_dmix_mask[ch] & (1U << n)) { |
|
int code = get_bits(&s->gb, 7); |
|
int sign = (code >> 6) - 1; |
|
if (code &= 63) { |
|
index = code * 4 - 3; |
|
if (index >= FF_DCA_DMIXTABLE_SIZE) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix coefficient index (%d)\n", index); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
*coeff_ptr++ = (ff_dca_dmixtable[index] ^ sign) - sign; |
|
} else { |
|
*coeff_ptr++ = 0; |
|
} |
|
} |
|
} |
|
} |
|
} else { |
|
s->xxch_dmix_embedded = 0; |
|
} |
|
|
|
break; |
|
} |
|
|
|
// Subband activity count |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
s->nsubbands[ch] = get_bits(&s->gb, 5) + 2; |
|
if (s->nsubbands[ch] > DCA_SUBBANDS) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid subband activity count\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
// High frequency VQ start subband |
|
for (ch = xch_base; ch < s->nchannels; ch++) |
|
s->subband_vq_start[ch] = get_bits(&s->gb, 5) + 1; |
|
|
|
// Joint intensity coding index |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
if ((n = get_bits(&s->gb, 3)) && header == HEADER_XXCH) |
|
n += xch_base - 1; |
|
if (n > s->nchannels) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid joint intensity coding index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->joint_intensity_index[ch] = n; |
|
} |
|
|
|
// Transient mode code book |
|
for (ch = xch_base; ch < s->nchannels; ch++) |
|
s->transition_mode_sel[ch] = get_bits(&s->gb, 2); |
|
|
|
// Scale factor code book |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
s->scale_factor_sel[ch] = get_bits(&s->gb, 3); |
|
if (s->scale_factor_sel[ch] == 7) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor code book\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
// Bit allocation quantizer select |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
s->bit_allocation_sel[ch] = get_bits(&s->gb, 3); |
|
if (s->bit_allocation_sel[ch] == 7) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid bit allocation quantizer select\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
// Quantization index codebook select |
|
for (n = 0; n < DCA_CODE_BOOKS; n++) |
|
for (ch = xch_base; ch < s->nchannels; ch++) |
|
s->quant_index_sel[ch][n] = get_bits(&s->gb, ff_dca_quant_index_sel_nbits[n]); |
|
|
|
// Scale factor adjustment index |
|
for (n = 0; n < DCA_CODE_BOOKS; n++) |
|
for (ch = xch_base; ch < s->nchannels; ch++) |
|
if (s->quant_index_sel[ch][n] < ff_dca_quant_index_group_size[n]) |
|
s->scale_factor_adj[ch][n] = ff_dca_scale_factor_adj[get_bits(&s->gb, 2)]; |
|
|
|
if (header == HEADER_XXCH) { |
|
// Reserved |
|
// Byte align |
|
// CRC16 of channel set header |
|
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH channel set header\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else { |
|
// Audio header CRC check word |
|
if (s->crc_present) |
|
skip_bits(&s->gb, 16); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static inline int parse_scale(DCACoreDecoder *s, int *scale_index, int sel) |
|
{ |
|
const uint32_t *scale_table; |
|
unsigned int scale_size; |
|
|
|
// Select the root square table |
|
if (sel > 5) { |
|
scale_table = ff_dca_scale_factor_quant7; |
|
scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7); |
|
} else { |
|
scale_table = ff_dca_scale_factor_quant6; |
|
scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6); |
|
} |
|
|
|
// If Huffman code was used, the difference of scales was encoded |
|
if (sel < 5) |
|
*scale_index += get_vlc2(&s->gb, ff_dca_vlc_scale_factor[sel].table, |
|
DCA_SCALES_VLC_BITS, 2); |
|
else |
|
*scale_index = get_bits(&s->gb, sel + 1); |
|
|
|
// Look up scale factor from the root square table |
|
if ((unsigned int)*scale_index >= scale_size) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return scale_table[*scale_index]; |
|
} |
|
|
|
static inline int parse_joint_scale(DCACoreDecoder *s, int sel) |
|
{ |
|
int scale_index; |
|
|
|
// Absolute value was encoded even when Huffman code was used |
|
if (sel < 5) |
|
scale_index = get_vlc2(&s->gb, ff_dca_vlc_scale_factor[sel].table, |
|
DCA_SCALES_VLC_BITS, 2); |
|
else |
|
scale_index = get_bits(&s->gb, sel + 1); |
|
|
|
// Bias by 64 |
|
scale_index += 64; |
|
|
|
// Look up joint scale factor |
|
if ((unsigned int)scale_index >= FF_ARRAY_ELEMS(ff_dca_joint_scale_factors)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid joint scale factor index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return ff_dca_joint_scale_factors[scale_index]; |
|
} |
|
|
|
// 5.4.1 - Primary audio coding side information |
|
static int parse_subframe_header(DCACoreDecoder *s, int sf, |
|
enum HeaderType header, int xch_base) |
|
{ |
|
int ch, band, ret; |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (header == HEADER_CORE) { |
|
// Subsubframe count |
|
s->nsubsubframes[sf] = get_bits(&s->gb, 2) + 1; |
|
|
|
// Partial subsubframe sample count |
|
skip_bits(&s->gb, 3); |
|
} |
|
|
|
// Prediction mode |
|
for (ch = xch_base; ch < s->nchannels; ch++) |
|
for (band = 0; band < s->nsubbands[ch]; band++) |
|
s->prediction_mode[ch][band] = get_bits1(&s->gb); |
|
|
|
// Prediction coefficients VQ address |
|
for (ch = xch_base; ch < s->nchannels; ch++) |
|
for (band = 0; band < s->nsubbands[ch]; band++) |
|
if (s->prediction_mode[ch][band]) |
|
s->prediction_vq_index[ch][band] = get_bits(&s->gb, 12); |
|
|
|
// Bit allocation index |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
int sel = s->bit_allocation_sel[ch]; |
|
|
|
for (band = 0; band < s->subband_vq_start[ch]; band++) { |
|
int abits; |
|
|
|
if (sel < 5) |
|
abits = dca_get_vlc(&s->gb, &ff_dca_vlc_bit_allocation[sel]); |
|
else |
|
abits = get_bits(&s->gb, sel - 1); |
|
|
|
if (abits > DCA_ABITS_MAX) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid bit allocation index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->bit_allocation[ch][band] = abits; |
|
} |
|
} |
|
|
|
// Transition mode |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
// Clear transition mode for all subbands |
|
memset(s->transition_mode[sf][ch], 0, sizeof(s->transition_mode[0][0])); |
|
|
|
// Transient possible only if more than one subsubframe |
|
if (s->nsubsubframes[sf] > 1) { |
|
int sel = s->transition_mode_sel[ch]; |
|
for (band = 0; band < s->subband_vq_start[ch]; band++) |
|
if (s->bit_allocation[ch][band]) |
|
s->transition_mode[sf][ch][band] = get_vlc2(&s->gb, ff_dca_vlc_transition_mode[sel].table, |
|
DCA_TMODE_VLC_BITS, 1); |
|
} |
|
} |
|
|
|
// Scale factors |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
int sel = s->scale_factor_sel[ch]; |
|
int scale_index = 0; |
|
|
|
// Extract scales for subbands up to VQ |
|
for (band = 0; band < s->subband_vq_start[ch]; band++) { |
|
if (s->bit_allocation[ch][band]) { |
|
if ((ret = parse_scale(s, &scale_index, sel)) < 0) |
|
return ret; |
|
s->scale_factors[ch][band][0] = ret; |
|
if (s->transition_mode[sf][ch][band]) { |
|
if ((ret = parse_scale(s, &scale_index, sel)) < 0) |
|
return ret; |
|
s->scale_factors[ch][band][1] = ret; |
|
} |
|
} else { |
|
s->scale_factors[ch][band][0] = 0; |
|
} |
|
} |
|
|
|
// High frequency VQ subbands |
|
for (band = s->subband_vq_start[ch]; band < s->nsubbands[ch]; band++) { |
|
if ((ret = parse_scale(s, &scale_index, sel)) < 0) |
|
return ret; |
|
s->scale_factors[ch][band][0] = ret; |
|
} |
|
} |
|
|
|
// Joint subband codebook select |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
if (s->joint_intensity_index[ch]) { |
|
s->joint_scale_sel[ch] = get_bits(&s->gb, 3); |
|
if (s->joint_scale_sel[ch] == 7) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid joint scale factor code book\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
} |
|
|
|
// Scale factors for joint subband coding |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
int src_ch = s->joint_intensity_index[ch] - 1; |
|
if (src_ch >= 0) { |
|
int sel = s->joint_scale_sel[ch]; |
|
for (band = s->nsubbands[ch]; band < s->nsubbands[src_ch]; band++) { |
|
if ((ret = parse_joint_scale(s, sel)) < 0) |
|
return ret; |
|
s->joint_scale_factors[ch][band] = ret; |
|
} |
|
} |
|
} |
|
|
|
// Dynamic range coefficient |
|
if (s->drc_present && header == HEADER_CORE) |
|
skip_bits(&s->gb, 8); |
|
|
|
// Side information CRC check word |
|
if (s->crc_present) |
|
skip_bits(&s->gb, 16); |
|
|
|
return 0; |
|
