/* * VC-1 and WMV3 decoder * Copyright (c) 2006-2007 Konstantin Shishkov * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /** * @file vc1.c * VC-1 and WMV3 decoder * */ #include "common.h" #include "dsputil.h" #include "avcodec.h" #include "mpegvideo.h" #include "vc1data.h" #include "vc1acdata.h" #undef NDEBUG #include extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2]; extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2]; extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2]; #define MB_INTRA_VLC_BITS 9 extern VLC ff_msmp4_mb_i_vlc; extern const uint16_t ff_msmp4_mb_i_table[64][2]; #define DC_VLC_BITS 9 #define AC_VLC_BITS 9 static const uint16_t table_mb_intra[64][2]; /** Markers used if VC-1 AP frame data */ //@{ enum VC1Code{ VC1_CODE_RES0 = 0x00000100, VC1_CODE_ENDOFSEQ = 0x0000010A, VC1_CODE_SLICE, VC1_CODE_FIELD, VC1_CODE_FRAME, VC1_CODE_ENTRYPOINT, VC1_CODE_SEQHDR, }; //@} /** Available Profiles */ //@{ enum Profile { PROFILE_SIMPLE, PROFILE_MAIN, PROFILE_COMPLEX, ///< TODO: WMV9 specific PROFILE_ADVANCED }; //@} /** Sequence quantizer mode */ //@{ enum QuantMode { QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames QUANT_UNIFORM ///< Uniform quant used for all frames }; //@} /** Where quant can be changed */ //@{ enum DQProfile { DQPROFILE_FOUR_EDGES, DQPROFILE_DOUBLE_EDGES, DQPROFILE_SINGLE_EDGE, DQPROFILE_ALL_MBS }; //@} /** @name Where quant can be changed */ //@{ enum DQSingleEdge { DQSINGLE_BEDGE_LEFT, DQSINGLE_BEDGE_TOP, DQSINGLE_BEDGE_RIGHT, DQSINGLE_BEDGE_BOTTOM }; //@} /** Which pair of edges is quantized with ALTPQUANT */ //@{ enum DQDoubleEdge { DQDOUBLE_BEDGE_TOPLEFT, DQDOUBLE_BEDGE_TOPRIGHT, DQDOUBLE_BEDGE_BOTTOMRIGHT, DQDOUBLE_BEDGE_BOTTOMLEFT }; //@} /** MV modes for P frames */ //@{ enum MVModes { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV, MV_PMODE_INTENSITY_COMP }; //@} /** @name MV types for B frames */ //@{ enum BMVTypes { BMV_TYPE_BACKWARD, BMV_TYPE_FORWARD, BMV_TYPE_INTERPOLATED }; //@} /** @name Block types for P/B frames */ //@{ enum TransformTypes { TT_8X8, TT_8X4_BOTTOM, TT_8X4_TOP, TT_8X4, //Both halves TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X8, //Both halves TT_4X4 }; //@} /** Table for conversion between TTBLK and TTMB */ static const int ttblk_to_tt[3][8] = { { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT }, { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP }, { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP } }; static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 }; /** MV P mode - the 5th element is only used for mode 1 */ static const uint8_t mv_pmode_table[2][5] = { { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV }, { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN } }; static const uint8_t mv_pmode_table2[2][4] = { { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV }, { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN } }; /** One more frame type */ #define BI_TYPE 7 static const int fps_nr[5] = { 24, 25, 30, 50, 60 }, fps_dr[2] = { 1000, 1001 }; static const uint8_t pquant_table[3][32] = { { /* Implicit quantizer */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31 }, { /* Explicit quantizer, pquantizer uniform */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 }, { /* Explicit quantizer, pquantizer non-uniform */ 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31 } }; /** @name VC-1 VLC tables and defines * @todo TODO move this into the context */ //@{ #define VC1_BFRACTION_VLC_BITS 7 static VLC vc1_bfraction_vlc; #define VC1_IMODE_VLC_BITS 4 static VLC vc1_imode_vlc; #define VC1_NORM2_VLC_BITS 3 static VLC vc1_norm2_vlc; #define VC1_NORM6_VLC_BITS 9 static VLC vc1_norm6_vlc; /* Could be optimized, one table only needs 8 bits */ #define VC1_TTMB_VLC_BITS 9 //12 static VLC vc1_ttmb_vlc[3]; #define VC1_MV_DIFF_VLC_BITS 9 //15 static VLC vc1_mv_diff_vlc[4]; #define VC1_CBPCY_P_VLC_BITS 9 //14 static VLC vc1_cbpcy_p_vlc[4]; #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6 static VLC vc1_4mv_block_pattern_vlc[4]; #define VC1_TTBLK_VLC_BITS 5 static VLC vc1_ttblk_vlc[3]; #define VC1_SUBBLKPAT_VLC_BITS 6 static VLC vc1_subblkpat_vlc[3]; static VLC vc1_ac_coeff_table[8]; //@} enum CodingSet { CS_HIGH_MOT_INTRA = 0, CS_HIGH_MOT_INTER, CS_LOW_MOT_INTRA, CS_LOW_MOT_INTER, CS_MID_RATE_INTRA, CS_MID_RATE_INTER, CS_HIGH_RATE_INTRA, CS_HIGH_RATE_INTER }; /** @name Overlap conditions for Advanced Profile */ //@{ enum COTypes { CONDOVER_NONE = 0, CONDOVER_ALL, CONDOVER_SELECT }; //@} /** The VC1 Context * @fixme Change size wherever another size is more efficient * Many members are only used for Advanced Profile */ typedef struct VC1Context{ MpegEncContext s; int bits; /** Simple/Main Profile sequence header */ //@{ int res_sm; ///< reserved, 2b int res_x8; ///< reserved int multires; ///< frame-level RESPIC syntax element present int res_fasttx; ///< reserved, always 1 int res_transtab; ///< reserved, always 0 int rangered; ///< RANGEREDFRM (range reduction) syntax element present ///< at frame level int res_rtm_flag; ///< reserved, set to 1 int reserved; ///< reserved //@} /** Advanced Profile */ //@{ int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer int chromaformat; ///< 2bits, 2=4:2:0, only defined int postprocflag; ///< Per-frame processing suggestion flag present int broadcast; ///< TFF/RFF present int interlace; ///< Progressive/interlaced (RPTFTM syntax element) int tfcntrflag; ///< TFCNTR present int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present int extended_dmv; ///< Additional extended dmv range at P/B frame-level int color_prim; ///< 8bits, chroma coordinates of the color primaries int transfer_char; ///< 8bits, Opto-electronic transfer characteristics int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix int hrd_param_flag; ///< Presence of Hypothetical Reference ///< Decoder parameters int psf; ///< Progressive Segmented Frame //@} /** Sequence header data for all Profiles * TODO: choose between ints, uint8_ts and monobit flags */ //@{ int profile; ///< 2bits, Profile int frmrtq_postproc; ///< 3bits, int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple) int extended_mv; ///< Ext MV in P/B (not in Simple) int dquant; ///< How qscale varies with MBs, 2bits (not in Simple) int vstransform; ///< variable-size [48]x[48] transform type + info int overlap; ///< overlapped transforms in use int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_* int finterpflag; ///< INTERPFRM present //@} /** Frame decoding info for all profiles */ //@{ uint8_t mv_mode; ///< MV coding monde uint8_t mv_mode2; ///< Secondary MV coding mode (B frames) int k_x; ///< Number of bits for MVs (depends on MV range) int k_y; ///< Number of bits for MVs (depends on MV range) int range_x, range_y; ///< MV range uint8_t pq, altpq; ///< Current/alternate frame quantizer scale /** pquant parameters */ //@{ uint8_t dquantfrm; uint8_t dqprofile; uint8_t dqsbedge; uint8_t dqbilevel; //@} /** AC coding set indexes * @see 8.1.1.10, p(1)10 */ //@{ int c_ac_table_index; ///< Chroma index from ACFRM element int y_ac_table_index; ///< Luma index from AC2FRM element //@} int ttfrm; ///< Transform type info present at frame level uint8_t ttmbf; ///< Transform type flag uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform int codingset; ///< index of current table set from 11.8 to use for luma block decoding int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding int pqindex; ///< raw pqindex used in coding set selection int a_avail, c_avail; uint8_t *mb_type_base, *mb_type[3]; /** Luma compensation parameters */ //@{ uint8_t lumscale; uint8_t lumshift; //@} int16_t bfraction; ///< Relative position % anchors=> how to scale MVs uint8_t halfpq; ///< Uniform quant over image and qp+.5 uint8_t respic; ///< Frame-level flag for resized images int buffer_fullness; ///< HRD info /** Ranges: * -# 0 -> [-64n 63.f] x [-32, 31.f] * -# 1 -> [-128, 127.f] x [-64, 63.f] * -# 2 -> [-512, 511.f] x [-128, 127.f] * -# 3 -> [-1024, 1023.f] x [-256, 255.f] */ uint8_t mvrange; uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use VLC *cbpcy_vlc; ///< CBPCY VLC table int tt_index; ///< Index for Transform Type tables uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV) uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs int mv_type_is_raw; ///< mv type mb plane is not coded int dmb_is_raw; ///< direct mb plane is raw int skip_is_raw; ///< skip mb plane is not coded uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation int use_ic; ///< use intensity compensation in B-frames int rnd; ///< rounding control /** Frame decoding info for S/M profiles only */ //@{ uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128) uint8_t interpfrm; //@} /** Frame decoding info for Advanced profile */ //@{ uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace uint8_t numpanscanwin; uint8_t tfcntr; uint8_t rptfrm, tff, rff; uint16_t topleftx; uint16_t toplefty; uint16_t bottomrightx; uint16_t bottomrighty; uint8_t uvsamp; uint8_t postproc; int hrd_num_leaky_buckets; uint8_t bit_rate_exponent; uint8_t buffer_size_exponent; uint8_t* acpred_plane; ///< AC prediction flags bitplane int acpred_is_raw; uint8_t* over_flags_plane; ///< Overflags bitplane int overflg_is_raw; uint8_t condover; uint16_t *hrd_rate, *hrd_buffer; uint8_t *hrd_fullness; uint8_t range_mapy_flag; uint8_t range_mapuv_flag; uint8_t range_mapy; uint8_t range_mapuv; //@} int p_frame_skipped; int bi_type; } VC1Context; /** * Get unary code of limited length * @fixme FIXME Slow and ugly * @param gb GetBitContext * @param[in] stop The bitstop value (unary code of 1's or 0's) * @param[in] len Maximum length * @return Unary length/index */ static int get_prefix(GetBitContext *gb, int stop, int len) { #if 1 int i; for(i = 0; i < len && get_bits1(gb) != stop; i++); return i; /* int i = 0, tmp = !stop; while (i != len && tmp != stop) { tmp = get_bits(gb, 1); i++; } if (i == len && tmp != stop) return len+1; return i;*/ #else unsigned int buf; int log; OPEN_READER(re, gb); UPDATE_CACHE(re, gb); buf=GET_CACHE(re, gb); //Still not sure if (stop) buf = ~buf; log= av_log2(-buf); //FIXME: -? if (log < limit){ LAST_SKIP_BITS(re, gb, log+1); CLOSE_READER(re, gb); return log; } LAST_SKIP_BITS(re, gb, limit); CLOSE_READER(re, gb); return limit; #endif } static inline int decode210(GetBitContext *gb){ int n; n = get_bits1(gb); if (n == 1) return 0; else return 2 - get_bits1(gb); } /** * Init VC-1 specific tables and VC1Context members * @param v The VC1Context to initialize * @return Status */ static int vc1_init_common(VC1Context *v) { static int done = 0; int i = 0; v->hrd_rate = v->hrd_buffer = NULL; /* VLC tables */ if(!done) { done = 1; init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23, vc1_bfraction_bits, 1, 1, vc1_bfraction_codes, 1, 1, 1); init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4, vc1_norm2_bits, 1, 1, vc1_norm2_codes, 1, 1, 1); init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64, vc1_norm6_bits, 1, 1, vc1_norm6_codes, 2, 2, 1); init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7, vc1_imode_bits, 1, 1, vc1_imode_codes, 1, 1, 1); for (i=0; i<3; i++) { init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16, vc1_ttmb_bits[i], 1, 1, vc1_ttmb_codes[i], 2, 2, 1); init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8, vc1_ttblk_bits[i], 1, 1, vc1_ttblk_codes[i], 1, 1, 1); init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15, vc1_subblkpat_bits[i], 1, 1, vc1_subblkpat_codes[i], 1, 1, 1); } for(i=0; i<4; i++) { init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16, vc1_4mv_block_pattern_bits[i], 1, 1, vc1_4mv_block_pattern_codes[i], 1, 1, 1); init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64, vc1_cbpcy_p_bits[i], 1, 1, vc1_cbpcy_p_codes[i], 2, 2, 1); init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73, vc1_mv_diff_bits[i], 1, 1, vc1_mv_diff_codes[i], 2, 2, 1); } for(i=0; i<8; i++) init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i], &vc1_ac_tables[i][0][1], 8, 4, &vc1_ac_tables[i][0][0], 8, 4, 1); init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64, &ff_msmp4_mb_i_table[0][1], 4, 2, &ff_msmp4_mb_i_table[0][0], 4, 2, 1); } /* Other defaults */ v->pq = -1; v->mvrange = 0; /* 7.1.1.18, p80 */ return 0; } /***********************************************************************/ /** * @defgroup bitplane VC9 Bitplane decoding * @see 8.7, p56 * @{ */ /** @addtogroup bitplane * Imode types * @{ */ enum Imode { IMODE_RAW, IMODE_NORM2, IMODE_DIFF2, IMODE_NORM6, IMODE_DIFF6, IMODE_ROWSKIP, IMODE_COLSKIP }; /** @} */ //imode defines /** Decode rows by checking if they are skipped * @param plane Buffer to store decoded bits * @param[in] width Width of this buffer * @param[in] height Height of this buffer * @param[in] stride of this buffer */ static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){ int x, y; for (y=0; ys.gb; int imode, x, y, code, offset; uint8_t invert, *planep = data; int width, height, stride; width = v->s.mb_width; height = v->s.mb_height; stride = v->s.mb_stride; invert = get_bits(gb, 1); imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1); *raw_flag = 0; switch (imode) { case IMODE_RAW: //Data is actually read in the MB layer (same for all tests == "raw") *raw_flag = 1; //invert ignored return invert; case IMODE_DIFF2: case IMODE_NORM2: if ((height * width) & 1) { *planep++ = get_bits(gb, 1); offset = 1; } else offset = 0; // decode bitplane as one long line for (y = offset; y < height * width; y += 2) { code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1); *planep++ = code & 1; offset++; if(offset == width) { offset = 0; planep += stride - width; } *planep++ = code >> 1; offset++; if(offset == width) { offset = 0; planep += stride - width; } } break; case IMODE_DIFF6: case IMODE_NORM6: if(!