mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1030 lines
39 KiB
1030 lines
39 KiB
/* |
|
* Copyright (c) 2001-2003 The FFmpeg project |
|
* |
|
* first version by Francois Revol (revol@free.fr) |
|
* fringe ADPCM codecs (e.g., DK3, DK4, Westwood) |
|
* by Mike Melanson (melanson@pcisys.net) |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/opt.h" |
|
|
|
#include "avcodec.h" |
|
#include "put_bits.h" |
|
#include "bytestream.h" |
|
#include "adpcm.h" |
|
#include "adpcm_data.h" |
|
#include "encode.h" |
|
#include "internal.h" |
|
|
|
/** |
|
* @file |
|
* ADPCM encoders |
|
* See ADPCM decoder reference documents for codec information. |
|
*/ |
|
|
|
#define CASE_0(codec_id, ...) |
|
#define CASE_1(codec_id, ...) \ |
|
case codec_id: \ |
|
{ __VA_ARGS__ } \ |
|
break; |
|
#define CASE_2(enabled, codec_id, ...) \ |
|
CASE_ ## enabled(codec_id, __VA_ARGS__) |
|
#define CASE_3(config, codec_id, ...) \ |
|
CASE_2(config, codec_id, __VA_ARGS__) |
|
#define CASE(codec, ...) \ |
|
CASE_3(CONFIG_ ## codec ## _ENCODER, AV_CODEC_ID_ ## codec, __VA_ARGS__) |
|
|
|
typedef struct TrellisPath { |
|
int nibble; |
|
int prev; |
|
} TrellisPath; |
|
|
|
typedef struct TrellisNode { |
|
uint32_t ssd; |
|
int path; |
|
int sample1; |
|
int sample2; |
|
int step; |
|
} TrellisNode; |
|
|
|
typedef struct ADPCMEncodeContext { |
|
AVClass *class; |
|
int block_size; |
|
|
|
ADPCMChannelStatus status[6]; |
|
TrellisPath *paths; |
|
TrellisNode *node_buf; |
|
TrellisNode **nodep_buf; |
|
uint8_t *trellis_hash; |
|
} ADPCMEncodeContext; |
|
|
|
#define FREEZE_INTERVAL 128 |
|
|
|
static av_cold int adpcm_encode_init(AVCodecContext *avctx) |
|
{ |
|
ADPCMEncodeContext *s = avctx->priv_data; |
|
int channels = avctx->ch_layout.nb_channels; |
|
|
|
/* |
|
* AMV's block size has to match that of the corresponding video |
|
* stream. Relax the POT requirement. |
|
*/ |
|
if (avctx->codec->id != AV_CODEC_ID_ADPCM_IMA_AMV && |
|
(s->block_size & (s->block_size - 1))) { |
|
av_log(avctx, AV_LOG_ERROR, "block size must be power of 2\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if (avctx->trellis) { |
|
int frontier, max_paths; |
|
|
|
if ((unsigned)avctx->trellis > 16U) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_SSI || |
|
avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_APM || |
|
avctx->codec->id == AV_CODEC_ID_ADPCM_ARGO || |
|
avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_WS) { |
|
/* |
|
* The current trellis implementation doesn't work for extended |
|
* runs of samples without periodic resets. Disallow it. |
|
*/ |
|
av_log(avctx, AV_LOG_ERROR, "trellis not supported\n"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
frontier = 1 << avctx->trellis; |
|
max_paths = frontier * FREEZE_INTERVAL; |
|
if (!FF_ALLOC_TYPED_ARRAY(s->paths, max_paths) || |
|
!FF_ALLOC_TYPED_ARRAY(s->node_buf, 2 * frontier) || |
|
!FF_ALLOC_TYPED_ARRAY(s->nodep_buf, 2 * frontier) || |
|
!FF_ALLOC_TYPED_ARRAY(s->trellis_hash, 65536)) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id); |
|
|
|
switch (avctx->codec->id) { |
|
CASE(ADPCM_IMA_WAV, |
|
/* each 16 bits sample gives one nibble |
|
and we have 4 bytes per channel overhead */ |
|
avctx->frame_size = (s->block_size - 4 * channels) * 8 / |
|
(4 * channels) + 1; |
|
/* seems frame_size isn't taken into account... |
|
have to buffer the samples :-( */ |
|
avctx->block_align = s->block_size; |
|
avctx->bits_per_coded_sample = 4; |
|
) /* End of CASE */ |
|
CASE(ADPCM_IMA_QT, |
|
avctx->frame_size = 64; |
|
avctx->block_align = 34 * channels; |
|
) /* End of CASE */ |
|
CASE(ADPCM_MS, |
|
uint8_t *extradata; |
|
/* each 16 bits sample gives one nibble |
|
and we have 7 bytes per channel overhead */ |
|
avctx->frame_size = (s->block_size - 7 * channels) * 2 / channels + 2; |
|
avctx->bits_per_coded_sample = 4; |
|
avctx->block_align = s->block_size; |
|
if (!(avctx->extradata = av_malloc(32 + AV_INPUT_BUFFER_PADDING_SIZE))) |
|
return AVERROR(ENOMEM); |
|
avctx->extradata_size = 32; |
|
extradata = avctx->extradata; |