} |
|
|
|
#ifndef decode_blockcodes |
|
static inline int decode_blockcodes(int code1, int code2, int levels, int32_t *audio) |
|
{ |
|
int offset = (levels - 1) / 2; |
|
int n, div; |
|
|
|
for (n = 0; n < DCA_SUBBAND_SAMPLES / 2; n++) { |
|
div = FASTDIV(code1, levels); |
|
audio[n] = code1 - div * levels - offset; |
|
code1 = div; |
|
} |
|
for (; n < DCA_SUBBAND_SAMPLES; n++) { |
|
div = FASTDIV(code2, levels); |
|
audio[n] = code2 - div * levels - offset; |
|
code2 = div; |
|
} |
|
|
|
return code1 | code2; |
|
} |
|
#endif |
|
|
|
static inline int parse_block_codes(DCACoreDecoder *s, int32_t *audio, int abits) |
|
{ |
|
// Extract block code indices from the bit stream |
|
int code1 = get_bits(&s->gb, block_code_nbits[abits - 1]); |
|
int code2 = get_bits(&s->gb, block_code_nbits[abits - 1]); |
|
int levels = ff_dca_quant_levels[abits]; |
|
|
|
// Look up samples from the block code book |
|
if (decode_blockcodes(code1, code2, levels, audio)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Failed to decode block code(s)\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static inline int parse_huffman_codes(DCACoreDecoder *s, int32_t *audio, int abits, int sel) |
|
{ |
|
int i; |
|
|
|
// Extract Huffman codes from the bit stream |
|
for (i = 0; i < DCA_SUBBAND_SAMPLES; i++) |
|
audio[i] = dca_get_vlc(&s->gb, &ff_dca_vlc_quant_index[abits - 1][sel]); |
|
|
|
return 1; |
|
} |
|
|
|
static inline int extract_audio(DCACoreDecoder *s, int32_t *audio, int abits, int ch) |
|
{ |
|
av_assert1(abits >= 0 && abits <= DCA_ABITS_MAX); |
|
|
|
if (abits == 0) { |
|
// No bits allocated |
|
memset(audio, 0, DCA_SUBBAND_SAMPLES * sizeof(*audio)); |
|
return 0; |
|
} |
|
|
|
if (abits <= DCA_CODE_BOOKS) { |
|
int sel = s->quant_index_sel[ch][abits - 1]; |
|
if (sel < ff_dca_quant_index_group_size[abits - 1]) { |
|
// Huffman codes |
|
return parse_huffman_codes(s, audio, abits, sel); |
|
} |
|
if (abits <= 7) { |
|
// Block codes |
|
return parse_block_codes(s, audio, abits); |
|
} |
|
} |
|
|
|
// No further encoding |
|
get_array(&s->gb, audio, DCA_SUBBAND_SAMPLES, abits - 3); |
|
return 0; |
|
} |
|
|
|
static inline void inverse_adpcm(int32_t **subband_samples, |
|
const int16_t *vq_index, |
|
const int8_t *prediction_mode, |
|
int sb_start, int sb_end, |
|
int ofs, int len) |
|
{ |
|
int i, j; |
|
|
|
for (i = sb_start; i < sb_end; i++) { |
|
if (prediction_mode[i]) { |
|
const int pred_id = vq_index[i]; |
|
int32_t *ptr = subband_samples[i] + ofs; |
|
for (j = 0; j < len; j++) { |
|
int32_t x = ff_dcaadpcm_predict(pred_id, ptr + j - DCA_ADPCM_COEFFS); |
|
ptr[j] = clip23(ptr[j] + x); |
|
} |
|
} |
|
} |
|
} |
|
|
|
// 5.5 - Primary audio data arrays |
|
static int parse_subframe_audio(DCACoreDecoder *s, int sf, enum HeaderType header, |
|
int xch_base, int *sub_pos, int *lfe_pos) |
|
{ |
|
int32_t audio[16], scale; |
|
int n, ssf, ofs, ch, band; |
|
|
|
// Check number of subband samples in this subframe |
|
int nsamples = s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES; |
|
if (*sub_pos + nsamples > s->npcmblocks) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
// VQ encoded subbands |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
int32_t vq_index[DCA_SUBBANDS]; |
|
|
|
for (band = s->subband_vq_start[ch]; band < s->nsubbands[ch]; band++) |
|
// Extract the VQ address from the bit stream |
|
vq_index[band] = get_bits(&s->gb, 10); |
|
|
|
if (s->subband_vq_start[ch] < s->nsubbands[ch]) { |
|
s->dcadsp->decode_hf(s->subband_samples[ch], vq_index, |
|
ff_dca_high_freq_vq, s->scale_factors[ch], |
|
s->subband_vq_start[ch], s->nsubbands[ch], |
|
*sub_pos, nsamples); |
|
} |
|
} |
|
|
|
// Low frequency effect data |
|
if (s->lfe_present && header == HEADER_CORE) { |
|
unsigned int index; |
|
|
|
// Determine number of LFE samples in this subframe |
|
int nlfesamples = 2 * s->lfe_present * s->nsubsubframes[sf]; |
|
av_assert1((unsigned int)nlfesamples <= FF_ARRAY_ELEMS(audio)); |
|
|
|
// Extract LFE samples from the bit stream |
|
get_array(&s->gb, audio, nlfesamples, 8); |
|
|
|
// Extract scale factor index from the bit stream |
|
index = get_bits(&s->gb, 8); |
|
if (index >= FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE scale factor index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Look up the 7-bit root square quantization table |
|
scale = ff_dca_scale_factor_quant7[index]; |
|
|
|
// Account for quantizer step size which is 0.035 |
|
scale = mul23(4697620 /* 0.035 * (1 << 27) */, scale); |
|
|
|
// Scale and take the LFE samples |
|
for (n = 0, ofs = *lfe_pos; n < nlfesamples; n++, ofs++) |
|
s->lfe_samples[ofs] = clip23(audio[n] * scale >> 4); |
|
|
|
// Advance LFE sample pointer for the next subframe |
|
*lfe_pos = ofs; |
|
} |
|
|
|
// Audio data |
|
for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) { |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
// Not high frequency VQ subbands |
|
for (band = 0; band < s->subband_vq_start[ch]; band++) { |
|
int ret, trans_ssf, abits = s->bit_allocation[ch][band]; |
|
int32_t step_size; |
|
|
|
// Extract bits from the bit stream |
|
if ((ret = extract_audio(s, audio, abits, ch)) < 0) |
|
return ret; |
|
|
|
// Select quantization step size table and look up |
|
// quantization step size |
|
if (s->bit_rate == 3) |
|
step_size = ff_dca_lossless_quant[abits]; |
|
else |
|
step_size = ff_dca_lossy_quant[abits]; |
|
|
|
// Identify transient location |
|
trans_ssf = s->transition_mode[sf][ch][band]; |
|
|
|
// Determine proper scale factor |
|
if (trans_ssf == 0 || ssf < trans_ssf) |
|
scale = s->scale_factors[ch][band][0]; |
|
else |
|
scale = s->scale_factors[ch][band][1]; |
|
|
|
// Adjust scale factor when SEL indicates Huffman code |
|
if (ret > 0) { |
|
int64_t adj = s->scale_factor_adj[ch][abits - 1]; |
|
scale = clip23(adj * scale >> 22); |
|
} |
|
|
|
ff_dca_core_dequantize(s->subband_samples[ch][band] + ofs, |
|
audio, step_size, scale, 0, DCA_SUBBAND_SAMPLES); |
|
} |
|
} |
|
|
|
// DSYNC |
|
if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) { |
|
av_log(s->avctx, AV_LOG_ERROR, "DSYNC check failed\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ofs += DCA_SUBBAND_SAMPLES; |
|
} |
|
|
|
// Inverse ADPCM |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
inverse_adpcm(s->subband_samples[ch], s->prediction_vq_index[ch], |
|
s->prediction_mode[ch], 0, s->nsubbands[ch], |
|
*sub_pos, nsamples); |
|
} |
|
|
|
// Joint subband coding |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
int src_ch = s->joint_intensity_index[ch] - 1; |
|
if (src_ch >= 0) { |
|
s->dcadsp->decode_joint(s->subband_samples[ch], s->subband_samples[src_ch], |
|
s->joint_scale_factors[ch], s->nsubbands[ch], |
|
s->nsubbands[src_ch], *sub_pos, nsamples); |
|
} |
|
} |
|
|
|
// Advance subband sample pointer for the next subframe |
|
*sub_pos = ofs; |
|
return 0; |
|
} |
|
|
|
static void erase_adpcm_history(DCACoreDecoder *s) |
|
{ |
|
int ch, band; |
|
|
|
// Erase ADPCM history from previous frame if |
|
// predictor history switch was disabled |
|
for (ch = 0; ch < DCA_CHANNELS; ch++) |
|
for (band = 0; band < DCA_SUBBANDS; band++) |
|
AV_ZERO128(s->subband_samples[ch][band] - DCA_ADPCM_COEFFS); |
|
} |
|
|
|
static int alloc_sample_buffer(DCACoreDecoder *s) |
|
{ |
|
int nchsamples = DCA_ADPCM_COEFFS + s->npcmblocks; |
|
int nframesamples = nchsamples * DCA_CHANNELS * DCA_SUBBANDS; |
|
int nlfesamples = DCA_LFE_HISTORY + s->npcmblocks / 2; |
|
unsigned int size = s->subband_size; |
|
int ch, band; |
|
|
|
// Reallocate subband sample buffer |
|
av_fast_mallocz(&s->subband_buffer, &s->subband_size, |
|
(nframesamples + nlfesamples) * sizeof(int32_t)); |
|
if (!s->subband_buffer) |
|
return AVERROR(ENOMEM); |
|
|
|
if (size != s->subband_size) { |
|
for (ch = 0; ch < DCA_CHANNELS; ch++) |
|
for (band = 0; band < DCA_SUBBANDS; band++) |
|
s->subband_samples[ch][band] = s->subband_buffer + |
|
(ch * DCA_SUBBANDS + band) * nchsamples + DCA_ADPCM_COEFFS; |
|
s->lfe_samples = s->subband_buffer + nframesamples; |
|
} |
|
|
|
if (!s->predictor_history) |
|
erase_adpcm_history(s); |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_frame_data(DCACoreDecoder *s, enum HeaderType header, int xch_base) |
|
{ |
|
int sf, ch, ret, band, sub_pos, lfe_pos; |
|
|
|
if ((ret = parse_coding_header(s, header, xch_base)) < 0) |
|
return ret; |