(height % 3) && (width % 3)) { // use 2x3 decoding for(y = 0; y < height; y+= 3) { for(x = width & 1; x < width; x += 2) { code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2); if(code < 0){ av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n"); return -1; } planep[x + 0] = (code >> 0) & 1; planep[x + 1] = (code >> 1) & 1; planep[x + 0 + stride] = (code >> 2) & 1; planep[x + 1 + stride] = (code >> 3) & 1; planep[x + 0 + stride * 2] = (code >> 4) & 1; planep[x + 1 + stride * 2] = (code >> 5) & 1; } planep += stride * 3; } if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb); } else { // 3x2 planep += (height & 1) * stride; for(y = height & 1; y < height; y += 2) { for(x = width % 3; x < width; x += 3) { code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2); if(code < 0){ av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n"); return -1; } planep[x + 0] = (code >> 0) & 1; planep[x + 1] = (code >> 1) & 1; planep[x + 2] = (code >> 2) & 1; planep[x + 0 + stride] = (code >> 3) & 1; planep[x + 1 + stride] = (code >> 4) & 1; planep[x + 2 + stride] = (code >> 5) & 1; } planep += stride * 2; } x = width % 3; if(x) decode_colskip(data , x, height , stride, &v->s.gb); if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb); } break; case IMODE_ROWSKIP: decode_rowskip(data, width, height, stride, &v->s.gb); break; case IMODE_COLSKIP: decode_colskip(data, width, height, stride, &v->s.gb); break; default: break; } /* Applying diff operator */ if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6) { planep = data; planep[0] ^= invert; for (x=1; xs.gb; int pqdiff; //variable size if (v->dquant == 2) { pqdiff = get_bits(gb, 3); if (pqdiff == 7) v->altpq = get_bits(gb, 5); else v->altpq = v->pq + pqdiff + 1; } else { v->dquantfrm = get_bits(gb, 1); if ( v->dquantfrm ) { v->dqprofile = get_bits(gb, 2); switch (v->dqprofile) { case DQPROFILE_SINGLE_EDGE: case DQPROFILE_DOUBLE_EDGES: v->dqsbedge = get_bits(gb, 2); break; case DQPROFILE_ALL_MBS: v->dqbilevel = get_bits(gb, 1); default: break; //Forbidden ? } if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS) { pqdiff = get_bits(gb, 3); if (pqdiff == 7) v->altpq = get_bits(gb, 5); else v->altpq = v->pq + pqdiff + 1; } } } return 0; } /** Put block onto picture */ static void vc1_put_block(VC1Context *v, DCTELEM block[6][64]) { uint8_t *Y; int ys, us, vs; DSPContext *dsp = &v->s.dsp; if(v->rangeredfrm) { int i, j, k; for(k = 0; k < 6; k++) for(j = 0; j < 8; j++) for(i = 0; i < 8; i++) block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128; } ys = v->s.current_picture.linesize[0]; us = v->s.current_picture.linesize[1]; vs = v->s.current_picture.linesize[2]; Y = v->s.dest[0]; dsp->put_pixels_clamped(block[0], Y, ys); dsp->put_pixels_clamped(block[1], Y + 8, ys); Y += ys * 8; dsp->put_pixels_clamped(block[2], Y, ys); dsp->put_pixels_clamped(block[3], Y + 8, ys); if(!(v->s.flags & CODEC_FLAG_GRAY)) { dsp->put_pixels_clamped(block[4], v->s.dest[1], us); dsp->put_pixels_clamped(block[5], v->s.dest[2], vs); } } /** Do motion compensation over 1 macroblock * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c */ static void vc1_mc_1mv(VC1Context *v, int dir) { MpegEncContext *s = &v->s; DSPContext *dsp = &v->s.dsp; uint8_t *srcY, *srcU, *srcV; int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y; if(!v->s.last_picture.data[0])return; mx = s->mv[dir][0][0]; my = s->mv[dir][0][1]; // store motion vectors for further use in B frames if(s->pict_type == P_TYPE) { s->current_picture.motion_val[1][s->block_index[0]][0] = mx; s->current_picture.motion_val[1][s->block_index[0]][1] = my; } uvmx = (mx + ((mx & 3) == 3)) >> 1; uvmy = (my + ((my & 3) == 3)) >> 1; if(v->fastuvmc) { uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1)); uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1)); } if(!dir) { srcY = s->last_picture.data[0]; srcU = s->last_picture.data[1]; srcV = s->last_picture.data[2]; } else { srcY = s->next_picture.data[0]; srcU = s->next_picture.data[1]; srcV = s->next_picture.data[2]; } src_x = s->mb_x * 16 + (mx >> 2); src_y = s->mb_y * 16 + (my >> 2); uvsrc_x = s->mb_x * 8 + (uvmx >> 2); uvsrc_y = s->mb_y * 8 + (uvmy >> 2); if(v->profile != PROFILE_ADVANCED){ src_x = av_clip( src_x, -16, s->mb_width * 16); src_y = av_clip( src_y, -16, s->mb_height * 16); uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); }else{ src_x = av_clip( src_x, -17, s->avctx->coded_width); src_y = av_clip( src_y, -18, s->avctx->coded_height + 1); uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); } srcY += src_y * s->linesize + src_x; srcU += uvsrc_y * s->uvlinesize + uvsrc_x; srcV += uvsrc_y * s->uvlinesize + uvsrc_x; /* for grayscale we should not try to read from unknown area */ if(s->flags & CODEC_FLAG_GRAY) { srcU = s->edge_emu_buffer + 18 * s->linesize; srcV = s->edge_emu_buffer + 18 * s->linesize; } if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP) || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){ uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize; srcY -= s->mspel * (1 + s->linesize); ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2, src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos); srcY = s->edge_emu_buffer; ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); srcU = uvbuf; srcV = uvbuf + 16; /* if we deal with range reduction we need to scale source blocks */ if(v->rangeredfrm) { int i, j; uint8_t *src, *src2; src = srcY; for(j = 0; j < 17 + s->mspel*2; j++) { for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128; src += s->linesize; } src = srcU; src2 = srcV; for(j = 0; j < 9; j++) { for(i = 0; i < 9; i++) { src[i] = ((src[i] - 128) >> 1) + 128; src2[i] = ((src2[i] - 128) >> 1) + 128; } src += s->uvlinesize; src2 += s->uvlinesize; } } /* if we deal with intensity compensation we need to scale source blocks */ if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { int i, j; uint8_t *src, *src2; src = srcY; for(j = 0; j < 17 + s->mspel*2; j++) { for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]]; src += s->linesize; } src = srcU; src2 = srcV; for(j = 0; j < 9; j++) { for(i = 0; i < 9; i++) { src[i] = v->lutuv[src[i]]; src2[i] = v->lutuv[src2[i]]; } src += s->uvlinesize; src2 += s->uvlinesize; } } srcY += s->mspel * (1 + s->linesize); } if(s->mspel) { dxy = ((my & 3) << 2) | (mx & 3); dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd); dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd); srcY += s->linesize * 8; dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd); dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd); } else { // hpel mc - always used for luma dxy = (my & 2) | ((mx & 2) >> 1); if(!v->rnd) dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); else dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); } if(s->flags & CODEC_FLAG_GRAY) return; /* Chroma MC always uses qpel bilinear */ uvdxy = ((uvmy & 3) << 2) | (uvmx & 3); uvmx = (uvmx&3)<<1; uvmy = (uvmy&3)<<1; if(!v->rnd){ dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); }else{ dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } } /** Do motion compensation for 4-MV macroblock - luminance block */ static void vc1_mc_4mv_luma(VC1Context *v, int n) { MpegEncContext *s = &v->s; DSPContext *dsp = &v->s.dsp; uint8_t *srcY; int dxy, mx, my, src_x, src_y; int off; if(!v->s.last_picture.data[0])return; mx = s->mv[0][n][0]; my = s->mv[0][n][1]; srcY = s->last_picture.data[0]; off = s->linesize * 4 * (n&2) + (n&1) * 8; src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2); src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2); if(v->profile != PROFILE_ADVANCED){ src_x = av_clip( src_x, -16, s->mb_width * 16); src_y = av_clip( src_y, -16, s->mb_height * 16); }else{ src_x = av_clip( src_x, -17, s->avctx->coded_width); src_y = av_clip( src_y, -18, s->avctx->coded_height + 1); } srcY += src_y * s->linesize + src_x; if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP) || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){ srcY -= s->mspel * (1 + s->linesize); ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2, src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos); srcY = s->edge_emu_buffer; /* if we deal with range reduction we need to scale source blocks */ if(v->rangeredfrm) { int i, j; uint8_t *src; src = srcY; for(j = 0; j < 9 + s->mspel*2; j++) { for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128; src += s->linesize; } } /* if we deal with intensity compensation we need to scale source blocks */ if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { int i, j; uint8_t *src; src = srcY; for(j = 0; j < 9 + s->mspel*2; j++) { for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]]; src += s->linesize; } } srcY += s->mspel * (1 + s->linesize); } if(s->mspel) { dxy = ((my & 3) << 2) | (mx & 3); dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd); } else { // hpel mc - always used for luma dxy = (my & 2) | ((mx & 2) >> 1); if(!v->rnd) dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8); else dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8); } } static inline int median4(int a, int b, int c, int d) { if(a < b) { if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2; else return (FFMIN(b, c) + FFMAX(a, d)) / 2; } else { if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2; else return (FFMIN(a, c) + FFMAX(b, d)) / 2; } } /** Do motion compensation for 4-MV macroblock - both chroma blocks */ static void vc1_mc_4mv_chroma(VC1Context *v) { MpegEncContext *s = &v->s; DSPContext *dsp = &v->s.dsp; uint8_t *srcU, *srcV; int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y; int i, idx, tx = 0, ty = 0; int mvx[4], mvy[4], intra[4]; static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; if(!v->s.last_picture.data[0])return; if(s->flags & CODEC_FLAG_GRAY) return; for(i = 0; i < 4; i++) { mvx[i] = s->mv[0][i][0]; mvy[i] = s->mv[0][i][1]; intra[i] = v->mb_type[0][s->block_index[i]]; } /* calculate chroma MV vector from four luma MVs */ idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0]; if(!idx) { // all blocks are inter tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]); ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]); } else if(count[idx] == 1) { // 3 inter blocks switch(idx) { case 0x1: tx = mid_pred(mvx[1], mvx[2], mvx[3]); ty = mid_pred(mvy[1], mvy[2], mvy[3]); break; case 0x2: tx = mid_pred(mvx[0], mvx[2], mvx[3]); ty = mid_pred(mvy[0], mvy[2], mvy[3]); break; case 0x4: tx = mid_pred(mvx[0], mvx[1], mvx[3]); ty = mid_pred(mvy[0], mvy[1], mvy[3]); break; case 0x8: tx = mid_pred(mvx[0], mvx[1], mvx[2]); ty = mid_pred(mvy[0], mvy[1], mvy[2]); break; } } else if(count[idx] == 2) { int t1 = 0, t2 = 0; for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;} for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;} tx = (mvx[t1] + mvx[t2]) / 2; ty = (mvy[t1] + mvy[t2]) / 2; } else { s->current_picture.motion_val[1][s->block_index[0]][0] = 0; s->current_picture.motion_val[1][s->block_index[0]][1] = 0; return; //no need to do MC for inter blocks } s->current_picture.motion_val[1][s->block_index[0]][0] = tx; s->current_picture.motion_val[1][s->block_index[0]][1] = ty; uvmx = (tx + ((tx&3) == 3)) >> 1; uvmy = (ty + ((ty&3) == 3)) >> 1; if(v->fastuvmc) { uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1)); uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1)); } uvsrc_x = s->mb_x * 8 + (uvmx >> 2); uvsrc_y = s->mb_y * 8 + (uvmy >> 2); if(v->profile != PROFILE_ADVANCED){ uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); }else{ uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); } srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x; srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x; if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP) || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9 || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){ ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); srcU = s->edge_emu_buffer; srcV = s->edge_emu_buffer + 16; /* if we deal with range reduction we need to scale source blocks */ if(v->rangeredfrm) { int i, j; uint8_t *src, *src2; src = srcU; src2 = srcV; for(j = 0; j < 9; j++) { for(i = 0; i < 9; i++) { src[i] = ((src[i] - 128) >> 1) + 128; src2[i] = ((src2[i] - 128) >> 1) + 128; } src += s->uvlinesize; src2 += s->uvlinesize; } } /* if we deal with intensity compensation we need to scale source blocks */ if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { int i, j; uint8_t *src, *src2; src = srcU; src2 = srcV; for(j = 0; j < 9; j++) { for(i = 0; i < 9; i++) { src[i] = v->lutuv[src[i]]; src2[i] = v->lutuv[src2[i]]; } src += s->uvlinesize; src2 += s->uvlinesize; } } } /* Chroma MC always uses qpel bilinear */ uvdxy = ((uvmy & 3) << 2) | (uvmx & 3); uvmx = (uvmx&3)<<1; uvmy = (uvmy&3)<<1; if(!v->rnd){ dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); }else{ dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } } static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb); /** * Decode Simple/Main Profiles sequence header * @see Figure 7-8, p16-17 * @param avctx Codec context * @param gb GetBit context initialized from Codec context extra_data * @return Status */ static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb) { VC1Context *v = avctx->priv_data; av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32)); v->profile = get_bits(gb, 2); if (v->profile == PROFILE_COMPLEX) { av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n"); } if (v->profile == PROFILE_ADVANCED) { return decode_sequence_header_adv(v, gb); } else { v->res_sm = get_bits(gb, 2); //reserved if (v->res_sm) { av_log(avctx, AV_LOG_ERROR, "Reserved RES_SM=%i is forbidden\n", v->res_sm); return -1; } } // (fps-2)/4 (->30) v->frmrtq_postproc = get_bits(gb, 3); //common // (bitrate-32kbps)/64kbps v->bitrtq_postproc = get_bits(gb, 5); //common v->s.loop_filter = get_bits(gb, 1); //common if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE) { av_log(avctx, AV_LOG_ERROR, "LOOPFILTER shell not be enabled in simple profile\n"); } v->res_x8 = get_bits(gb, 1); //reserved if (v->res_x8) { av_log(avctx, AV_LOG_ERROR, "1 for reserved RES_X8 is forbidden\n"); //return -1; } v->multires = get_bits(gb, 1); v->res_fasttx = get_bits(gb, 1); if (!v->res_fasttx) { av_log(avctx, AV_LOG_ERROR, "0 for reserved RES_FASTTX is forbidden\n"); //return -1; } v->fastuvmc = get_bits(gb, 1); //common if (!v->profile && !v->fastuvmc) { av_log(avctx, AV_LOG_ERROR, "FASTUVMC unavailable in Simple Profile\n"); return -1; } v->extended_mv = get_bits(gb, 1); //common if (!v->profile && v->extended_mv) { av_log(avctx, AV_LOG_ERROR, "Extended MVs unavailable in Simple Profile\n"); return -1; } v->dquant = get_bits(gb, 2); //common v->vstransform = get_bits(gb, 1); //common v->res_transtab = get_bits(gb, 1); if (v->res_transtab) { av_log(avctx, AV_LOG_ERROR, "1 for reserved RES_TRANSTAB is forbidden\n"); return -1; } v->overlap = get_bits(gb, 1); //common v->s.resync_marker = get_bits(gb, 1); v->rangered = get_bits(gb, 1); if (v->rangered && v->profile == PROFILE_SIMPLE) { av_log(avctx, AV_LOG_INFO, "RANGERED should be set to 0 in simple profile\n"); } v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common v->quantizer_mode = get_bits(gb, 2); //common v->finterpflag = get_bits(gb, 1); //common v->res_rtm_flag = get_bits(gb, 1); //reserved if (!v->res_rtm_flag) { // av_log(avctx, AV_LOG_ERROR, // "0 for reserved RES_RTM_FLAG is forbidden\n"); av_log(avctx, AV_LOG_ERROR, "Old WMV3 version detected, only I-frames will be decoded\n"); //return -1; } //TODO: figure out what they mean (always 0x402F) if(!v->res_fasttx) skip_bits(gb, 16); av_log(avctx, AV_LOG_DEBUG, "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n" "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n" "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n" "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n", v->profile, v->frmrtq_postproc, v->bitrtq_postproc, v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv, v->rangered, v->vstransform, v->overlap, v->s.resync_marker, v->dquant, v->quantizer_mode, avctx->max_b_frames ); return 0; } static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb) { v->res_rtm_flag = 1; v->level = get_bits(gb, 3); if(v->level >= 5) { av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level); } v->chromaformat = get_bits(gb, 2); if (v->chromaformat != 1) { av_log(v->s.avctx, AV_LOG_ERROR, "Only 4:2:0 chroma format supported\n"); return -1; } // (fps-2)/4 (->30) v->frmrtq_postproc = get_bits(gb, 3); //common // (bitrate-32kbps)/64kbps v->bitrtq_postproc = get_bits(gb, 5); //common v->postprocflag = get_bits(gb, 1); //common v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1; v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1; v->s.avctx->width = v->s.avctx->coded_width; v->s.avctx->height = v->s.avctx->coded_height; v->broadcast = get_bits1(gb); v->interlace = get_bits1(gb); v->tfcntrflag = get_bits1(gb); v->finterpflag = get_bits1(gb); get_bits1(gb); // reserved v->s.h_edge_pos = v->s.avctx->coded_width; v->s.v_edge_pos = v->s.avctx->coded_height; av_log(v->s.avctx, AV_LOG_DEBUG, "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n" "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n" "TFCTRflag=%i, FINTERPflag=%i\n", v->level, v->frmrtq_postproc, v->bitrtq_postproc, v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace, v->tfcntrflag, v->finterpflag ); v->psf = get_bits1(gb); if(v->psf) { //PsF, 6.1.13 av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n"); return -1; } v->s.max_b_frames = v->s.avctx->max_b_frames = 7; if(get_bits1(gb)) { //Display Info - decoding is not affected by it int w, h, ar = 0; av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n"); v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1; v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1; av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h); if(get_bits1(gb)) ar = get_bits(gb, 4); if(ar && ar < 14){ v->s.avctx->sample_aspect_ratio = vc1_pixel_aspect[ar]; }else if(ar == 15){ w = get_bits(gb, 8); h = get_bits(gb, 8); v->s.avctx->sample_aspect_ratio = (AVRational){w, h}; } if(get_bits1(gb)){ //framerate stuff if(get_bits1(gb)) { v->s.avctx->time_base.num = 32; v->s.avctx->time_base.den = get_bits(gb, 16) + 1; } else { int nr, dr; nr = get_bits(gb, 8); dr = get_bits(gb, 4); if(nr && nr < 8 && dr && dr < 3){ v->s.avctx->time_base.num = fps_dr[dr - 1]; v->s.avctx->time_base.den = fps_nr[nr - 1] * 1000; } } } if(get_bits1(gb)){ v->color_prim = get_bits(gb, 8); v->transfer_char = get_bits(gb, 8); v->matrix_coef = get_bits(gb, 8); } } v->hrd_param_flag = get_bits1(gb); if(v->hrd_param_flag) { int i; v->hrd_num_leaky_buckets = get_bits(gb, 5); get_bits(gb, 4); //bitrate exponent get_bits(gb, 4); //buffer size exponent for(i = 0; i < v->hrd_num_leaky_buckets; i++) { get_bits(gb, 16); //hrd_rate[n] get_bits(gb, 16); //hrd_buffer[n] } } return 0; } static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb) { VC1Context *v = avctx->priv_data; int i, blink, clentry, refdist; av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32)); blink = get_bits1(gb); // broken link clentry = get_bits1(gb); // closed entry v->panscanflag = get_bits1(gb); refdist = get_bits1(gb); // refdist flag v->s.loop_filter = get_bits1(gb); v->fastuvmc = get_bits1(gb); v->extended_mv = get_bits1(gb); v->dquant = get_bits(gb, 2); v->vstransform = get_bits1(gb); v->overlap = get_bits1(gb); v->quantizer_mode = get_bits(gb, 2); if(v->hrd_param_flag){ for(i = 0; i < v->hrd_num_leaky_buckets; i++) { get_bits(gb, 8); //hrd_full[n] } } if(get_bits1(gb)){ avctx->coded_width = (get_bits(gb, 12)+1)<<1; avctx->coded_height = (get_bits(gb, 12)+1)<<1; } if(v->extended_mv) v->extended_dmv = get_bits1(gb); if(get_bits1(gb)) { av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n"); skip_bits(gb, 3); // Y range, ignored for now } if(get_bits1(gb)) { av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n"); skip_bits(gb, 3); // UV range, ignored for now } av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n" "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n" "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n" "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n", blink, clentry, v->panscanflag, refdist, v->s.loop_filter, v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode); return 0; } static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb) { int pqindex, lowquant, status; if(v->finterpflag) v->interpfrm = get_bits(gb, 1); skip_bits(gb, 2); //framecnt unused v->rangeredfrm = 0; if (v->rangered) v->rangeredfrm = get_bits(gb, 1); v->s.pict_type = get_bits(gb, 1); if (v->s.avctx->max_b_frames) { if (!v->s.pict_type) { if (get_bits(gb, 1)) v->s.pict_type = I_TYPE; else v->s.pict_type = B_TYPE; } else v->s.pict_type = P_TYPE; } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE; v->bi_type = 0; if(v->s.pict_type == B_TYPE) { v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1); v->bfraction = vc1_bfraction_lut[v->bfraction]; if(v->bfraction == 0) { v->s.pict_type = BI_TYPE; } } if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) get_bits(gb, 7); // skip buffer fullness /* calculate RND */ if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) v->rnd = 1; if(v->s.pict_type == P_TYPE) v->rnd ^= 1; /* Quantizer stuff */ pqindex = get_bits(gb, 5); if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pq = pquant_table[0][pqindex]; else v->pq = pquant_table[1][pqindex]; v->pquantizer = 1; if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pquantizer = pqindex < 9; if (v->quantizer_mode == QUANT_NON_UNIFORM) v->pquantizer = 0; v->pqindex = pqindex; if (pqindex < 9) v->halfpq = get_bits(gb, 1); else v->halfpq = 0; if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) v->pquantizer = get_bits(gb, 1); v->dquantfrm = 0; if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3); v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11 v->range_x = 1 << (v->k_x - 1); v->range_y = 1 << (v->k_y - 1); if (v->profile == PROFILE_ADVANCED) { if (v->postprocflag) v->postproc = get_bits(gb, 1); } else if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2); if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){ if(get_bits1(gb))return -1; } //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n", // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm); if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0; switch(v->s.pict_type) { case P_TYPE: if (v->pq < 5) v->tt_index = 0; else if(v->pq < 13) v->tt_index = 1; else v->tt_index = 2; lowquant = (v->pq > 12) ? 0 : 1; v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)]; if (v->mv_mode == MV_PMODE_INTENSITY_COMP) { int scale, shift, i; v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)]; v->lumscale = get_bits(gb, 6); v->lumshift = get_bits(gb, 6); v->use_ic = 1; /* fill lookup tables for intensity compensation */ if(!v->lumscale) { scale = -64; shift = (255 - v->lumshift * 2) << 6; if(v->lumshift > 31) shift += 128 << 6; } else { scale = v->lumscale + 32; if(v->lumshift > 31) shift = (v->lumshift - 64) << 6; else shift = v->lumshift << 6; } for(i = 0; i < 256; i++) { v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6); v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6); } } if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN) v->s.quarter_sample = 0; else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN) v->s.quarter_sample = 0; else v->s.quarter_sample = 1; } else v->s.quarter_sample = 1; v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)); if ((v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_MIXED_MV) || v->mv_mode == MV_PMODE_MIXED_MV) { status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); } else { v->mv_type_is_raw = 0; memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height); } status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); /* Hopefully this is correct for P frames */ v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)]; if (v->dquant) { av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); vop_dquant_decoding(v); } v->ttfrm = 0; //FIXME Is that so ? if (v->vstransform) { v->ttmbf = get_bits(gb, 1); if (v->ttmbf) { v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)]; } } else { v->ttmbf = 1; v->ttfrm = TT_8X8; } break; case B_TYPE: if (v->pq < 5) v->tt_index = 0; else if(v->pq < 13) v->tt_index = 1; else v->tt_index = 2; lowquant = (v->pq > 12) ? 0 : 1; v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN; v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV); v->s.mspel = v->s.quarter_sample; status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); v->s.mv_table_index = get_bits(gb, 2); v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)]; if (v->dquant) { av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); vop_dquant_decoding(v); } v->ttfrm = 0; if (v->vstransform) { v->ttmbf = get_bits(gb, 1); if (v->ttmbf) { v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)]; } } else { v->ttmbf = 1; v->ttfrm = TT_8X8; } break; } /* AC Syntax */ v->c_ac_table_index = decode012(gb); if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) { v->y_ac_table_index = decode012(gb); } /* DC Syntax */ v->s.dc_table_index = get_bits(gb, 1); if(v->s.pict_type == BI_TYPE) { v->s.pict_type = B_TYPE; v->bi_type = 1; } return 0; } static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb) { int pqindex, lowquant; int status; v->p_frame_skipped = 0; if(v->interlace){ v->fcm = decode012(gb); if(v->fcm) return -1; // interlaced frames/fields are not implemented } switch(get_prefix(gb, 0, 4)) { case 0: v->s.pict_type = P_TYPE; break; case 1: v->s.pict_type = B_TYPE; break; case 2: v->s.pict_type = I_TYPE; break; case 3: v->s.pict_type = BI_TYPE; break; case 4: v->s.pict_type = P_TYPE; // skipped pic v->p_frame_skipped = 1; return 0; } if(v->tfcntrflag) get_bits(gb, 8); if(v->broadcast) { if(!v->interlace || v->psf) { v->rptfrm = get_bits(gb, 2); } else { v->tff = get_bits1(gb); v->rptfrm = get_bits1(gb); } } if(v->panscanflag) { //... } v->rnd = get_bits1(gb); if(v->interlace) v->uvsamp = get_bits1(gb); if(v->finterpflag) v->interpfrm = get_bits(gb, 1); if(v->s.pict_type == B_TYPE) { v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1); v->bfraction = vc1_bfraction_lut[v->bfraction]; if(v->bfraction == 0) { v->s.pict_type = BI_TYPE; /* XXX: should not happen here */ } } pqindex = get_bits(gb, 5); v->pqindex = pqindex; if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pq = pquant_table[0][pqindex]; else v->pq = pquant_table[1][pqindex]; v->pquantizer = 1; if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pquantizer = pqindex < 9; if (v->quantizer_mode == QUANT_NON_UNIFORM) v->pquantizer = 0; v->pqindex = pqindex; if (pqindex < 9) v->halfpq = get_bits(gb, 1); else v->halfpq = 0; if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) v->pquantizer = get_bits(gb, 1); if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0; switch(v->s.pict_type) { case I_TYPE: case BI_TYPE: status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); v->condover = CONDOVER_NONE; if(v->overlap && v->pq <= 8) { v->condover = decode012(gb); if(v->condover == CONDOVER_SELECT) { status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); } } break; case P_TYPE: if(v->postprocflag) v->postproc = get_bits1(gb); if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3); else v->mvrange = 0; v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11 v->range_x = 1 << (v->k_x - 1); v->range_y = 1 << (v->k_y - 1); if (v->pq < 5) v->tt_index = 0; else if(v->pq < 13) v->tt_index = 1; else v->tt_index = 2; lowquant = (v->pq > 12) ? 