|
bytestream_put_le16(&extradata, avctx->frame_size); |
|
bytestream_put_le16(&extradata, 7); /* wNumCoef */ |
|
for (int i = 0; i < 7; i++) { |
|
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4); |
|
bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4); |
|
} |
|
) /* End of CASE */ |
|
CASE(ADPCM_YAMAHA, |
|
avctx->frame_size = s->block_size * 2 / channels; |
|
avctx->block_align = s->block_size; |
|
) /* End of CASE */ |
|
CASE(ADPCM_SWF, |
|
if (avctx->sample_rate != 11025 && |
|
avctx->sample_rate != 22050 && |
|
avctx->sample_rate != 44100) { |
|
av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, " |
|
"22050 or 44100\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
avctx->frame_size = 4096; /* Hardcoded according to the SWF spec. */ |
|
avctx->block_align = (2 + channels * (22 + 4 * (avctx->frame_size - 1)) + 7) / 8; |
|
) /* End of CASE */ |
|
case AV_CODEC_ID_ADPCM_IMA_SSI: |
|
case AV_CODEC_ID_ADPCM_IMA_ALP: |
|
avctx->frame_size = s->block_size * 2 / channels; |
|
avctx->block_align = s->block_size; |
|
break; |
|
CASE(ADPCM_IMA_AMV, |
|
if (avctx->sample_rate != 22050) { |
|
av_log(avctx, AV_LOG_ERROR, "Sample rate must be 22050\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
if (channels != 1) { |
|
av_log(avctx, AV_LOG_ERROR, "Only mono is supported\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
avctx->frame_size = s->block_size; |
|
avctx->block_align = 8 + (FFALIGN(avctx->frame_size, 2) / 2); |
|
) /* End of CASE */ |
|
CASE(ADPCM_IMA_APM, |
|
avctx->frame_size = s->block_size * 2 / channels; |
|
avctx->block_align = s->block_size; |
|
|
|
if (!(avctx->extradata = av_mallocz(28 + AV_INPUT_BUFFER_PADDING_SIZE))) |
|
return AVERROR(ENOMEM); |
|
avctx->extradata_size = 28; |
|
) /* End of CASE */ |
|
CASE(ADPCM_ARGO, |
|
avctx->frame_size = 32; |
|
avctx->block_align = 17 * channels; |
|
) /* End of CASE */ |
|
CASE(ADPCM_IMA_WS, |
|
/* each 16 bits sample gives one nibble */ |
|
avctx->frame_size = s->block_size * 2 / channels; |
|
avctx->block_align = s->block_size; |
|
) /* End of CASE */ |
|
default: |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int adpcm_encode_close(AVCodecContext *avctx) |
|
{ |
|
ADPCMEncodeContext *s = avctx->priv_data; |
|
av_freep(&s->paths); |
|
av_freep(&s->node_buf); |
|
av_freep(&s->nodep_buf); |
|
av_freep(&s->trellis_hash); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c, |
|
int16_t sample) |
|
{ |
|
int delta = sample - c->prev_sample; |
|
int nibble = FFMIN(7, abs(delta) * 4 / |
|
ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8; |
|
c->prev_sample += ((ff_adpcm_step_table[c->step_index] * |
|
ff_adpcm_yamaha_difflookup[nibble]) / 8); |
|
c->prev_sample = av_clip_int16(c->prev_sample); |
|
c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88); |
|
return nibble; |
|
} |
|
|
|
static inline uint8_t adpcm_ima_alp_compress_sample(ADPCMChannelStatus *c, int16_t sample) |
|
{ |
|
const int delta = sample - c->prev_sample; |
|
const int step = ff_adpcm_step_table[c->step_index]; |
|
const int sign = (delta < 0) * 8; |
|
|
|
int nibble = FFMIN(abs(delta) * 4 / step, 7); |
|
int diff = (step * nibble) >> 2; |
|
if (sign) |
|
diff = -diff; |
|
|
|
nibble = sign | nibble; |
|
|
|
c->prev_sample += diff; |
|
c->prev_sample = av_clip_int16(c->prev_sample); |
|
c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88); |
|
return nibble; |
|
} |
|
|
|
static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c, |
|
int16_t sample) |
|
{ |
|
int delta = sample - c->prev_sample; |
|
int diff, step = ff_adpcm_step_table[c->step_index]; |
|
int nibble = 8*(delta < 0); |
|
|
|
delta= abs(delta); |
|
diff = delta + (step >> 3); |
|
|
|
if (delta >= step) { |
|
nibble |= 4; |
|
delta -= step; |
|
} |
|
step >>= 1; |
|
if (delta >= step) { |
|
nibble |= 2; |
|
delta -= step; |
|
} |
|
step >>= 1; |
|
if (delta >= step) { |
|
nibble |= 1; |
|
delta -= step; |
|
} |
|
diff -= delta; |
|
|
|
if (nibble & 8) |
|
c->prev_sample -= diff; |
|
else |
|
c->prev_sample += diff; |
