/* * copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * common internal and external API header */ #ifndef AVUTIL_COMMON_H #define AVUTIL_COMMON_H #if defined(__cplusplus) && !defined(__STDC_CONSTANT_MACROS) && !defined(UINT64_C) #error missing -D__STDC_CONSTANT_MACROS / #define __STDC_CONSTANT_MACROS #endif #include <errno.h> #include <inttypes.h> #include <limits.h> #include <math.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "attributes.h" #include "macros.h" //rounded division & shift #define RSHIFT(a,b) ((a) > 0 ? ((a) + ((1<<(b))>>1))>>(b) : ((a) + ((1<<(b))>>1)-1)>>(b)) /* assume b>0 */ #define ROUNDED_DIV(a,b) (((a)>=0 ? (a) + ((b)>>1) : (a) - ((b)>>1))/(b)) /* Fast a/(1<<b) rounded toward +inf. Assume a>=0 and b>=0 */ #define AV_CEIL_RSHIFT(a,b) (!av_builtin_constant_p(b) ? -((-(a)) >> (b)) \ : ((a) + (1<<(b)) - 1) >> (b)) /* Backwards compat. */ #define FF_CEIL_RSHIFT AV_CEIL_RSHIFT #define FFUDIV(a,b) (((a)>0 ?(a):(a)-(b)+1) / (b)) #define FFUMOD(a,b) ((a)-(b)*FFUDIV(a,b)) /** * Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they * are not representable as absolute values of their type. This is the same * as with *abs() * @see FFNABS() */ #define FFABS(a) ((a) >= 0 ? (a) : (-(a))) #define FFSIGN(a) ((a) > 0 ? 1 : -1) /** * Negative Absolute value. * this works for all integers of all types. * As with many macros, this evaluates its argument twice, it thus must not have * a sideeffect, that is FFNABS(x++) has undefined behavior. */ #define FFNABS(a) ((a) <= 0 ? (a) : (-(a))) /** * Unsigned Absolute value. * This takes the absolute value of a signed int and returns it as a unsigned. * This also works with INT_MIN which would otherwise not be representable * As with many macros, this evaluates its argument twice. */ #define FFABSU(a) ((a) <= 0 ? -(unsigned)(a) : (unsigned)(a)) #define FFABS64U(a) ((a) <= 0 ? -(uint64_t)(a) : (uint64_t)(a)) /* misc math functions */ #ifdef HAVE_AV_CONFIG_H # include "config.h" # include "intmath.h" #endif #ifndef av_ceil_log2 # define av_ceil_log2 av_ceil_log2_c #endif #ifndef av_clip # define av_clip av_clip_c #endif #ifndef av_clip64 # define av_clip64 av_clip64_c #endif #ifndef av_clip_uint8 # define av_clip_uint8 av_clip_uint8_c #endif #ifndef av_clip_int8 # define av_clip_int8 av_clip_int8_c #endif #ifndef av_clip_uint16 # define av_clip_uint16 av_clip_uint16_c #endif #ifndef av_clip_int16 # define av_clip_int16 av_clip_int16_c #endif #ifndef av_clipl_int32 # define av_clipl_int32 av_clipl_int32_c #endif #ifndef av_clip_intp2 # define av_clip_intp2 av_clip_intp2_c #endif #ifndef av_clip_uintp2 # define av_clip_uintp2 av_clip_uintp2_c #endif #ifndef av_mod_uintp2 # define av_mod_uintp2 av_mod_uintp2_c #endif #ifndef av_sat_add32 # define av_sat_add32 av_sat_add32_c #endif #ifndef av_sat_dadd32 # define av_sat_dadd32 av_sat_dadd32_c #endif #ifndef av_sat_sub32 # define av_sat_sub32 av_sat_sub32_c #endif #ifndef av_sat_dsub32 # define av_sat_dsub32 av_sat_dsub32_c #endif #ifndef av_sat_add64 # define av_sat_add64 av_sat_add64_c #endif #ifndef av_sat_sub64 # define av_sat_sub64 av_sat_sub64_c #endif #ifndef av_clipf # define av_clipf av_clipf_c #endif #ifndef av_clipd # define av_clipd av_clipd_c #endif #ifndef av_popcount # define av_popcount av_popcount_c #endif #ifndef av_popcount64 # define av_popcount64 av_popcount64_c #endif #ifndef av_parity # define av_parity av_parity_c #endif #ifndef av_log2 av_const int av_log2(unsigned v); #endif #ifndef av_log2_16bit av_const int av_log2_16bit(unsigned v); #endif /** * Clip a signed integer value into the amin-amax range. * @param a value to clip * @param amin minimum value of the clip range * @param amax maximum value of