0 : 1; v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)]; if (v->mv_mode == MV_PMODE_INTENSITY_COMP) { int scale, shift, i; v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)]; v->lumscale = get_bits(gb, 6); v->lumshift = get_bits(gb, 6); /* fill lookup tables for intensity compensation */ if(!v->lumscale) { scale = -64; shift = (255 - v->lumshift * 2) << 6; if(v->lumshift > 31) shift += 128 << 6; } else { scale = v->lumscale + 32; if(v->lumshift > 31) shift = (v->lumshift - 64) << 6; else shift = v->lumshift << 6; } for(i = 0; i < 256; i++) { v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6); v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6); } v->use_ic = 1; } if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN) v->s.quarter_sample = 0; else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) { if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN) v->s.quarter_sample = 0; else v->s.quarter_sample = 1; } else v->s.quarter_sample = 1; v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)); if ((v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_MIXED_MV) || v->mv_mode == MV_PMODE_MIXED_MV) { status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); } else { v->mv_type_is_raw = 0; memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height); } status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); /* Hopefully this is correct for P frames */ v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)]; if (v->dquant) { av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); vop_dquant_decoding(v); } v->ttfrm = 0; //FIXME Is that so ? if (v->vstransform) { v->ttmbf = get_bits(gb, 1); if (v->ttmbf) { v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)]; } } else { v->ttmbf = 1; v->ttfrm = TT_8X8; } break; case B_TYPE: if(v->postprocflag) v->postproc = get_bits1(gb); if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3); else v->mvrange = 0; v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11 v->range_x = 1 << (v->k_x - 1); v->range_y = 1 << (v->k_y - 1); if (v->pq < 5) v->tt_index = 0; else if(v->pq < 13) v->tt_index = 1; else v->tt_index = 2; lowquant = (v->pq > 12) ? 0 : 1; v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN; v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV); v->s.mspel = v->s.quarter_sample; status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v); if (status < 0) return -1; av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); v->s.mv_table_index = get_bits(gb, 2); v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)]; if (v->dquant) { av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); vop_dquant_decoding(v); } v->ttfrm = 0; if (v->vstransform) { v->ttmbf = get_bits(gb, 1); if (v->ttmbf) { v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)]; } } else { v->ttmbf = 1; v->ttfrm = TT_8X8; } break; } /* AC Syntax */ v->c_ac_table_index = decode012(gb); if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) { v->y_ac_table_index = decode012(gb); } /* DC Syntax */ v->s.dc_table_index = get_bits(gb, 1); if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) { av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n"); vop_dquant_decoding(v); } v->bi_type = 0; if(v->s.pict_type == BI_TYPE) { v->s.pict_type = B_TYPE; v->bi_type = 1; } return 0; } /***********************************************************************/ /** * @defgroup block VC-1 Block-level functions * @see 7.1.4, p91 and 8.1.1.7, p(1)04 * @{ */ /** * @def GET_MQUANT * @brief Get macroblock-level quantizer scale */ #define GET_MQUANT() \ if (v->dquantfrm) \ { \ int edges = 0; \ if (v->dqprofile == DQPROFILE_ALL_MBS) \ { \ if (v->dqbilevel) \ { \ mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \ } \ else \ { \ mqdiff = get_bits(gb, 3); \ if (mqdiff != 7) mquant = v->pq + mqdiff; \ else mquant = get_bits(gb, 5); \ } \ } \ if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \ edges = 1 << v->dqsbedge; \ else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \ edges = (3 << v->dqsbedge) % 15; \ else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \ edges = 15; \ if((edges&1) && !s->mb_x) \ mquant = v->altpq; \ if((edges&2) && s->first_slice_line) \ mquant = v->altpq; \ if((edges&4) && s->mb_x == (s->mb_width - 1)) \ mquant = v->altpq; \ if((edges&8) && s->mb_y == (s->mb_height - 1)) \ mquant = v->altpq; \ } /** * @def GET_MVDATA(_dmv_x, _dmv_y) * @brief Get MV differentials * @see MVDATA decoding from 8.3.5.2, p(1)20 * @param _dmv_x Horizontal differential for decoded MV * @param _dmv_y Vertical differential for decoded MV */ #define GET_MVDATA(_dmv_x, _dmv_y) \ index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\ VC1_MV_DIFF_VLC_BITS, 2); \ if (index > 36) \ { \ mb_has_coeffs = 1; \ index -= 37; \ } \ else mb_has_coeffs = 0; \ s->mb_intra = 0; \ if (!index) { _dmv_x = _dmv_y = 0; } \ else if (index == 35) \ { \ _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \ _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \ } \ else if (index == 36) \ { \ _dmv_x = 0; \ _dmv_y = 0; \ s->mb_intra = 1; \ } \ else \ { \ index1 = index%6; \ if (!s->quarter_sample && index1 == 5) val = 1; \ else val = 0; \ if(size_table[index1] - val > 0) \ val = get_bits(gb, size_table[index1] - val); \ else val = 0; \ sign = 0 - (val&1); \ _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \ \ index1 = index/6; \ if (!s->quarter_sample && index1 == 5) val = 1; \ else val = 0; \ if(size_table[index1] - val > 0) \ val = get_bits(gb, size_table[index1] - val); \ else val = 0; \ sign = 0 - (val&1); \ _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \ } /** Predict and set motion vector */ static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra) { int xy, wrap, off = 0; int16_t *A, *B, *C; int px, py; int sum; /* scale MV difference to be quad-pel */ dmv_x <<= 1 - s->quarter_sample; dmv_y <<= 1 - s->quarter_sample; wrap = s->b8_stride; xy = s->block_index[n]; if(s->mb_intra){ s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0; s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0; s->current_picture.motion_val[1][xy][0] = 0; s->current_picture.motion_val[1][xy][1] = 0; if(mv1) { /* duplicate motion data for 1-MV block */ s->current_picture.motion_val[0][xy + 1][0] = 0; s->current_picture.motion_val[0][xy + 1][1] = 0; s->current_picture.motion_val[0][xy + wrap][0] = 0; s->current_picture.motion_val[0][xy + wrap][1] = 0; s->current_picture.motion_val[0][xy + wrap + 1][0] = 0; s->current_picture.motion_val[0][xy + wrap + 1][1] = 0; s->current_picture.motion_val[1][xy + 1][0] = 0; s->current_picture.motion_val[1][xy + 1][1] = 0; s->current_picture.motion_val[1][xy + wrap][0] = 0; s->current_picture.motion_val[1][xy + wrap][1] = 0; s->current_picture.motion_val[1][xy + wrap + 1][0] = 0; s->current_picture.motion_val[1][xy + wrap + 1][1] = 0; } return; } C = s->current_picture.motion_val[0][xy - 1]; A = s->current_picture.motion_val[0][xy - wrap]; if(mv1) off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2; else { //in 4-MV mode different blocks have different B predictor position switch(n){ case 0: off = (s->mb_x > 0) ? -1 : 1; break; case 1: off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1; break; case 2: off = 1; break; case 3: off = -1; } } B = s->current_picture.motion_val[0][xy - wrap + off]; if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds if(s->mb_width == 1) { px = A[0]; py = A[1]; } else { px = mid_pred(A[0], B[0], C[0]); py = mid_pred(A[1], B[1], C[1]); } } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds px = C[0]; py = C[1]; } else { px = py = 0; } /* Pullback MV as specified in 8.3.5.3.4 */ { int qx, qy, X, Y; qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0); qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0); X = (s->mb_width << 6) - 4; Y = (s->mb_height << 6) - 4; if(mv1) { if(qx + px < -60) px = -60 - qx; if(qy + py < -60) py = -60 - qy; } else { if(qx + px < -28) px = -28 - qx; if(qy + py < -28) py = -28 - qy; } if(qx + px > X) px = X - qx; if(qy + py > Y) py = Y - qy; } /* Calculate hybrid prediction as specified in 8.3.5.3.5 */ if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) { if(is_intra[xy - wrap]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - A[0]) + FFABS(py - A[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } else { if(is_intra[xy - 1]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - C[0]) + FFABS(py - C[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } } } /* store MV using signed modulus of MV range defined in 4.11 */ s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x; s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y; if(mv1) { /* duplicate motion data for 1-MV block */ s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0]; s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1]; s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0]; s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1]; s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0]; s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1]; } } /** Motion compensation for direct or interpolated blocks in B-frames */ static void vc1_interp_mc(VC1Context *v) { MpegEncContext *s = &v->s; DSPContext *dsp = &v->s.dsp; uint8_t *srcY, *srcU, *srcV; int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y; if(!v->s.next_picture.data[0])return; mx = s->mv[1][0][0]; my = s->mv[1][0][1]; uvmx = (mx + ((mx & 3) == 3)) >> 1; uvmy = (my + ((my & 3) == 3)) >> 1; if(v->fastuvmc) { uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1)); uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1)); } srcY = s->next_picture.data[0]; srcU = s->next_picture.data[1]; srcV = s->next_picture.data[2]; src_x = s->mb_x * 16 + (mx >> 2); src_y = s->mb_y * 16 + (my >> 2); uvsrc_x = s->mb_x * 8 + (uvmx >> 2); uvsrc_y = s->mb_y * 8 + (uvmy >> 2); if(v->profile != PROFILE_ADVANCED){ src_x = av_clip( src_x, -16, s->mb_width * 16); src_y = av_clip( src_y, -16, s->mb_height * 16); uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8); uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8); }else{ src_x = av_clip( src_x, -17, s->avctx->coded_width); src_y = av_clip( src_y, -18, s->avctx->coded_height + 1); uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1); uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1); } srcY += src_y * s->linesize + src_x; srcU += uvsrc_y * s->uvlinesize + uvsrc_x; srcV += uvsrc_y * s->uvlinesize + uvsrc_x; /* for grayscale we should not try to read from unknown area */ if(s->flags & CODEC_FLAG_GRAY) { srcU = s->edge_emu_buffer + 18 * s->linesize; srcV = s->edge_emu_buffer + 18 * s->linesize; } if(v->rangeredfrm || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16 || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){ uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize; srcY -= s->mspel * (1 + s->linesize); ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2, src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos); srcY = s->edge_emu_buffer; ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1, uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1); srcU = uvbuf; srcV = uvbuf + 16; /* if we deal with range reduction we need to scale source blocks */ if(v->rangeredfrm) { int i, j; uint8_t *src, *src2; src = srcY; for(j = 0; j < 17 + s->mspel*2; j++) { for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128; src += s->linesize; } src = srcU; src2 = srcV; for(j = 0; j < 9; j++) { for(i = 0; i < 9; i++) { src[i] = ((src[i] - 128) >> 1) + 128; src2[i] = ((src2[i] - 128) >> 1) + 128; } src += s->uvlinesize; src2 += s->uvlinesize; } } srcY += s->mspel * (1 + s->linesize); } mx >>= 1; my >>= 1; dxy = ((my & 1) << 1) | (mx & 1); dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16); if(s->flags & CODEC_FLAG_GRAY) return; /* Chroma MC always uses qpel blilinear */ uvdxy = ((uvmy & 3) << 2) | (uvmx & 3); uvmx = (uvmx&3)<<1; uvmy = (uvmy&3)<<1; dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy); dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy); } static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs) { int n = bfrac; #if B_FRACTION_DEN==256 if(inv) n -= 256; if(!qs) return 2 * ((value * n + 255) >> 9); return (value * n + 128) >> 8; #else if(inv) n -= B_FRACTION_DEN; if(!qs) return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN)); return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN; #endif } /** Reconstruct motion vector for B-frame and do motion compensation */ static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode) { if(v->use_ic) { v->mv_mode2 = v->mv_mode; v->mv_mode = MV_PMODE_INTENSITY_COMP; } if(direct) { vc1_mc_1mv(v, 0); vc1_interp_mc(v); if(v->use_ic) v->mv_mode = v->mv_mode2; return; } if(mode == BMV_TYPE_INTERPOLATED) { vc1_mc_1mv(v, 0); vc1_interp_mc(v); if(v->use_ic) v->mv_mode = v->mv_mode2; return; } if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2; vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD)); if(v->use_ic) v->mv_mode = v->mv_mode2; } static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype) { MpegEncContext *s = &v->s; int xy, wrap, off = 0; int16_t *A, *B, *C; int px, py; int sum; int r_x, r_y; const uint8_t *is_intra = v->mb_type[0]; r_x = v->range_x; r_y = v->range_y; /* scale MV difference to be quad-pel */ dmv_x[0] <<= 1 - s->quarter_sample; dmv_y[0] <<= 1 - s->quarter_sample; dmv_x[1] <<= 1 - s->quarter_sample; dmv_y[1] <<= 1 - s->quarter_sample; wrap = s->b8_stride; xy = s->block_index[0]; if(s->mb_intra) { s->current_picture.motion_val[0][xy][0] = s->current_picture.motion_val[0][xy][1] = s->current_picture.motion_val[1][xy][0] = s->current_picture.motion_val[1][xy][1] = 0; return; } s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample); s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample); s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample); s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample); /* Pullback predicted motion vectors as specified in 8.4.5.4 */ s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6)); s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6)); s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6)); s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6)); if(direct) { s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0]; s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1]; s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0]; s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1]; return; } if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) { C = s->current_picture.motion_val[0][xy - 2]; A = s->current_picture.motion_val[0][xy - wrap*2]; off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2; B = s->current_picture.motion_val[0][xy - wrap*2 + off]; if(!s->mb_x) C[0] = C[1] = 0; if(!s->first_slice_line) { // predictor A is not out of bounds if(s->mb_width == 1) { px = A[0]; py = A[1]; } else { px = mid_pred(A[0], B[0], C[0]); py = mid_pred(A[1], B[1], C[1]); } } else if(s->mb_x) { // predictor C is not out of bounds px = C[0]; py = C[1]; } else { px = py = 0; } /* Pullback MV as specified in 8.3.5.3.4 */ { int qx, qy, X, Y; if(v->profile < PROFILE_ADVANCED) { qx = (s->mb_x << 5); qy = (s->mb_y << 5); X = (s->mb_width << 5) - 4; Y = (s->mb_height << 5) - 4; if(qx + px < -28) px = -28 - qx; if(qy + py < -28) py = -28 - qy; if(qx + px > X) px = X - qx; if(qy + py > Y) py = Y - qy; } else { qx = (s->mb_x << 6); qy = (s->mb_y << 6); X = (s->mb_width << 6) - 4; Y = (s->mb_height << 6) - 4; if(qx + px < -60) px = -60 - qx; if(qy + py < -60) py = -60 - qy; if(qx + px > X) px = X - qx; if(qy + py > Y) py = Y - qy; } } /* Calculate hybrid prediction as specified in 8.3.5.3.5 */ if(0 && !s->first_slice_line && s->mb_x) { if(is_intra[xy - wrap]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - A[0]) + FFABS(py - A[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } else { if(is_intra[xy - 2]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - C[0]) + FFABS(py - C[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } } } /* store MV using signed modulus of MV range defined in 4.11 */ s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x; s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y; } if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) { C = s->current_picture.motion_val[1][xy - 2]; A = s->current_picture.motion_val[1][xy - wrap*2]; off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2; B = s->current_picture.motion_val[1][xy - wrap*2 + off]; if(!s->mb_x) C[0] = C[1] = 0; if(!s->first_slice_line) { // predictor A is not out of bounds if(s->mb_width == 1) { px = A[0]; py = A[1]; } else { px = mid_pred(A[0], B[0], C[0]); py = mid_pred(A[1], B[1], C[1]); } } else if(s->mb_x) { // predictor C is not out of bounds px = C[0]; py = C[1]; } else { px = py = 0; } /* Pullback MV as specified in 8.3.5.3.4 */ { int qx, qy, X, Y; if(v->profile < PROFILE_ADVANCED) { qx = (s->mb_x << 5); qy = (s->mb_y << 5); X = (s->mb_width << 5) - 4; Y = (s->mb_height << 5) - 4; if(qx + px < -28) px = -28 - qx; if(qy + py < -28) py = -28 - qy; if(qx + px > X) px = X - qx; if(qy + py > Y) py = Y - qy; } else { qx = (s->mb_x << 6); qy = (s->mb_y << 6); X = (s->mb_width << 6) - 4; Y = (s->mb_height << 6) - 4; if(qx + px < -60) px = -60 - qx; if(qy + py < -60) py = -60 - qy; if(qx + px > X) px = X - qx; if(qy + py > Y) py = Y - qy; } } /* Calculate hybrid prediction as specified in 8.3.5.3.5 */ if(0 && !s->first_slice_line && s->mb_x) { if(is_intra[xy - wrap]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - A[0]) + FFABS(py - A[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } else { if(is_intra[xy - 2]) sum = FFABS(px) + FFABS(py); else sum = FFABS(px - C[0]) + FFABS(py - C[1]); if(sum > 32) { if(get_bits1(&s->gb)) { px = A[0]; py = A[1]; } else { px = C[0]; py = C[1]; } } } } /* store MV using signed modulus of MV range defined in 4.11 */ s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x; s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y; } s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0]; s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1]; s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0]; s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1]; } /** Get predicted DC value for I-frames only * prediction dir: left=0, top=1 * @param s MpegEncContext * @param[in] n block index in the current MB * @param dc_val_ptr Pointer to DC predictor * @param dir_ptr Prediction direction for use in AC prediction */ static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n, int16_t **dc_val_ptr, int *dir_ptr) { int a, b, c, wrap, pred, scale; int16_t *dc_val; static const uint16_t dcpred[32] = { -1, 1024, 512, 341, 256, 205, 171, 146, 128, 114, 102, 93, 85, 79, 73, 68, 64, 60, 57, 54, 51, 49, 47, 45, 43, 41, 39, 38, 37, 35, 34, 33 }; /* find prediction - wmv3_dc_scale always used here in fact */ if (n < 4) scale = s->y_dc_scale; else scale = s->c_dc_scale; wrap = s->block_wrap[n]; dc_val= s->dc_val[0] + s->block_index[n]; /* B A * C X */ c = dc_val[ - 1]; b = dc_val[ - 1 - wrap]; a = dc_val[ - wrap]; if (pq < 9 || !overlap) { /* Set outer values */ if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale]; if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale]; } else { /* Set outer values */ if (s->first_slice_line && (n!=2 && n!=3)) b=a=0; if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0; } if (abs(a - b) <= abs(b - c)) { pred = c; *dir_ptr = 1;//left } else { pred = a; *dir_ptr = 0;//top } /* update predictor */ *dc_val_ptr = &dc_val[0]; return pred; } /** Get predicted DC value * prediction dir: left=0, top=1 * @param s MpegEncContext * @param[in] n block index in the current MB * @param dc_val_ptr Pointer to DC predictor * @param dir_ptr Prediction direction for use in AC prediction */ static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n, int a_avail, int c_avail, int16_t **dc_val_ptr, int *dir_ptr) { int a, b, c, wrap, pred, scale; int16_t *dc_val; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int q1, q2 = 0; /* find prediction - wmv3_dc_scale always used here in fact */ if (n < 4) scale = s->y_dc_scale; else scale = s->c_dc_scale; wrap = s->block_wrap[n]; dc_val= s->dc_val[0] + s->block_index[n]; /* B A * C X */ c = dc_val[ - 1]; b = dc_val[ - 1 - wrap]; a = dc_val[ - wrap]; /* scale predictors if needed */ q1 = s->current_picture.qscale_table[mb_pos]; if(c_avail && (n!= 1 && n!=3)) { q2 = s->current_picture.qscale_table[mb_pos - 1]; if(q2 && q2 != q1) c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18; } if(a_avail && (n!= 2 && n!=3)) { q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride]; if(q2 && q2 != q1) a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18; } if(a_avail && c_avail && (n!=3)) { int off = mb_pos; if(n != 1) off--; if(n != 2) off -= s->mb_stride; q2 = s->current_picture.qscale_table[off]; if(q2 && q2 != q1) b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18; } if(a_avail && c_avail) { if(abs(a - b) <= abs(b - c)) { pred = c; *dir_ptr = 1;//left } else { pred = a; *dir_ptr = 0;//top } } else if(a_avail) { pred = a; *dir_ptr = 0;//top } else if(c_avail) { pred = c; *dir_ptr = 1;//left } else { pred = 0; *dir_ptr = 1;//left } /* update predictor */ *dc_val_ptr = &dc_val[0]; return pred; } /** * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles * @see 7.1.4, p91 and 8.1.1.7, p(1)04 * @{ */ static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr) { int xy, wrap, pred, a, b, c; xy = s->block_index[n]; wrap = s->b8_stride; /* B C * A X */ a = s->coded_block[xy - 1 ]; b = s->coded_block[xy - 1 - wrap]; c = s->coded_block[xy - wrap]; if (b == c) { pred = a; } else { pred = c; } /* store value */ *coded_block_ptr = &s->coded_block[xy]; return pred; } /** * Decode one AC coefficient * @param v The VC1 context * @param last Last coefficient * @param skip How much zero coefficients to skip * @param value Decoded AC coefficient value * @see 8.1.3.4 */ static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset) { GetBitContext *gb = &v->s.gb; int index, escape, run = 0, level = 0, lst = 0; index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3); if (index != vc1_ac_sizes[codingset] - 1) { run = vc1_index_decode_table[codingset][index][0]; level = vc1_index_decode_table[codingset][index][1]; lst = index >= vc1_last_decode_table[codingset]; if(get_bits(gb, 1)) level = -level; } else { escape = decode210(gb); if (escape != 2) { index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3); run = vc1_index_decode_table[codingset][index][0]; level = vc1_index_decode_table[codingset][index][1]; lst = index >= vc1_last_decode_table[codingset]; if(escape == 0) { if(lst) level += vc1_last_delta_level_table[codingset][run]; else level += vc1_delta_level_table[codingset][run]; } else { if(lst) run += vc1_last_delta_run_table[codingset][level] + 1; else run += vc1_delta_run_table[codingset][level] + 1; } if(get_bits(gb, 1)) level = -level; } else { int sign; lst = get_bits(gb, 1); if(v->s.esc3_level_length == 0) { if(v->pq < 8 || v->dquantfrm) { // table 59 v->s.esc3_level_length = get_bits(gb, 3); if(!v->s.esc3_level_length) v->s.esc3_level_length = get_bits(gb, 2) + 8; } else { //table 60 v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2; } v->s.esc3_run_length = 3 + get_bits(gb, 2); } run = get_bits(gb, v->s.esc3_run_length); sign = get_bits(gb, 1); level = get_bits(gb, v->s.esc3_level_length); if(sign) level = -level; } } *last = lst; *skip = run; *value = level; } /** Decode intra block in intra frames - should be faster than decode_intra_block * @param v VC1Context * @param block block to decode * @param coded are AC coeffs present or not * @param codingset set of VLC to decode data */ static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset) { GetBitContext *gb = &v->s.gb; MpegEncContext *s = &v->s; int dc_pred_dir = 0; /* Direction of the DC prediction used */ int run_diff, i; int16_t *dc_val; int16_t *ac_val, *ac_val2; int dcdiff; /* Get DC differential */ if (n < 4) { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } else { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } if (dcdiff < 0){ av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); return -1; } if (dcdiff) { if (dcdiff == 119 /* ESC index value */) { /* TODO: Optimize */ if (v->pq == 1) dcdiff = get_bits(gb, 10); else if (v->pq == 2) dcdiff = get_bits(gb, 9); else dcdiff = get_bits(gb, 8); } else { if (v->pq == 1) dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3; else if (v->pq == 2) dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1; } if (get_bits(gb, 1)) dcdiff = -dcdiff; } /* Prediction */ dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir); *dc_val = dcdiff; /* Store the quantized DC coeff, used for prediction */ if (n < 4) { block[0] = dcdiff * s->y_dc_scale; } else { block[0] = dcdiff * s->c_dc_scale; } /* Skip ? */ run_diff = 0; i = 0; if (!coded) { goto not_coded; } //AC Decoding i = 1; { int last = 0, skip, value; const int8_t *zz_table; int scale; int k; scale = v->pq * 2 + v->halfpq; if(v->s.ac_pred) { if(!dc_pred_dir) zz_table = vc1_horizontal_zz; else zz_table = vc1_vertical_zz; } else zz_table = vc1_normal_zz; ac_val = s->ac_val[0][0] + s->block_index[n] * 16; ac_val2 = ac_val; if(dc_pred_dir) //left ac_val -= 16; else //top ac_val -= 16 * s->block_wrap[n]; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); i += skip; if(i > 63) break; block[zz_table[i++]] = value; } /* apply AC prediction if needed */ if(s->ac_pred) { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) block[k << 3] += ac_val[k]; } else { //top for(k = 1; k < 8; k++) block[k] += ac_val[k + 8]; } } /* save AC coeffs for