|
|
|
c->prev_sample = av_clip_int16(c->prev_sample); |
|
c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88); |
|
|
|
return nibble; |
|
} |
|
|
|
static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c, |
|
int16_t sample) |
|
{ |
|
int predictor, nibble, bias; |
|
|
|
predictor = (((c->sample1) * (c->coeff1)) + |
|
(( c->sample2) * (c->coeff2))) / 64; |
|
|
|
nibble = sample - predictor; |
|
if (nibble >= 0) |
|
bias = c->idelta / 2; |
|
else |
|
bias = -c->idelta / 2; |
|
|
|
nibble = (nibble + bias) / c->idelta; |
|
nibble = av_clip_intp2(nibble, 3) & 0x0F; |
|
|
|
predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta; |
|
|
|
c->sample2 = c->sample1; |
|
c->sample1 = av_clip_int16(predictor); |
|
|
|
c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8; |
|
if (c->idelta < 16) |
|
c->idelta = 16; |
|
|
|
return nibble; |
|
} |
|
|
|
static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, |
|
int16_t sample) |
|
{ |
|
int nibble, delta; |
|
|
|
if (!c->step) { |
|
c->predictor = 0; |
|
c->step = 127; |
|
} |
|
|
|
delta = sample - c->predictor; |
|
|
|
nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8; |
|
|
|
c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8); |
|
c->predictor = av_clip_int16(c->predictor); |
|
c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8; |
|
c->step = av_clip(c->step, 127, 24576); |
|
|
|
return nibble; |
|
} |
|
|
|
static void adpcm_compress_trellis(AVCodecContext *avctx, |
|
const int16_t *samples, uint8_t *dst, |
|
ADPCMChannelStatus *c, int n, int stride) |
|
{ |
|
//FIXME 6% faster if frontier is a compile-time constant |
|
ADPCMEncodeContext *s = avctx->priv_data; |
|
const int frontier = 1 << avctx->trellis; |
|
const int version = avctx->codec->id; |
|
TrellisPath *paths = s->paths, *p; |
|
TrellisNode *node_buf = s->node_buf; |
|
TrellisNode **nodep_buf = s->nodep_buf; |
|
TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd |
|
TrellisNode **nodes_next = nodep_buf + frontier; |
|
int pathn = 0, froze = -1, i, j, k, generation = 0; |
|
uint8_t *hash = s->trellis_hash; |
|
memset(hash, 0xff, 65536 * sizeof(*hash)); |
|
|
|
memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf)); |
|
nodes[0] = node_buf + frontier; |
|
nodes[0]->ssd = 0; |
|
nodes[0]->path = 0; |
|
nodes[0]->step = c->step_index; |
|
nodes[0]->sample1 = c->sample1; |
|
nodes[0]->sample2 = c->sample2; |
|
if (version == AV_CODEC_ID_ADPCM_IMA_WAV || |
|
version == AV_CODEC_ID_ADPCM_IMA_QT || |
|
version == AV_CODEC_ID_ADPCM_IMA_AMV || |
|
version == AV_CODEC_ID_ADPCM_SWF) |
|
nodes[0]->sample1 = c->prev_sample; |
|
if (version == AV_CODEC_ID_ADPCM_MS) |
|
nodes[0]->step = c->idelta; |
|
if (version == AV_CODEC_ID_ADPCM_YAMAHA) { |
|
if (c->step == 0) { |
|
nodes[0]->step = 127; |
|
nodes[0]->sample1 = 0; |
|
} else { |
|
nodes[0]->step = c->step; |
|
nodes[0]->sample1 = c->predictor; |
|
} |
|
} |
|
|
|
for (i = 0; i < n; i++) { |
|
TrellisNode *t = node_buf + frontier*(i&1); |
|
TrellisNode **u; |
|
int sample = samples[i * stride]; |
|
int heap_pos = 0; |
|
memset(nodes_next, 0, frontier * sizeof(TrellisNode*)); |
|
for (j = 0; j < frontier && nodes[j]; j++) { |
|
// higher j have higher ssd already, so they're likely |
|
// to yield a suboptimal next sample too |
|
const int range = (j < frontier / 2) ? 1 : 0; |
|
const int step = nodes[j]->step; |
|
int nidx; |
|
if (version == AV_CODEC_ID_ADPCM_MS) { |
|
const int predictor = ((nodes[j]->sample1 * c->coeff1) + |
|
(nodes[j]->sample2 * c->coeff2)) / 64; |
|
const int div = (sample - predictor) / step; |
|
const int nmin = av_clip(div-range, -8, 6); |
|
const int nmax = av_clip(div+range, -7, 7); |
|
for (nidx = nmin; nidx <= nmax; nidx++) { |
|
const int nibble = nidx & 0xf; |
|
int dec_sample = predictor + nidx * step; |
|
#define STORE_NODE(NAME, STEP_INDEX)\ |
|
int d;\ |
|
uint32_t ssd;\ |
|
int pos;\ |
|
TrellisNode *u;\ |
|
uint8_t *h;\ |
|
dec_sample = av_clip_int16(dec_sample);\ |
|
d = sample - dec_sample;\ |
|
ssd = nodes[j]->ssd + d*(unsigned)d;\ |
