/* * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /** * @file h264.c * H.264 / AVC / MPEG4 part10 codec. * @author Michael Niedermayer */ #include "common.h" #include "dsputil.h" #include "avcodec.h" #include "mpegvideo.h" #include "h264data.h" #include "golomb.h" #include "cabac.h" //#undef NDEBUG #include #define interlaced_dct interlaced_dct_is_a_bad_name #define mb_intra mb_intra_isnt_initalized_see_mb_type #define LUMA_DC_BLOCK_INDEX 25 #define CHROMA_DC_BLOCK_INDEX 26 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8 #define COEFF_TOKEN_VLC_BITS 8 #define TOTAL_ZEROS_VLC_BITS 9 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3 #define RUN_VLC_BITS 3 #define RUN7_VLC_BITS 6 #define MAX_SPS_COUNT 32 #define MAX_PPS_COUNT 256 #define MAX_MMCO_COUNT 66 /* Compiling in interlaced support reduces the speed * of progressive decoding by about 2%. */ #define ALLOW_INTERLACE #ifdef ALLOW_INTERLACE #define MB_MBAFF h->mb_mbaff #define MB_FIELD h->mb_field_decoding_flag #define FRAME_MBAFF h->mb_aff_frame #else #define MB_MBAFF 0 #define MB_FIELD 0 #define FRAME_MBAFF 0 #undef IS_INTERLACED #define IS_INTERLACED(mb_type) 0 #endif /** * Sequence parameter set */ typedef struct SPS{ int profile_idc; int level_idc; int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4 int poc_type; ///< pic_order_cnt_type int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4 int delta_pic_order_always_zero_flag; int offset_for_non_ref_pic; int offset_for_top_to_bottom_field; int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle int ref_frame_count; ///< num_ref_frames int gaps_in_frame_num_allowed_flag; int mb_width; ///< frame_width_in_mbs_minus1 + 1 int mb_height; ///< frame_height_in_mbs_minus1 + 1 int frame_mbs_only_flag; int mb_aff; ///b4_stride int b8_stride; int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff int mb_uvlinesize; int emu_edge_width; int emu_edge_height; int halfpel_flag; int thirdpel_flag; int unknown_svq3_flag; int next_slice_index; SPS sps_buffer[MAX_SPS_COUNT]; SPS sps; ///< current sps PPS pps_buffer[MAX_PPS_COUNT]; /** * current pps */ PPS pps; //FIXME move to Picture perhaps? (->no) do we need that? uint32_t dequant4_buffer[6][52][16]; uint32_t dequant8_buffer[2][52][64]; uint32_t (*dequant4_coeff[6])[16]; uint32_t (*dequant8_coeff[2])[64]; int dequant_coeff_pps; ///< reinit tables when pps changes int slice_num; uint8_t *slice_table_base; uint8_t *slice_table; ///< slice_table_base + 2*mb_stride + 1 int slice_type; int slice_type_fixed; //interlacing specific flags int mb_aff_frame; int mb_field_decoding_flag; int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag unsigned int sub_mb_type[4]; //POC stuff int poc_lsb; int poc_msb; int delta_poc_bottom; int delta_poc[2]; int frame_num; int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0 int frame_num_offset; ///< for POC type 2 int prev_frame_num_offset; ///< for POC type 2 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2 /** * frame_num for frames or 2*frame_num for field pics. */ int curr_pic_num; /** * max_frame_num or 2*max_frame_num for field pics. */ int max_pic_num; //Weighted pred stuff int use_weight; int use_weight_chroma; int luma_log2_weight_denom; int chroma_log2_weight_denom; int luma_weight[2][48]; int luma_offset[2][48]; int chroma_weight[2][48][2]; int chroma_offset[2][48][2]; int implicit_weight[48][48]; //deblock int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0 int slice_alpha_c0_offset; int slice_beta_offset; int redundant_pic_count; int direct_spatial_mv_pred; int dist_scale_factor[16]; int dist_scale_factor_field[32]; int map_col_to_list0[2][16]; int map_col_to_list0_field[2][32]; /** * num_ref_idx_l0/1_active_minus1 + 1 */ unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode unsigned int list_count; Picture *short_ref[32]; Picture *long_ref[32]; Picture default_ref_list[2][32]; Picture ref_list[2][48]; ///< 0..15: frame refs, 16..47: mbaff field refs Picture *delayed_pic[18]; //FIXME size? Picture *delayed_output_pic; /** * memory management control operations buffer. */ MMCO mmco[MAX_MMCO_COUNT]; int mmco_index; int long_ref_count; ///< number of actual long term references int short_ref_count; ///< number of actual short term references //data partitioning GetBitContext intra_gb; GetBitContext inter_gb; GetBitContext *intra_gb_ptr; GetBitContext *inter_gb_ptr; DECLARE_ALIGNED_8(DCTELEM, mb[16*24]); DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not to large or ensure that there is some unused stuff after mb /** * Cabac */ CABACContext cabac; uint8_t cabac_state[460]; int cabac_init_idc; /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */ uint16_t *cbp_table; int cbp; int top_cbp; int left_cbp; /* chroma_pred_mode for i4x4 or i16x16, else 0 */ uint8_t *chroma_pred_mode_table; int last_qscale_diff; int16_t (*mvd_table[2])[2]; DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]); uint8_t *direct_table; uint8_t direct_cache[5*8]; uint8_t zigzag_scan[16]; uint8_t zigzag_scan8x8[64]; uint8_t zigzag_scan8x8_cavlc[64]; uint8_t field_scan[16]; uint8_t field_scan8x8[64]; uint8_t field_scan8x8_cavlc[64]; const uint8_t *zigzag_scan_q0; const uint8_t *zigzag_scan8x8_q0; const uint8_t *zigzag_scan8x8_cavlc_q0; const uint8_t *field_scan_q0; const uint8_t *field_scan8x8_q0; const uint8_t *field_scan8x8_cavlc_q0; int x264_build; }H264Context; static VLC coeff_token_vlc[4]; static VLC chroma_dc_coeff_token_vlc; static VLC total_zeros_vlc[15]; static VLC chroma_dc_total_zeros_vlc[3]; static VLC run_vlc[6]; static VLC run7_vlc; static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp); static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc); static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); static av_always_inline uint32_t pack16to32(int a, int b){ #ifdef WORDS_BIGENDIAN return (b&0xFFFF) + (a<<16); #else return (a&0xFFFF) + (b<<16); #endif } const uint8_t ff_rem6[52]={ 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, }; const uint8_t ff_div6[52]={ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, }; /** * fill a rectangle. * @param h height of the rectangle, should be a constant * @param w width of the rectangle, should be a constant * @param size the size of val (1 or 4), should be a constant */ static av_always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ uint8_t *p= (uint8_t*)vp; assert(size==1 || size==4); assert(w<=4); w *= size; stride *= size; assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0); assert((stride&(w-1))==0); if(w==2){ const uint16_t v= size==4 ? val : val*0x0101; *(uint16_t*)(p + 0*stride)= v; if(h==1) return; *(uint16_t*)(p + 1*stride)= v; if(h==2) return; *(uint16_t*)(p + 2*stride)= *(uint16_t*)(p + 3*stride)= v; }else if(w==4){ const uint32_t v= size==4 ? val : val*0x01010101; *(uint32_t*)(p + 0*stride)= v; if(h==1) return; *(uint32_t*)(p + 1*stride)= v; if(h==2) return; *(uint32_t*)(p + 2*stride)= *(uint32_t*)(p + 3*stride)= v; }else if(w==8){ //gcc can't optimize 64bit math on x86_32 #if defined(ARCH_X86_64) || (defined(MP_WORDSIZE) && MP_WORDSIZE >= 64) const uint64_t v= val*0x0100000001ULL; *(uint64_t*)(p + 0*stride)= v; if(h==1) return; *(uint64_t*)(p + 1*stride)= v; if(h==2) return; *(uint64_t*)(p + 2*stride)= *(uint64_t*)(p + 3*stride)= v; }else if(w==16){ const uint64_t v= val*0x0100000001ULL; *(uint64_t*)(p + 0+0*stride)= *(uint64_t*)(p + 8+0*stride)= *(uint64_t*)(p + 0+1*stride)= *(uint64_t*)(p + 8+1*stride)= v; if(h==2) return; *(uint64_t*)(p + 0+2*stride)= *(uint64_t*)(p + 8+2*stride)= *(uint64_t*)(p + 0+3*stride)= *(uint64_t*)(p + 8+3*stride)= v; #else *(uint32_t*)(p + 0+0*stride)= *(uint32_t*)(p + 4+0*stride)= val; if(h==1) return; *(uint32_t*)(p + 0+1*stride)= *(uint32_t*)(p + 4+1*stride)= val; if(h==2) return; *(uint32_t*)(p + 0+2*stride)= *(uint32_t*)(p + 4+2*stride)= *(uint32_t*)(p + 0+3*stride)= *(uint32_t*)(p + 4+3*stride)= val; }else if(w==16){ *(uint32_t*)(p + 0+0*stride)= *(uint32_t*)(p + 4+0*stride)= *(uint32_t*)(p + 8+0*stride)= *(uint32_t*)(p +12+0*stride)= *(uint32_t*)(p + 0+1*stride)= *(uint32_t*)(p + 4+1*stride)= *(uint32_t*)(p + 8+1*stride)= *(uint32_t*)(p +12+1*stride)= val; if(h==2) return; *(uint32_t*)(p + 0+2*stride)= *(uint32_t*)(p + 4+2*stride)= *(uint32_t*)(p + 8+2*stride)= *(uint32_t*)(p +12+2*stride)= *(uint32_t*)(p + 0+3*stride)= *(uint32_t*)(p + 4+3*stride)= *(uint32_t*)(p + 8+3*stride)= *(uint32_t*)(p +12+3*stride)= val; #endif }else assert(0); assert(h==4); } static void fill_caches(H264Context *h, int mb_type, int for_deblock){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; int topleft_xy, top_xy, topright_xy, left_xy[2]; int topleft_type, top_type, topright_type, left_type[2]; int left_block[8]; int i; //FIXME deblocking could skip the intra and nnz parts. if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[mb_xy-s->mb_stride]) && !FRAME_MBAFF) return; //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it top_xy = mb_xy - s->mb_stride; topleft_xy = top_xy - 1; topright_xy= top_xy + 1; left_xy[1] = left_xy[0] = mb_xy-1; left_block[0]= 0; left_block[1]= 1; left_block[2]= 2; left_block[3]= 3; left_block[4]= 7; left_block[5]= 10; left_block[6]= 8; left_block[7]= 11; if(FRAME_MBAFF){ const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride; const int top_pair_xy = pair_xy - s->mb_stride; const int topleft_pair_xy = top_pair_xy - 1; const int topright_pair_xy = top_pair_xy + 1; const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]); const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]); const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]); const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]); const int curr_mb_frame_flag = !IS_INTERLACED(mb_type); const int bottom = (s->mb_y & 1); tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag); if (bottom ? !curr_mb_frame_flag // bottom macroblock : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock ) { top_xy -= s->mb_stride; } if (bottom ? !curr_mb_frame_flag // bottom macroblock : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock ) { topleft_xy -= s->mb_stride; } if (bottom ? !curr_mb_frame_flag // bottom macroblock : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock ) { topright_xy -= s->mb_stride; } if (left_mb_frame_flag != curr_mb_frame_flag) { left_xy[1] = left_xy[0] = pair_xy - 1; if (curr_mb_frame_flag) { if (bottom) { left_block[0]= 2; left_block[1]= 2; left_block[2]= 3; left_block[3]= 3; left_block[4]= 8; left_block[5]= 11; left_block[6]= 8; left_block[7]= 11; } else { left_block[0]= 0; left_block[1]= 0; left_block[2]= 1; left_block[3]= 1; left_block[4]= 7; left_block[5]= 10; left_block[6]= 7; left_block[7]= 10; } } else { left_xy[1] += s->mb_stride; //left_block[0]= 0; left_block[1]= 2; left_block[2]= 0; left_block[3]= 2; //left_block[4]= 7; left_block[5]= 10; left_block[6]= 7; left_block[7]= 10; } } } h->top_mb_xy = top_xy; h->left_mb_xy[0] = left_xy[0]; h->left_mb_xy[1] = left_xy[1]; if(for_deblock){ topleft_type = 0; topright_type = 0; top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0; left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0; left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0; if(FRAME_MBAFF && !IS_INTRA(mb_type)){ int list; int v = *(uint16_t*)&h->non_zero_count[mb_xy][14]; for(i=0; i<16; i++) h->non_zero_count_cache[scan8[i]] = (v>>i)&1; for(list=0; listlist_count; list++){ if(USES_LIST(mb_type,list)){ uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]]; uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]]; int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]]; for(i=0; i<4; i++, dst+=8, src+=h->b_stride){ dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; } *(uint32_t*)&h->ref_cache[list][scan8[ 0]] = *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101; ref += h->b8_stride; *(uint32_t*)&h->ref_cache[list][scan8[ 8]] = *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101; }else{ fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4); fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); } } } }else{ topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0; top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0; topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0; left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0; left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0; } if(IS_INTRA(mb_type)){ h->topleft_samples_available= h->top_samples_available= h->left_samples_available= 0xFFFF; h->topright_samples_available= 0xEEEA; if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){ h->topleft_samples_available= 0xB3FF; h->top_samples_available= 0x33FF; h->topright_samples_available= 0x26EA; } for(i=0; i<2; i++){ if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){ h->topleft_samples_available&= 0xDF5F; h->left_samples_available&= 0x5F5F; } } if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred)) h->topleft_samples_available&= 0x7FFF; if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred)) h->topright_samples_available&= 0xFBFF; if(IS_INTRA4x4(mb_type)){ if(IS_INTRA4x4(top_type)){ h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4]; h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5]; h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6]; h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3]; }else{ int pred; if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred)) pred= -1; else{ pred= 2; } h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode_cache[7+8*0]= pred; } for(i=0; i<2; i++){ if(IS_INTRA4x4(left_type[i])){ h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]]; h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]]; }else{ int pred; if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred)) pred= -1; else{ pred= 2; } h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred; } } } } /* 0 . T T. T T T T 1 L . .L . . . . 