the clip range * @return clipped value */ static av_always_inline av_const int av_clip_c(int a, int amin, int amax) { #if defined(HAVE_AV_CONFIG_H) && defined(ASSERT_LEVEL) && ASSERT_LEVEL >= 2 if (amin > amax) abort(); #endif if (a < amin) return amin; else if (a > amax) return amax; else return a; } /** * Clip a signed 64bit integer value into the amin-amax range. * @param a value to clip * @param amin minimum value of the clip range * @param amax maximum value of the clip range * @return clipped value */ static av_always_inline av_const int64_t av_clip64_c(int64_t a, int64_t amin, int64_t amax) { #if defined(HAVE_AV_CONFIG_H) && defined(ASSERT_LEVEL) && ASSERT_LEVEL >= 2 if (amin > amax) abort(); #endif if (a < amin) return amin; else if (a > amax) return amax; else return a; } /** * Clip a signed integer value into the 0-255 range. * @param a value to clip * @return clipped value */ static av_always_inline av_const uint8_t av_clip_uint8_c(int a) { if (a&(~0xFF)) return (~a)>>31; else return a; } /** * Clip a signed integer value into the -128,127 range. * @param a value to clip * @return clipped value */ static av_always_inline av_const int8_t av_clip_int8_c(int a) { if ((a+0x80U) & ~0xFF) return (a>>31) ^ 0x7F; else return a; } /** * Clip a signed integer value into the 0-65535 range. * @param a value to clip * @return clipped value */ static av_always_inline av_const uint16_t av_clip_uint16_c(int a) { if (a&(~0xFFFF)) return (~a)>>31; else return a; } /** * Clip a signed integer value into the -32768,32767 range. * @param a value to clip * @return clipped value */ static av_always_inline av_const int16_t av_clip_int16_c(int a) { if ((a+0x8000U) & ~0xFFFF) return (a>>31) ^ 0x7FFF; else return a; } /** * Clip a signed 64-bit integer value into the -2147483648,2147483647 range. * @param a value to clip * @return clipped value */ static av_always_inline av_const int32_t av_clipl_int32_c(int64_t a) { if ((a+0x80000000u) & ~UINT64_C(0xFFFFFFFF)) return (int32_t)((a>>63) ^ 0x7FFFFFFF); else return (int32_t)a; } /** * Clip a signed integer into the -(2^p),(2^p-1) range. * @param a value to clip * @param p bit position to clip at * @return clipped value */ static av_always_inline av_const int av_clip_intp2_c(int a, int p) { if (((unsigned)a + (1 << p)) & ~((2 << p) - 1)) return (a >> 31) ^ ((1 << p) - 1); else return a; } /** * Clip a signed integer to an unsigned power of two range. * @param a value to clip * @param p bit position to clip at * @return clipped value */ static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p) { if (a & ~((1<<p) - 1)) return (~a) >> 31 & ((1<<p) - 1); else return a; } /** * Clear high bits from an unsigned integer starting with specific bit position * @param a value to clip * @param p bit position to clip at * @return clipped value */ static av_always_inline av_const unsigned av_mod_uintp2_c(unsigned a, unsigned p) { return a & ((1U << p) - 1); } /** * Add two signed 32-bit values with saturation. * * @param a one value * @param b another value * @return sum with signed saturation */ static av_always_inline int av_sat_add32_c(int a, int b) { return av_clipl_int32((int64_t)a + b); } /** * Add a doubled value to another value with saturation at both stages. * * @param a first value * @param b value doubled and added to a * @return sum sat(a + sat(2*b)) with signed saturation */ static av_always_inline int av_sat_dadd32_c(int a, int b) { return av_sat_add32(a, av_sat_add32(b, b)); } /** * Subtract two signed 32-bit values with saturation. * * @param a one value * @param b another value * @return difference with signed saturation */ static av_always_inline int av_sat_sub32_c(int a, int b) { return