|
/* Check for wraparound, skip such samples completely. \ |
|
* Note, changing ssd to a 64 bit variable would be \ |
|
* simpler, avoiding this check, but it's slower on \ |
|
* x86 32 bit at the moment. */\ |
|
if (ssd < nodes[j]->ssd)\ |
|
goto next_##NAME;\ |
|
/* Collapse any two states with the same previous sample value. \ |
|
* One could also distinguish states by step and by 2nd to last |
|
* sample, but the effects of that are negligible. |
|
* Since nodes in the previous generation are iterated |
|
* through a heap, they're roughly ordered from better to |
|
* worse, but not strictly ordered. Therefore, an earlier |
|
* node with the same sample value is better in most cases |
|
* (and thus the current is skipped), but not strictly |
|
* in all cases. Only skipping samples where ssd >= |
|
* ssd of the earlier node with the same sample gives |
|
* slightly worse quality, though, for some reason. */ \ |
|
h = &hash[(uint16_t) dec_sample];\ |
|
if (*h == generation)\ |
|
goto next_##NAME;\ |
|
if (heap_pos < frontier) {\ |
|
pos = heap_pos++;\ |
|
} else {\ |
|
/* Try to replace one of the leaf nodes with the new \ |
|
* one, but try a different slot each time. */\ |
|
pos = (frontier >> 1) +\ |
|
(heap_pos & ((frontier >> 1) - 1));\ |
|
if (ssd > nodes_next[pos]->ssd)\ |
|
goto next_##NAME;\ |
|
heap_pos++;\ |
|
}\ |
|
*h = generation;\ |
|
u = nodes_next[pos];\ |
|
if (!u) {\ |
|
av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\ |
|
u = t++;\ |
|
nodes_next[pos] = u;\ |
|
u->path = pathn++;\ |
|
}\ |
|
u->ssd = ssd;\ |
|
u->step = STEP_INDEX;\ |
|
u->sample2 = nodes[j]->sample1;\ |
|
u->sample1 = dec_sample;\ |
|
paths[u->path].nibble = nibble;\ |
|
paths[u->path].prev = nodes[j]->path;\ |
|
/* Sift the newly inserted node up in the heap to \ |
|
* restore the heap property. */\ |
|
while (pos > 0) {\ |
|
int parent = (pos - 1) >> 1;\ |
|
if (nodes_next[parent]->ssd <= ssd)\ |
|
break;\ |
|
FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\ |
|
pos = parent;\ |
|
}\ |
|
next_##NAME:; |
|
STORE_NODE(ms, FFMAX(16, |
|
(ff_adpcm_AdaptationTable[nibble] * step) >> 8)); |
|
} |
|
} else if (version == AV_CODEC_ID_ADPCM_IMA_WAV || |
|
version == AV_CODEC_ID_ADPCM_IMA_QT || |
|
version == AV_CODEC_ID_ADPCM_IMA_AMV || |
|
version == AV_CODEC_ID_ADPCM_SWF) { |
|
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\ |
|
const int predictor = nodes[j]->sample1;\ |
|
const int div = (sample - predictor) * 4 / STEP_TABLE;\ |
|
int nmin = av_clip(div - range, -7, 6);\ |
|
int nmax = av_clip(div + range, -6, 7);\ |
|
if (nmin <= 0)\ |
|
nmin--; /* distinguish -0 from +0 */\ |
|
if (nmax < 0)\ |
|
nmax--;\ |
|
for (nidx = nmin; nidx <= nmax; nidx++) {\ |
|
const int nibble = nidx < 0 ? 7 - nidx : nidx;\ |
|
int dec_sample = predictor +\ |
|
(STEP_TABLE *\ |
|
ff_adpcm_yamaha_difflookup[nibble]) / 8;\ |
|
STORE_NODE(NAME, STEP_INDEX);\ |
|
} |
|
LOOP_NODES(ima, ff_adpcm_step_table[step], |
|
av_clip(step + ff_adpcm_index_table[nibble], 0, 88)); |
|
} else { //AV_CODEC_ID_ADPCM_YAMAHA |
|
LOOP_NODES(yamaha, step, |
|
av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8, |
|
127, 24576)); |
|
#undef LOOP_NODES |
|
#undef STORE_NODE |
|
} |
|
} |
|
|
|
u = nodes; |
|
nodes = nodes_next; |
|
nodes_next = u; |
|
|
|
generation++; |
|
if (generation == 255) { |
|
memset(hash, 0xff, 65536 * sizeof(*hash)); |
|
generation = 0; |
|
} |
|
|
|
// prevent overflow |
|
if (nodes[0]->ssd > (1 << 28)) { |
|
for (j = 1; j < frontier && nodes[j]; j++) |
|
nodes[j]->ssd -= nodes[0]->ssd; |
|
nodes[0]->ssd = 0; |
|
} |
|
|
|
// merge old paths to save memory |
|
if (i == froze + FREEZE_INTERVAL) { |
|
p = &paths[nodes[0]->path]; |
|
for (k = i; k > froze; k--) { |
|
dst[k] = p->nibble; |
|
p = &paths[p->prev]; |
|
} |
|
froze = i; |
|
pathn = 0; |
|
// other nodes might use paths that don't coincide with the frozen one. |
|
// checking which nodes do so is too slow, so just kill them all. |
|
// this also slightly improves quality, but I don't know why. |