|
|
|
for (sf = 0, sub_pos = 0, lfe_pos = DCA_LFE_HISTORY; sf < s->nsubframes; sf++) { |
|
if ((ret = parse_subframe_header(s, sf, header, xch_base)) < 0) |
|
return ret; |
|
if ((ret = parse_subframe_audio(s, sf, header, xch_base, &sub_pos, &lfe_pos)) < 0) |
|
return ret; |
|
} |
|
|
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
// Determine number of active subbands for this channel |
|
int nsubbands = s->nsubbands[ch]; |
|
if (s->joint_intensity_index[ch]) |
|
nsubbands = FFMAX(nsubbands, s->nsubbands[s->joint_intensity_index[ch] - 1]); |
|
|
|
// Update history for ADPCM |
|
for (band = 0; band < nsubbands; band++) { |
|
int32_t *samples = s->subband_samples[ch][band] - DCA_ADPCM_COEFFS; |
|
AV_COPY128(samples, samples + s->npcmblocks); |
|
} |
|
|
|
// Clear inactive subbands |
|
for (; band < DCA_SUBBANDS; band++) { |
|
int32_t *samples = s->subband_samples[ch][band] - DCA_ADPCM_COEFFS; |
|
memset(samples, 0, (DCA_ADPCM_COEFFS + s->npcmblocks) * sizeof(int32_t)); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_xch_frame(DCACoreDecoder *s) |
|
{ |
|
int ret; |
|
|
|
if (s->ch_mask & DCA_SPEAKER_MASK_Cs) { |
|
av_log(s->avctx, AV_LOG_ERROR, "XCH with Cs speaker already present\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if ((ret = parse_frame_data(s, HEADER_XCH, s->nchannels)) < 0) |
|
return ret; |
|
|
|
// Seek to the end of core frame, don't trust XCH frame size |
|
if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XCH frame\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_xxch_frame(DCACoreDecoder *s) |
|
{ |
|
int xxch_nchsets, xxch_frame_size; |
|
int ret, mask, header_size, header_pos = get_bits_count(&s->gb); |
|
|
|
// XXCH sync word |
|
if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XXCH) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH sync word\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// XXCH frame header length |
|
header_size = get_bits(&s->gb, 6) + 1; |
|
|
|
// Check XXCH frame header CRC |
|
if (ff_dca_check_crc(s->avctx, &s->gb, header_pos + 32, header_pos + header_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH frame header checksum\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// CRC presence flag for channel set header |
|
s->xxch_crc_present = get_bits1(&s->gb); |
|
|
|
// Number of bits for loudspeaker mask |
|
s->xxch_mask_nbits = get_bits(&s->gb, 5) + 1; |
|
if (s->xxch_mask_nbits <= DCA_SPEAKER_Cs) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of bits for XXCH speaker mask (%d)\n", s->xxch_mask_nbits); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Number of channel sets |
|
xxch_nchsets = get_bits(&s->gb, 2) + 1; |
|
if (xxch_nchsets > 1) { |
|
avpriv_request_sample(s->avctx, "%d XXCH channel sets", xxch_nchsets); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
// Channel set 0 data byte size |
|
xxch_frame_size = get_bits(&s->gb, 14) + 1; |
|
|
|
// Core loudspeaker activity mask |
|
s->xxch_core_mask = get_bits_long(&s->gb, s->xxch_mask_nbits); |
|
|
|
// Validate the core mask |
|
mask = s->ch_mask; |
|
|
|
if ((mask & DCA_SPEAKER_MASK_Ls) && (s->xxch_core_mask & DCA_SPEAKER_MASK_Lss)) |
|
mask = (mask & ~DCA_SPEAKER_MASK_Ls) | DCA_SPEAKER_MASK_Lss; |
|
|
|
if ((mask & DCA_SPEAKER_MASK_Rs) && (s->xxch_core_mask & DCA_SPEAKER_MASK_Rss)) |
|
mask = (mask & ~DCA_SPEAKER_MASK_Rs) | DCA_SPEAKER_MASK_Rss; |
|
|
|
if (mask != s->xxch_core_mask) { |
|
av_log(s->avctx, AV_LOG_ERROR, "XXCH core speaker activity mask (%#x) disagrees with core (%#x)\n", s->xxch_core_mask, mask); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Reserved |
|
// Byte align |
|
// CRC16 of XXCH frame header |
|
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH frame header\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Parse XXCH channel set 0 |
|
if ((ret = parse_frame_data(s, HEADER_XXCH, s->nchannels)) < 0) |
|
return ret; |
|
|
|
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8 + xxch_frame_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH channel set\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_xbr_subframe(DCACoreDecoder *s, int xbr_base_ch, int xbr_nchannels, |
|
int *xbr_nsubbands, int xbr_transition_mode, int sf, int *sub_pos) |
|
{ |
|
int xbr_nabits[DCA_CHANNELS]; |
|
int xbr_bit_allocation[DCA_CHANNELS][DCA_SUBBANDS]; |
|
int xbr_scale_nbits[DCA_CHANNELS]; |
|
int32_t xbr_scale_factors[DCA_CHANNELS][DCA_SUBBANDS][2]; |
|
int ssf, ch, band, ofs; |
|
|
|
// Check number of subband samples in this subframe |
|
if (*sub_pos + s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES > s->npcmblocks) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
// Number of bits for XBR bit allocation index |
|
for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) |
|
xbr_nabits[ch] = get_bits(&s->gb, 2) + 2; |
|
|
|
// XBR bit allocation index |
|
for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { |
|
for (band = 0; band < xbr_nsubbands[ch]; band++) { |
|
xbr_bit_allocation[ch][band] = get_bits(&s->gb, xbr_nabits[ch]); |
|
if (xbr_bit_allocation[ch][band] > DCA_ABITS_MAX) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR bit allocation index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
} |
|
|
|
// Number of bits for scale indices |
|
for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { |
|
xbr_scale_nbits[ch] = get_bits(&s->gb, 3); |
|
if (!xbr_scale_nbits[ch]) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of bits for XBR scale factor index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
// XBR scale factors |
|
for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { |
|
const uint32_t *scale_table; |
|
int scale_size; |
|
|
|
// Select the root square table |
|
if (s->scale_factor_sel[ch] > 5) { |
|
scale_table = ff_dca_scale_factor_quant7; |
|
scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7); |
|
} else { |
|
scale_table = ff_dca_scale_factor_quant6; |
|
scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6); |
|
} |
|
|
|
// Parse scale factor indices and look up scale factors from the root |
|
// square table |
|
for (band = 0; band < xbr_nsubbands[ch]; band++) { |
|
if (xbr_bit_allocation[ch][band]) { |
|
int scale_index = get_bits(&s->gb, xbr_scale_nbits[ch]); |
|
if (scale_index >= scale_size) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR scale factor index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
xbr_scale_factors[ch][band][0] = scale_table[scale_index]; |
|
if (xbr_transition_mode && s->transition_mode[sf][ch][band]) { |
|
scale_index = get_bits(&s->gb, xbr_scale_nbits[ch]); |
|
if (scale_index >= scale_size) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR scale factor index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
xbr_scale_factors[ch][band][1] = scale_table[scale_index]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Audio data |
|
for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) { |
|
for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) { |
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
for (band = 0; band < xbr_nsubbands[ch]; band++) { |
|
int ret, trans_ssf, abits = xbr_bit_allocation[ch][band]; |
|
int32_t audio[DCA_SUBBAND_SAMPLES], step_size, scale; |
|
|
|
// Extract bits from the bit stream |
|
if (abits > 7) { |
|
// No further encoding |
|
get_array(&s->gb, audio, DCA_SUBBAND_SAMPLES, abits - 3); |
|
} else if (abits > 0) { |
|
// Block codes |
|
if ((ret = parse_block_codes(s, audio, abits)) < 0) |
|
return ret; |
|
} else { |
|
// No bits allocated |
|
continue; |
|
} |
|
|
|
// Look up quantization step size |
|
step_size = ff_dca_lossless_quant[abits]; |
|
|
|
// Identify transient location |
|
if (xbr_transition_mode) |
|
trans_ssf = s->transition_mode[sf][ch][band]; |
|
else |
|
trans_ssf = 0; |
|
|
|
// Determine proper scale factor |
|
if (trans_ssf == 0 || ssf < trans_ssf) |
|
scale = xbr_scale_factors[ch][band][0]; |
|
else |
|
scale = xbr_scale_factors[ch][band][1]; |
|
|
|
ff_dca_core_dequantize(s->subband_samples[ch][band] + ofs, |
|
audio, step_size, scale, 1, DCA_SUBBAND_SAMPLES); |
|
} |
|
} |
|
|
|
// DSYNC |
|
if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) { |
|
av_log(s->avctx, AV_LOG_ERROR, "XBR-DSYNC check failed\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ofs += DCA_SUBBAND_SAMPLES; |
|
} |
|
|
|