further prediction */ for(k = 1; k < 8; k++) { ac_val2[k] = block[k << 3]; ac_val2[k + 8] = block[k]; } /* scale AC coeffs */ for(k = 1; k < 64; k++) if(block[k]) { block[k] *= scale; if(!v->pquantizer) block[k] += (block[k] < 0) ? -v->pq : v->pq; } if(s->ac_pred) i = 63; } not_coded: if(!coded) { int k, scale; ac_val = s->ac_val[0][0] + s->block_index[n] * 16; ac_val2 = ac_val; scale = v->pq * 2 + v->halfpq; memset(ac_val2, 0, 16 * 2); if(dc_pred_dir) {//left ac_val -= 16; if(s->ac_pred) memcpy(ac_val2, ac_val, 8 * 2); } else {//top ac_val -= 16 * s->block_wrap[n]; if(s->ac_pred) memcpy(ac_val2 + 8, ac_val + 8, 8 * 2); } /* apply AC prediction if needed */ if(s->ac_pred) { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) { block[k << 3] = ac_val[k] * scale; if(!v->pquantizer && block[k << 3]) block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq; } } else { //top for(k = 1; k < 8; k++) { block[k] = ac_val[k + 8] * scale; if(!v->pquantizer && block[k]) block[k] += (block[k] < 0) ? -v->pq : v->pq; } } i = 63; } } s->block_last_index[n] = i; return 0; } /** Decode intra block in intra frames - should be faster than decode_intra_block * @param v VC1Context * @param block block to decode * @param coded are AC coeffs present or not * @param codingset set of VLC to decode data */ static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant) { GetBitContext *gb = &v->s.gb; MpegEncContext *s = &v->s; int dc_pred_dir = 0; /* Direction of the DC prediction used */ int run_diff, i; int16_t *dc_val; int16_t *ac_val, *ac_val2; int dcdiff; int a_avail = v->a_avail, c_avail = v->c_avail; int use_pred = s->ac_pred; int scale; int q1, q2 = 0; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; /* Get DC differential */ if (n < 4) { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } else { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } if (dcdiff < 0){ av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); return -1; } if (dcdiff) { if (dcdiff == 119 /* ESC index value */) { /* TODO: Optimize */ if (mquant == 1) dcdiff = get_bits(gb, 10); else if (mquant == 2) dcdiff = get_bits(gb, 9); else dcdiff = get_bits(gb, 8); } else { if (mquant == 1) dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3; else if (mquant == 2) dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1; } if (get_bits(gb, 1)) dcdiff = -dcdiff; } /* Prediction */ dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir); *dc_val = dcdiff; /* Store the quantized DC coeff, used for prediction */ if (n < 4) { block[0] = dcdiff * s->y_dc_scale; } else { block[0] = dcdiff * s->c_dc_scale; } /* Skip ? */ run_diff = 0; i = 0; //AC Decoding i = 1; /* check if AC is needed at all and adjust direction if needed */ if(!a_avail) dc_pred_dir = 1; if(!c_avail) dc_pred_dir = 0; if(!a_avail && !c_avail) use_pred = 0; ac_val = s->ac_val[0][0] + s->block_index[n] * 16; ac_val2 = ac_val; scale = mquant * 2 + v->halfpq; if(dc_pred_dir) //left ac_val -= 16; else //top ac_val -= 16 * s->block_wrap[n]; q1 = s->current_picture.qscale_table[mb_pos]; if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1]; if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride]; if(dc_pred_dir && n==1) q2 = q1; if(!dc_pred_dir && n==2) q2 = q1; if(n==3) q2 = q1; if(coded) { int last = 0, skip, value; const int8_t *zz_table; int k; if(v->s.ac_pred) { if(!dc_pred_dir) zz_table = vc1_horizontal_zz; else zz_table = vc1_vertical_zz; } else zz_table = vc1_normal_zz; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); i += skip; if(i > 63) break; block[zz_table[i++]] = value; } /* apply AC prediction if needed */ if(use_pred) { /* scale predictors if needed*/ if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; if(dc_pred_dir) { //left for(k = 1; k < 8; k++) block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; } else { //top for(k = 1; k < 8; k++) block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } else { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) block[k << 3] += ac_val[k]; } else { //top for(k = 1; k < 8; k++) block[k] += ac_val[k + 8]; } } } /* save AC coeffs for further prediction */ for(k = 1; k < 8; k++) { ac_val2[k] = block[k << 3]; ac_val2[k + 8] = block[k]; } /* scale AC coeffs */ for(k = 1; k < 64; k++) if(block[k]) { block[k] *= scale; if(!v->pquantizer) block[k] += (block[k] < 0) ? -mquant : mquant; } if(use_pred) i = 63; } else { // no AC coeffs int k; memset(ac_val2, 0, 16 * 2); if(dc_pred_dir) {//left if(use_pred) { memcpy(ac_val2, ac_val, 8 * 2); if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; for(k = 1; k < 8; k++) ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } else {//top if(use_pred) { memcpy(ac_val2 + 8, ac_val + 8, 8 * 2); if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; for(k = 1; k < 8; k++) ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } /* apply AC prediction if needed */ if(use_pred) { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) { block[k << 3] = ac_val2[k] * scale; if(!v->pquantizer && block[k << 3]) block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant; } } else { //top for(k = 1; k < 8; k++) { block[k] = ac_val2[k + 8] * scale; if(!v->pquantizer && block[k]) block[k] += (block[k] < 0) ? -mquant : mquant; } } i = 63; } } s->block_last_index[n] = i; return 0; } /** Decode intra block in inter frames - more generic version than vc1_decode_i_block * @param v VC1Context * @param block block to decode * @param coded are AC coeffs present or not * @param mquant block quantizer * @param codingset set of VLC to decode data */ static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset) { GetBitContext *gb = &v->s.gb; MpegEncContext *s = &v->s; int dc_pred_dir = 0; /* Direction of the DC prediction used */ int run_diff, i; int16_t *dc_val; int16_t *ac_val, *ac_val2; int dcdiff; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int a_avail = v->a_avail, c_avail = v->c_avail; int use_pred = s->ac_pred; int scale; int q1, q2 = 0; /* XXX: Guard against dumb values of mquant */ mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant ); /* Set DC scale - y and c use the same */ s->y_dc_scale = s->y_dc_scale_table[mquant]; s->c_dc_scale = s->c_dc_scale_table[mquant]; /* Get DC differential */ if (n < 4) { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } else { dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3); } if (dcdiff < 0){ av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n"); return -1; } if (dcdiff) { if (dcdiff == 119 /* ESC index value */) { /* TODO: Optimize */ if (mquant == 1) dcdiff = get_bits(gb, 10); else if (mquant == 2) dcdiff = get_bits(gb, 9); else dcdiff = get_bits(gb, 8); } else { if (mquant == 1) dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3; else if (mquant == 2) dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1; } if (get_bits(gb, 1)) dcdiff = -dcdiff; } /* Prediction */ dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir); *dc_val = dcdiff; /* Store the quantized DC coeff, used for prediction */ if (n < 4) { block[0] = dcdiff * s->y_dc_scale; } else { block[0] = dcdiff * s->c_dc_scale; } /* Skip ? */ run_diff = 0; i = 0; //AC Decoding i = 1; /* check if AC is needed at all and adjust direction if needed */ if(!a_avail) dc_pred_dir = 1; if(!c_avail) dc_pred_dir = 0; if(!a_avail && !c_avail) use_pred = 0; ac_val = s->ac_val[0][0] + s->block_index[n] * 16; ac_val2 = ac_val; scale = mquant * 2 + v->halfpq; if(dc_pred_dir) //left ac_val -= 16; else //top ac_val -= 16 * s->block_wrap[n]; q1 = s->current_picture.qscale_table[mb_pos]; if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1]; if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride]; if(dc_pred_dir && n==1) q2 = q1; if(!dc_pred_dir && n==2) q2 = q1; if(n==3) q2 = q1; if(coded) { int last = 0, skip, value; const int8_t *zz_table; int k; zz_table = vc1_simple_progressive_8x8_zz; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, codingset); i += skip; if(i > 63) break; block[zz_table[i++]] = value; } /* apply AC prediction if needed */ if(use_pred) { /* scale predictors if needed*/ if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; if(dc_pred_dir) { //left for(k = 1; k < 8; k++) block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; } else { //top for(k = 1; k < 8; k++) block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } else { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) block[k << 3] += ac_val[k]; } else { //top for(k = 1; k < 8; k++) block[k] += ac_val[k + 8]; } } } /* save AC coeffs for further prediction */ for(k = 1; k < 8; k++) { ac_val2[k] = block[k << 3]; ac_val2[k + 8] = block[k]; } /* scale AC coeffs */ for(k = 1; k < 64; k++) if(block[k]) { block[k] *= scale; if(!v->pquantizer) block[k] += (block[k] < 0) ? -mquant : mquant; } if(use_pred) i = 63; } else { // no AC coeffs int k; memset(ac_val2, 0, 16 * 2); if(dc_pred_dir) {//left if(use_pred) { memcpy(ac_val2, ac_val, 8 * 2); if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; for(k = 1; k < 8; k++) ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } else {//top if(use_pred) { memcpy(ac_val2 + 8, ac_val + 8, 8 * 2); if(q2 && q1!=q2) { q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1; q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1; for(k = 1; k < 8; k++) ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18; } } } /* apply AC prediction if needed */ if(use_pred) { if(dc_pred_dir) { //left for(k = 1; k < 8; k++) { block[k << 3] = ac_val2[k] * scale; if(!v->pquantizer && block[k << 3]) block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant; } } else { //top for(k = 1; k < 8; k++) { block[k] = ac_val2[k + 8] * scale; if(!v->pquantizer && block[k]) block[k] += (block[k] < 0) ? -mquant : mquant; } } i = 63; } } s->block_last_index[n] = i; return 0; } /** Decode P block */ static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, j; int subblkpat = 0; int scale, off, idx, last, skip, value; int ttblk = ttmb & 7; if(ttmb == -1) { ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)]; } if(ttblk == TT_4X4) { subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1); } if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) { subblkpat = decode012(gb); if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4; if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8; } scale = 2 * mquant + v->halfpq; // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) { subblkpat = 2 - (ttblk == TT_8X4_TOP); ttblk = TT_8X4; } if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) { subblkpat = 2 - (ttblk == TT_4X8_LEFT); ttblk = TT_4X8; } switch(ttblk) { case TT_8X8: i = 0; last = 0; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if(i > 63) break; idx = vc1_simple_progressive_8x8_zz[i++]; block[idx] = value * scale; if(!v->pquantizer) block[idx] += (block[idx] < 0) ? -mquant : mquant; } s->dsp.vc1_inv_trans_8x8(block); break; case TT_4X4: for(j = 0; j < 4; j++) { last = subblkpat & (1 << (3 - j)); i = 0; off = (j & 1) * 4 + (j & 2) * 16; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if(i > 15) break; idx = vc1_simple_progressive_4x4_zz[i++]; block[idx + off] = value * scale; if(!v->pquantizer) block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant; } if(!(subblkpat & (1 << (3 - j)))) s->dsp.vc1_inv_trans_4x4(block, j); } break; case TT_8X4: for(j = 0; j < 2; j++) { last = subblkpat & (1 << (1 - j)); i = 0; off = j * 32; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if(i > 31) break; if(v->profile < PROFILE_ADVANCED) idx = vc1_simple_progressive_8x4_zz[i++]; else idx = vc1_adv_progressive_8x4_zz[i++]; block[idx + off] = value * scale; if(!v->pquantizer) block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant; } if(!(subblkpat & (1 << (1 - j)))) s->dsp.vc1_inv_trans_8x4(block, j); } break; case TT_4X8: for(j = 0; j < 2; j++) { last = subblkpat & (1 << (1 - j)); i = 0; off = j * 4; while (!last) { vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2); i += skip; if(i > 31) break; if(v->profile < PROFILE_ADVANCED) idx = vc1_simple_progressive_4x8_zz[i++]; else idx = vc1_adv_progressive_4x8_zz[i++]; block[idx + off] = value * scale; if(!v->pquantizer) block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant; } if(!