|
memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*)); |
|
} |
|
} |
|
|
|
p = &paths[nodes[0]->path]; |
|
for (i = n - 1; i > froze; i--) { |
|
dst[i] = p->nibble; |
|
p = &paths[p->prev]; |
|
} |
|
|
|
c->predictor = nodes[0]->sample1; |
|
c->sample1 = nodes[0]->sample1; |
|
c->sample2 = nodes[0]->sample2; |
|
c->step_index = nodes[0]->step; |
|
c->step = nodes[0]->step; |
|
c->idelta = nodes[0]->step; |
|
} |
|
|
|
#if CONFIG_ADPCM_ARGO_ENCODER |
|
static inline int adpcm_argo_compress_nibble(const ADPCMChannelStatus *cs, int16_t s, |
|
int shift, int flag) |
|
{ |
|
int nibble; |
|
|
|
if (flag) |
|
nibble = 4 * s - 8 * cs->sample1 + 4 * cs->sample2; |
|
else |
|
nibble = 4 * s - 4 * cs->sample1; |
|
|
|
return (nibble >> shift) & 0x0F; |
|
} |
|
|
|
static int64_t adpcm_argo_compress_block(ADPCMChannelStatus *cs, PutBitContext *pb, |
|
const int16_t *samples, int nsamples, |
|
int shift, int flag) |
|
{ |
|
int64_t error = 0; |
|
|
|
if (pb) { |
|
put_bits(pb, 4, shift - 2); |
|
put_bits(pb, 1, 0); |
|
put_bits(pb, 1, !!flag); |
|
put_bits(pb, 2, 0); |
|
} |
|
|
|
for (int n = 0; n < nsamples; n++) { |
|
/* Compress the nibble, then expand it to see how much precision we've lost. */ |
|
int nibble = adpcm_argo_compress_nibble(cs, samples[n], shift, flag); |
|
int16_t sample = ff_adpcm_argo_expand_nibble(cs, nibble, shift, flag); |
|
|
|
error += abs(samples[n] - sample); |
|
|
|
if (pb) |
|
put_bits(pb, 4, nibble); |
|
} |
|
|
|
return error; |
|
} |
|
#endif |
|
|
|
static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
|
const AVFrame *frame, int *got_packet_ptr) |
|
{ |
|
int st, pkt_size, ret; |
|
const int16_t *samples; |
|
int16_t **samples_p; |
|
uint8_t *dst; |
|
ADPCMEncodeContext *c = avctx->priv_data; |
|
int channels = avctx->ch_layout.nb_channels; |
|
|
|
samples = (const int16_t *)frame->data[0]; |
|
samples_p = (int16_t **)frame->extended_data; |
|
st = channels == 2; |
|
|
|
if (avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_SSI || |
|
avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_ALP || |
|
avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_APM || |
|
avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_WS) |
|
pkt_size = (frame->nb_samples * channels) / 2; |
|
else |
|
pkt_size = avctx->block_align; |
|
if ((ret = ff_get_encode_buffer(avctx, avpkt, pkt_size, 0)) < 0) |
|
return ret; |
|
dst = avpkt->data; |
|
|
|
switch(avctx->codec->id) { |
|
CASE(ADPCM_IMA_WAV, |
|
int blocks = (frame->nb_samples - 1) / 8; |
|
|
|
for (int ch = 0; ch < channels; ch++) { |
|
ADPCMChannelStatus *status = &c->status[ch]; |
|
status->prev_sample = samples_p[ch][0]; |
|
/* status->step_index = 0; |
|
XXX: not sure how to init the state machine */ |
|
bytestream_put_le16(&dst, status->prev_sample); |
|
*dst++ = status->step_index; |
|
*dst++ = 0; /* unknown */ |
|
} |
|
|
|
/* stereo: 4 bytes (8 samples) for left, 4 bytes for right */ |
|
if (avctx->trellis > 0) { |
|
uint8_t *buf; |
|
if (!FF_ALLOC_TYPED_ARRAY(buf, channels * blocks * 8)) |
|
return AVERROR(ENOMEM); |
|
for (int ch = 0; ch < channels; ch++) { |
|
adpcm_compress_trellis(avctx, &samples_p[ch][1], |
|
buf + ch * blocks * 8, &c->status[ch], |
|
blocks * 8, 1); |
|
} |
|
for (int i = 0; i < blocks; i++) { |
|
for (int ch = 0; ch < channels; ch++) { |
|
uint8_t *buf1 = buf + ch * blocks * 8 + i * 8; |
|
for (int j = 0; j < 8; j += 2) |
|
*dst++ = buf1[j] | (buf1[j + 1] << 4); |
|
} |
|
} |
|
av_free(buf); |
|
} else { |
|
for (int i = 0; i < blocks; i++) { |
|
for (int ch = 0; ch < channels; ch++) { |
|
ADPCMChannelStatus *status = &c->status[ch]; |
|
const int16_t *smp = &samples_p[ch][1 + i * 8]; |
|
for (int j = 0; j < 8; j += 2) { |
|
uint8_t v = adpcm_ima_compress_sample(status, smp[j ]); |
|
v |= adpcm_ima_compress_sample(status, smp[j + 1]) << 4; |
|
*dst++ = v; |
|
} |
|
} |
|
} |
|
} |
|
) /* End of CASE */ |
|
CASE(ADPCM_IMA_QT, |
|
PutBitContext pb; |
|
init_put_bits(&pb, dst, pkt_size); |
|
|
|
for (int ch = 0; ch < channels; ch++) { |
|