// Advance subband sample pointer for the next subframe |
|
*sub_pos = ofs; |
|
return 0; |
|
} |
|
|
|
static int parse_xbr_frame(DCACoreDecoder *s) |
|
{ |
|
int xbr_frame_size[DCA_EXSS_CHSETS_MAX]; |
|
int xbr_nchannels[DCA_EXSS_CHSETS_MAX]; |
|
int xbr_nsubbands[DCA_EXSS_CHSETS_MAX * DCA_EXSS_CHANNELS_MAX]; |
|
int xbr_nchsets, xbr_transition_mode, xbr_band_nbits, xbr_base_ch; |
|
int i, ch1, ch2, ret, header_size, header_pos = get_bits_count(&s->gb); |
|
|
|
// XBR sync word |
|
if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XBR) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR sync word\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// XBR frame header length |
|
header_size = get_bits(&s->gb, 6) + 1; |
|
|
|
// Check XBR frame header CRC |
|
if (ff_dca_check_crc(s->avctx, &s->gb, header_pos + 32, header_pos + header_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR frame header checksum\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Number of channel sets |
|
xbr_nchsets = get_bits(&s->gb, 2) + 1; |
|
|
|
// Channel set data byte size |
|
for (i = 0; i < xbr_nchsets; i++) |
|
xbr_frame_size[i] = get_bits(&s->gb, 14) + 1; |
|
|
|
// Transition mode flag |
|
xbr_transition_mode = get_bits1(&s->gb); |
|
|
|
// Channel set headers |
|
for (i = 0, ch2 = 0; i < xbr_nchsets; i++) { |
|
xbr_nchannels[i] = get_bits(&s->gb, 3) + 1; |
|
xbr_band_nbits = get_bits(&s->gb, 2) + 5; |
|
for (ch1 = 0; ch1 < xbr_nchannels[i]; ch1++, ch2++) { |
|
xbr_nsubbands[ch2] = get_bits(&s->gb, xbr_band_nbits) + 1; |
|
if (xbr_nsubbands[ch2] > DCA_SUBBANDS) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of active XBR subbands (%d)\n", xbr_nsubbands[ch2]); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
} |
|
|
|
// Reserved |
|
// Byte align |
|
// CRC16 of XBR frame header |
|
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XBR frame header\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Channel set data |
|
for (i = 0, xbr_base_ch = 0; i < xbr_nchsets; i++) { |
|
header_pos = get_bits_count(&s->gb); |
|
|
|
if (xbr_base_ch + xbr_nchannels[i] <= s->nchannels) { |
|
int sf, sub_pos; |
|
|
|
for (sf = 0, sub_pos = 0; sf < s->nsubframes; sf++) { |
|
if ((ret = parse_xbr_subframe(s, xbr_base_ch, |
|
xbr_base_ch + xbr_nchannels[i], |
|
xbr_nsubbands, xbr_transition_mode, |
|
sf, &sub_pos)) < 0) |
|
return ret; |
|
} |
|
} |
|
|
|
xbr_base_ch += xbr_nchannels[i]; |
|
|
|
if (ff_dca_seek_bits(&s->gb, header_pos + xbr_frame_size[i] * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XBR channel set\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
// Modified ISO/IEC 9899 linear congruential generator |
|
// Returns pseudorandom integer in range [-2^30, 2^30 - 1] |
|
static int rand_x96(DCACoreDecoder *s) |
|
{ |
|
s->x96_rand = 1103515245U * s->x96_rand + 12345U; |
|
return (s->x96_rand & 0x7fffffff) - 0x40000000; |
|
} |
|
|
|
static int parse_x96_subframe_audio(DCACoreDecoder *s, int sf, int xch_base, int *sub_pos) |
|
{ |
|
int n, ssf, ch, band, ofs; |
|
|
|
// Check number of subband samples in this subframe |
|
int nsamples = s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES; |
|
if (*sub_pos + nsamples > s->npcmblocks) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
// VQ encoded or unallocated subbands |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { |
|
// Get the sample pointer and scale factor |
|
int32_t *samples = s->x96_subband_samples[ch][band] + *sub_pos; |
|
int32_t scale = s->scale_factors[ch][band >> 1][band & 1]; |
|
|
|
switch (s->bit_allocation[ch][band]) { |
|
case 0: // No bits allocated for subband |
|
if (scale <= 1) |
|
memset(samples, 0, nsamples * sizeof(int32_t)); |
|
else for (n = 0; n < nsamples; n++) |
|
// Generate scaled random samples |
|
samples[n] = mul31(rand_x96(s), scale); |
|
break; |
|
|
|
case 1: // VQ encoded subband |
|
for (ssf = 0; ssf < (s->nsubsubframes[sf] + 1) / 2; ssf++) { |
|
// Extract the VQ address from the bit stream and look up |
|
// the VQ code book for up to 16 subband samples |
|
const int8_t *vq_samples = ff_dca_high_freq_vq[get_bits(&s->gb, 10)]; |
|
// Scale and take the samples |
|
for (n = 0; n < FFMIN(nsamples - ssf * 16, 16); n++) |
|
*samples++ = clip23(vq_samples[n] * scale + (1 << 3) >> 4); |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// Audio data |
|
for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) { |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { |
|
int ret, abits = s->bit_allocation[ch][band] - 1; |
|
int32_t audio[DCA_SUBBAND_SAMPLES], step_size, scale; |
|
|
|
// Not VQ encoded or unallocated subbands |
|
if (abits < 1) |
|
continue; |
|
|
|
// Extract bits from the bit stream |
|
if ((ret = extract_audio(s, audio, abits, ch)) < 0) |
|
return ret; |
|
|
|
// Select quantization step size table and look up quantization |
|
// step size |
|
if (s->bit_rate == 3) |
|
step_size = ff_dca_lossless_quant[abits]; |
|
else |
|
step_size = ff_dca_lossy_quant[abits]; |
|
|
|
// Get the scale factor |
|
scale = s->scale_factors[ch][band >> 1][band & 1]; |
|
|
|
ff_dca_core_dequantize(s->x96_subband_samples[ch][band] + ofs, |
|
audio, step_size, scale, 0, DCA_SUBBAND_SAMPLES); |
|
} |
|
} |
|
|
|
// DSYNC |
|
if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) { |
|
av_log(s->avctx, AV_LOG_ERROR, "X96-DSYNC check failed\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ofs += DCA_SUBBAND_SAMPLES; |
|
} |
|
|
|
// Inverse ADPCM |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
inverse_adpcm(s->x96_subband_samples[ch], s->prediction_vq_index[ch], |
|
s->prediction_mode[ch], s->x96_subband_start, s->nsubbands[ch], |
|
*sub_pos, nsamples); |
|
} |
|
|
|
// Joint subband coding |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
int src_ch = s->joint_intensity_index[ch] - 1; |
|
if (src_ch >= 0) { |
|
s->dcadsp->decode_joint(s->x96_subband_samples[ch], s->x96_subband_samples[src_ch], |
|
s->joint_scale_factors[ch], s->nsubbands[ch], |
|
s->nsubbands[src_ch], *sub_pos, nsamples); |
|
} |
|
} |
|
|
|
// Advance subband sample pointer for the next subframe |
|
*sub_pos = ofs; |
|
return 0; |
|
} |
|
|
|
static void erase_x96_adpcm_history(DCACoreDecoder *s) |
|
{ |
|
int ch, band; |
|
|
|
// Erase ADPCM history from previous frame if |
|
// predictor history switch was disabled |
|
for (ch = 0; ch < DCA_CHANNELS; ch++) |
|
for (band = 0; band < DCA_SUBBANDS_X96; band++) |
|
AV_ZERO128(s->x96_subband_samples[ch][band] - DCA_ADPCM_COEFFS); |
|
} |
|
|
|
static int alloc_x96_sample_buffer(DCACoreDecoder *s) |
|
{ |
|
int nchsamples = DCA_ADPCM_COEFFS + s->npcmblocks; |
|
int nframesamples = nchsamples * DCA_CHANNELS * DCA_SUBBANDS_X96; |
|
unsigned int size = s->x96_subband_size; |
|
int ch, band; |
|
|
|
// Reallocate subband sample buffer |
|
av_fast_mallocz(&s->x96_subband_buffer, &s->x96_subband_size, |
|
nframesamples * sizeof(int32_t)); |
|
if (!s->x96_subband_buffer) |
|
return AVERROR(ENOMEM); |
|
|
|
if (size != s->x96_subband_size) { |
|
for (ch = 0; ch < DCA_CHANNELS; ch++) |
|
for (band = 0; band < DCA_SUBBANDS_X96; band++) |
|
s->x96_subband_samples[ch][band] = s->x96_subband_buffer + |
|
(ch * DCA_SUBBANDS_X96 + band) * nchsamples + DCA_ADPCM_COEFFS; |
|
} |
|
|
|
if (!s->predictor_history) |
|
erase_x96_adpcm_history(s); |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_x96_subframe_header(DCACoreDecoder *s, int xch_base) |
|
{ |
|
int ch, band, ret; |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
// Prediction mode |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) |
|
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) |
|
s->prediction_mode[ch][band] = get_bits1(&s->gb); |
|
|
|
// Prediction coefficients VQ address |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) |
|
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) |
|
if (s->prediction_mode[ch][band]) |
|
s->prediction_vq_index[ch][band] = get_bits(&s->gb, 12); |
|
|
|
// Bit allocation index |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
int sel = s->bit_allocation_sel[ch]; |
|
int abits = 0; |
|
|
|
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { |
|
// If Huffman code was used, the difference of abits was encoded |
|
if (sel < 7) |
|
abits += dca_get_vlc(&s->gb, &ff_dca_vlc_quant_index[5 + 2 * s->x96_high_res][sel]); |
|
else |
|
abits = get_bits(&s->gb, 3 + s->x96_high_res); |
|
|
|