av_clipl_int32((int64_t)a - b); } /** * Subtract a doubled value from another value with saturation at both stages. * * @param a first value * @param b value doubled and subtracted from a * @return difference sat(a - sat(2*b)) with signed saturation */ static av_always_inline int av_sat_dsub32_c(int a, int b) { return av_sat_sub32(a, av_sat_add32(b, b)); } /** * Add two signed 64-bit values with saturation. * * @param a one value * @param b another value * @return sum with signed saturation */ static av_always_inline int64_t av_sat_add64_c(int64_t a, int64_t b) { #if (!defined(__INTEL_COMPILER) && AV_GCC_VERSION_AT_LEAST(5,1)) || AV_HAS_BUILTIN(__builtin_add_overflow) int64_t tmp; return !__builtin_add_overflow(a, b, &tmp) ? tmp : (tmp < 0 ? INT64_MAX : INT64_MIN); #else int64_t s = a+(uint64_t)b; if ((int64_t)(a^b | ~s^b) >= 0) return INT64_MAX ^ (b >> 63); return s; #endif } /** * Subtract two signed 64-bit values with saturation. * * @param a one value * @param b another value * @return difference with signed saturation */ static av_always_inline int64_t av_sat_sub64_c(int64_t a, int64_t b) { #if (!defined(__INTEL_COMPILER) && AV_GCC_VERSION_AT_LEAST(5,1)) || AV_HAS_BUILTIN(__builtin_sub_overflow) int64_t tmp; return !__builtin_sub_overflow(a, b, &tmp) ? tmp : (tmp < 0 ? INT64_MAX : INT64_MIN); #else if (b <= 0 && a >= INT64_MAX + b) return INT64_MAX; if (b >= 0 && a <= INT64_MIN + b) return INT64_MIN; return a - b; #endif } /** * Clip a float value into the amin-amax range. * If a is nan or -inf amin will be returned. * If a is +inf amax will be returned. * @param a value to clip * @param amin minimum value of the clip range * @param amax maximum value of the clip range * @return clipped value */ static av_always_inline av_const float av_clipf_c(float a, float amin, float amax) { #if defined(HAVE_AV_CONFIG_H) && defined(ASSERT_LEVEL) && ASSERT_LEVEL >= 2 if (amin > amax) abort(); #endif return FFMIN(FFMAX(a, amin), amax); } /** * Clip a double value into the amin-amax range. * If a is nan or -inf amin will be returned. * If a is +inf amax will be returned. * @param a value to clip * @param amin minimum value of the clip range * @param amax maximum value of the clip range * @return clipped value */ static av_always_inline av_const double av_clipd_c(double a, double amin, double amax) { #if defined(HAVE_AV_CONFIG_H) && defined(ASSERT_LEVEL) && ASSERT_LEVEL >= 2 if (amin > amax) abort(); #endif return FFMIN(FFMAX(a, amin), amax); } /** Compute ceil(log2(x)). * @param x value used to compute ceil(log2(x)) * @return computed ceiling of log2(x) */ static av_always_inline av_const int av_ceil_log2_c(int x) { return av_log2((x - 1U) << 1); } /** * Count number of bits set to one in x * @param x value to count bits of * @return the number of bits set to one in x */ static av_always_inline av_const int av_popcount_c(uint32_t x) { x -= (x >> 1) & 0x55555555; x = (x & 0x33333333) + ((x >> 2) & 0x33333333); x = (x + (x >> 4)) & 0x0F0F0F0F; x += x >> 8; return (x + (x >> 16)) & 0x3F; } /** * Count number of bits set to one in x * @param x value to count bits of * @return the number of bits set to one in x */ static av_always_inline av_const int av_popcount64_c(uint64_t x) { return av_popcount((uint32_t)x) + av_popcount((uint32_t)(x >> 32)); } static av_always_inline av_const int av_parity_c(uint32_t v) { return av_popcount(v) & 1; } /** * Convert a UTF-8 character (up to 4 bytes) to its 32-bit UCS-4 encoded form. * * @param val Output value, must be an lvalue of type uint32_t. * @param GET_BYTE Expression reading one byte from the input. * Evaluated up to 7 times (4 for the currently * assigned Unicode range). With a memory buffer * input, this