2 L . .L . . . . 3 . T TL . . . . 4 L . .L . . . . 5 L . .. . . . . */ //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec) if(top_type){ h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4]; h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5]; h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6]; h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3]; h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9]; h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8]; h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12]; h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11]; }else{ h->non_zero_count_cache[4+8*0]= h->non_zero_count_cache[5+8*0]= h->non_zero_count_cache[6+8*0]= h->non_zero_count_cache[7+8*0]= h->non_zero_count_cache[1+8*0]= h->non_zero_count_cache[2+8*0]= h->non_zero_count_cache[1+8*3]= h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64; } for (i=0; i<2; i++) { if(left_type[i]){ h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]]; h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]]; h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]]; h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]]; }else{ h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64; } } if( h->pps.cabac ) { // top_cbp if(top_type) { h->top_cbp = h->cbp_table[top_xy]; } else if(IS_INTRA(mb_type)) { h->top_cbp = 0x1C0; } else { h->top_cbp = 0; } // left_cbp if (left_type[0]) { h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0; } else if(IS_INTRA(mb_type)) { h->left_cbp = 0x1C0; } else { h->left_cbp = 0; } if (left_type[0]) { h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1; } if (left_type[1]) { h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3; } } #if 1 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){ int list; for(list=0; listlist_count; list++){ if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){ /*if(!h->mv_cache_clean[list]){ memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all? memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t)); h->mv_cache_clean[list]= 1; }*/ continue; } h->mv_cache_clean[list]= 0; if(USES_LIST(top_type, list)){ const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride; *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0]; *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1]; *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2]; *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3]; h->ref_cache[list][scan8[0] + 0 - 1*8]= h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0]; h->ref_cache[list][scan8[0] + 2 - 1*8]= h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1]; }else{ *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0; *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101; } for(i=0; i<2; i++){ int cache_idx = scan8[0] - 1 + i*2*8; if(USES_LIST(left_type[i], list)){ const int b_xy= h->mb2b_xy[left_xy[i]] + 3; const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1; *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]; *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]; h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)]; h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)]; }else{ *(uint32_t*)h->mv_cache [list][cache_idx ]= *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0; h->ref_cache[list][cache_idx ]= h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE; } } if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF) continue; if(USES_LIST(topleft_type, list)){ const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride; const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride; *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy]; h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy]; }else{ *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0; h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } if(USES_LIST(topright_type, list)){ const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride; const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride; *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy]; h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy]; }else{ *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0; h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; } if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF) continue; h->ref_cache[list][scan8[5 ]+1] = h->ref_cache[list][scan8[7 ]+1] = h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else) h->ref_cache[list][scan8[4 ]] = h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE; *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]= *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]= *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else) *(uint32_t*)h->mv_cache [list][scan8[4 ]]= *(uint32_t*)h->mv_cache [list][scan8[12]]= 0; if( h->pps.cabac ) { /* XXX beurk, Load mvd */ if(USES_LIST(top_type, list)){ const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0]; *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1]; *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2]; *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3]; }else{ *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0; } if(USES_LIST(left_type[0], list)){ const int b_xy= h->mb2b_xy[left_xy[0]] + 3; *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]]; *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]]; }else{ *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0; } if(USES_LIST(left_type[1], list)){ const int b_xy= h->mb2b_xy[left_xy[1]] + 3; *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]]; *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]]; }else{ *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0; } *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]= *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]= *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else) *(uint32_t*)h->mvd_cache [list][scan8[4 ]]= *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0; if(h->slice_type == B_TYPE){ fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1); if(IS_DIRECT(top_type)){ *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101; }else if(IS_8X8(top_type)){ int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride; h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy]; h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1]; }else{ *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0; } if(IS_DIRECT(left_type[0])) h->direct_cache[scan8[0] - 1 + 0*8]= 1; else if(IS_8X8(left_type[0])) h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)]; else h->direct_cache[scan8[0] - 1 + 0*8]= 0; if(IS_DIRECT(left_type[1])) h->direct_cache[scan8[0] - 1 + 2*8]= 1; else if(IS_8X8(left_type[1])) h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)]; else h->direct_cache[scan8[0] - 1 + 2*8]= 0; } } if(FRAME_MBAFF){ #define MAP_MVS\ MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\ MAP_F2F(scan8[0] + 0 - 1*8, top_type)\ MAP_F2F(scan8[0] + 1 - 1*8, top_type)\ MAP_F2F(scan8[0] + 2 - 1*8, top_type)\ MAP_F2F(scan8[0] + 3 - 1*8, top_type)\ MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\ MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\ MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\ MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\ MAP_F2F(scan8[0] - 1 + 3*8, left_type[1]) if(MB_FIELD){ #define MAP_F2F(idx, mb_type)\ if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ h->ref_cache[list][idx] <<= 1;\ h->mv_cache[list][idx][1] /= 2;\ h->mvd_cache[list][idx][1] /= 2;\ } MAP_MVS #undef MAP_F2F }else{ #define MAP_F2F(idx, mb_type)\ if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ h->ref_cache[list][idx] >>= 1;\ h->mv_cache[list][idx][1] <<= 1;\ h->mvd_cache[list][idx][1] <<= 1;\ } MAP_MVS #undef MAP_F2F } } } } #endif h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]); } static inline void write_back_intra_pred_mode(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1]; h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2]; h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3]; h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4]; h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4]; h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4]; h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4]; } /** * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. */ static inline int check_intra4x4_pred_mode(H264Context *h){ MpegEncContext * const s = &h->s; static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0}; static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED}; int i; if(!(h->top_samples_available&0x8000)){ for(i=0; i<4; i++){ int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ]; if(status<0){ av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y); return -1; } else if(status){ h->intra4x4_pred_mode_cache[scan8[0] + i]= status; } } } if(!(h->left_samples_available&0x8000)){ for(i=0; i<4; i++){ int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ]; if(status<0){ av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y); return -1; } else if(status){ h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status; } } } return 0; } //FIXME cleanup like next /** * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks. */ static inline int check_intra_pred_mode(H264Context *h, int mode){ MpegEncContext * const s = &h->s; static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1}; static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8}; if(mode > 6U) { av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y); return -1; } if(!(h->top_samples_available&0x8000)){ mode= top[ mode ]; if(mode<0){ av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y); return -1; } } if(!(h->left_samples_available&0x8000)){ mode= left[ mode ]; if(mode<0){ av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y); return -1; } } return mode; } /** * gets the predicted intra4x4 prediction mode. */ static inline int pred_intra_mode(H264Context *h, int n){ const int index8= scan8[n]; const int left= h->intra4x4_pred_mode_cache[index8 - 1]; const int top = h->intra4x4_pred_mode_cache[index8 - 8]; const int min= FFMIN(left, top); tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min); if(min<0) return DC_PRED; else return min; } static inline void write_back_non_zero_count(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1]; h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2]; h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3]; h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4]; h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4]; h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4]; h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4]; h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2]; h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2]; h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1]; h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5]; h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5]; h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4]; if(FRAME_MBAFF){ // store all luma nnzs, for deblocking int v = 0, i; for(i=0; i<16; i++) v += (!!h->non_zero_count_cache[scan8[i]]) << i; *(uint16_t*)&h->non_zero_count[mb_xy][14] = v; } } /** * gets the predicted number of non zero coefficients. * @param n block index */ static inline int pred_non_zero_count(H264Context *h, int n){ const int index8= scan8[n]; const int left= h->non_zero_count_cache[index8 - 1]; const int top = h->non_zero_count_cache[index8 - 8]; int i= left + top; if(i<64) i= (i+1)>>1; tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31); return i&31; } static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){ const int topright_ref= h->ref_cache[list][ i - 8 + part_width ]; MpegEncContext *s = &h->s; /* there is no consistent mapping of mvs to neighboring locations that will * make mbaff happy, so we can't move all this logic to fill_caches */ if(FRAME_MBAFF){ const uint32_t *mb_types = s->current_picture_ptr->mb_type; const int16_t *mv; *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0; *C = h->mv_cache[list][scan8[0]-2]; if(!MB_FIELD && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){ int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3); if(IS_INTERLACED(mb_types[topright_xy])){ #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\ const int x4 = X4, y4 = Y4;\ const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\ if(!USES_LIST(mb_type,list) && !IS_8X8(mb_type))\ return LIST_NOT_USED;\ mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\ h->mv_cache[list][scan8[0]-2][0] = mv[0];\ h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\ return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP; SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1); } } if(topright_ref == PART_NOT_AVAILABLE && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){ if(!MB_FIELD && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){ SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1); } if(MB_FIELD && !IS_INTERLACED(mb_types[h->left_mb_xy[0]]) && i >= scan8[0]+8){ // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok. SET_DIAG_MV(>>1, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2); } } #undef SET_DIAG_MV } if(topright_ref != PART_NOT_AVAILABLE){ *C= h->mv_cache[list][ i - 8 + part_width ]; return topright_ref; }else{ tprintf(s->avctx, "topright MV not available\n"); *C= h->mv_cache[list][ i - 8 - 1 ]; return h->ref_cache[list][ i - 8 - 1 ]; } } /** * gets the predicted MV. * @param n the block index * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4) * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){ const int index8= scan8[n]; const int top_ref= h->ref_cache[list][ index8 - 8 ]; const int left_ref= h->ref_cache[list][ index8 - 1 ]; const int16_t * const A= h->mv_cache[list][ index8 - 1 ]; const int16_t * const B= h->mv_cache[list][ index8 - 8 ]; const int16_t * C; int diagonal_ref, match_count; assert(part_width==1 || part_width==2 || part_width==4); /* mv_cache B . . A T T T T U . . L . . , . U . . L . . . . U . . L . . , . . . . L . . . . */ diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width); match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref); tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count); if(match_count > 1){ //most common *mx= mid_pred(A[0], B[0], C[0]); *my= mid_pred(A[1], B[1], C[1]); }else if(match_count==1){ if(left_ref==ref){ *mx= A[0]; *my= A[1]; }else if(top_ref==ref){ *mx= B[0]; *my= B[1]; }else{ *mx= C[0]; *my= C[1]; } }else{ if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){ *mx= A[0]; *my= A[1]; }else{ *mx= mid_pred(A[0], B[0], C[0]); *my= mid_pred(A[1], B[1], C[1]); } } tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list); } /** * gets the directionally predicted 16x8 MV. * @param n the block index * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){ if(n==0){ const int top_ref= h->ref_cache[list][ scan8[0] - 8 ]; const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ]; tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list); if(top_ref == ref){ *mx= B[0]; *my= B[1]; return; } }else{ const int left_ref= h->ref_cache[list][ scan8[8] - 1 ]; const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ]; tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list); if(left_ref == ref){ *mx= A[0]; *my= A[1]; return; } } //RARE pred_motion(h, n, 4, list, ref, mx, my); } /** * gets the directionally predicted 8x16 MV. * @param n the block index * @param mx the x component of the predicted motion vector * @param my the y component of the predicted motion vector */ static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){ if(n==0){ const int left_ref= h->ref_cache[list][ scan8[0] - 1 ]; const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ]; tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list); if(left_ref == ref){ *mx= A[0]; *my= A[1]; return; } }else{ const int16_t * C; int diagonal_ref; diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2); tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list); if(diagonal_ref == ref){ *mx= C[0]; *my= C[1]; return; } } //RARE pred_motion(h, n, 2, list, ref, mx, my); } static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){ const int top_ref = h->ref_cache[0][ scan8[0] - 8 ]; const int left_ref= h->ref_cache[0][ scan8[0] - 1 ]; tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y); if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0) || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){ *mx = *my = 0; return; } pred_motion(h, 0, 4, 0, 0, mx, my); return; } static inline void direct_dist_scale_factor(H264Context * const h){ const int poc = h->s.current_picture_ptr->poc; const int poc1 = h->ref_list[1][0].poc; int i; for(i=0; iref_count[0]; i++){ int poc0 = h->ref_list[0][i].poc; int td = av_clip(poc1 - poc0, -128, 127); if(td == 0 /* FIXME || pic0 is a long-term ref */){ h->dist_scale_factor[i] = 256; }else{ int tb = av_clip(poc - poc0, -128, 127); int tx = (16384 + (FFABS(td) >> 1)) / td; h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023); } } if(FRAME_MBAFF){ for(i=0; iref_count[0]; i++){ h->dist_scale_factor_field[2*i] = h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i]; } } } static inline void direct_ref_list_init(H264Context * const h){ MpegEncContext * const s = &h->s; Picture * const ref1 = &h->ref_list[1][0]; Picture * const cur = s->current_picture_ptr; int list, i, j; if(cur->pict_type == I_TYPE) cur->ref_count[0] = 0; if(cur->pict_type != B_TYPE) cur->ref_count[1] = 0; for(list=0; list<2; list++){ cur->ref_count[list] = h->ref_count[list]; for(j=0; jref_count[list]; j++) cur->ref_poc[list][j] = h->ref_list[list][j].poc; } if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred) return; for(list=0; list<2; list++){ for(i=0; iref_count[list]; i++){ const int poc = ref1->ref_poc[list][i]; h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */ for(j=0; jref_count[list]; j++) if(h->ref_list[list][j].poc == poc){ h->map_col_to_list0[list][i] = j; break; } } } if(FRAME_MBAFF){ for(list=0; list<2; list++){ for(i=0; iref_count[list]; i++){ j = h->map_col_to_list0[list][i]; h->map_col_to_list0_field[list][2*i] = 2*j; h->map_col_to_list0_field[list][2*i+1] = 2*j+1; } } } } static inline void pred_direct_motion(H264Context * const h, int *mb_type){ MpegEncContext * const s = &h->s; const int mb_xy = s->mb_x + s->mb_y*s->mb_stride; const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride; const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy]; const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy]; const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy]; const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy]; const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy]; const int is_b8x8 = IS_8X8(*mb_type); unsigned int sub_mb_type; int i8, i4; #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM) if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){ /* FIXME save sub mb types from previous frames (or derive from MVs) * so we know exactly what block size to use */ sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */ *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1; }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){ sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */ *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */ }else{ sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */ *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1; } if(!is_b8x8) *mb_type |= MB_TYPE_DIRECT2; if(MB_FIELD) *mb_type |= MB_TYPE_INTERLACED; tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col); if(h->direct_spatial_mv_pred){ int ref[2]; int mv[2][2]; int list; /* FIXME interlacing + spatial direct uses wrong colocated block positions */ /* ref = min(neighbors) */ for(list=0; list<2; list++){ int refa = h->ref_cache[list][scan8[0] - 1]; int refb = h->ref_cache[list][scan8[0] - 8]; int refc = h->ref_cache[list][scan8[0] - 8 + 4]; if(refc == -2) refc = h->ref_cache[list][scan8[0] - 8 - 1]; ref[list] = refa; if(ref[list] < 0 || (refb < ref[list] && refb >= 0)) ref[list] = refb; if(ref[list] < 0 || (refc < ref[list] && refc >= 0)) ref[list] = refc; if(ref[list] < 0) ref[list] = -1; } if(ref[0] < 0 && ref[1] < 0){ ref[0] = ref[1] = 0; mv[0][0] = mv[0][1] = mv[1][0] = mv[1][1] = 0; }else{ for(list=0; list<2; list++){ if(ref[list] >= 0) pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]); else mv[list][0] = mv[list][1] = 0; } } if(ref[1] < 0){ *mb_type &= ~MB_TYPE_P0L1; sub_mb_type &= ~MB_TYPE_P0L1; }else if(ref[0] < 0){ *mb_type &= ~MB_TYPE_P0L0; sub_mb_type &= ~MB_TYPE_P0L0; } if(IS_16X16(*mb_type)){ int a=0, b=0; fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1); fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1); if(!IS_INTRA(mb_type_col) && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1) || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1 && (h->x264_build>33 || !h->x264_build)))){ if(ref[0] > 0) a= pack16to32(mv[0][0],mv[0][1]); if(ref[1] > 0) b= pack16to32(mv[1][0],mv[1][1]); }else{ a= pack16to32(mv[0][0],mv[0][1]); b= pack16to32(mv[1][0],mv[1][1]); } fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4); fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4); }else{ for(i8=0; i8<4; i8++){ const int x8 = i8&1; const int y8 = i8>>1; if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8])) continue; h->sub_mb_type[i8] = sub_mb_type; fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4); fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4); fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1); fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1); /* col_zero_flag */ if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0 || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0 && (h->x264_build>33 || !h->x264_build)))){ const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1; if(IS_SUB_8X8(sub_mb_type)){ const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride]; if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){ if(ref[0] == 0) fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4); if(ref[1] == 0) fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4); } }else for(i4=0; i4<4; i4++){ const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride]; if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){ if(ref[0] == 0) *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0; if(ref[1] == 0) *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0; } } } } } }else{ /* direct temporal mv pred */ const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]}; const int *dist_scale_factor = h->dist_scale_factor; if(FRAME_MBAFF){ if(IS_INTERLACED(*mb_type)){ map_col_to_list0[0] = h->map_col_to_list0_field[0]; map_col_to_list0[1] = h->map_col_to_list0_field[1]; dist_scale_factor = h->dist_scale_factor_field; } if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){ /* FIXME assumes direct_8x8_inference == 1 */ const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride; int mb_types_col[2]; int y_shift; *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1 | (is_b8x8 ? 0 : MB_TYPE_DIRECT2) | (*mb_type & MB_TYPE_INTERLACED); sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16; if(IS_INTERLACED(*mb_type)){ /* frame to field scaling */ mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy]; mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride]; if(s->mb_y&1){ l1ref0 -= 2*h->b8_stride; l1ref1 -= 2*h->b8_stride; l1mv0 -= 4*h->b_stride; l1mv1 -= 4*h->b_stride; } y_shift = 0; if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA) && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA) && !is_b8x8) *mb_type |= MB_TYPE_16x8; else *mb_type |= MB_TYPE_8x8; }else{ /* field to frame scaling */ /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1) * but in MBAFF, top and bottom POC are equal */ int dy = (s->mb_y&1) ? 1 : 2; mb_types_col[0] = mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride]; l1ref0 += dy*h->b8_stride; l1ref1 += dy*h->b8_stride; l1mv0 += 2*dy*h->b_stride; l1mv1 += 2*dy*h->b_stride; y_shift = 2; if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8)) && !is_b8x8) *mb_type |= MB_TYPE_16x16; else *mb_type |= MB_TYPE_8x8; } for(i8=0; i8<4; i8++){ const int x8 = i8&1; const int y8 = i8>>1; int ref0, scale; const int16_t (*l1mv)[2]= l1mv0; if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8])) continue; h->sub_mb_type[i8] = sub_mb_type; fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1); if(IS_INTRA(mb_types_col[y8])){ fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1); fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4); fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4); continue; } ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride]; if(ref0 >= 0) ref0 = map_col_to_list0[0][ref0*2>>y_shift]; else{ ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift]; l1mv= l1mv1; } scale = dist_scale_factor[ref0]; fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1); { const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride]; int my_col = (mv_col[1]<> 8; int my = (scale * my_col + 128) >> 8; fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4); fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4); } } return; } } /* one-to-one mv scaling */ if(IS_16X16(*mb_type)){ int ref, mv0, mv1; fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1); if(IS_INTRA(mb_type_col)){ ref=mv0=mv1=0; }else{ const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]] : map_col_to_list0[1][l1ref1[0]]; const int scale = dist_scale_factor[ref0]; const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0]; int mv_l0[2]; mv_l0[0] = (scale * mv_col[0] + 128) >> 8; mv_l0[1] = (scale * mv_col[1] + 128) >> 8; ref= ref0; mv0= pack16to32(mv_l0[0],mv_l0[1]); mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]); } fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4); fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4); }else{ for(i8=0; i8<4; i8++){ const int x8 = i8&1; const int y8 = i8>>1; int ref0, scale; const int16_t (*l1mv)[2]= l1mv0; if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8])) continue; h->sub_mb_type[i8] = sub_mb_type; fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1); if(IS_INTRA(mb_type_col)){ fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1); fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4); fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4); continue; } ref0 = l1ref0[x8 + y8*h->b8_stride]; if(ref0 >= 0) ref0 = map_col_to_list0[0][ref0]; else{ ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]]; l1mv= l1mv1; } scale = dist_scale_factor[ref0]; fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1); if(IS_SUB_8X8(sub_mb_type)){ const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride]; int mx = (scale * mv_col[0] + 128) >> 8; int my = (scale * mv_col[1] + 128) >> 8; fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4); fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4); }else for(i4=0; i4<4; i4++){ const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride]; int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]]; mv_l0[0] = (scale * mv_col[0] + 128) >> 8; mv_l0[1] = (scale * mv_col[1] + 128) >> 8; *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]); } } } } } static inline void write_back_motion(H264Context *h, int mb_type){ MpegEncContext * const s = &h->s; const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride; int list; if(!USES_LIST(mb_type, 0)) fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1); for(list=0; listlist_count; list++){ int y; if(!USES_LIST(mb_type, list)) continue; for(y=0; y<4; y++){ *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y]; *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y]; } if( h->pps.cabac ) { if(IS_SKIP(mb_type)) fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4); else for(y=0; y<4; y++){ *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y]; *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y]; } } { int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy]; ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]]; ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]]; ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]]; ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]]; } } if(h->slice_type == B_TYPE && h->pps.cabac){ if(IS_8X8(mb_type)){ uint8_t *direct_table = &h->direct_table[b8_xy]; direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0; direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0; direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0; } } } /** * Decodes a network abstraction layer unit. * @param consumed is the number of bytes used as input * @param length is the length of the array * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing? * @returns decoded bytes, might be src+1 if no escapes */ static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){ int i, si, di; uint8_t *dst; // src[0]&0x80; //forbidden bit h->nal_ref_idc= src[0]>>5; h->nal_unit_type= src[0]&0x1F; src++; length--; #if 0 for(i=0; i0 && src[i-1]==0) i--; if(i+2=length-1){ //no escaped 0 *dst_length= length; *consumed= length+1; //+1 for the header return src; } h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length); dst= h->rbsp_buffer; if (dst == NULL){ return NULL; } //printf("decoding esc\n"); si=di=0; while(sis.avctx, "rbsp trailing %X\n", v); for(r=1; r<9; r++){ if(v&1) return r; v>>=1; } return 0; } /** * idct tranforms the 16 dc values and dequantize them. * @param qp quantization parameter */ static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){ #define stride 16 int i; int temp[16]; //FIXME check if this is a good idea static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride}; static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride}; //memset(block, 64, 2*256); //return; for(i=0; i<4; i++){ const int offset= y_offset[i]; const int z0= block[offset+stride*0] + block[offset+stride*4]; const int z1= block[offset+stride*0] - block[offset+stride*4]; const int z2= block[offset+stride*1] - block[offset+stride*5]; const int z3= block[offset+stride*1] + block[offset+stride*5]; temp[4*i+0]= z0+z3; temp[4*i+1]= z1+z2; temp[4*i+2]= z1-z2; temp[4*i+3]= z0-z3; } for(i=0; i<4; i++){ const int offset= x_offset[i]; const int z0= temp[4*0+i] + temp[4*2+i]; const int z1= temp[4*0+i] - temp[4*2+i]; const int z2= temp[4*1+i] - temp[4*3+i]; const int z3= temp[4*1+i] + temp[4*3+i]; block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8)); block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8)); block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8)); } } #if 0 /** * dct tranforms the 16 dc values. * @param qp quantization parameter ??? FIXME */ static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){ // const int qmul= dequant_coeff[qp][0]; int i; int temp[16]; //FIXME check if this is a good idea static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride}; static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride}; for(i=0; i<4; i++){ const int offset= y_offset[i]; const int z0= block[offset+stride*0] + block[offset+stride*4]; const int z1= block[offset+stride*0] - block[offset+stride*4]; const int z2= block[offset+stride*1] - block[offset+stride*5]; const int z3= block[offset+stride*1] + block[offset+stride*5]; temp[4*i+0]= z0+z3; temp[4*i+1]= z1+z2; temp[4*i+2]= z1-z2; temp[4*i+3]= z0-z3; } for(i=0; i<4; i++){ const int offset= x_offset[i]; const int z0= temp[4*0+i] + temp[4*2+i]; const int z1= temp[4*0+i] - temp[4*2+i]; const int z2= temp[4*1+i] - temp[4*3+i]; const int z3= temp[4*1+i] + temp[4*3+i]; block[stride*0 +offset]= (z0 + z3)>>1; block[stride*2 +offset]= (z1 + z2)>>1; block[stride*8 +offset]= (z1 - z2)>>1; block[stride*10+offset]= (z0 - z3)>>1; } } #endif #undef xStride #undef stride static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){ const int stride= 16*2; const int xStride= 16; int a,b,c,d,e; a= block[stride*0 + xStride*0]; b= block[stride*0 + xStride*1]; c= block[stride*1 + xStride*0]; d= block[stride*1 + xStride*1]; e= a-b; a= a+b; b= c-d; c= c+d; block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7; block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7; block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7; block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7; } #if 0 static void chroma_dc_dct_c(DCTELEM *block){ const int stride= 16*2; const int xStride= 16; int a,b,c,d,e; a= block[stride*0 + xStride*0]; b= block[stride*0 + xStride*1]; c= block[stride*1 + xStride*0]; d= block[stride*1 + xStride*1]; e= a-b; a= a+b; b= c-d; c= c+d; block[stride*0 + xStride*0]= (a+c); block[stride*0 + xStride*1]= (e+b); block[stride*1 + xStride*0]= (a-c); block[stride*1 + xStride*1]= (e-b); } #endif /** * gets the chroma qp. */ static inline int get_chroma_qp(int chroma_qp_index_offset, int qscale){ return chroma_qp[av_clip(qscale + chroma_qp_index_offset, 0, 51)]; } //FIXME need to check that this doesnt overflow signed 32 bit for low qp, i am not sure, it's very close //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away) static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){ int i; const int * const quant_table= quant_coeff[qscale]; const int bias= intra ? (1<dc_threshold2){ if(level>0){ level= (dc_bias + level)>>(QUANT_SHIFT-2); block[0]= level; }else{ level= (dc_bias - level)>>(QUANT_SHIFT-2); block[0]= -level; } // last_non_zero = i; }else{ block[0]=0; } }else{ const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6; const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1; const unsigned int dc_threshold2= (dc_threshold1<<1); int level= block[0]*quant_table[0]; if(((unsigned)(level+dc_threshold1))>dc_threshold2){ if(level>0){ level= (dc_bias + level)>>(QUANT_SHIFT+1); block[0]= level; }else{ level= (dc_bias - level)>>(QUANT_SHIFT+1); block[0]= -level; } // last_non_zero = i; }else{ block[0]=0; } } last_non_zero= 0; i=1; }else{ last_non_zero= -1; i=0; } for(; i<16; i++){ const int j= scantable[i]; int level= block[j]*quant_table[j]; // if( bias+level >= (1<<(QMAT_SHIFT - 3)) // || bias-level >= (1<<(QMAT_SHIFT - 3))){ if(((unsigned)(level+threshold1))>threshold2){ if(level>0){ level= (bias + level)>>QUANT_SHIFT; block[j]= level; }else{ level= (bias - level)>>QUANT_SHIFT; block[j]= -level; } last_non_zero = i; }else{ block[j]=0; } } return last_non_zero; } static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){ const uint32_t a= ((uint32_t*)(src-stride))[0]; ((uint32_t*)(src+0*stride))[0]= a; ((uint32_t*)(src+1*stride))[0]= a; ((uint32_t*)(src+2*stride))[0]= a; ((uint32_t*)(src+3*stride))[0]= a; } static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){ ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101; ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101; ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101; ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101; } static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){ const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3; ((uint32_t*)(src+0*stride))[0]= ((uint32_t*)(src+1*stride))[0]= ((uint32_t*)(src+2*stride))[0]= ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; } static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){ const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2; ((uint32_t*)(src+0*stride))[0]= ((uint32_t*)(src+1*stride))[0]= ((uint32_t*)(src+2*stride))[0]= ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; } static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){ const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2; ((uint32_t*)(src+0*stride))[0]= ((uint32_t*)(src+1*stride))[0]= ((uint32_t*)(src+2*stride))[0]= ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; } static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){ ((uint32_t*)(src+0*stride))[0]= ((uint32_t*)(src+1*stride))[0]= ((uint32_t*)(src+2*stride))[0]= ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U; } #define LOAD_TOP_RIGHT_EDGE\ const int t4= topright[0];\ const int t5= topright[1];\ const int t6= topright[2];\ const int t7= topright[3];\ #define LOAD_LEFT_EDGE\ const int l0= src[-1+0*stride];\ const int l1= src[-1+1*stride];\ const int l2= src[-1+2*stride];\ const int l3= src[-1+3*stride];\ #define LOAD_TOP_EDGE\ const int t0= src[ 0-1*stride];\ const int t1= src[ 1-1*stride];\ const int t2= src[ 2-1*stride];\ const int t3= src[ 3-1*stride];\ static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){ const int lt= src[-1-1*stride]; LOAD_TOP_EDGE LOAD_LEFT_EDGE src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2; src[0+2*stride]= src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2; src[0+1*stride]= src[1+2*stride]= src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2; src[0+0*stride]= src[1+1*stride]= src[2+2*stride]= src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2; src[1+0*stride]= src[2+1*stride]= src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2; src[2+0*stride]= src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2; src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2; } static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){ LOAD_TOP_EDGE LOAD_TOP_RIGHT_EDGE // LOAD_LEFT_EDGE src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2; src[1+0*stride]= src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2; src[2+0*stride]= src[1+1*stride]= src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2; src[3+0*stride]= src[2+1*stride]= src[1+2*stride]= src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2; src[3+1*stride]= src[2+2*stride]= src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2; src[3+2*stride]= src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2; src[3+3*stride]=(t6 + 3*t7 + 2)>>2; } static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){ const int lt= src[-1-1*stride]; LOAD_TOP_EDGE LOAD_LEFT_EDGE const __attribute__((unused)) int unu= l3; src[0+0*stride]= src[1+2*stride]=(lt + t0 + 1)>>1; src[1+0*stride]= src[2+2*stride]=(t0 + t1 + 1)>>1; src[2+0*stride]= src[3+2*stride]=(t1 + t2 + 1)>>1; src[3+0*stride]=(t2 + t3 + 1)>>1; src[0+1*stride]= src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2; src[1+1*stride]= src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2; src[2+1*stride]= src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2; src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2; src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2; src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2; } static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){ LOAD_TOP_EDGE LOAD_TOP_RIGHT_EDGE const __attribute__((unused)) int unu= t7; src[0+0*stride]=(t0 + t1 + 1)>>1; src[1+0*stride]= src[0+2*stride]=(t1 + t2 + 1)>>1; src[2+0*stride]= src[1+2*stride]=(t2 + t3 + 1)>>1; src[3+0*stride]= src[2+2*stride]=(t3 + t4+ 1)>>1; src[3+2*stride]=(t4 + t5+ 1)>>1; src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2; src[1+1*stride]= src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2; src[2+1*stride]= src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2; src[3+1*stride]= src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2; src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2; } static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){ LOAD_LEFT_EDGE src[0+0*stride]=(l0 + l1 + 1)>>1; src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2; src[2+0*stride]= src[0+1*stride]=(l1 + l2 + 1)>>1; src[3+0*stride]= src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2; src[2+1*stride]= src[0+2*stride]=(l2 + l3 + 1)>>1; src[3+1*stride]= src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2; src[3+2*stride]= src[1+3*stride]= src[0+3*stride]= src[2+2*stride]= src[2+3*stride]= src[3+3*stride]=l3; } static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){ const int lt= src[-1-1*stride]; LOAD_TOP_EDGE LOAD_LEFT_EDGE const __attribute__((unused)) int unu= t3; src[0+0*stride]= src[2+1*stride]=(lt + l0 + 1)>>1; src[1+0*stride]= src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2; src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2; src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2; src[0+1*stride]= src[2+2*stride]=(l0 + l1 + 1)>>1; src[1+1*stride]= src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2; src[0+2*stride]= src[2+3*stride]=(l1 + l2+ 1)>>1; src[1+2*stride]= src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2; src[0+3*stride]=(l2 + l3 + 1)>>1; src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2; } void ff_pred16x16_vertical_c(uint8_t *src, int stride){ int i; const uint32_t a= ((uint32_t*)(src-stride))[0]; const uint32_t b= ((uint32_t*)(src-stride))[1]; const uint32_t c= ((uint32_t*)(src-stride))[2]; const uint32_t d= ((uint32_t*)(src-stride))[3]; for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= a; ((uint32_t*)(src+i*stride))[1]= b; ((uint32_t*)(src+i*stride))[2]= c; ((uint32_t*)(src+i*stride))[3]= d; } } void ff_pred16x16_horizontal_c(uint8_t *src, int stride){ int i; for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= ((uint32_t*)(src+i*stride))[2]= ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101; } } void ff_pred16x16_dc_c(uint8_t *src, int stride){ int i, dc=0; for(i=0;i<16; i++){ dc+= src[-1+i*stride]; } for(i=0;i<16; i++){ dc+= src[i-stride]; } dc= 0x01010101*((dc + 16)>>5); for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= ((uint32_t*)(src+i*stride))[2]= ((uint32_t*)(src+i*stride))[3]= dc; } } static void pred16x16_left_dc_c(uint8_t *src, int stride){ int i, dc=0; for(i=0;i<16; i++){ dc+= src[-1+i*stride]; } dc= 0x01010101*((dc + 8)>>4); for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= ((uint32_t*)(src+i*stride))[2]= ((uint32_t*)(src+i*stride))[3]= dc; } } static void pred16x16_top_dc_c(uint8_t *src, int stride){ int i, dc=0; for(i=0;i<16; i++){ dc+= src[i-stride]; } dc= 0x01010101*((dc + 8)>>4); for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= ((uint32_t*)(src+i*stride))[2]= ((uint32_t*)(src+i*stride))[3]= dc; } } void ff_pred16x16_128_dc_c(uint8_t *src, int stride){ int i; for(i=0; i<16; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= ((uint32_t*)(src+i*stride))[2]= ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U; } } static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){ int i, j, k; int a; uint8_t *cm = ff_cropTbl + MAX_NEG_CROP; const uint8_t * const src0 = src+7-stride; const uint8_t *src1 = src+8*stride-1; const uint8_t *src2 = src1-2*stride; // == src+6*stride-1; int H = src0[1] - src0[-1]; int V = src1[0] - src2[ 0]; for(k=2; k<=8; ++k) { src1 += stride; src2 -= stride; H += k*(src0[k] - src0[-k]); V += k*(src1[0] - src2[ 0]); } if(svq3){ H = ( 5*(H/4) ) / 16; V = ( 5*(V/4) ) / 16; /* required for 100% accuracy */ i = H; H = V; V = i; }else{ H = ( 5*H+32 ) >> 6; V = ( 5*V+32 ) >> 6; } a = 16*(src1[0] + src2[16] + 1) - 7*(V+H); for(j=16; j>0; --j) { int b = a; a += V; for(i=-16; i<0; i+=4) { src[16+i] = cm[ (b ) >> 5 ]; src[17+i] = cm[ (b+ H) >> 5 ]; src[18+i] = cm[ (b+2*H) >> 5 ]; src[19+i] = cm[ (b+3*H) >> 5 ]; b += 4*H; } src += stride; } } void ff_pred16x16_plane_c(uint8_t *src, int stride){ pred16x16_plane_compat_c(src, stride, 0); } void ff_pred8x8_vertical_c(uint8_t *src, int stride){ int i; const uint32_t a= ((uint32_t*)(src-stride))[0]; const uint32_t b= ((uint32_t*)(src-stride))[1]; for(i=0; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= a; ((uint32_t*)(src+i*stride))[1]= b; } } void ff_pred8x8_horizontal_c(uint8_t *src, int stride){ int i; for(i=0; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101; } } void ff_pred8x8_128_dc_c(uint8_t *src, int stride){ int i; for(i=0; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U; } } static void pred8x8_left_dc_c(uint8_t *src, int stride){ int i; int dc0, dc2; dc0=dc2=0; for(i=0;i<4; i++){ dc0+= src[-1+i*stride]; dc2+= src[-1+(i+4)*stride]; } dc0= 0x01010101*((dc0 + 2)>>2); dc2= 0x01010101*((dc2 + 2)>>2); for(i=0; i<4; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= dc0; } for(i=4; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= ((uint32_t*)(src+i*stride))[1]= dc2; } } static void pred8x8_top_dc_c(uint8_t *src, int stride){ int i; int dc0, dc1; dc0=dc1=0; for(i=0;i<4; i++){ dc0+= src[i-stride]; dc1+= src[4+i-stride]; } dc0= 0x01010101*((dc0 + 2)>>2); dc1= 0x01010101*((dc1 + 2)>>2); for(i=0; i<4; i++){ ((uint32_t*)(src+i*stride))[0]= dc0; ((uint32_t*)(src+i*stride))[1]= dc1; } for(i=4; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= dc0; ((uint32_t*)(src+i*stride))[1]= dc1; } } void ff_pred8x8_dc_c(uint8_t *src, int stride){ int i; int dc0, dc1, dc2, dc3; dc0=dc1=dc2=0; for(i=0;i<4; i++){ dc0+= src[-1+i*stride] + src[i-stride]; dc1+= src[4+i-stride]; dc2+= src[-1+(i+4)*stride]; } dc3= 0x01010101*((dc1 + dc2 + 4)>>3); dc0= 0x01010101*((dc0 + 4)>>3); dc1= 0x01010101*((dc1 + 2)>>2); dc2= 0x01010101*((dc2 + 2)>>2); for(i=0; i<4; i++){ ((uint32_t*)(src+i*stride))[0]= dc0; ((uint32_t*)(src+i*stride))[1]= dc1; } for(i=4; i<8; i++){ ((uint32_t*)(src+i*stride))[0]= dc2; ((uint32_t*)(src+i*stride))[1]= dc3; } } void ff_pred8x8_plane_c(uint8_t *src, int stride){ int j, k; int a; uint8_t *cm = ff_cropTbl + MAX_NEG_CROP; const uint8_t * const src0 = src+3-stride; const uint8_t *src1 = src+4*stride-1; const uint8_t *src2 = src1-2*stride; // == src+2*stride-1; int H = src0[1] - src0[-1]; int V = src1[0] - src2[ 0]; for(k=2; k<=4; ++k) { src1 += stride; src2 -= stride; H += k*(src0[k] - src0[-k]); V += k*(src1[0] - src2[ 0]); } H = ( 17*H+16 ) >> 5; V = ( 17*V+16 ) >> 5; a = 16*(src1[0] + src2[8]+1) - 3*(V+H); for(j=8; j>0; --j) { int b = a; a += V; src[0] = cm[ (b ) >> 5 ]; src[1] = cm[ (b+ H) >> 5 ]; src[2] = cm[ (b+2*H) >> 5 ]; src[3] = cm[ (b+3*H) >> 5 ]; src[4] = cm[ (b+4*H) >> 5 ]; src[5] = cm[ (b+5*H) >> 5 ]; src[6] = cm[ (b+6*H) >> 5 ]; src[7] = cm[ (b+7*H) >> 5 ]; src += stride; } } #define SRC(x,y) src[(x)+(y)*stride] #define PL(y) \ const int l##y = (SRC(-1,y-1) + 2*SRC(-1,y) + SRC(-1,y+1) + 2) >> 2; #define PREDICT_8x8_LOAD_LEFT \ const int l0 = ((has_topleft ? SRC(-1,-1) : SRC(-1,0)) \ + 2*SRC(-1,0) + SRC(-1,1) + 2) >> 2; \ PL(1) PL(2) PL(3) PL(4) PL(5) PL(6) \ const int l7 attribute_unused = (SRC(-1,6) + 3*SRC(-1,7) + 2) >> 2 #define PT(x) \ const int t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2; #define PREDICT_8x8_LOAD_TOP \ const int t0 = ((has_topleft ? SRC(-1,-1) : SRC(0,-1)) \ + 2*SRC(0,-1) + SRC(1,-1) + 2) >> 2; \ PT(1) PT(2) PT(3) PT(4) PT(5) PT(6) \ const int t7 attribute_unused = ((has_topright ? SRC(8,-1) : SRC(7,-1)) \ + 2*SRC(7,-1) + SRC(6,-1) + 2) >> 2 #define PTR(x) \ t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2; #define PREDICT_8x8_LOAD_TOPRIGHT \ int t8, t9, t10, t11, t12, t13, t14, t15; \ if(has_topright) { \ PTR(8) PTR(9) PTR(10) PTR(11) PTR(12) PTR(13) PTR(14) \ t15 = (SRC(14,-1) + 3*SRC(15,-1) + 2) >> 2; \ } else t8=t9=t10=t11=t12=t13=t14=t15= SRC(7,-1); #define PREDICT_8x8_LOAD_TOPLEFT \ const int lt = (SRC(-1,0) + 2*SRC(-1,-1) + SRC(0,-1) + 2) >> 2 #define PREDICT_8x8_DC(v) \ int y; \ for( y = 0; y < 8; y++ ) { \ ((uint32_t*)src)[0] = \ ((uint32_t*)src)[1] = v; \ src += stride; \ } static void pred8x8l_128_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride) { PREDICT_8x8_DC(0x80808080); } static void pred8x8l_left_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride) { PREDICT_8x8_LOAD_LEFT; const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7+4) >> 3) * 0x01010101; PREDICT_8x8_DC(dc); } static void pred8x8l_top_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride) { PREDICT_8x8_LOAD_TOP; const uint32_t dc = ((t0+t1+t2+t3+t4+t5+t6+t7+4) >> 3) * 0x01010101; PREDICT_8x8_DC(dc); } static void pred8x8l_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride) { PREDICT_8x8_LOAD_LEFT; PREDICT_8x8_LOAD_TOP; const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7 +t0+t1+t2+t3+t4+t5+t6+t7+8) >> 4) * 0x01010101; PREDICT_8x8_DC(dc); } static void pred8x8l_horizontal_c(uint8_t *src, int has_topleft, int has_topright, int stride) { PREDICT_8x8_LOAD_LEFT; #define ROW(y) ((uint32_t*)(src+y*stride))[0] =\ ((uint32_t*)(src+y*stride))[1] = 0x01010101 * l##y ROW(0); ROW(1); ROW(2); ROW(3); ROW(4); ROW(5); ROW(6); ROW(7); #undef ROW } static void pred8x8l_vertical_c(uint8_t *src, int has_topleft, int has_topright, int stride) { int y; PREDICT_8x8_LOAD_TOP; src[0] = t0; src[1] = t1; src[2] = t2; src[3] = t3; src[4] = t4; src[5] = t5; src[6] = t6; src[7] = t7; for( y = 1; y < 8; y++ ) *(uint64_t*)(src+y*stride) = *(uint64_t*)src; } static void pred8x8l_down_left_c(uint8_t *src, int has_topleft, int has_topright, int stride) { PREDICT_8x8_LOAD_TOP; PREDICT_8x8_LOAD_TOPRIGHT; SRC(0,0)= (t0 + 2*t1 + t2 + 2) >> 2; SRC(0,1)=SRC(1,0)= (t1 + 2*t2 + t3 + 2) >> 2; SRC(0,2)=SRC(1,1)=SRC(2,0)= (t2 + 2*t3 + t4 + 2) >> 2; SRC(0,3)=SRC(1,2)=SRC(2,1)=SRC(3,0)= (t3 + 2*t4 + t5 + 2) >> 2; SRC(0,4)=SRC(1,3)=SRC(2,2)=SRC(3,1)=SRC(4,0)= (t4 + 2*t5 + t6 + 2) >> 2; SRC(0,5)=SRC(1,4)=SRC(2,3)=SRC(3,2)=SRC(4,1)=SRC(5,0)= (t5 + 2*t6 + t7 + 2) >> 2; SRC(0,6)=SRC(1,5)=SRC(2,4)=SRC(3,3)=SRC(4,2)=SRC(5,1)=SRC(6,0)= (t6 + 2*t7 + t8 + 2) >> 2; SRC(0,7)=SRC(1,6)=SRC(2,5)=SRC(3,4)=SRC(4,3)=SRC(5,2)=SRC(6,1)=SRC(7,0)= (t7 + 2*t8 + t9 + 2) >> 2; SRC(1,7)=SRC(2,6)=SRC(3,5)=SRC(4,4)=SRC(5,3)=SRC(6,2)=SRC(7,1)= (t8 + 2*t9 + t10 + 2) >> 2; SRC(2,7)=SRC(3,6)=SRC(4,5)=SRC(5,4)=SRC(6,3)=SRC(7,2)= (t9 + 2*t10 + t11 + 2) >> 2; SRC(3,7)=SRC(4,6)=SRC(5,5)=SRC(6,4)=SRC(7,3)= (t10 + 2*t11 + t12 + 2) >> 2; SRC(4,7)=SRC(5,6)=SRC(6,5)=SRC(7,4)= (t11 + 2*t12 + t13 + 2) >> 2; SRC(5,7)=SRC(6,6)=SRC(7,5)= (t12 + 2*t13 + t14 + 2) >> 2; SRC(6,7)=SRC(7,6)= (t13 + 2*t14 + t15 + 2) >> 2; SRC(7,7)= (t14 + 3*t15 + 2) >> 2; } static void pred8x8l_down_right_c(uint8_t *src, int has_topleft, int has_topright, int stride) { PREDICT_8x8_LOAD_TOP; PREDICT_8x8_LOAD_LEFT; PREDICT_8x8_LOAD_TOPLEFT; SRC(0,7)= (l7 + 2*l6 + l5 + 2) >> 2; SRC(0,6)=SRC(1,7)= (l6 + 2*l5 + l4 + 2) >> 2; SRC(0,5)=SRC(1,6)=SRC(2,7)= (l5 + 2*l4 + l3 + 2) >> 2; SRC(0,4)=SRC(1,5)=SRC(2,6)=SRC(3,7)= (l4 + 2*l3 + l2 + 2) >> 2; SRC(0,3)=SRC(1,4)=SRC(2,5)=SRC(3,6)=SRC(4,7)= (l3 + 2*l2 + l1 + 2) >> 2; SRC(0,2)=SRC(1,3)=SRC(2,4)=SRC(3,5)=SRC(4,6)=SRC(5,7)= (l2 + 2*l1 + l0 + 2) >> 2; SRC(0,1)=SRC(1,2)=SRC(2,3)=SRC(3,4)=SRC(4,5)=SRC(5,6)=SRC(6,7)= (l1 + 2*l0 + lt + 2) >> 2; SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)=SRC(4,4)=SRC(5,5)=SRC(6,6)=SRC(7,7)= (l0 + 2*lt + t0 + 2) >> 2; SRC(1,0)=SRC(2,1)=SRC(3,2)=SRC(4,3)=SRC(5,4)=SRC(6,5)=SRC(7,6)= (lt + 2*t0 + t1 + 2) >> 2; SRC(2,0)=SRC(3,1)=SRC(4,2)=SRC(5,3)=SRC(6,4)=SRC(7,5)= (t0 + 2*t1 + t2 + 2) >> 2; SRC(3,0)=SRC(4,1)=SRC(5,2)=SRC(6,3)=SRC(7,4)= (t1 + 2*t2 + t3 + 2) >> 2; SRC(4,0)=SRC(5,1)=SRC(6,2)=SRC(7,3)= (t2 + 2*t3 + t4 + 2) >> 2; SRC(5,0)=SRC(6,1)=SRC(7,2)= (t3 + 2*t4 + t5 + 2) >> 2; SRC(6,0)=SRC(7,1)= (t4 + 2*t5 + t6 + 2) >> 2; SRC(7,0)= (t5 + 2*t6 + t7 + 2) >> 2; } static void pred8x8l_vertical_right_c(uint8_t *src, int has_topleft, int has_topright, int stride) { PREDICT_8x8_LOAD_TOP; PREDICT_8x8_LOAD_LEFT; PREDICT_8x8_LOAD_TOPLEFT; SRC(0,6)= (l5 + 2*l4 + l3 + 2) >> 2; SRC(0,7)= (l6 + 2*l5 + l4 + 2) >> 2; SRC(0,4)=SRC(1,6)= (l3 + 2*l2 + l1 + 2) >> 2; SRC(0,5)=SRC(1,7)= (l4 + 2*l3 + l2 + 2) >> 2; SRC(0,2)=SRC(1,4)=SRC(2,6)= (l1 + 2*l0 + lt + 2) >> 2; SRC(0,3)=SRC(1,5)=SRC(2,7)= (l2 + 2*l1 + l0 + 2) >> 2; SRC(0,1)=SRC(1,3)=SRC(2,5)=SRC(3,7)= (l0 + 2*lt + t0 + 2) >> 2; SRC(0,0)=SRC(1,2)=SRC(2,4)=SRC(3,6)= (lt + t0 + 1) >> 1; SRC(1,1)=SRC(2,3)=SRC(3,5)=SRC(4,7)= (lt + 2*t0 + t1 + 2) >> 2; SRC(1,0)=SRC(2,2)=SRC(3,4)=SRC(4,6)= (t0 + t1 + 1) >> 1; SRC(2,1)=SRC(3,3)=SRC(4,5)=SRC(5,7)= (t0 + 2*t1 + t2 + 2) >> 2; SRC(2,0)=SRC(3,2)=SRC(4,4)=SRC(5,6)= (t1 + t2 + 1) >> 1; SRC(3,1)=SRC(4,3)=SRC(5,5)=SRC(6,7)= (t1 + 2*t2 + t3 + 2) >> 2; SRC(3,0)=SRC(4,2)=SRC(5,4)=SRC(6,6)= (t2 + t3 + 1) >> 1; SRC(4,1)=SRC(5,3)=SRC(6,5)=SRC(7,7)= (t2 + 2*t3 + t4 + 2) >> 2; SRC(4,0)=SRC(5,2)=SRC(6,4)=SRC(7,6)= (t3 + t4 + 1) >> 1; SRC(5,1)=SRC(6,3)=SRC(7,5)= (t3 + 2*t4 + t5 + 2) >> 2; SRC(5,0)=SRC(6,2)=SRC(7,4)= (t4 + t5 + 1) >> 1; SRC(6,1)=SRC(7,3)= (t4 + 2*t5 + t6 + 2) >> 2; SRC(6,0)=SRC(7,2)= (t5 + t6 + 1) >> 1; SRC(7,1)= (t5 + 2*t6 + t7 + 2) >> 2; SRC(7,0)= (t6 + t7 + 1) >> 1; } static void pred8x8l_horizontal_down_c(uint8_t *src, int has_topleft, int has_topright, int stride) { PREDICT_8x8_LOAD_TOP; PREDICT_8x8_LOAD_LEFT; PREDICT_8x8_LOAD_TOPLEFT; SRC(0,7)= (l6 + l7 + 1) >> 1; SRC(1,7)= (l5 + 2*l6 + l7 + 2) >> 2; SRC(0,6)=SRC(2,7)= (l5 + l6 + 1) >> 