if (abits < 0 || abits > 7 + 8 * s->x96_high_res) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 bit allocation index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->bit_allocation[ch][band] = abits; |
|
} |
|
} |
|
|
|
// Scale factors |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
int sel = s->scale_factor_sel[ch]; |
|
int scale_index = 0; |
|
|
|
// Extract scales for subbands which are transmitted even for |
|
// unallocated subbands |
|
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) { |
|
if ((ret = parse_scale(s, &scale_index, sel)) < 0) |
|
return ret; |
|
s->scale_factors[ch][band >> 1][band & 1] = ret; |
|
} |
|
} |
|
|
|
// Joint subband codebook select |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
if (s->joint_intensity_index[ch]) { |
|
s->joint_scale_sel[ch] = get_bits(&s->gb, 3); |
|
if (s->joint_scale_sel[ch] == 7) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 joint scale factor code book\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
} |
|
|
|
// Scale factors for joint subband coding |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
int src_ch = s->joint_intensity_index[ch] - 1; |
|
if (src_ch >= 0) { |
|
int sel = s->joint_scale_sel[ch]; |
|
for (band = s->nsubbands[ch]; band < s->nsubbands[src_ch]; band++) { |
|
if ((ret = parse_joint_scale(s, sel)) < 0) |
|
return ret; |
|
s->joint_scale_factors[ch][band] = ret; |
|
} |
|
} |
|
} |
|
|
|
// Side information CRC check word |
|
if (s->crc_present) |
|
skip_bits(&s->gb, 16); |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_x96_coding_header(DCACoreDecoder *s, int exss, int xch_base) |
|
{ |
|
int n, ch, header_size = 0, header_pos = get_bits_count(&s->gb); |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (exss) { |
|
// Channel set header length |
|
header_size = get_bits(&s->gb, 7) + 1; |
|
|
|
// Check CRC |
|
if (s->x96_crc_present |
|
&& ff_dca_check_crc(s->avctx, &s->gb, header_pos, header_pos + header_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 channel set header checksum\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
// High resolution flag |
|
s->x96_high_res = get_bits1(&s->gb); |
|
|
|
// First encoded subband |
|
if (s->x96_rev_no < 8) { |
|
s->x96_subband_start = get_bits(&s->gb, 5); |
|
if (s->x96_subband_start > 27) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 subband start index (%d)\n", s->x96_subband_start); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else { |
|
s->x96_subband_start = DCA_SUBBANDS; |
|
} |
|
|
|
// Subband activity count |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
s->nsubbands[ch] = get_bits(&s->gb, 6) + 1; |
|
if (s->nsubbands[ch] < DCA_SUBBANDS) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 subband activity count (%d)\n", s->nsubbands[ch]); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
// Joint intensity coding index |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
if ((n = get_bits(&s->gb, 3)) && xch_base) |
|
n += xch_base - 1; |
|
if (n > s->x96_nchannels) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 joint intensity coding index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->joint_intensity_index[ch] = n; |
|
} |
|
|
|
// Scale factor code book |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
s->scale_factor_sel[ch] = get_bits(&s->gb, 3); |
|
if (s->scale_factor_sel[ch] >= 6) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 scale factor code book\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
// Bit allocation quantizer select |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) |
|
s->bit_allocation_sel[ch] = get_bits(&s->gb, 3); |
|
|
|
// Quantization index codebook select |
|
for (n = 0; n < 6 + 4 * s->x96_high_res; n++) |
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) |
|
s->quant_index_sel[ch][n] = get_bits(&s->gb, ff_dca_quant_index_sel_nbits[n]); |
|
|
|
if (exss) { |
|
// Reserved |
|
// Byte align |
|
// CRC16 of channel set header |
|
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 channel set header\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else { |
|
if (s->crc_present) |
|
skip_bits(&s->gb, 16); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_x96_frame_data(DCACoreDecoder *s, int exss, int xch_base) |
|
{ |
|
int sf, ch, ret, band, sub_pos; |
|
|
|
if ((ret = parse_x96_coding_header(s, exss, xch_base)) < 0) |
|
return ret; |
|
|
|
for (sf = 0, sub_pos = 0; sf < s->nsubframes; sf++) { |
|
if ((ret = parse_x96_subframe_header(s, xch_base)) < 0) |
|
return ret; |
|
if ((ret = parse_x96_subframe_audio(s, sf, xch_base, &sub_pos)) < 0) |
|
return ret; |
|
} |
|
|
|
for (ch = xch_base; ch < s->x96_nchannels; ch++) { |
|
// Determine number of active subbands for this channel |
|
int nsubbands = s->nsubbands[ch]; |
|
if (s->joint_intensity_index[ch]) |
|
nsubbands = FFMAX(nsubbands, s->nsubbands[s->joint_intensity_index[ch] - 1]); |
|
|
|
// Update history for ADPCM and clear inactive subbands |
|
for (band = 0; band < DCA_SUBBANDS_X96; band++) { |
|
int32_t *samples = s->x96_subband_samples[ch][band] - DCA_ADPCM_COEFFS; |
|
if (band >= s->x96_subband_start && band < nsubbands) |
|
AV_COPY128(samples, samples + s->npcmblocks); |
|
else |
|
memset(samples, 0, (DCA_ADPCM_COEFFS + s->npcmblocks) * sizeof(int32_t)); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_x96_frame(DCACoreDecoder *s) |
|
{ |
|
int ret; |
|
|
|
// Revision number |
|
s->x96_rev_no = get_bits(&s->gb, 4); |
|
if (s->x96_rev_no < 1 || s->x96_rev_no > 8) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 revision (%d)\n", s->x96_rev_no); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->x96_crc_present = 0; |
|
s->x96_nchannels = s->nchannels; |
|
|
|
if ((ret = alloc_x96_sample_buffer(s)) < 0) |
|
return ret; |
|
|
|
if ((ret = parse_x96_frame_data(s, 0, 0)) < 0) |
|
return ret; |
|
|
|
// Seek to the end of core frame |
|
if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 frame\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_x96_frame_exss(DCACoreDecoder *s) |
|
{ |
|
int x96_frame_size[DCA_EXSS_CHSETS_MAX]; |
|
int x96_nchannels[DCA_EXSS_CHSETS_MAX]; |
|
int x96_nchsets, x96_base_ch; |
|
int i, ret, header_size, header_pos = get_bits_count(&s->gb); |
|
|
|
// X96 sync word |
|
if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_X96) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 sync word\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// X96 frame header length |
|
header_size = get_bits(&s->gb, 6) + 1; |
|
|
|
// Check X96 frame header CRC |
|
if (ff_dca_check_crc(s->avctx, &s->gb, header_pos + 32, header_pos + header_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 frame header checksum\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Revision number |
|
s->x96_rev_no = get_bits(&s->gb, 4); |
|
if (s->x96_rev_no < 1 || s->x96_rev_no > 8) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 revision (%d)\n", s->x96_rev_no); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// CRC presence flag for channel set header |
|
s->x96_crc_present = get_bits1(&s->gb); |
|
|
|
// Number of channel sets |
|
x96_nchsets = get_bits(&s->gb, 2) + 1; |
|
|
|
// Channel set data byte size |
|
for (i = 0; i < x96_nchsets; i++) |
|
x96_frame_size[i] = get_bits(&s->gb, 12) + 1; |
|
|
|
// Number of channels in channel set |
|
for (i = 0; i < x96_nchsets; i++) |
|
x96_nchannels[i] = get_bits(&s->gb, 3) + 1; |
|
|
|
// Reserved |
|
// Byte align |
|
// CRC16 of X96 frame header |
|
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 frame header\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if ((ret = alloc_x96_sample_buffer(s)) < 0) |
|
return ret; |
|
|
|
// Channel set data |
|
s->x96_nchannels = 0; |
|
for (i = 0, x96_base_ch = 0; i < x96_nchsets; i++) { |
|
header_pos = get_bits_count(&s->gb); |
|
|
|
if (x96_base_ch + x96_nchannels[i] <= s->nchannels) { |
|
s->x96_nchannels = x96_base_ch + x96_nchannels[i]; |
|
if ((ret = parse_x96_frame_data(s, 1, x96_base_ch)) < 0) |
|
return ret; |
|
} |
|
|
|
x96_base_ch += x96_nchannels[i]; |
|
|
|
if (ff_dca_seek_bits(&s->gb, header_pos + x96_frame_size[i] * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 channel set\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_aux_data(DCACoreDecoder *s) |
|
{ |
|
int aux_pos; |
|
|
|