ADPCMChannelStatus *status = &c->status[ch]; |
|
put_bits(&pb, 9, (status->prev_sample & 0xFFFF) >> 7); |
|
put_bits(&pb, 7, status->step_index); |
|
if (avctx->trellis > 0) { |
|
uint8_t buf[64]; |
|
adpcm_compress_trellis(avctx, &samples_p[ch][0], buf, status, |
|
64, 1); |
|
for (int i = 0; i < 64; i++) |
|
put_bits(&pb, 4, buf[i ^ 1]); |
|
status->prev_sample = status->predictor; |
|
} else { |
|
for (int i = 0; i < 64; i += 2) { |
|
int t1, t2; |
|
t1 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i ]); |
|
t2 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i + 1]); |
|
put_bits(&pb, 4, t2); |
|
put_bits(&pb, 4, t1); |
|
} |
|
} |
|
} |
|
|
|
flush_put_bits(&pb); |
|
) /* End of CASE */ |
|
CASE(ADPCM_IMA_SSI, |
|
PutBitContext pb; |
|
init_put_bits(&pb, dst, pkt_size); |
|
|
|
av_assert0(avctx->trellis == 0); |
|
|
|
for (int i = 0; i < frame->nb_samples; i++) { |
|
for (int ch = 0; ch < channels; ch++) { |
|
put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, *samples++)); |
|
} |
|
} |
|
|
|
flush_put_bits(&pb); |
|
) /* End of CASE */ |
|
CASE(ADPCM_IMA_ALP, |
|
PutBitContext pb; |
|
init_put_bits(&pb, dst, pkt_size); |
|
|
|
av_assert0(avctx->trellis == 0); |
|
|
|
for (int n = frame->nb_samples / 2; n > 0; n--) { |
|
for (int ch = 0; ch < channels; ch++) { |
|
put_bits(&pb, 4, adpcm_ima_alp_compress_sample(c->status + ch, *samples++)); |
|
put_bits(&pb, 4, adpcm_ima_alp_compress_sample(c->status + ch, samples[st])); |
|
} |
|
samples += channels; |
|
} |
|
|
|
flush_put_bits(&pb); |
|
) /* End of CASE */ |
|
CASE(ADPCM_SWF, |
|
const int n = frame->nb_samples - 1; |
|
PutBitContext pb; |
|
init_put_bits(&pb, dst, pkt_size); |
|
|
|
/* NB: This is safe as we don't have AV_CODEC_CAP_SMALL_LAST_FRAME. */ |
|
av_assert0(n == 4095); |
|
|
|
// store AdpcmCodeSize |
|
put_bits(&pb, 2, 2); // set 4-bit flash adpcm format |
|
|
|
// init the encoder state |
|
for (int i = 0; i < channels; i++) { |
|
// clip step so it fits 6 bits |
|
c->status[i].step_index = av_clip_uintp2(c->status[i].step_index, 6); |
|
put_sbits(&pb, 16, samples[i]); |
|
put_bits(&pb, 6, c->status[i].step_index); |
|
c->status[i].prev_sample = samples[i]; |
|
} |
|
|
|
if (avctx->trellis > 0) { |
|
uint8_t buf[8190 /* = 2 * n */]; |
|
adpcm_compress_trellis(avctx, samples + channels, buf, |
|
&c->status[0], n, channels); |
|
if (channels == 2) |
|
adpcm_compress_trellis(avctx, samples + channels + 1, |
|
buf + n, &c->status[1], n, |
|
channels); |
|
for (int i = 0; i < n; i++) { |
|
put_bits(&pb, 4, buf[i]); |
|
if (channels == 2) |
|
put_bits(&pb, 4, buf[n + i]); |
|
} |
|
} else { |
|
for (int i = 1; i < frame->nb_samples; i++) { |
|
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], |
|
samples[channels * i])); |
|
if (channels == 2) |
|
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], |
|
samples[2 * i + 1])); |
|
} |
|
} |
|
flush_put_bits(&pb); |
|
) /* End of CASE */ |
|
CASE(ADPCM_MS, |
|
for (int i = 0; i < channels; i++) { |
|
int predictor = 0; |
|
*dst++ = predictor; |
|
c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor]; |
|
c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor]; |
|
} |
|
for (int i = 0; i < channels; i++) { |
|
if (c->status[i].idelta < 16) |
|
c->status[i].idelta = 16; |
|
bytestream_put_le16(&dst, c->status[i].idelta); |
|
} |
|
for (int i = 0; i < channels; i++) |
|
c->status[i].sample2= *samples++; |
|
for (int i = 0; i < channels; i++) { |
|
c->status[i].sample1 = *samples++; |
|
bytestream_put_le16(&dst, c->status[i].sample1); |
|
} |
|
for (int i = 0; i < channels; i++) |
|
bytestream_put_le16(&dst, c->status[i].sample2); |
|
|
|
if (avctx->trellis > 0) { |
|
const int n = avctx->block_align - 7 * channels; |
|
uint8_t *buf = av_malloc(2 * n); |
|
if (!buf) |
|
return AVERROR(ENOMEM); |
|
if (channels == 1) { |
|
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n, |
|
channels); |
|
for (int i = 0; i < n; i += 2) |
|
*dst++ = (buf[i] << 4) | buf[i + 1]; |
|
} else { |
|
adpcm_compress_trellis(avctx, samples, buf, |