1; SRC(1,6)=SRC(3,7)= (l4 + 2*l5 + l6 + 2) >> 2; SRC(0,5)=SRC(2,6)=SRC(4,7)= (l4 + l5 + 1) >> 1; SRC(1,5)=SRC(3,6)=SRC(5,7)= (l3 + 2*l4 + l5 + 2) >> 2; SRC(0,4)=SRC(2,5)=SRC(4,6)=SRC(6,7)= (l3 + l4 + 1) >> 1; SRC(1,4)=SRC(3,5)=SRC(5,6)=SRC(7,7)= (l2 + 2*l3 + l4 + 2) >> 2; SRC(0,3)=SRC(2,4)=SRC(4,5)=SRC(6,6)= (l2 + l3 + 1) >> 1; SRC(1,3)=SRC(3,4)=SRC(5,5)=SRC(7,6)= (l1 + 2*l2 + l3 + 2) >> 2; SRC(0,2)=SRC(2,3)=SRC(4,4)=SRC(6,5)= (l1 + l2 + 1) >> 1; SRC(1,2)=SRC(3,3)=SRC(5,4)=SRC(7,5)= (l0 + 2*l1 + l2 + 2) >> 2; SRC(0,1)=SRC(2,2)=SRC(4,3)=SRC(6,4)= (l0 + l1 + 1) >> 1; SRC(1,1)=SRC(3,2)=SRC(5,3)=SRC(7,4)= (lt + 2*l0 + l1 + 2) >> 2; SRC(0,0)=SRC(2,1)=SRC(4,2)=SRC(6,3)= (lt + l0 + 1) >> 1; SRC(1,0)=SRC(3,1)=SRC(5,2)=SRC(7,3)= (l0 + 2*lt + t0 + 2) >> 2; SRC(2,0)=SRC(4,1)=SRC(6,2)= (t1 + 2*t0 + lt + 2) >> 2; SRC(3,0)=SRC(5,1)=SRC(7,2)= (t2 + 2*t1 + t0 + 2) >> 2; SRC(4,0)=SRC(6,1)= (t3 + 2*t2 + t1 + 2) >> 2; SRC(5,0)=SRC(7,1)= (t4 + 2*t3 + t2 + 2) >> 2; SRC(6,0)= (t5 + 2*t4 + t3 + 2) >> 2; SRC(7,0)= (t6 + 2*t5 + t4 + 2) >> 2; } static void pred8x8l_vertical_left_c(uint8_t *src, int has_topleft, int has_topright, int stride) { PREDICT_8x8_LOAD_TOP; PREDICT_8x8_LOAD_TOPRIGHT; SRC(0,0)= (t0 + t1 + 1) >> 1; SRC(0,1)= (t0 + 2*t1 + t2 + 2) >> 2; SRC(0,2)=SRC(1,0)= (t1 + t2 + 1) >> 1; SRC(0,3)=SRC(1,1)= (t1 + 2*t2 + t3 + 2) >> 2; SRC(0,4)=SRC(1,2)=SRC(2,0)= (t2 + t3 + 1) >> 1; SRC(0,5)=SRC(1,3)=SRC(2,1)= (t2 + 2*t3 + t4 + 2) >> 2; SRC(0,6)=SRC(1,4)=SRC(2,2)=SRC(3,0)= (t3 + t4 + 1) >> 1; SRC(0,7)=SRC(1,5)=SRC(2,3)=SRC(3,1)= (t3 + 2*t4 + t5 + 2) >> 2; SRC(1,6)=SRC(2,4)=SRC(3,2)=SRC(4,0)= (t4 + t5 + 1) >> 1; SRC(1,7)=SRC(2,5)=SRC(3,3)=SRC(4,1)= (t4 + 2*t5 + t6 + 2) >> 2; SRC(2,6)=SRC(3,4)=SRC(4,2)=SRC(5,0)= (t5 + t6 + 1) >> 1; SRC(2,7)=SRC(3,5)=SRC(4,3)=SRC(5,1)= (t5 + 2*t6 + t7 + 2) >> 2; SRC(3,6)=SRC(4,4)=SRC(5,2)=SRC(6,0)= (t6 + t7 + 1) >> 1; SRC(3,7)=SRC(4,5)=SRC(5,3)=SRC(6,1)= (t6 + 2*t7 + t8 + 2) >> 2; SRC(4,6)=SRC(5,4)=SRC(6,2)=SRC(7,0)= (t7 + t8 + 1) >> 1; SRC(4,7)=SRC(5,5)=SRC(6,3)=SRC(7,1)= (t7 + 2*t8 + t9 + 2) >> 2; SRC(5,6)=SRC(6,4)=SRC(7,2)= (t8 + t9 + 1) >> 1; SRC(5,7)=SRC(6,5)=SRC(7,3)= (t8 + 2*t9 + t10 + 2) >> 2; SRC(6,6)=SRC(7,4)= (t9 + t10 + 1) >> 1; SRC(6,7)=SRC(7,5)= (t9 + 2*t10 + t11 + 2) >> 2; SRC(7,6)= (t10 + t11 + 1) >> 1; SRC(7,7)= (t10 + 2*t11 + t12 + 2) >> 2; } static void pred8x8l_horizontal_up_c(uint8_t *src, int has_topleft, int has_topright, int stride) { PREDICT_8x8_LOAD_LEFT; SRC(0,0)= (l0 + l1 + 1) >> 1; SRC(1,0)= (l0 + 2*l1 + l2 + 2) >> 2; SRC(0,1)=SRC(2,0)= (l1 + l2 + 1) >> 1; SRC(1,1)=SRC(3,0)= (l1 + 2*l2 + l3 + 2) >> 2; SRC(0,2)=SRC(2,1)=SRC(4,0)= (l2 + l3 + 1) >> 1; SRC(1,2)=SRC(3,1)=SRC(5,0)= (l2 + 2*l3 + l4 + 2) >> 2; SRC(0,3)=SRC(2,2)=SRC(4,1)=SRC(6,0)= (l3 + l4 + 1) >> 1; SRC(1,3)=SRC(3,2)=SRC(5,1)=SRC(7,0)= (l3 + 2*l4 + l5 + 2) >> 2; SRC(0,4)=SRC(2,3)=SRC(4,2)=SRC(6,1)= (l4 + l5 + 1) >> 1; SRC(1,4)=SRC(3,3)=SRC(5,2)=SRC(7,1)= (l4 + 2*l5 + l6 + 2) >> 2; SRC(0,5)=SRC(2,4)=SRC(4,3)=SRC(6,2)= (l5 + l6 + 1) >> 1; SRC(1,5)=SRC(3,4)=SRC(5,3)=SRC(7,2)= (l5 + 2*l6 + l7 + 2) >> 2; SRC(0,6)=SRC(2,5)=SRC(4,4)=SRC(6,3)= (l6 + l7 + 1) >> 1; SRC(1,6)=SRC(3,5)=SRC(5,4)=SRC(7,3)= (l6 + 3*l7 + 2) >> 2; SRC(0,7)=SRC(1,7)=SRC(2,6)=SRC(2,7)=SRC(3,6)= SRC(3,7)=SRC(4,5)=SRC(4,6)=SRC(4,7)=SRC(5,5)= SRC(5,6)=SRC(5,7)=SRC(6,4)=SRC(6,5)=SRC(6,6)= SRC(6,7)=SRC(7,4)=SRC(7,5)=SRC(7,6)=SRC(7,7)= l7; } #undef PREDICT_8x8_LOAD_LEFT #undef PREDICT_8x8_LOAD_TOP #undef PREDICT_8x8_LOAD_TOPLEFT #undef PREDICT_8x8_LOAD_TOPRIGHT #undef PREDICT_8x8_DC #undef PTR #undef PT #undef PL #undef SRC static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){ MpegEncContext * const s = &h->s; const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8; int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8; const int luma_xy= (mx&3) + ((my&3)<<2); uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize; uint8_t * src_cb, * src_cr; int extra_width= h->emu_edge_width; int extra_height= h->emu_edge_height; int emu=0; const int full_mx= mx>>2; const int full_my= my>>2; const int pic_width = 16*s->mb_width; const int pic_height = 16*s->mb_height >> MB_MBAFF; if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames return; if(mx&7) extra_width -= 3; if(my&7) extra_height -= 3; if( full_mx < 0-extra_width || full_my < 0-extra_height || full_mx + 16/*FIXME*/ > pic_width + extra_width || full_my + 16/*FIXME*/ > pic_height + extra_height){ ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height); src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize; emu=1; } qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps? if(!square){ qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize); } if(s->flags&CODEC_FLAG_GRAY) return; if(MB_MBAFF){ // chroma offset when predicting from a field of opposite parity my += 2 * ((s->mb_y & 1) - (h->ref_cache[list][scan8[n]] & 1)); emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1); } src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize; src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize; if(emu){ ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1); src_cb= s->edge_emu_buffer; } chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7); if(emu){ ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1); src_cr= s->edge_emu_buffer; } chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7); } static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, int list0, int list1){ MpegEncContext * const s = &h->s; qpel_mc_func *qpix_op= qpix_put; h264_chroma_mc_func chroma_op= chroma_put; dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize; dest_cb += x_offset + y_offset*h->mb_uvlinesize; dest_cr += x_offset + y_offset*h->mb_uvlinesize; x_offset += 8*s->mb_x; y_offset += 8*(s->mb_y >> MB_MBAFF); if(list0){ Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ]; mc_dir_part(h, ref, n, square, chroma_height, delta, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op); qpix_op= qpix_avg; chroma_op= chroma_avg; } if(list1){ Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ]; mc_dir_part(h, ref, n, square, chroma_height, delta, 1, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op); } } static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op, h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg, int list0, int list1){ MpegEncContext * const s = &h->s; dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize; dest_cb += x_offset + y_offset*h->mb_uvlinesize; dest_cr += x_offset + y_offset*h->mb_uvlinesize; x_offset += 8*s->mb_x; y_offset += 8*(s->mb_y >> MB_MBAFF); if(list0 && list1){ /* don't optimize for luma-only case, since B-frames usually * use implicit weights => chroma too. */ uint8_t *tmp_cb = s->obmc_scratchpad; uint8_t *tmp_cr = s->obmc_scratchpad + 8; uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize; int refn0 = h->ref_cache[0][ scan8[n] ]; int refn1 = h->ref_cache[1][ scan8[n] ]; mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put); mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1, tmp_y, tmp_cb, tmp_cr, x_offset, y_offset, qpix_put, chroma_put); if(h->use_weight == 2){ int weight0 = h->implicit_weight[refn0][refn1]; int weight1 = 64 - weight0; luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0); chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0); chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0); }else{ luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom, h->luma_weight[0][refn0], h->luma_weight[1][refn1], h->luma_offset[0][refn0] + h->luma_offset[1][refn1]); chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom, h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0], h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]); chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom, h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1], h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]); } }else{ int list = list1 ? 1 : 0; int refn = h->ref_cache[list][ scan8[n] ]; Picture *ref= &h->ref_list[list][refn]; mc_dir_part(h, ref, n, square, chroma_height, delta, list, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put); luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom, h->luma_weight[list][refn], h->luma_offset[list][refn]); if(h->use_weight_chroma){ chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom, h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]); chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom, h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]); } } } static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, h264_weight_func *weight_op, h264_biweight_func *weight_avg, int list0, int list1){ if((h->use_weight==2 && list0 && list1 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32)) || h->use_weight==1) mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put, weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1); else mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1); } static inline void prefetch_motion(H264Context *h, int list){ /* fetch pixels for estimated mv 4 macroblocks ahead * optimized for 64byte cache lines */ MpegEncContext * const s = &h->s; const int refn = h->ref_cache[list][scan8[0]]; if(refn >= 0){ const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8; const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y; uint8_t **src= h->ref_list[list][refn].data; int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64; s->dsp.prefetch(src[0]+off, s->linesize, 4); off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64; s->dsp.prefetch(src[1]+off, src[2]-src[1], 2); } } static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put), qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg), h264_weight_func *weight_op, h264_biweight_func *weight_avg){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; const int mb_type= s->current_picture.mb_type[mb_xy]; assert(IS_INTER(mb_type)); prefetch_motion(h, 0); if(IS_16X16(mb_type)){ mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0, qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0], &weight_op[0], &weight_avg[0], IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); }else if(IS_16X8(mb_type)){ mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0, qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0], &weight_op[1], &weight_avg[1], IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4, qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0], &weight_op[1], &weight_avg[1], IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1)); }else if(IS_8X16(mb_type)){ mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0, qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], &weight_op[2], &weight_avg[2], IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1)); mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0, qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], &weight_op[2], &weight_avg[2], IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1)); }else{ int i; assert(IS_8X8(mb_type)); for(i=0; i<4; i++){ const int sub_mb_type= h->sub_mb_type[i]; const int n= 4*i; int x_offset= (i&1)<<2; int y_offset= (i&2)<<1; if(IS_SUB_8X8(sub_mb_type)){ mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1], &weight_op[3], &weight_avg[3], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); }else if(IS_SUB_8X4(sub_mb_type)){ mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1], &weight_op[4], &weight_avg[4], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2, qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1], &weight_op[4], &weight_avg[4], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); }else if(IS_SUB_4X8(sub_mb_type)){ mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], &weight_op[5], &weight_avg[5], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset, qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], &weight_op[5], &weight_avg[5], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); }else{ int j; assert(IS_SUB_4X4(sub_mb_type)); for(j=0; j<4; j++){ int sub_x_offset= x_offset + 2*(j&1); int sub_y_offset= y_offset + (j&2); mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset, qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2], &weight_op[6], &weight_avg[6], IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1)); } } } } prefetch_motion(h, 1); } static void decode_init_vlc(void){ static int done = 0; if (!done) { int i; done = 1; init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, &chroma_dc_coeff_token_len [0], 1, 1, &chroma_dc_coeff_token_bits[0], 1, 1, 1); for(i=0; i<4; i++){ init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, &coeff_token_len [i][0], 1, 1, &coeff_token_bits[i][0], 1, 1, 1); } for(i=0; i<3; i++){ init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4, &chroma_dc_total_zeros_len [i][0], 1, 1, &chroma_dc_total_zeros_bits[i][0], 1, 1, 1); } for(i=0; i<15; i++){ init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16, &total_zeros_len [i][0], 1, 1, &total_zeros_bits[i][0], 1, 1, 1); } for(i=0; i<6; i++){ init_vlc(&run_vlc[i], RUN_VLC_BITS, 7, &run_len [i][0], 1, 1, &run_bits[i][0], 1, 1, 1); } init_vlc(&run7_vlc, RUN7_VLC_BITS, 16, &run_len [6][0], 1, 1, &run_bits[6][0], 1, 1, 1); } } /** * Sets the intra prediction function pointers. */ static void init_pred_ptrs(H264Context *h){ // MpegEncContext * const s = &h->s; h->pred4x4[VERT_PRED ]= pred4x4_vertical_c; h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c; h->pred4x4[DC_PRED ]= pred4x4_dc_c; h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c; h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c; h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c; h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c; h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c; h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c; h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c; h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c; h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c; h->pred8x8l[VERT_PRED ]= pred8x8l_vertical_c; h->pred8x8l[HOR_PRED ]= pred8x8l_horizontal_c; h->pred8x8l[DC_PRED ]= pred8x8l_dc_c; h->pred8x8l[DIAG_DOWN_LEFT_PRED ]= pred8x8l_down_left_c; h->pred8x8l[DIAG_DOWN_RIGHT_PRED]= pred8x8l_down_right_c; h->pred8x8l[VERT_RIGHT_PRED ]= pred8x8l_vertical_right_c; h->pred8x8l[HOR_DOWN_PRED ]= pred8x8l_horizontal_down_c; h->pred8x8l[VERT_LEFT_PRED ]= pred8x8l_vertical_left_c; h->pred8x8l[HOR_UP_PRED ]= pred8x8l_horizontal_up_c; h->pred8x8l[LEFT_DC_PRED ]= pred8x8l_left_dc_c; h->pred8x8l[TOP_DC_PRED ]= pred8x8l_top_dc_c; h->pred8x8l[DC_128_PRED ]= pred8x8l_128_dc_c; h->pred8x8[DC_PRED8x8 ]= ff_pred8x8_dc_c; h->pred8x8[VERT_PRED8x8 ]= ff_pred8x8_vertical_c; h->pred8x8[HOR_PRED8x8 ]= ff_pred8x8_horizontal_c; h->pred8x8[PLANE_PRED8x8 ]= ff_pred8x8_plane_c; h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c; h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c; h->pred8x8[DC_128_PRED8x8 ]= ff_pred8x8_128_dc_c; h->pred16x16[DC_PRED8x8 ]= ff_pred16x16_dc_c; h->pred16x16[VERT_PRED8x8 ]= ff_pred16x16_vertical_c; h->pred16x16[HOR_PRED8x8 ]= ff_pred16x16_horizontal_c; h->pred16x16[PLANE_PRED8x8 ]= ff_pred16x16_plane_c; h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c; h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c; h->pred16x16[DC_128_PRED8x8 ]= ff_pred16x16_128_dc_c; } static void free_tables(H264Context *h){ av_freep(&h->intra4x4_pred_mode); av_freep(&h->chroma_pred_mode_table); av_freep(&h->cbp_table); av_freep(&h->mvd_table[0]); av_freep(&h->mvd_table[1]); av_freep(&h->direct_table); av_freep(&h->non_zero_count); av_freep(&h->slice_table_base); av_freep(&h->top_borders[1]); av_freep(&h->top_borders[0]); h->slice_table= NULL; av_freep(&h->mb2b_xy); av_freep(&h->mb2b8_xy); av_freep(&h->s.obmc_scratchpad); } static void init_dequant8_coeff_table(H264Context *h){ int i,q,x; const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly h->dequant8_coeff[0] = h->dequant8_buffer[0]; h->dequant8_coeff[1] = h->dequant8_buffer[1]; for(i=0; i<2; i++ ){ if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){ h->dequant8_coeff[1] = h->dequant8_buffer[0]; break; } for(q=0; q<52; q++){ int shift = ff_div6[q]; int idx = ff_rem6[q]; for(x=0; x<64; x++) h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] = ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] * h->pps.scaling_matrix8[i][x]) << shift; } } } static void init_dequant4_coeff_table(H264Context *h){ int i,j,q,x; const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly for(i=0; i<6; i++ ){ h->dequant4_coeff[i] = h->dequant4_buffer[i]; for(j=0; jpps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){ h->dequant4_coeff[i] = h->dequant4_buffer[j]; break; } } if(jdequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] = ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] * h->pps.scaling_matrix4[i][x]) << shift; } } } static void init_dequant_tables(H264Context *h){ int i,x; init_dequant4_coeff_table(h); if(h->pps.transform_8x8_mode) init_dequant8_coeff_table(h); if(h->sps.transform_bypass){ for(i=0; i<6; i++) for(x=0; x<16; x++) h->dequant4_coeff[i][0][x] = 1<<6; if(h->pps.transform_8x8_mode) for(i=0; i<2; i++) for(x=0; x<64; x++) h->dequant8_coeff[i][0][x] = 1<<6; } } /** * allocates tables. * needs width/height */ static int alloc_tables(H264Context *h){ MpegEncContext * const s = &h->s; const int big_mb_num= s->mb_stride * (s->mb_height+1); int x,y; CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t)) CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t)) CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t)) CHECKED_ALLOCZ(h->top_borders[0] , s->mb_width * (16+8+8) * sizeof(uint8_t)) CHECKED_ALLOCZ(h->top_borders[1] , s->mb_width * (16+8+8) * sizeof(uint8_t)) CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t)) if( h->pps.cabac ) { CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t)) CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t)); CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t)); CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t)); } memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t)); h->slice_table= h->slice_table_base + s->mb_stride*2 + 1; CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t)); CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t)); for(y=0; ymb_height; y++){ for(x=0; xmb_width; x++){ const int mb_xy= x + y*s->mb_stride; const int b_xy = 4*x + 4*y*h->b_stride; const int b8_xy= 2*x + 2*y*h->b8_stride; h->mb2b_xy [mb_xy]= b_xy; h->mb2b8_xy[mb_xy]= b8_xy; } } s->obmc_scratchpad = NULL; if(!h->dequant4_coeff[0]) init_dequant_tables(h); return 0; fail: free_tables(h); return -1; } static void common_init(H264Context *h){ MpegEncContext * const s = &h->s; s->width = s->avctx->width; s->height = s->avctx->height; s->codec_id= s->avctx->codec->id; init_pred_ptrs(h); h->dequant_coeff_pps= -1; s->unrestricted_mv=1; s->decode=1; //FIXME memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t)); memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t)); } static int decode_init(AVCodecContext *avctx){ H264Context *h= avctx->priv_data; MpegEncContext * const s = &h->s; MPV_decode_defaults(s); s->avctx = avctx; common_init(h); s->out_format = FMT_H264; s->workaround_bugs= avctx->workaround_bugs; // set defaults // s->decode_mb= ff_h263_decode_mb; s->low_delay= 1; avctx->pix_fmt= PIX_FMT_YUV420P; decode_init_vlc(); if(avctx->extradata_size > 0 && avctx->extradata && *(char *)avctx->extradata == 1){ h->is_avc = 1; h->got_avcC = 0; } else { h->is_avc = 0; } return 0; } static int frame_start(H264Context *h){ MpegEncContext * const s = &h->s; int i; if(MPV_frame_start(s, s->avctx) < 0) return -1; ff_er_frame_start(s); assert(s->linesize && s->uvlinesize); for(i=0; i<16; i++){ h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3); h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3); } for(i=0; i<4; i++){ h->block_offset[16+i]= h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3); h->block_offset[24+16+i]= h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3); } /* can't be in alloc_tables because linesize isn't known there. * FIXME: redo bipred weight to not require extra buffer? */ if(!s->obmc_scratchpad) s->obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize); /* some macroblocks will be accessed before they're available */ if(FRAME_MBAFF) memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t)); // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1; return 0; } static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){ MpegEncContext * const s = &h->s; int i; src_y -= linesize; src_cb -= uvlinesize; src_cr -= uvlinesize; // There are two lines saved, the line above the the top macroblock of a pair, // and the line above the bottom macroblock h->left_border[0]= h->top_borders[0][s->mb_x][15]; for(i=1; i<17; i++){ h->left_border[i]= src_y[15+i* linesize]; } *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize); *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize); if(!(s->flags&CODEC_FLAG_GRAY)){ h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7]; h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7]; for(i=1; i<9; i++){ h->left_border[i+17 ]= src_cb[7+i*uvlinesize]; h->left_border[i+17+9]= src_cr[7+i*uvlinesize]; } *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize); *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize); } } static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){ MpegEncContext * const s = &h->s; int temp8, i; uint64_t temp64; int deblock_left = (s->mb_x > 0); int deblock_top = (s->mb_y > 0); src_y -= linesize + 1; src_cb -= uvlinesize + 1; src_cr -= uvlinesize + 1; #define XCHG(a,b,t,xchg)\ t= a;\ if(xchg)\ a= b;\ b= t; if(deblock_left){ for(i = !deblock_top; i<17; i++){ XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg); } } if(deblock_top){ XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg); XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1); if(s->mb_x+1 < s->mb_width){ XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1); } } if(!(s->flags&CODEC_FLAG_GRAY)){ if(deblock_left){ for(i = !deblock_top; i<9; i++){ XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg); XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg); } } if(deblock_top){ XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1); XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1); } } } static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){ MpegEncContext * const s = &h->s; int i; src_y -= 2 * linesize; src_cb -= 2 * uvlinesize; src_cr -= 2 * uvlinesize; // There are two lines saved, the line above the the top macroblock of a pair, // and the line above the bottom macroblock h->left_border[0]= h->top_borders[0][s->mb_x][15]; h->left_border[1]= h->top_borders[1][s->mb_x][15]; for(i=2; i<34; i++){ h->left_border[i]= src_y[15+i* linesize]; } *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize); *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize); *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize); *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize); if(!(s->flags&CODEC_FLAG_GRAY)){ h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7]; h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7]; h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7]; h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7]; for(i=2; i<18; i++){ h->left_border[i+34 ]= src_cb[7+i*uvlinesize]; h->left_border[i+34+18]= src_cr[7+i*uvlinesize]; } *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize); *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize); *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize); *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize); } } static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){ MpegEncContext * const s = &h->s; int temp8, i; uint64_t temp64; int deblock_left = (s->mb_x > 0); int deblock_top = (s->mb_y > 1); tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize); src_y -= 2 * linesize + 1; src_cb -= 2 * uvlinesize + 1; src_cr -= 2 * uvlinesize + 1; #define XCHG(a,b,t,xchg)\ t= a;\ if(xchg)\ a= b;\ b= t; if(deblock_left){ for(i = (!deblock_top)<<1; i<34; i++){ XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg); } } if(deblock_top){ XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg); XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1); XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg); XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1); if(s->mb_x+1 < s->mb_width){ XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1); XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1); } } if(!(s->flags&CODEC_FLAG_GRAY)){ if(deblock_left){ for(i = (!deblock_top) << 1; i<18; i++){ XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg); XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg); } } if(deblock_top){ XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1); XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1); XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1); XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1); } } } static void av_always_inline hl_decode_mb_internal(H264Context *h, int simple){ MpegEncContext * const s = &h->s; const int mb_x= s->mb_x; const int mb_y= s->mb_y; const int mb_xy= mb_x + mb_y*s->mb_stride; const int mb_type= s->current_picture.mb_type[mb_xy]; uint8_t *dest_y, *dest_cb, *dest_cr; int linesize, uvlinesize /*dct_offset*/; int i; int *block_offset = &h->block_offset[0]; const unsigned int bottom = mb_y & 1; const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264); void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride); void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride); dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16; dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8; dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8; s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4); s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2); if (!simple && MB_FIELD) { linesize = h->mb_linesize = s->linesize * 2; uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2; block_offset = &h->block_offset[24]; if(mb_y&1){ //FIXME move out of this func? dest_y -= s->linesize*15; dest_cb-= s->uvlinesize*7; dest_cr-= s->uvlinesize*7; } if(FRAME_MBAFF) { int list; for(list=0; listlist_count; list++){ if(!USES_LIST(mb_type, list)) continue; if(IS_16X16(mb_type)){ int8_t *ref = &h->ref_cache[list][scan8[0]]; fill_rectangle(ref, 4, 4, 8, 16+*ref^(s->mb_y&1), 1); }else{ for(i=0; i<16; i+=4){ //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ? int ref = h->ref_cache[list][scan8[i]]; if(ref >= 0) fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, 16+ref^(s->mb_y&1), 1); } } } } } else { linesize = h->mb_linesize = s->linesize; uvlinesize = h->mb_uvlinesize = s->uvlinesize; // dct_offset = s->linesize * 16; } if(transform_bypass){ idct_dc_add = idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4; }else if(IS_8x8DCT(mb_type)){ idct_dc_add = s->dsp.h264_idct8_dc_add; idct_add = s->dsp.h264_idct8_add; }else{ idct_dc_add = s->dsp.h264_idct_dc_add; idct_add = s->dsp.h264_idct_add; } if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type) && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){ int mbt_y = mb_y&~1; uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16; uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8; uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8; xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1); } if (!simple && IS_INTRA_PCM(mb_type)) { unsigned int x, y; // The pixels are stored in h->mb array in the same order as levels, // copy them in output in the correct order. for(i=0; i<16; i++) { for (y=0; y<4; y++) { for (x=0; x<4; x++) { *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x]; } } } for(i=16; i<16+4; i++) { for (y=0; y<4; y++) { for (x=0; x<4; x++) { *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x]; } } } for(i=20; i<20+4; i++) { for (y=0; y<4; y++) { for (x=0; x<4; x++) { *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x]; } } } } else { if(IS_INTRA(mb_type)){ if(h->deblocking_filter && (simple || !FRAME_MBAFF)) xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1); if(simple || !