if (get_bits_left(&s->gb) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
// Auxiliary data byte count (can't be trusted) |
|
skip_bits(&s->gb, 6); |
|
|
|
// 4-byte align |
|
skip_bits_long(&s->gb, -get_bits_count(&s->gb) & 31); |
|
|
|
// Auxiliary data sync word |
|
if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_REV1AUX) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid auxiliary data sync word\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
aux_pos = get_bits_count(&s->gb); |
|
|
|
// Auxiliary decode time stamp flag |
|
if (get_bits1(&s->gb)) |
|
skip_bits_long(&s->gb, 47); |
|
|
|
// Auxiliary dynamic downmix flag |
|
if (s->prim_dmix_embedded = get_bits1(&s->gb)) { |
|
int i, m, n; |
|
|
|
// Auxiliary primary channel downmix type |
|
s->prim_dmix_type = get_bits(&s->gb, 3); |
|
if (s->prim_dmix_type >= DCA_DMIX_TYPE_COUNT) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid primary channel set downmix type\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
// Size of downmix coefficients matrix |
|
m = ff_dca_dmix_primary_nch[s->prim_dmix_type]; |
|
n = ff_dca_channels[s->audio_mode] + !!s->lfe_present; |
|
|
|
// Dynamic downmix code coefficients |
|
for (i = 0; i < m * n; i++) { |
|
int code = get_bits(&s->gb, 9); |
|
int sign = (code >> 8) - 1; |
|
unsigned int index = code & 0xff; |
|
if (index >= FF_DCA_DMIXTABLE_SIZE) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid downmix coefficient index\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->prim_dmix_coeff[i] = (ff_dca_dmixtable[index] ^ sign) - sign; |
|
} |
|
} |
|
|
|
// Byte align |
|
skip_bits(&s->gb, -get_bits_count(&s->gb) & 7); |
|
|
|
// CRC16 of auxiliary data |
|
skip_bits(&s->gb, 16); |
|
|
|
// Check CRC |
|
if (ff_dca_check_crc(s->avctx, &s->gb, aux_pos, get_bits_count(&s->gb))) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid auxiliary data checksum\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int parse_optional_info(DCACoreDecoder *s) |
|
{ |
|
DCAContext *dca = s->avctx->priv_data; |
|
int ret = -1; |
|
|
|
// Time code stamp |
|
if (s->ts_present) |
|
skip_bits_long(&s->gb, 32); |
|
|
|
// Auxiliary data |
|
if (s->aux_present && (ret = parse_aux_data(s)) < 0 |
|
&& (s->avctx->err_recognition & AV_EF_EXPLODE)) |
|
return ret; |
|
|
|
if (ret < 0) |
|
s->prim_dmix_embedded = 0; |
|
|
|
// Core extensions |
|
if (s->ext_audio_present && !dca->core_only) { |
|
int sync_pos = FFMIN(s->frame_size / 4, s->gb.size_in_bits / 32) - 1; |
|
int last_pos = get_bits_count(&s->gb) / 32; |
|
int size, dist; |
|
uint32_t w1, w2 = 0; |
|
|
|
// Search for extension sync words aligned on 4-byte boundary. Search |
|
// must be done backwards from the end of core frame to work around |
|
// sync word aliasing issues. |
|
switch (s->ext_audio_type) { |
|
case DCA_EXT_AUDIO_XCH: |
|
if (dca->request_channel_layout) |
|
break; |
|
|
|
// The distance between XCH sync word and end of the core frame |
|
// must be equal to XCH frame size. Off by one error is allowed for |
|
// compatibility with legacy bitstreams. Minimum XCH frame size is |
|
// 96 bytes. AMODE and PCHS are further checked to reduce |
|
// probability of alias sync detection. |
|
for (; sync_pos >= last_pos; sync_pos--, w2 = w1) { |
|
w1 = AV_RB32(s->gb.buffer + sync_pos * 4); |
|
if (w1 == DCA_SYNCWORD_XCH) { |
|
size = (w2 >> 22) + 1; |
|
dist = s->frame_size - sync_pos * 4; |
|
if (size >= 96 |
|
&& (size == dist || size - 1 == dist) |
|
&& (w2 >> 15 & 0x7f) == 0x08) { |
|
s->xch_pos = sync_pos * 32 + 49; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
if (!s->xch_pos) { |
|
av_log(s->avctx, AV_LOG_ERROR, "XCH sync word not found\n"); |
|
if (s->avctx->err_recognition & AV_EF_EXPLODE) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
break; |
|
|
|
case DCA_EXT_AUDIO_X96: |
|
// The distance between X96 sync word and end of the core frame |
|
// must be equal to X96 frame size. Minimum X96 frame size is 96 |
|
// bytes. |
|
for (; sync_pos >= last_pos; sync_pos--, w2 = w1) { |
|
w1 = AV_RB32(s->gb.buffer + sync_pos * 4); |
|
if (w1 == DCA_SYNCWORD_X96) { |
|
size = (w2 >> 20) + 1; |
|
dist = s->frame_size - sync_pos * 4; |
|
if (size >= 96 && size == dist) { |
|
s->x96_pos = sync_pos * 32 + 44; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
if (!s->x96_pos) { |
|
av_log(s->avctx, AV_LOG_ERROR, "X96 sync word not found\n"); |
|
if (s->avctx->err_recognition & AV_EF_EXPLODE) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
break; |
|
|
|
case DCA_EXT_AUDIO_XXCH: |
|
if (dca->request_channel_layout) |
|
break; |
|
|
|
// XXCH frame header CRC must be valid. Minimum XXCH frame header |
|
// size is 11 bytes. |
|
for (; sync_pos >= last_pos; sync_pos--, w2 = w1) { |
|
w1 = AV_RB32(s->gb.buffer + sync_pos * 4); |
|
if (w1 == DCA_SYNCWORD_XXCH) { |
|
size = (w2 >> 26) + 1; |
|
dist = s->gb.size_in_bits / 8 - sync_pos * 4; |
|
if (size >= 11 && size <= dist && |
|
!av_crc(dca->crctab, 0xffff, s->gb.buffer + |
|
(sync_pos + 1) * 4, size - 4)) { |
|
s->xxch_pos = sync_pos * 32; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
if (!s->xxch_pos) { |
|
av_log(s->avctx, AV_LOG_ERROR, "XXCH sync word not found\n"); |
|
if (s->avctx->err_recognition & AV_EF_EXPLODE) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int ff_dca_core_parse(DCACoreDecoder *s, const uint8_t *data, int size) |
|
{ |
|
int ret; |
|
|
|
s->ext_audio_mask = 0; |
|
s->xch_pos = s->xxch_pos = s->x96_pos = 0; |
|
|
|
if ((ret = init_get_bits8(&s->gb, data, size)) < 0) |
|
return ret; |
|
s->gb_in = s->gb; |
|
|
|
if ((ret = parse_frame_header(s)) < 0) |
|
return ret; |
|
if ((ret = alloc_sample_buffer(s)) < 0) |
|
return ret; |
|
if ((ret = parse_frame_data(s, HEADER_CORE, 0)) < 0) |
|
return ret; |
|
if ((ret = parse_optional_info(s)) < 0) |
|
return ret; |
|
|
|
// Workaround for DTS in WAV |
|
if (s->frame_size > size) |
|
s->frame_size = size; |
|
|
|
if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Read past end of core frame\n"); |
|
if (s->avctx->err_recognition & AV_EF_EXPLODE) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int ff_dca_core_parse_exss(DCACoreDecoder *s, const uint8_t *data, DCAExssAsset *asset) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
DCAContext *dca = avctx->priv_data; |
|
int exss_mask = asset ? asset->extension_mask : 0; |
|
int ret = 0, ext = 0; |
|
|
|
// Parse (X)XCH unless downmixing |
|
if (!dca->request_channel_layout) { |
|
if (exss_mask & DCA_EXSS_XXCH) { |
|
if ((ret = init_get_bits8(&s->gb, data + asset->xxch_offset, asset->xxch_size)) < 0) |
|
return ret; |
|
ret = parse_xxch_frame(s); |
|
ext = DCA_EXSS_XXCH; |
|
} else if (s->xxch_pos) { |
|
s->gb = s->gb_in; |
|
skip_bits_long(&s->gb, s->xxch_pos); |
|
ret = parse_xxch_frame(s); |
|
ext = DCA_CSS_XXCH; |
|
} else if (s->xch_pos) { |
|
s->gb = s->gb_in; |
|
skip_bits_long(&s->gb, s->xch_pos); |
|
ret = parse_xch_frame(s); |
|
ext = DCA_CSS_XCH; |
|
} |
|
|
|
// Revert to primary channel set in case (X)XCH parsing fails |
|
if (ret < 0) { |
|
if (avctx->err_recognition & AV_EF_EXPLODE) |
|
return ret; |
|
s->nchannels = ff_dca_channels[s->audio_mode]; |
|
s->ch_mask = audio_mode_ch_mask[s->audio_mode]; |
|
if (s->lfe_present) |
|
s->ch_mask |= DCA_SPEAKER_MASK_LFE1; |
|
} else { |
|
s->ext_audio_mask |= ext; |
|
} |
|
} |
|
|
|
// Parse XBR |
|
if (exss_mask & DCA_EXSS_XBR) { |
|
if ((ret = init_get_bits8(&s->gb, data + asset->xbr_offset, asset->xbr_size)) < 0) |
|
return ret; |
|
if ((ret = parse_xbr_frame(s)) < 0) { |
|
if (avctx->err_recognition & AV_EF_EXPLODE) |
|
return ret; |
|
} else { |
|
s->ext_audio_mask |= DCA_EXSS_XBR; |
|
} |
|
} |
|
|
|
// Parse X96 unless decoding XLL |
|
if (!(dca->packet & DCA_PACKET_XLL)) { |
|
if (exss_mask & DCA_EXSS_X96) { |
|
if ((ret = init_get_bits8(&s->gb, data + asset->x96_offset, asset->x96_size)) < 0) |
|
return ret; |
|
if ((ret = parse_x96_frame_exss(s)) < 0) { |
|
if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE)) |
|
return ret; |
|
} else { |
|
s->ext_audio_mask |= DCA_EXSS_X96; |
|
} |
|
} else if (s->x96_pos) { |
|
s->gb = s->gb_in; |
|
skip_bits_long(&s->gb, s->x96_pos); |
|
if ((ret = parse_x96_frame(s)) < 0) { |
|
if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE)) |
|
return ret; |
|
} else { |
|
s->ext_audio_mask |= DCA_CSS_X96; |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int map_prm_ch_to_spkr(DCACoreDecoder *s, int ch) |