(subblkpat & (1 << (1 - j)))) s->dsp.vc1_inv_trans_4x8(block, j); } break; } return 0; } /** Decode one P-frame MB (in Simple/Main profile) */ static int vc1_decode_p_mb(VC1Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, j; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp; /* cbp decoding stuff */ int mqdiff, mquant; /* MB quantization */ int ttmb = v->ttfrm; /* MB Transform type */ int status; static const int size_table[6] = { 0, 2, 3, 4, 5, 8 }, offset_table[6] = { 0, 1, 3, 7, 15, 31 }; int mb_has_coeffs = 1; /* last_flag */ int dmv_x, dmv_y; /* Differential MV components */ int index, index1; /* LUT indices */ int val, sign; /* temp values */ int first_block = 1; int dst_idx, off; int skipped, fourmv; mquant = v->pq; /* Loosy initialization */ if (v->mv_type_is_raw) fourmv = get_bits1(gb); else fourmv = v->mv_type_mb_plane[mb_pos]; if (v->skip_is_raw) skipped = get_bits1(gb); else skipped = v->s.mbskip_table[mb_pos]; s->dsp.clear_blocks(s->block[0]); if (!fourmv) /* 1MV mode */ { if (!skipped) { GET_MVDATA(dmv_x, dmv_y); if (s->mb_intra) { s->current_picture.motion_val[1][s->block_index[0]][0] = 0; s->current_picture.motion_val[1][s->block_index[0]][1] = 0; } s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16; vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]); /* FIXME Set DC val for inter block ? */ if (s->mb_intra && !mb_has_coeffs) { GET_MQUANT(); s->ac_pred = get_bits(gb, 1); cbp = 0; } else if (mb_has_coeffs) { if (s->mb_intra) s->ac_pred = get_bits(gb, 1); cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); GET_MQUANT(); } else { mquant = v->pq; cbp = 0; } s->current_picture.qscale_table[mb_pos] = mquant; if (!v->ttmbf && !s->mb_intra && mb_has_coeffs) ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); if(!s->mb_intra) vc1_mc_1mv(v, 0); dst_idx = 0; for (i=0; i<6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); v->mb_type[0][s->block_index[i]] = s->mb_intra; if(s->mb_intra) { /* check if prediction blocks A and C are available */ v->a_avail = v->c_avail = 0; if(i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if(i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset); if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue; s->dsp.vc1_inv_trans_8x8(s->block[i]); if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1; for(j = 0; j < 64; j++) s->block[i][j] += 128; if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16; s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); if(v->pq >= 9 && v->overlap) { if(v->c_avail) s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); if(v->a_avail) s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); } } else if(val) { vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block); if(!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; if((i<4) || !(s->flags & CODEC_FLAG_GRAY)) s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize); } } } else //Skipped { s->mb_intra = 0; for(i = 0; i < 6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP; s->current_picture.qscale_table[mb_pos] = 0; vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]); vc1_mc_1mv(v, 0); return 0; } } //1MV mode else //4MV mode { if (!skipped /* unskipped MB */) { int intra_count = 0, coded_inter = 0; int is_intra[6], is_coded[6]; /* Get CBPCY */ cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); for (i=0; i<6; i++) { val = ((cbp >> (5 - i)) & 1); s->dc_val[0][s->block_index[i]] = 0; s->mb_intra = 0; if(i < 4) { dmv_x = dmv_y = 0; s->mb_intra = 0; mb_has_coeffs = 0; if(val) { GET_MVDATA(dmv_x, dmv_y); } vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]); if(!s->mb_intra) vc1_mc_4mv_luma(v, i); intra_count += s->mb_intra; is_intra[i] = s->mb_intra; is_coded[i] = mb_has_coeffs; } if(i&4){ is_intra[i] = (intra_count >= 3); is_coded[i] = val; } if(i == 4) vc1_mc_4mv_chroma(v); v->mb_type[0][s->block_index[i]] = is_intra[i]; if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i]; } // if there are no coded blocks then don't do anything more if(!intra_count && !coded_inter) return 0; dst_idx = 0; GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; /* test if block is intra and has pred */ { int intrapred = 0; for(i=0; i<6; i++) if(is_intra[i]) { if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]]) || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) { intrapred = 1; break; } } if(intrapred)s->ac_pred = get_bits(gb, 1); else s->ac_pred = 0; } if (!v->ttmbf && coded_inter) ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); for (i=0; i<6; i++) { dst_idx += i >> 2; off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); s->mb_intra = is_intra[i]; if (is_intra[i]) { /* check if prediction blocks A and C are available */ v->a_avail = v->c_avail = 0; if(i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if(i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset); if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue; s->dsp.vc1_inv_trans_8x8(s->block[i]); if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1; for(j = 0; j < 64; j++) s->block[i][j] += 128; if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16; s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize); if(v->pq >= 9 && v->overlap) { if(v->c_avail) s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); if(v->a_avail) s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); } } else if(is_coded[i]) { status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block); if(!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; if((i<4) || !(s->flags & CODEC_FLAG_GRAY)) s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize); } } return status; } else //Skipped MB { s->mb_intra = 0; s->current_picture.qscale_table[mb_pos] = 0; for (i=0; i<6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } for (i=0; i<4; i++) { vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]); vc1_mc_4mv_luma(v, i); } vc1_mc_4mv_chroma(v); s->current_picture.qscale_table[mb_pos] = 0; return 0; } } /* Should never happen */ return -1; } /** Decode one B-frame MB (in Main profile) */ static void vc1_decode_b_mb(VC1Context *v) { MpegEncContext *s = &v->s; GetBitContext *gb = &s->gb; int i, j; int mb_pos = s->mb_x + s->mb_y * s->mb_stride; int cbp = 0; /* cbp decoding stuff */ int mqdiff, mquant; /* MB quantization */ int ttmb = v->ttfrm; /* MB Transform type */ static const int size_table[6] = { 0, 2, 3, 4, 5, 8 }, offset_table[6] = { 0, 1, 3, 7, 15, 31 }; int mb_has_coeffs = 0; /* last_flag */ int index, index1; /* LUT indices */ int val, sign; /* temp values */ int first_block = 1; int dst_idx, off; int skipped, direct; int dmv_x[2], dmv_y[2]; int bmvtype = BMV_TYPE_BACKWARD; mquant = v->pq; /* Loosy initialization */ s->mb_intra = 0; if (v->dmb_is_raw) direct = get_bits1(gb); else direct = v->direct_mb_plane[mb_pos]; if (v->skip_is_raw) skipped = get_bits1(gb); else skipped = v->s.mbskip_table[mb_pos]; s->dsp.clear_blocks(s->block[0]); dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0; for(i = 0; i < 6; i++) { v->mb_type[0][s->block_index[i]] = 0; s->dc_val[0][s->block_index[i]] = 0; } s->current_picture.qscale_table[mb_pos] = 0; if (!direct) { if (!skipped) { GET_MVDATA(dmv_x[0], dmv_y[0]); dmv_x[1] = dmv_x[0]; dmv_y[1] = dmv_y[0]; } if(skipped || !s->mb_intra) { bmvtype = decode012(gb); switch(bmvtype) { case 0: bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD; break; case 1: bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD; break; case 2: bmvtype = BMV_TYPE_INTERPOLATED; dmv_x[0] = dmv_y[0] = 0; } } } for(i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = s->mb_intra; if (skipped) { if(direct) bmvtype = BMV_TYPE_INTERPOLATED; vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); return; } if (direct) { cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); GET_MQUANT(); s->mb_intra = 0; mb_has_coeffs = 0; s->current_picture.qscale_table[mb_pos] = mquant; if(!v->ttmbf) ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0; vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); } else { if(!mb_has_coeffs && !s->mb_intra) { /* no coded blocks - effectively skipped */ vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); return; } if(s->mb_intra && !mb_has_coeffs) { GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; s->ac_pred = get_bits1(gb); cbp = 0; vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); } else { if(bmvtype == BMV_TYPE_INTERPOLATED) { GET_MVDATA(dmv_x[0], dmv_y[0]); if(!mb_has_coeffs) { /* interpolated skipped block */ vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); return; } } vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype); if(!s->mb_intra) { vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype); } if(s->mb_intra) s->ac_pred = get_bits1(gb); cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2); GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; if(!v->ttmbf && !s->mb_intra && mb_has_coeffs) ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2); } } dst_idx = 0; for (i=0; i<6; i++) { s->dc_val[0][s->block_index[i]] = 0; dst_idx += i >> 2; val = ((cbp >> (5 - i)) & 1); off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize); v->mb_type[0][s->block_index[i]] = s->mb_intra; if(s->mb_intra) { /* check if prediction blocks A and C are available */ v->a_avail = v->c_avail = 0; if(i == 2 || i == 3 || !s->first_slice_line) v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]]; if(i == 1 || i == 3 || s->mb_x) v->c_avail = v->mb_type[0][s->block_index[i] - 1]; vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset); if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue; s->dsp.vc1_inv_trans_8x8(s->block[i]); if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1; for(j = 0; j < 64; j++) s->block[i][j] += 128; s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2)); } else if(val) { vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block); if(!v->ttmbf && ttmb < 8) ttmb = -1; first_block = 0; if((i<4) || !(s->flags & CODEC_FLAG_GRAY)) s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize); } } } /** Decode blocks of I-frame */ static void vc1_decode_i_blocks(VC1Context *v) { int k, j; MpegEncContext *s = &v->s; int cbp, val; uint8_t *coded_val; int mb_pos; /* select codingmode used for VLC tables selection */ switch(v->y_ac_table_index){ case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch(v->c_ac_table_index){ case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } /* Set DC scale - y and c use the same */ s->y_dc_scale = s->y_dc_scale_table[v->pq]; s->c_dc_scale = s->c_dc_scale_table[v->pq]; //do frame decode s->mb_x = s->mb_y = 0; s->mb_intra = 1; s->first_slice_line = 1; ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) { ff_init_block_index(s); ff_update_block_index(s); s->dsp.clear_blocks(s->block[0]); mb_pos = s->mb_x + s->mb_y * s->mb_width; s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA; s->current_picture.qscale_table[mb_pos] = v->pq; s->current_picture.motion_val[1][s->block_index[0]][0] = 0; s->current_picture.motion_val[1][s->block_index[0]][1] = 0; // do actual MB decoding and displaying cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2); v->s.ac_pred = get_bits(&v->s.gb, 1); for(k = 0; k < 6; k++) { val = ((cbp >> (5 - k)) & 1); if (k < 4) { int pred = vc1_coded_block_pred(&v->s, k, &coded_val); val = val ^ pred; *coded_val = val; } cbp |= val << (5 - k); vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2); s->dsp.vc1_inv_trans_8x8(s->block[k]); if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16; if(v->pq >= 9 && v->overlap) { for(j = 0; j < 64; j++) s->block[k][j] += 128; } } vc1_put_block(v, s->block); if(v->pq >= 9 && v->overlap) { if(s->mb_x) { s->dsp.vc1_h_overlap(s->dest[0], s->linesize); s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize); if(!(s->flags & CODEC_FLAG_GRAY)) { s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize); s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize); } } s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize); s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); if(!s->first_slice_line) { s->dsp.vc1_v_overlap(s->dest[0], s->linesize); s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize); if(!(s->flags & CODEC_FLAG_GRAY)) { s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize); s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize); } } s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize); s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); } if(get_bits_count(&s->gb) > v->bits) { av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits); return; } } ff_draw_horiz_band(s, s->mb_y * 16, 16); s->first_slice_line = 0; } } /** Decode blocks of I-frame for advanced profile */ static void vc1_decode_i_blocks_adv(VC1Context *v) { int k, j; MpegEncContext *s = &v->s; int cbp, val; uint8_t *coded_val; int mb_pos; int mquant = v->pq; int mqdiff; int overlap; GetBitContext *gb = &s->gb; /* select codingmode used for VLC tables selection */ switch(v->y_ac_table_index){ case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch(v->c_ac_table_index){ case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } //do frame decode s->mb_x = s->mb_y = 0; s->mb_intra = 1; s->first_slice_line = 1; ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) { ff_init_block_index(s); ff_update_block_index(s); s->dsp.clear_blocks(s->block[0]); mb_pos = s->mb_x + s->mb_y * s->mb_stride; s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA; s->current_picture.motion_val[1][s->block_index[0]][0] = 0; s->current_picture.motion_val[1][s->block_index[0]][1] = 0; // do actual MB decoding and displaying cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2); if(v->acpred_is_raw) v->s.ac_pred = get_bits(&v->s.gb, 1); else v->s.ac_pred = v->acpred_plane[mb_pos]; if(v->condover == CONDOVER_SELECT) { if(v->overflg_is_raw) overlap = get_bits(&v->s.gb, 1); else overlap = v->over_flags_plane[mb_pos]; } else overlap = (v->condover == CONDOVER_ALL); GET_MQUANT(); s->current_picture.qscale_table[mb_pos] = mquant; /* Set DC scale - y and c use the same */ s->y_dc_scale = s->y_dc_scale_table[mquant]; s->c_dc_scale = s->c_dc_scale_table[mquant]; for(k = 0; k < 6; k++) { val = ((cbp >> (5 - k)) & 1); if (k < 4) { int pred = vc1_coded_block_pred(&v->s, k, &coded_val); val = val ^ pred; *coded_val = val; } cbp |= val << (5 - k); v->a_avail = !s->first_slice_line || (k==2 || k==3); v->c_avail = !!s->mb_x || (k==1 || k==3); vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant); s->dsp.vc1_inv_trans_8x8(s->block[k]); for(j = 0; j < 64; j++) s->block[k][j] += 128; } vc1_put_block(v, s->block); if(overlap) { if(s->mb_x) { s->dsp.vc1_h_overlap(s->dest[0], s->linesize); s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize); if(!