|
&c->status[0], n, channels); |
|
adpcm_compress_trellis(avctx, samples + 1, buf + n, |
|
&c->status[1], n, channels); |
|
for (int i = 0; i < n; i++) |
|
*dst++ = (buf[i] << 4) | buf[n + i]; |
|
} |
|
av_free(buf); |
|
} else { |
|
for (int i = 7 * channels; i < avctx->block_align; i++) { |
|
int nibble; |
|
nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4; |
|
nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++); |
|
*dst++ = nibble; |
|
} |
|
} |
|
) /* End of CASE */ |
|
CASE(ADPCM_YAMAHA, |
|
int n = frame->nb_samples / 2; |
|
if (avctx->trellis > 0) { |
|
uint8_t *buf = av_malloc(2 * n * 2); |
|
if (!buf) |
|
return AVERROR(ENOMEM); |
|
n *= 2; |
|
if (channels == 1) { |
|
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n, |
|
channels); |
|
for (int i = 0; i < n; i += 2) |
|
*dst++ = buf[i] | (buf[i + 1] << 4); |
|
} else { |
|
adpcm_compress_trellis(avctx, samples, buf, |
|
&c->status[0], n, channels); |
|
adpcm_compress_trellis(avctx, samples + 1, buf + n, |
|
&c->status[1], n, channels); |
|
for (int i = 0; i < n; i++) |
|
*dst++ = buf[i] | (buf[n + i] << 4); |
|
} |
|
av_free(buf); |
|
} else |
|
for (n *= channels; n > 0; n--) { |
|
int nibble; |
|
nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++); |
|
nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4; |
|
*dst++ = nibble; |
|
} |
|
) /* End of CASE */ |
|
CASE(ADPCM_IMA_APM, |
|
PutBitContext pb; |
|
init_put_bits(&pb, dst, pkt_size); |
|
|
|
av_assert0(avctx->trellis == 0); |
|
|
|
for (int n = frame->nb_samples / 2; n > 0; n--) { |
|
for (int ch = 0; ch < channels; ch++) { |
|
put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, *samples++)); |
|
put_bits(&pb, 4, adpcm_ima_qt_compress_sample(c->status + ch, samples[st])); |
|
} |
|
samples += channels; |
|
} |
|
|
|
flush_put_bits(&pb); |
|
) /* End of CASE */ |
|
CASE(ADPCM_IMA_AMV, |
|
av_assert0(channels == 1); |
|
|
|
c->status[0].prev_sample = *samples; |
|
bytestream_put_le16(&dst, c->status[0].prev_sample); |
|
bytestream_put_byte(&dst, c->status[0].step_index); |
|
bytestream_put_byte(&dst, 0); |
|
bytestream_put_le32(&dst, avctx->frame_size); |
|
|
|
if (avctx->trellis > 0) { |
|
const int n = frame->nb_samples >> 1; |
|
uint8_t *buf = av_malloc(2 * n); |
|
|
|
if (!buf) |
|
return AVERROR(ENOMEM); |
|
|
|
adpcm_compress_trellis(avctx, samples, buf, &c->status[0], 2 * n, channels); |
|
for (int i = 0; i < n; i++) |
|
bytestream_put_byte(&dst, (buf[2 * i] << 4) | buf[2 * i + 1]); |
|
|
|
samples += 2 * n; |
|
av_free(buf); |
|
} else for (int n = frame->nb_samples >> 1; n > 0; n--) { |
|
int nibble; |
|
nibble = adpcm_ima_compress_sample(&c->status[0], *samples++) << 4; |
|
nibble |= adpcm_ima_compress_sample(&c->status[0], *samples++) & 0x0F; |
|
bytestream_put_byte(&dst, nibble); |
|
} |
|
|
|
if (avctx->frame_size & 1) { |
|
int nibble = adpcm_ima_compress_sample(&c->status[0], *samples++) << 4; |
|
bytestream_put_byte(&dst, nibble); |
|
} |
|
) /* End of CASE */ |
|
CASE(ADPCM_ARGO, |
|
PutBitContext pb; |
|
init_put_bits(&pb, dst, pkt_size); |
|
|
|
av_assert0(frame->nb_samples == 32); |
|
|
|
for (int ch = 0; ch < channels; ch++) { |
|
int64_t error = INT64_MAX, tmperr = INT64_MAX; |
|
int shift = 2, flag = 0; |
|
int saved1 = c->status[ch].sample1; |
|
int saved2 = c->status[ch].sample2; |
|
|
|
/* Find the optimal coefficients, bail early if we find a perfect result. */ |
|
for (int s = 2; s < 18 && tmperr != 0; s++) { |
|
for (int f = 0; f < 2 && tmperr != 0; f++) { |
|
c->status[ch].sample1 = saved1; |
|
c->status[ch].sample2 = saved2; |
|
tmperr = adpcm_argo_compress_block(c->status + ch, NULL, samples_p[ch], |
|
frame->nb_samples, s, f); |
|
if (tmperr < error) { |
|
shift = s; |
|
flag = f; |
|
error = tmperr; |
|
} |
|
} |
|
} |
|
|
|
/* Now actually do the encode. */ |
|
c->status[ch].sample1 = saved1; |
|
c->status[ch].sample2 = saved2; |
|
adpcm_argo_compress_block(c->status + ch, &pb, samples_p[ch], |
|
frame->nb_samples, shift, flag); |
|
} |
|
|
|
flush_put_bits(&pb); |
|