|
{ |
|
int pos, spkr; |
|
|
|
// Try to map this channel to core first |
|
pos = ff_dca_channels[s->audio_mode]; |
|
if (ch < pos) { |
|
spkr = prm_ch_to_spkr_map[s->audio_mode][ch]; |
|
if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) { |
|
if (s->xxch_core_mask & (1U << spkr)) |
|
return spkr; |
|
if (spkr == DCA_SPEAKER_Ls && (s->xxch_core_mask & DCA_SPEAKER_MASK_Lss)) |
|
return DCA_SPEAKER_Lss; |
|
if (spkr == DCA_SPEAKER_Rs && (s->xxch_core_mask & DCA_SPEAKER_MASK_Rss)) |
|
return DCA_SPEAKER_Rss; |
|
return -1; |
|
} |
|
return spkr; |
|
} |
|
|
|
// Then XCH |
|
if ((s->ext_audio_mask & DCA_CSS_XCH) && ch == pos) |
|
return DCA_SPEAKER_Cs; |
|
|
|
// Then XXCH |
|
if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) { |
|
for (spkr = DCA_SPEAKER_Cs; spkr < s->xxch_mask_nbits; spkr++) |
|
if (s->xxch_spkr_mask & (1U << spkr)) |
|
if (pos++ == ch) |
|
return spkr; |
|
} |
|
|
|
// No mapping |
|
return -1; |
|
} |
|
|
|
static void erase_dsp_history(DCACoreDecoder *s) |
|
{ |
|
memset(s->dcadsp_data, 0, sizeof(s->dcadsp_data)); |
|
s->output_history_lfe_fixed = 0; |
|
s->output_history_lfe_float = 0; |
|
} |
|
|
|
static void set_filter_mode(DCACoreDecoder *s, int mode) |
|
{ |
|
if (s->filter_mode != mode) { |
|
erase_dsp_history(s); |
|
s->filter_mode = mode; |
|
} |
|
} |
|
|
|
int ff_dca_core_filter_fixed(DCACoreDecoder *s, int x96_synth) |
|
{ |
|
int n, ch, spkr, nsamples, x96_nchannels = 0; |
|
const int32_t *filter_coeff; |
|
int32_t *ptr; |
|
|
|
// Externally set x96_synth flag implies that X96 synthesis should be |
|
// enabled, yet actual X96 subband data should be discarded. This is a |
|
// special case for lossless residual decoder that ignores X96 data if |
|
// present. |
|
if (!x96_synth && (s->ext_audio_mask & (DCA_CSS_X96 | DCA_EXSS_X96))) { |
|
x96_nchannels = s->x96_nchannels; |
|
x96_synth = 1; |
|
} |
|
if (x96_synth < 0) |
|
x96_synth = 0; |
|
|
|
s->output_rate = s->sample_rate << x96_synth; |
|
s->npcmsamples = nsamples = (s->npcmblocks * DCA_PCMBLOCK_SAMPLES) << x96_synth; |
|
|
|
// Reallocate PCM output buffer |
|
av_fast_malloc(&s->output_buffer, &s->output_size, |
|
nsamples * av_popcount(s->ch_mask) * sizeof(int32_t)); |
|
if (!s->output_buffer) |
|
return AVERROR(ENOMEM); |
|
|
|
ptr = (int32_t *)s->output_buffer; |
|
for (spkr = 0; spkr < DCA_SPEAKER_COUNT; spkr++) { |
|
if (s->ch_mask & (1U << spkr)) { |
|
s->output_samples[spkr] = ptr; |
|
ptr += nsamples; |
|
} else { |
|
s->output_samples[spkr] = NULL; |
|
} |
|
} |
|
|
|
// Handle change of filtering mode |
|
set_filter_mode(s, x96_synth | DCA_FILTER_MODE_FIXED); |
|
|
|
// Select filter |
|
if (x96_synth) |
|
filter_coeff = ff_dca_fir_64bands_fixed; |
|
else if (s->filter_perfect) |
|
filter_coeff = ff_dca_fir_32bands_perfect_fixed; |
|
else |
|
filter_coeff = ff_dca_fir_32bands_nonperfect_fixed; |
|
|
|
// Filter primary channels |
|
for (ch = 0; ch < s->nchannels; ch++) { |
|
// Map this primary channel to speaker |
|
spkr = map_prm_ch_to_spkr(s, ch); |
|
if (spkr < 0) |
|
return AVERROR(EINVAL); |
|
|
|
// Filter bank reconstruction |
|
s->dcadsp->sub_qmf_fixed[x96_synth]( |
|
&s->synth, |
|
&s->dcadct, |
|
s->output_samples[spkr], |
|
s->subband_samples[ch], |
|
ch < x96_nchannels ? s->x96_subband_samples[ch] : NULL, |
|
s->dcadsp_data[ch].u.fix.hist1, |
|
&s->dcadsp_data[ch].offset, |
|
s->dcadsp_data[ch].u.fix.hist2, |
|
filter_coeff, |
|
s->npcmblocks); |
|
} |
|
|
|
// Filter LFE channel |
|
if (s->lfe_present) { |
|
int32_t *samples = s->output_samples[DCA_SPEAKER_LFE1]; |
|
int nlfesamples = s->npcmblocks >> 1; |
|
|
|
// Check LFF |
|
if (s->lfe_present == DCA_LFE_FLAG_128) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Fixed point mode doesn't support LFF=1\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
// Offset intermediate buffer for X96 |
|
if (x96_synth) |
|
samples += nsamples / 2; |
|
|
|
// Interpolate LFE channel |
|
s->dcadsp->lfe_fir_fixed(samples, s->lfe_samples + DCA_LFE_HISTORY, |
|
ff_dca_lfe_fir_64_fixed, s->npcmblocks); |
|
|
|
if (x96_synth) { |
|
// Filter 96 kHz oversampled LFE PCM to attenuate high frequency |
|
// (47.6 - 48.0 kHz) components of interpolation image |
|
s->dcadsp->lfe_x96_fixed(s->output_samples[DCA_SPEAKER_LFE1], |
|
samples, &s->output_history_lfe_fixed, |
|
nsamples / 2); |
|
|
|
} |
|
|
|
// Update LFE history |
|
for (n = DCA_LFE_HISTORY - 1; n >= 0; n--) |
|
s->lfe_samples[n] = s->lfe_samples[nlfesamples + n]; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int filter_frame_fixed(DCACoreDecoder *s, AVFrame *frame) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
DCAContext *dca = avctx->priv_data; |
|
int i, n, ch, ret, spkr, nsamples; |
|
|
|
// Don't filter twice when falling back from XLL |
|
if (!(dca->packet & DCA_PACKET_XLL) && (ret = ff_dca_core_filter_fixed(s, 0)) < 0) |
|
return ret; |
|
|
|
avctx->sample_rate = s->output_rate; |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S32P; |
|
avctx->bits_per_raw_sample = 24; |
|
|
|
frame->nb_samples = nsamples = s->npcmsamples; |
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
|
return ret; |
|
|
|
// Undo embedded XCH downmix |
|
if (s->es_format && (s->ext_audio_mask & DCA_CSS_XCH) |
|
&& s->audio_mode >= DCA_AMODE_2F2R) { |
|
s->dcadsp->dmix_sub_xch(s->output_samples[DCA_SPEAKER_Ls], |
|
s->output_samples[DCA_SPEAKER_Rs], |
|
s->output_samples[DCA_SPEAKER_Cs], |
|
nsamples); |
|
|
|
} |
|
|
|
// Undo embedded XXCH downmix |
|
if ((s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) |
|
&& s->xxch_dmix_embedded) { |
|
int scale_inv = s->xxch_dmix_scale_inv; |
|
int *coeff_ptr = s->xxch_dmix_coeff; |
|
int xch_base = ff_dca_channels[s->audio_mode]; |
|
av_assert1(s->nchannels - xch_base <= DCA_XXCH_CHANNELS_MAX); |
|
|
|
// Undo embedded core downmix pre-scaling |
|
for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { |
|
if (s->xxch_core_mask & (1U << spkr)) { |
|
s->dcadsp->dmix_scale_inv(s->output_samples[spkr], |
|
scale_inv, nsamples); |
|
} |
|
} |
|
|
|
// Undo downmix |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
int src_spkr = map_prm_ch_to_spkr(s, ch); |
|
if (src_spkr < 0) |
|
return AVERROR(EINVAL); |
|
for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { |
|
if (s->xxch_dmix_mask[ch - xch_base] & (1U << spkr)) { |
|
int coeff = mul16(*coeff_ptr++, scale_inv); |
|
if (coeff) { |
|
s->dcadsp->dmix_sub(s->output_samples[spkr ], |
|
s->output_samples[src_spkr], |
|
coeff, nsamples); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (!(s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH | DCA_EXSS_XXCH))) { |
|
// Front sum/difference decoding |
|
if ((s->sumdiff_front && s->audio_mode > DCA_AMODE_MONO) |
|
|| s->audio_mode == DCA_AMODE_STEREO_SUMDIFF) { |
|
s->fixed_dsp->butterflies_fixed(s->output_samples[DCA_SPEAKER_L], |
|
s->output_samples[DCA_SPEAKER_R], |
|
nsamples); |
|
} |
|
|
|
// Surround sum/difference decoding |
|
if (s->sumdiff_surround && s->audio_mode >= DCA_AMODE_2F2R) { |
|
s->fixed_dsp->butterflies_fixed(s->output_samples[DCA_SPEAKER_Ls], |
|
s->output_samples[DCA_SPEAKER_Rs], |
|
nsamples); |
|
} |
|
} |
|
|
|
// Downmix primary channel set to stereo |
|
if (s->request_mask != s->ch_mask) { |
|
ff_dca_downmix_to_stereo_fixed(s->dcadsp, |
|
s->output_samples, |
|
s->prim_dmix_coeff, |
|
nsamples, s->ch_mask); |
|
} |
|
|
|
for (i = 0; i < avctx->ch_layout.nb_channels; i++) { |
|
int32_t *samples = s->output_samples[s->ch_remap[i]]; |
|
int32_t *plane = (int32_t *)frame->extended_data[i]; |
|
for (n = 0; n < nsamples; n++) |
|
plane[n] = clip23(samples[n]) * (1 << 8); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int filter_frame_float(DCACoreDecoder *s, AVFrame *frame) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
int x96_nchannels = 0, x96_synth = 0; |
|
int i, n, ch, ret, spkr, nsamples, nchannels; |
|
float *output_samples[DCA_SPEAKER_COUNT] = { NULL }, *ptr; |
|
const float *filter_coeff; |
|
|
|
if (s->ext_audio_mask & (DCA_CSS_X96 | DCA_EXSS_X96)) { |
|
x96_nchannels = s->x96_nchannels; |
|
x96_synth = 1; |
|
} |
|
|
|
avctx->sample_rate = s->sample_rate << x96_synth; |
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
|
avctx->bits_per_raw_sample = 0; |
|
|
|
frame->nb_samples = nsamples = (s->npcmblocks * DCA_PCMBLOCK_SAMPLES) << x96_synth; |