could be *ptr++, or if you want to make sure * that *ptr stops at the end of a NULL terminated string then * *ptr ? *ptr++ : 0 * @param ERROR Expression to be evaluated on invalid input, * typically a goto statement. * * @warning ERROR should not contain a loop control statement which * could interact with the internal while loop, and should force an * exit from the macro code (e.g. through a goto or a return) in order * to prevent undefined results. */ #define GET_UTF8(val, GET_BYTE, ERROR)\ val= (GET_BYTE);\ {\ uint32_t top = (val & 128) >> 1;\ if ((val & 0xc0) == 0x80 || val >= 0xFE)\ {ERROR}\ while (val & top) {\ unsigned int tmp = (GET_BYTE) - 128;\ if(tmp>>6)\ {ERROR}\ val= (val<<6) + tmp;\ top <<= 5;\ }\ val &= (top << 1) - 1;\ } /** * Convert a UTF-16 character (2 or 4 bytes) to its 32-bit UCS-4 encoded form. * * @param val Output value, must be an lvalue of type uint32_t. * @param GET_16BIT Expression returning two bytes of UTF-16 data converted * to native byte order. Evaluated one or two times. * @param ERROR Expression to be evaluated on invalid input, * typically a goto statement. */ #define GET_UTF16(val, GET_16BIT, ERROR)\ val = (GET_16BIT);\ {\ unsigned int hi = val - 0xD800;\ if (hi < 0x800) {\ val = (GET_16BIT) - 0xDC00;\ if (val > 0x3FFU || hi > 0x3FFU)\ {ERROR}\ val += (hi<<10) + 0x10000;\ }\ }\ /** * @def PUT_UTF8(val, tmp, PUT_BYTE) * Convert a 32-bit Unicode character to its UTF-8 encoded form (up to 4 bytes long). * @param val is an input-only argument and should be of type uint32_t. It holds * a UCS-4 encoded Unicode character that is to be converted to UTF-8. If * val is given as a function it is executed only once. * @param tmp is a temporary variable and should be of type uint8_t. It * represents an intermediate value during conversion that is to be * output by PUT_BYTE. * @param PUT_BYTE writes the converted UTF-8 bytes to any proper destination. * It could be a function or a statement, and uses tmp as the input byte. * For example, PUT_BYTE could be "*output++ = tmp;" PUT_BYTE will be * executed up to 4 times for values in the valid UTF-8 range and up to * 7 times in the general case, depending on the length of the converted * Unicode character. */ #define PUT_UTF8(val, tmp, PUT_BYTE)\ {\ int bytes, shift;\ uint32_t in = val;\ if (in < 0x80) {\ tmp = in;\ PUT_BYTE\ } else {\ bytes = (av_log2(in) + 4) / 5;\ shift = (bytes - 1) * 6;\ tmp = (256 - (256 >> bytes)) | (in >> shift);\ PUT_BYTE\ while (shift >= 6) {\ shift -= 6;\ tmp = 0x80 | ((in >> shift) & 0x3f);\ PUT_BYTE\ }\ }\ } /** * @def PUT_UTF16(val, tmp, PUT_16BIT) * Convert a 32-bit Unicode character to its UTF-16 encoded form (2 or 4 bytes). * @param val is an input-only argument and should be of type uint32_t. It holds * a UCS-4 encoded Unicode character that is to be converted to UTF-16. If * val is given as a function it is executed only once. * @param tmp is a temporary variable and should be of type uint16_t. It * represents an intermediate value during conversion that is to be * output by PUT_16BIT. * @param PUT_16BIT writes the converted UTF-16 data to any proper destination * in desired endianness. It could be a function or a statement, and uses tmp * as the input byte. For example, PUT_BYTE could be "*output++ = tmp;" * PUT_BYTE will be executed 1 or 2 times depending on input character. */ #define PUT_UTF16(val, tmp, PUT_16BIT)\ {\ uint32_t in = val;\ if (in < 0x10000) {\ tmp = in;\ PUT_16BIT\ } else {\ tmp = 0xD800 | ((in - 0x10000) >> 10);\ PUT_16BIT\ tmp = 0xDC00 | ((in - 0x10000) & 0x3FF);\ PUT_16BIT\ }\ }\ #include "mem.h" #ifdef HAVE_AV_CONFIG_H # include "internal.h" #endif /* HAVE_AV_CONFIG_H */ #endif /* AVUTIL_COMMON_H */