) /* End of CASE */ |
|
CASE(ADPCM_IMA_WS, |
|
PutBitContext pb; |
|
init_put_bits(&pb, dst, pkt_size); |
|
|
|
av_assert0(avctx->trellis == 0); |
|
for (int n = frame->nb_samples / 2; n > 0; n--) { |
|
/* stereo: 1 byte (2 samples) for left, 1 byte for right */ |
|
for (int ch = 0; ch < channels; ch++) { |
|
int t1, t2; |
|
t1 = adpcm_ima_compress_sample(&c->status[ch], *samples++); |
|
t2 = adpcm_ima_compress_sample(&c->status[ch], samples[st]); |
|
put_bits(&pb, 4, t2); |
|
put_bits(&pb, 4, t1); |
|
} |
|
samples += channels; |
|
} |
|
flush_put_bits(&pb); |
|
) /* End of CASE */ |
|
default: |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
*got_packet_ptr = 1; |
|
return 0; |
|
} |
|
|
|
static const enum AVSampleFormat sample_fmts[] = { |
|
AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE |
|
}; |
|
|
|
static const enum AVSampleFormat sample_fmts_p[] = { |
|
AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE |
|
}; |
|
|
|
static const AVChannelLayout ch_layouts[] = { |
|
AV_CHANNEL_LAYOUT_MONO, |
|
AV_CHANNEL_LAYOUT_STEREO, |
|
{ 0 }, |
|
}; |
|
|
|
static const AVOption options[] = { |
|
{ |
|
.name = "block_size", |
|
.help = "set the block size", |
|
.offset = offsetof(ADPCMEncodeContext, block_size), |
|
.type = AV_OPT_TYPE_INT, |
|
.default_val = {.i64 = 1024}, |
|
.min = 32, |
|
.max = 8192, /* Is this a reasonable upper limit? */ |
|
.flags = AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM |
|
}, |
|
{ NULL } |
|
}; |
|
|
|
static const AVClass adpcm_encoder_class = { |
|
.class_name = "ADPCM encoder", |
|
.item_name = av_default_item_name, |
|
.option = options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
#define ADPCM_ENCODER_0(id_, name_, sample_fmts_, capabilities_, long_name_) |
|
#define ADPCM_ENCODER_1(id_, name_, sample_fmts_, capabilities_, long_name_) \ |
|
const AVCodec ff_ ## name_ ## _encoder = { \ |
|
.name = #name_, \ |
|
.long_name = NULL_IF_CONFIG_SMALL(long_name_), \ |
|
.type = AVMEDIA_TYPE_AUDIO, \ |
|
.id = id_, \ |
|
.priv_data_size = sizeof(ADPCMEncodeContext), \ |
|
.init = adpcm_encode_init, \ |
|
.encode2 = adpcm_encode_frame, \ |
|
.close = adpcm_encode_close, \ |
|
.sample_fmts = sample_fmts_, \ |
|
.ch_layouts = ch_layouts, \ |
|
.capabilities = capabilities_ | AV_CODEC_CAP_DR1, \ |
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_INIT_THREADSAFE, \ |
|
.priv_class = &adpcm_encoder_class, \ |
|
}; |
|
#define ADPCM_ENCODER_2(enabled, codec_id, name, sample_fmts, capabilities, long_name) \ |
|
ADPCM_ENCODER_ ## enabled(codec_id, name, sample_fmts, capabilities, long_name) |
|
#define ADPCM_ENCODER_3(config, codec_id, name, sample_fmts, capabilities, long_name) \ |
|
ADPCM_ENCODER_2(config, codec_id, name, sample_fmts, capabilities, long_name) |
|
#define ADPCM_ENCODER(codec, name, sample_fmts, capabilities, long_name) \ |
|
ADPCM_ENCODER_3(CONFIG_ ## codec ## _ENCODER, AV_CODEC_ID_ ## codec, \ |
|
name, sample_fmts, capabilities, long_name) |
|
|
|
ADPCM_ENCODER(ADPCM_ARGO, adpcm_argo, sample_fmts_p, 0, "ADPCM Argonaut Games") |
|
ADPCM_ENCODER(ADPCM_IMA_AMV, adpcm_ima_amv, sample_fmts, 0, "ADPCM IMA AMV") |
|
ADPCM_ENCODER(ADPCM_IMA_APM, adpcm_ima_apm, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Ubisoft APM") |
|
ADPCM_ENCODER(ADPCM_IMA_ALP, adpcm_ima_alp, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA High Voltage Software ALP") |
|
ADPCM_ENCODER(ADPCM_IMA_QT, adpcm_ima_qt, sample_fmts_p, 0, "ADPCM IMA QuickTime") |
|
ADPCM_ENCODER(ADPCM_IMA_SSI, adpcm_ima_ssi, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Simon & Schuster Interactive") |
|
ADPCM_ENCODER(ADPCM_IMA_WAV, adpcm_ima_wav, sample_fmts_p, 0, "ADPCM IMA WAV") |
|
ADPCM_ENCODER(ADPCM_IMA_WS, adpcm_ima_ws, sample_fmts, AV_CODEC_CAP_SMALL_LAST_FRAME, "ADPCM IMA Westwood") |
|
ADPCM_ENCODER(ADPCM_MS, adpcm_ms, sample_fmts, 0, "ADPCM Microsoft") |
|
ADPCM_ENCODER(ADPCM_SWF, adpcm_swf, sample_fmts, 0, "ADPCM Shockwave Flash") |
|
ADPCM_ENCODER(ADPCM_YAMAHA, adpcm_yamaha, sample_fmts, 0, "ADPCM Yamaha")
|
|
|