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
|
return ret; |
|
|
|
// Build reverse speaker to channel mapping |
|
for (i = 0; i < avctx->ch_layout.nb_channels; i++) |
|
output_samples[s->ch_remap[i]] = (float *)frame->extended_data[i]; |
|
|
|
// Allocate space for extra channels |
|
nchannels = av_popcount(s->ch_mask) - avctx->ch_layout.nb_channels; |
|
if (nchannels > 0) { |
|
av_fast_malloc(&s->output_buffer, &s->output_size, |
|
nsamples * nchannels * sizeof(float)); |
|
if (!s->output_buffer) |
|
return AVERROR(ENOMEM); |
|
|
|
ptr = (float *)s->output_buffer; |
|
for (spkr = 0; spkr < DCA_SPEAKER_COUNT; spkr++) { |
|
if (!(s->ch_mask & (1U << spkr))) |
|
continue; |
|
if (output_samples[spkr]) |
|
continue; |
|
output_samples[spkr] = ptr; |
|
ptr += nsamples; |
|
} |
|
} |
|
|
|
// Handle change of filtering mode |
|
set_filter_mode(s, x96_synth); |
|
|
|
// Select filter |
|
if (x96_synth) |
|
filter_coeff = ff_dca_fir_64bands; |
|
else if (s->filter_perfect) |
|
filter_coeff = ff_dca_fir_32bands_perfect; |
|
else |
|
filter_coeff = ff_dca_fir_32bands_nonperfect; |
|
|
|
// Filter primary channels |
|
for (ch = 0; ch < s->nchannels; ch++) { |
|
// Map this primary channel to speaker |
|
spkr = map_prm_ch_to_spkr(s, ch); |
|
if (spkr < 0) |
|
return AVERROR(EINVAL); |
|
|
|
// Filter bank reconstruction |
|
s->dcadsp->sub_qmf_float[x96_synth]( |
|
&s->synth, |
|
s->imdct[x96_synth], |
|
s->imdct_fn[x96_synth], |
|
output_samples[spkr], |
|
s->subband_samples[ch], |
|
ch < x96_nchannels ? s->x96_subband_samples[ch] : NULL, |
|
s->dcadsp_data[ch].u.flt.hist1, |
|
&s->dcadsp_data[ch].offset, |
|
s->dcadsp_data[ch].u.flt.hist2, |
|
filter_coeff, |
|
s->npcmblocks, |
|
1.0f / (1 << (17 - x96_synth))); |
|
} |
|
|
|
// Filter LFE channel |
|
if (s->lfe_present) { |
|
int dec_select = (s->lfe_present == DCA_LFE_FLAG_128); |
|
float *samples = output_samples[DCA_SPEAKER_LFE1]; |
|
int nlfesamples = s->npcmblocks >> (dec_select + 1); |
|
|
|
// Offset intermediate buffer for X96 |
|
if (x96_synth) |
|
samples += nsamples / 2; |
|
|
|
// Select filter |
|
if (dec_select) |
|
filter_coeff = ff_dca_lfe_fir_128; |
|
else |
|
filter_coeff = ff_dca_lfe_fir_64; |
|
|
|
// Interpolate LFE channel |
|
s->dcadsp->lfe_fir_float[dec_select]( |
|
samples, s->lfe_samples + DCA_LFE_HISTORY, |
|
filter_coeff, s->npcmblocks); |
|
|
|
if (x96_synth) { |
|
// Filter 96 kHz oversampled LFE PCM to attenuate high frequency |
|
// (47.6 - 48.0 kHz) components of interpolation image |
|
s->dcadsp->lfe_x96_float(output_samples[DCA_SPEAKER_LFE1], |
|
samples, &s->output_history_lfe_float, |
|
nsamples / 2); |
|
} |
|
|
|
// Update LFE history |
|
for (n = DCA_LFE_HISTORY - 1; n >= 0; n--) |
|
s->lfe_samples[n] = s->lfe_samples[nlfesamples + n]; |
|
} |
|
|
|
// Undo embedded XCH downmix |
|
if (s->es_format && (s->ext_audio_mask & DCA_CSS_XCH) |
|
&& s->audio_mode >= DCA_AMODE_2F2R) { |
|
s->float_dsp->vector_fmac_scalar(output_samples[DCA_SPEAKER_Ls], |
|
output_samples[DCA_SPEAKER_Cs], |
|
-M_SQRT1_2, nsamples); |
|
s->float_dsp->vector_fmac_scalar(output_samples[DCA_SPEAKER_Rs], |
|
output_samples[DCA_SPEAKER_Cs], |
|
-M_SQRT1_2, nsamples); |
|
} |
|
|
|
// Undo embedded XXCH downmix |
|
if ((s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) |
|
&& s->xxch_dmix_embedded) { |
|
float scale_inv = s->xxch_dmix_scale_inv * (1.0f / (1 << 16)); |
|
int *coeff_ptr = s->xxch_dmix_coeff; |
|
int xch_base = ff_dca_channels[s->audio_mode]; |
|
av_assert1(s->nchannels - xch_base <= DCA_XXCH_CHANNELS_MAX); |
|
|
|
// Undo downmix |
|
for (ch = xch_base; ch < s->nchannels; ch++) { |
|
int src_spkr = map_prm_ch_to_spkr(s, ch); |
|
if (src_spkr < 0) |
|
return AVERROR(EINVAL); |
|
for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { |
|
if (s->xxch_dmix_mask[ch - xch_base] & (1U << spkr)) { |
|
int coeff = *coeff_ptr++; |
|
if (coeff) { |
|
s->float_dsp->vector_fmac_scalar(output_samples[ spkr], |
|
output_samples[src_spkr], |
|
coeff * (-1.0f / (1 << 15)), |
|
nsamples); |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Undo embedded core downmix pre-scaling |
|
for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) { |
|
if (s->xxch_core_mask & (1U << spkr)) { |
|
s->float_dsp->vector_fmul_scalar(output_samples[spkr], |
|
output_samples[spkr], |
|
scale_inv, nsamples); |
|
} |
|
} |
|
} |
|
|
|
if (!(s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH | DCA_EXSS_XXCH))) { |
|
// Front sum/difference decoding |
|
if ((s->sumdiff_front && s->audio_mode > DCA_AMODE_MONO) |
|
|| s->audio_mode == DCA_AMODE_STEREO_SUMDIFF) { |
|
s->float_dsp->butterflies_float(output_samples[DCA_SPEAKER_L], |
|
output_samples[DCA_SPEAKER_R], |
|
nsamples); |
|
} |
|
|
|
// Surround sum/difference decoding |
|
if (s->sumdiff_surround && s->audio_mode >= DCA_AMODE_2F2R) { |
|
s->float_dsp->butterflies_float(output_samples[DCA_SPEAKER_Ls], |
|
output_samples[DCA_SPEAKER_Rs], |
|
nsamples); |
|
} |
|
} |
|
|
|
// Downmix primary channel set to stereo |
|
if (s->request_mask != s->ch_mask) { |
|
ff_dca_downmix_to_stereo_float(s->float_dsp, output_samples, |
|
s->prim_dmix_coeff, |
|
nsamples, s->ch_mask); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int ff_dca_core_filter_frame(DCACoreDecoder *s, AVFrame *frame) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
DCAContext *dca = avctx->priv_data; |
|
DCAExssAsset *asset = &dca->exss.assets[0]; |
|
enum AVMatrixEncoding matrix_encoding; |
|
int ret; |
|
|
|
// Handle downmixing to stereo request |
|
if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO |
|
&& s->audio_mode > DCA_AMODE_MONO && s->prim_dmix_embedded |
|
&& (s->prim_dmix_type == DCA_DMIX_TYPE_LoRo || |
|
s->prim_dmix_type == DCA_DMIX_TYPE_LtRt)) |
|
s->request_mask = DCA_SPEAKER_LAYOUT_STEREO; |
|
else |
|
s->request_mask = s->ch_mask; |
|
if (!ff_dca_set_channel_layout(avctx, s->ch_remap, s->request_mask)) |
|
return AVERROR(EINVAL); |
|
|
|
// Force fixed point mode when falling back from XLL |
|
if ((avctx->flags & AV_CODEC_FLAG_BITEXACT) || ((dca->packet & DCA_PACKET_EXSS) |
|
&& (asset->extension_mask & DCA_EXSS_XLL))) |
|
ret = filter_frame_fixed(s, frame); |
|
else |
|
ret = filter_frame_float(s, frame); |
|
if (ret < 0) |
|
return ret; |
|
|
|
// Set profile, bit rate, etc |
|
if (s->ext_audio_mask & DCA_EXSS_MASK) |
|
avctx->profile = AV_PROFILE_DTS_HD_HRA; |
|
else if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH)) |
|
avctx->profile = AV_PROFILE_DTS_ES; |
|
else if (s->ext_audio_mask & DCA_CSS_X96) |
|
avctx->profile = AV_PROFILE_DTS_96_24; |
|
else |
|
avctx->profile = AV_PROFILE_DTS; |
|
|
|
if (s->bit_rate > 3 && !(s->ext_audio_mask & DCA_EXSS_MASK)) |
|
avctx->bit_rate = s->bit_rate; |
|
else |
|
avctx->bit_rate = 0; |
|
|
|
if (s->audio_mode == DCA_AMODE_STEREO_TOTAL || (s->request_mask != s->ch_mask && |
|
s->prim_dmix_type == DCA_DMIX_TYPE_LtRt)) |
|
matrix_encoding = AV_MATRIX_ENCODING_DOLBY; |
|
else |
|
matrix_encoding = AV_MATRIX_ENCODING_NONE; |
|
if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0) |
|
return ret; |
|
|
|
return 0; |
|
} |
|
|
|
av_cold void ff_dca_core_flush(DCACoreDecoder *s) |
|
{ |
|
if (s->subband_buffer) { |
|
erase_adpcm_history(s); |
|
memset(s->lfe_samples, 0, DCA_LFE_HISTORY * sizeof(int32_t)); |
|
} |
|
|
|
if (s->x96_subband_buffer) |
|
erase_x96_adpcm_history(s); |
|
|
|
erase_dsp_history(s); |
|
} |
|
|
|
av_cold int ff_dca_core_init(DCACoreDecoder *s) |
|
{ |
|
int ret; |
|
float scale = 1.0f; |
|
|
|
if (!(s->float_dsp = avpriv_float_dsp_alloc(0))) |
|
return -1; |
|
if (!(s->fixed_dsp = avpriv_alloc_fixed_dsp(0))) |
|
return -1; |
|
|
|
ff_dcadct_init(&s->dcadct); |
|
|
|
if ((ret = av_tx_init(&s->imdct[0], &s->imdct_fn[0], AV_TX_FLOAT_MDCT, |
|
1, 32, &scale, 0)) < 0) |
|
return ret; |
|
|
|
if ((ret = av_tx_init(&s->imdct[1], &s->imdct_fn[1], AV_TX_FLOAT_MDCT, |
|
1, 64, &scale, 0)) < 0) |
|
return ret; |
|
|
|
ff_synth_filter_init(&s->synth); |
|
|
|
s->x96_rand = 1; |
|
return 0; |
|
} |
|
|
|
av_cold void ff_dca_core_close(DCACoreDecoder *s) |
|
{ |
|
av_freep(&s->float_dsp); |
|
av_freep(&s->fixed_dsp); |
|
|
|
av_tx_uninit(&s->imdct[0]); |
|
av_tx_uninit(&s->imdct[1]); |
|
|
|
av_freep(&s->subband_buffer); |
|
s->subband_size = 0; |
|
|
|
av_freep(&s->x96_subband_buffer); |
|
s->x96_subband_size = 0; |
|
|
|
av_freep(&s->output_buffer); |
|
s->output_size = 0; |
|
}
|
|
|