(s->flags & CODEC_FLAG_GRAY)) { s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize); s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize); } } s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize); s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); if(!s->first_slice_line) { s->dsp.vc1_v_overlap(s->dest[0], s->linesize); s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize); if(!(s->flags & CODEC_FLAG_GRAY)) { s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize); s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize); } } s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize); s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize); } if(get_bits_count(&s->gb) > v->bits) { av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits); return; } } ff_draw_horiz_band(s, s->mb_y * 16, 16); s->first_slice_line = 0; } } static void vc1_decode_p_blocks(VC1Context *v) { MpegEncContext *s = &v->s; /* select codingmode used for VLC tables selection */ switch(v->c_ac_table_index){ case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch(v->c_ac_table_index){ case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); s->first_slice_line = 1; for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) { ff_init_block_index(s); ff_update_block_index(s); s->dsp.clear_blocks(s->block[0]); vc1_decode_p_mb(v); if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) { av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y); return; } } ff_draw_horiz_band(s, s->mb_y * 16, 16); s->first_slice_line = 0; } } static void vc1_decode_b_blocks(VC1Context *v) { MpegEncContext *s = &v->s; /* select codingmode used for VLC tables selection */ switch(v->c_ac_table_index){ case 0: v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA; break; case 1: v->codingset = CS_HIGH_MOT_INTRA; break; case 2: v->codingset = CS_MID_RATE_INTRA; break; } switch(v->c_ac_table_index){ case 0: v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER; break; case 1: v->codingset2 = CS_HIGH_MOT_INTER; break; case 2: v->codingset2 = CS_MID_RATE_INTER; break; } ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); s->first_slice_line = 1; for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) { ff_init_block_index(s); ff_update_block_index(s); s->dsp.clear_blocks(s->block[0]); vc1_decode_b_mb(v); if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) { av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y); return; } } ff_draw_horiz_band(s, s->mb_y * 16, 16); s->first_slice_line = 0; } } static void vc1_decode_skip_blocks(VC1Context *v) { MpegEncContext *s = &v->s; ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END)); s->first_slice_line = 1; for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { s->mb_x = 0; ff_init_block_index(s); ff_update_block_index(s); memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16); memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8); memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8); ff_draw_horiz_band(s, s->mb_y * 16, 16); s->first_slice_line = 0; } s->pict_type = P_TYPE; } static void vc1_decode_blocks(VC1Context *v) { v->s.esc3_level_length = 0; switch(v->s.pict_type) { case I_TYPE: if(v->profile == PROFILE_ADVANCED) vc1_decode_i_blocks_adv(v); else vc1_decode_i_blocks(v); break; case P_TYPE: if(v->p_frame_skipped) vc1_decode_skip_blocks(v); else vc1_decode_p_blocks(v); break; case B_TYPE: if(v->bi_type){ if(v->profile == PROFILE_ADVANCED) vc1_decode_i_blocks_adv(v); else vc1_decode_i_blocks(v); }else vc1_decode_b_blocks(v); break; } } #define IS_MARKER(x) (((x) & ~0xFF) == VC1_CODE_RES0) /** Find VC-1 marker in buffer * @return position where next marker starts or end of buffer if no marker found */ static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end) { uint32_t mrk = 0xFFFFFFFF; if(end-src < 4) return end; while(src < end){ mrk = (mrk << 8) | *src++; if(IS_MARKER(mrk)) return src-4; } return end; } static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst) { int dsize = 0, i; if(size < 4){ for(dsize = 0; dsize < size; dsize++) *dst++ = *src++; return size; } for(i = 0; i < size; i++, src++) { if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) { dst[dsize++] = src[1]; src++; i++; } else dst[dsize++] = *src; } return dsize; } /** Initialize a VC1/WMV3 decoder * @todo TODO: Handle VC-1 IDUs (Transport level?) * @todo TODO: Decypher remaining bits in extra_data */ static int vc1_decode_init(AVCodecContext *avctx) { VC1Context *v = avctx->priv_data; MpegEncContext *s = &v->s; GetBitContext gb; if (!avctx->extradata_size || !avctx->extradata) return -1; if (!(avctx->flags & CODEC_FLAG_GRAY)) avctx->pix_fmt = PIX_FMT_YUV420P; else avctx->pix_fmt = PIX_FMT_GRAY8; v->s.avctx = avctx; avctx->flags |= CODEC_FLAG_EMU_EDGE; v->s.flags |= CODEC_FLAG_EMU_EDGE; if(ff_h263_decode_init(avctx) < 0) return -1; if (vc1_init_common(v) < 0) return -1; avctx->coded_width = avctx->width; avctx->coded_height = avctx->height; if (avctx->codec_id == CODEC_ID_WMV3) { int count = 0; // looks like WMV3 has a sequence header stored in the extradata // advanced sequence header may be before the first frame // the last byte of the extradata is a version number, 1 for the // samples we can decode init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8); if (decode_sequence_header(avctx, &gb) < 0) return -1; count = avctx->extradata_size*8 - get_bits_count(&gb); if (count>0) { av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n", count, get_bits(&gb, count)); } else if (count < 0) { av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count); } } else { // VC1/WVC1 uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size; uint8_t *next; int size, buf2_size; uint8_t *buf2 = NULL; int seq_inited = 0, ep_inited = 0; if(avctx->extradata_size < 16) { av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size); return -1; } buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE); if(start[0]) start++; // in WVC1 extradata first byte is its size next = start; for(; next < end; start = next){ next = find_next_marker(start + 4, end); size = next - start - 4; if(size <= 0) continue; buf2_size = vc1_unescape_buffer(start + 4, size, buf2); init_get_bits(&gb, buf2, buf2_size * 8); switch(AV_RB32(start)){ case VC1_CODE_SEQHDR: if(decode_sequence_header(avctx, &gb) < 0){ av_free(buf2); return -1; } seq_inited = 1; break; case VC1_CODE_ENTRYPOINT: if(decode_entry_point(avctx, &gb) < 0){ av_free(buf2); return -1; } ep_inited = 1; break; } } av_free(buf2); if(!seq_inited || !ep_inited){ av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n"); return -1; } } avctx->has_b_frames= !!(avctx->max_b_frames); s->low_delay = !avctx->has_b_frames; s->mb_width = (avctx->coded_width+15)>>4; s->mb_height = (avctx->coded_height+15)>>4; /* Allocate mb bitplanes */ v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height); v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height); v->acpred_plane = av_malloc(s->mb_stride * s->mb_height); v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height); /* allocate block type info in that way so it could be used with s->block_index[] */ v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2); v->mb_type[0] = v->mb_type_base + s->b8_stride + 1; v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1; v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1); /* Init coded blocks info */ if (v->profile == PROFILE_ADVANCED) { // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0) // return -1; // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0) // return -1; } return 0; } /** Decode a VC1/WMV3 frame * @todo TODO: Handle VC-1 IDUs (Transport level?) */ static int vc1_decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { VC1Context *v = avctx->priv_data; MpegEncContext *s = &v->s; AVFrame *pict = data; uint8_t *buf2 = NULL; /* no supplementary picture */ if (buf_size == 0) { /* special case for last picture */ if (s->low_delay==0 && s->next_picture_ptr) { *pict= *(AVFrame*)s->next_picture_ptr; s->next_picture_ptr= NULL; *data_size = sizeof(AVFrame); } return 0; } //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){ int i= ff_find_unused_picture(s, 0); s->current_picture_ptr= &s->picture[i]; } //for advanced profile we may need to parse and unescape data if (avctx->codec_id == CODEC_ID_VC1) { int buf_size2 = 0; buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE); if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */ uint8_t *start, *end, *next; int size; next = buf; for(start = buf, end = buf + buf_size; next < end; start = next){ next = find_next_marker(start + 4, end); size = next - start - 4; if(size <= 0) continue; switch(AV_RB32(start)){ case VC1_CODE_FRAME: buf_size2 = vc1_unescape_buffer(start + 4, size, buf2); break; case VC1_CODE_ENTRYPOINT: /* it should be before frame data */ buf_size2 = vc1_unescape_buffer(start + 4, size, buf2); init_get_bits(&s->gb, buf2, buf_size2*8); decode_entry_point(avctx, &s->gb); break; case VC1_CODE_SLICE: av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n"); av_free(buf2); return -1; } } }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */ uint8_t *divider; divider = find_next_marker(buf, buf + buf_size); if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){ av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n"); return -1; } buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2); // TODO av_free(buf2);return -1; }else{ buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2); } init_get_bits(&s->gb, buf2, buf_size2*8); } else init_get_bits(&s->gb, buf, buf_size*8); // do parse frame header if(v->profile < PROFILE_ADVANCED) { if(vc1_parse_frame_header(v, &s->gb) == -1) { av_free(buf2); return -1; } } else { if(vc1_parse_frame_header_adv(v, &s->gb) == -1) { av_free(buf2); return -1; } } if(s->pict_type != I_TYPE && !v->res_rtm_flag){ av_free(buf2); return -1; } // for hurry_up==5 s->current_picture.pict_type= s->pict_type; s->current_picture.key_frame= s->pict_type == I_TYPE; /* skip B-frames if we don't have reference frames */ if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){ av_free(buf2); return -1;//buf_size; } /* skip b frames if we are in a hurry */ if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size; if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE) || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE) || avctx->skip_frame >= AVDISCARD_ALL) { av_free(buf2); return buf_size; } /* skip everything if we are in a hurry>=5 */ if(avctx->hurry_up>=5) { av_free(buf2); return -1;//buf_size; } if(s->next_p_frame_damaged){ if(s->pict_type==B_TYPE) return buf_size; else s->next_p_frame_damaged=0; } if(MPV_frame_start(s, avctx) < 0) { av_free(buf2); return -1; } ff_er_frame_start(s); v->bits = buf_size * 8; vc1_decode_blocks(v); //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8); // if(get_bits_count(&s->gb) > buf_size * 8) // return -1; ff_er_frame_end(s); MPV_frame_end(s); assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type); assert(s->current_picture.pict_type == s->pict_type); if (s->pict_type == B_TYPE || s->low_delay) { *pict= *(AVFrame*)s->current_picture_ptr; } else if (s->last_picture_ptr != NULL) { *pict= *(AVFrame*)s->last_picture_ptr; } if(s->last_picture_ptr || s->low_delay){ *data_size = sizeof(AVFrame); ff_print_debug_info(s, pict); } /* Return the Picture timestamp as the frame number */ /* we substract 1 because it is added on utils.c */ avctx->frame_number = s->picture_number - 1; av_free(buf2); return buf_size; } /** Close a VC1/WMV3 decoder * @warning Initial try at using MpegEncContext stuff */ static int vc1_decode_end(AVCodecContext *avctx) { VC1Context *v = avctx->priv_data; av_freep(&v->hrd_rate); av_freep(&v->hrd_buffer); MPV_common_end(&v->s); av_freep(&v->mv_type_mb_plane); av_freep(&v->direct_mb_plane); av_freep(&v->acpred_plane); av_freep(&v->over_flags_plane); av_freep(&v->mb_type_base); return 0; } AVCodec vc1_decoder = { "vc1", CODEC_TYPE_VIDEO, CODEC_ID_VC1, sizeof(VC1Context), vc1_decode_init, NULL, vc1_decode_end, vc1_decode_frame, CODEC_CAP_DELAY, NULL }; AVCodec wmv3_decoder = { "wmv3", CODEC_TYPE_VIDEO, CODEC_ID_WMV3, sizeof(VC1Context), vc1_decode_init, NULL, vc1_decode_end, vc1_decode_frame, CODEC_CAP_DELAY, NULL }; #ifdef CONFIG_VC1_PARSER /** * finds the end of the current frame in the bitstream. * @return the position of the first byte of the next frame, or -1 */ static int vc1_find_frame_end(ParseContext *pc, const uint8_t *buf, int buf_size) { int pic_found, i; uint32_t state; pic_found= pc->frame_start_found; state= pc->state; i=0; if(!pic_found){ for(i=0; iframe_start_found=0; pc->state=-1; return i-3; } } } pc->frame_start_found= pic_found; pc->state= state; return END_NOT_FOUND; } static int vc1_parse(AVCodecParserContext *s, AVCodecContext *avctx, uint8_t **poutbuf, int *poutbuf_size, const uint8_t *buf, int buf_size) { ParseContext *pc = s->priv_data; int next; if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){ next= buf_size; }else{ next= vc1_find_frame_end(pc, buf, buf_size); if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) { *poutbuf = NULL; *poutbuf_size = 0; return buf_size; } } *poutbuf = (uint8_t *)buf; *poutbuf_size = buf_size; return next; } static int vc1_split(AVCodecContext *avctx, const uint8_t *buf, int buf_size) { int i; uint32_t state= -1; for(i=0; i