(s->flags&CODEC_FLAG_GRAY)){ h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize); h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize); } if(IS_INTRA4x4(mb_type)){ if(simple || !s->encoding){ if(IS_8x8DCT(mb_type)){ for(i=0; i<16; i+=4){ uint8_t * const ptr= dest_y + block_offset[i]; const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ]; const int nnz = h->non_zero_count_cache[ scan8[i] ]; h->pred8x8l[ dir ](ptr, (h->topleft_samples_available<topright_samples_available<mb[i*16]) idct_dc_add(ptr, h->mb + i*16, linesize); else idct_add(ptr, h->mb + i*16, linesize); } } }else for(i=0; i<16; i++){ uint8_t * const ptr= dest_y + block_offset[i]; uint8_t *topright; const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ]; int nnz, tr; if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){ const int topright_avail= (h->topright_samples_available<pred4x4[ dir ](ptr, topright, linesize); nnz = h->non_zero_count_cache[ scan8[i] ]; if(nnz){ if(is_h264){ if(nnz == 1 && h->mb[i*16]) idct_dc_add(ptr, h->mb + i*16, linesize); else idct_add(ptr, h->mb + i*16, linesize); }else svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0); } } } }else{ h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize); if(is_h264){ if(!transform_bypass) h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[IS_INTRA(mb_type) ? 0:3][s->qscale][0]); }else svq3_luma_dc_dequant_idct_c(h->mb, s->qscale); } if(h->deblocking_filter && (simple || !FRAME_MBAFF)) xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0); }else if(is_h264){ hl_motion(h, dest_y, dest_cb, dest_cr, s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab, s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab, s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab); } if(!IS_INTRA4x4(mb_type)){ if(is_h264){ if(IS_INTRA16x16(mb_type)){ for(i=0; i<16; i++){ if(h->non_zero_count_cache[ scan8[i] ]) idct_add(dest_y + block_offset[i], h->mb + i*16, linesize); else if(h->mb[i*16]) idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize); } }else{ const int di = IS_8x8DCT(mb_type) ? 4 : 1; for(i=0; i<16; i+=di){ int nnz = h->non_zero_count_cache[ scan8[i] ]; if(nnz){ if(nnz==1 && h->mb[i*16]) idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize); else idct_add(dest_y + block_offset[i], h->mb + i*16, linesize); } } } }else{ for(i=0; i<16; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below uint8_t * const ptr= dest_y + block_offset[i]; svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0); } } } } if(simple || !(s->flags&CODEC_FLAG_GRAY)){ uint8_t *dest[2] = {dest_cb, dest_cr}; if(transform_bypass){ idct_add = idct_dc_add = s->dsp.add_pixels4; }else{ idct_add = s->dsp.h264_idct_add; idct_dc_add = s->dsp.h264_idct_dc_add; chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp][0]); chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp][0]); } if(is_h264){ for(i=16; i<16+8; i++){ if(h->non_zero_count_cache[ scan8[i] ]) idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize); else if(h->mb[i*16]) idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize); } }else{ for(i=16; i<16+8; i++){ if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i]; svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2); } } } } } if(h->deblocking_filter) { if (!simple && FRAME_MBAFF) { //FIXME try deblocking one mb at a time? // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border const int mb_y = s->mb_y - 1; uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr; const int mb_xy= mb_x + mb_y*s->mb_stride; const int mb_type_top = s->current_picture.mb_type[mb_xy]; const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride]; if (!bottom) return; pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16; pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8; pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8; if(IS_INTRA(mb_type_top | mb_type_bottom)) xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0); backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize); // deblock a pair // top s->mb_y--; tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y); fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mb_xy]); filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize); // bottom s->mb_y++; tprintf(h->s.avctx, "call mbaff filter_mb\n"); fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mb_xy+s->mb_stride]); filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } else { tprintf(h->s.avctx, "call filter_mb\n"); backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize); fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } } } /** * Process a macroblock; this case avoids checks for expensive uncommon cases. */ static void hl_decode_mb_simple(H264Context *h){ hl_decode_mb_internal(h, 1); } /** * Process a macroblock; this handles edge cases, such as interlacing. */ static void av_noinline hl_decode_mb_complex(H264Context *h){ hl_decode_mb_internal(h, 0); } static void hl_decode_mb(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_x= s->mb_x; const int mb_y= s->mb_y; const int mb_xy= mb_x + mb_y*s->mb_stride; const int mb_type= s->current_picture.mb_type[mb_xy]; int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 || (s->flags&CODEC_FLAG_GRAY) || s->encoding; if(!s->decode) return; if (is_complex) hl_decode_mb_complex(h); else hl_decode_mb_simple(h); } /** * fills the default_ref_list. */ static int fill_default_ref_list(H264Context *h){ MpegEncContext * const s = &h->s; int i; int smallest_poc_greater_than_current = -1; Picture sorted_short_ref[32]; if(h->slice_type==B_TYPE){ int out_i; int limit= INT_MIN; /* sort frame according to poc in B slice */ for(out_i=0; out_ishort_ref_count; out_i++){ int best_i=INT_MIN; int best_poc=INT_MAX; for(i=0; ishort_ref_count; i++){ const int poc= h->short_ref[i]->poc; if(poc > limit && poc < best_poc){ best_poc= poc; best_i= i; } } assert(best_i != INT_MIN); limit= best_poc; sorted_short_ref[out_i]= *h->short_ref[best_i]; tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num); if (-1 == smallest_poc_greater_than_current) { if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) { smallest_poc_greater_than_current = out_i; } } } } if(s->picture_structure == PICT_FRAME){ if(h->slice_type==B_TYPE){ int list; tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current); // find the largest poc for(list=0; list<2; list++){ int index = 0; int j= -99; int step= list ? -1 : 1; for(i=0; ishort_ref_count && index < h->ref_count[list]; i++, j+=step) { while(j<0 || j>= h->short_ref_count){ if(j != -99 && step == (list ? -1 : 1)) return -1; step = -step; j= smallest_poc_greater_than_current + (step>>1); } if(sorted_short_ref[j].reference != 3) continue; h->default_ref_list[list][index ]= sorted_short_ref[j]; h->default_ref_list[list][index++].pic_id= sorted_short_ref[j].frame_num; } for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){ if(h->long_ref[i] == NULL) continue; if(h->long_ref[i]->reference != 3) continue; h->default_ref_list[ list ][index ]= *h->long_ref[i]; h->default_ref_list[ list ][index++].pic_id= i;; } if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){ // swap the two first elements of L1 when // L0 and L1 are identical Picture temp= h->default_ref_list[1][0]; h->default_ref_list[1][0] = h->default_ref_list[1][1]; h->default_ref_list[1][1] = temp; } if(index < h->ref_count[ list ]) memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index)); } }else{ int index=0; for(i=0; ishort_ref_count; i++){ if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit h->default_ref_list[0][index ]= *h->short_ref[i]; h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num; } for(i = 0; i < 16; i++){ if(h->long_ref[i] == NULL) continue; if(h->long_ref[i]->reference != 3) continue; h->default_ref_list[0][index ]= *h->long_ref[i]; h->default_ref_list[0][index++].pic_id= i;; } if(index < h->ref_count[0]) memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index)); } }else{ //FIELD if(h->slice_type==B_TYPE){ }else{ //FIXME second field balh } } #ifdef TRACE for (i=0; iref_count[0]; i++) { tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]); } if(h->slice_type==B_TYPE){ for (i=0; iref_count[1]; i++) { tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]); } } #endif return 0; } static void print_short_term(H264Context *h); static void print_long_term(H264Context *h); static int decode_ref_pic_list_reordering(H264Context *h){ MpegEncContext * const s = &h->s; int list, index; print_short_term(h); print_long_term(h); if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move before func for(list=0; listlist_count; list++){ memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]); if(get_bits1(&s->gb)){ int pred= h->curr_pic_num; for(index=0; ; index++){ unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb); unsigned int pic_id; int i; Picture *ref = NULL; if(reordering_of_pic_nums_idc==3) break; if(index >= h->ref_count[list]){ av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n"); return -1; } if(reordering_of_pic_nums_idc<3){ if(reordering_of_pic_nums_idc<2){ const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1; if(abs_diff_pic_num >= h->max_pic_num){ av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n"); return -1; } if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num; else pred+= abs_diff_pic_num; pred &= h->max_pic_num - 1; for(i= h->short_ref_count-1; i>=0; i--){ ref = h->short_ref[i]; assert(ref->reference == 3); assert(!ref->long_ref); if(ref->data[0] != NULL && ref->frame_num == pred && ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer break; } if(i>=0) ref->pic_id= ref->frame_num; }else{ pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx if(pic_id>31){ av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n"); return -1; } ref = h->long_ref[pic_id]; if(ref){ ref->pic_id= pic_id; assert(ref->reference == 3); assert(ref->long_ref); i=0; }else{ i=-1; } } if (i < 0) { av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n"); memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME } else { for(i=index; i+1ref_count[list]; i++){ if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id) break; } for(; i > index; i--){ h->ref_list[list][i]= h->ref_list[list][i-1]; } h->ref_list[list][index]= *ref; } }else{ av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n"); return -1; } } } } for(list=0; listlist_count; list++){ for(index= 0; index < h->ref_count[list]; index++){ if(!h->ref_list[list][index].data[0]) h->ref_list[list][index]= s->current_picture; } } if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred) direct_dist_scale_factor(h); direct_ref_list_init(h); return 0; } static void fill_mbaff_ref_list(H264Context *h){ int list, i, j; for(list=0; list<2; list++){ //FIXME try list_count for(i=0; iref_count[list]; i++){ Picture *frame = &h->ref_list[list][i]; Picture *field = &h->ref_list[list][16+2*i]; field[0] = *frame; for(j=0; j<3; j++) field[0].linesize[j] <<= 1; field[1] = field[0]; for(j=0; j<3; j++) field[1].data[j] += frame->linesize[j]; h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i]; h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i]; for(j=0; j<2; j++){ h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j]; h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j]; } } } for(j=0; jref_count[1]; j++){ for(i=0; iref_count[0]; i++) h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i]; memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight)); memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight)); } } static int pred_weight_table(H264Context *h){ MpegEncContext * const s = &h->s; int list, i; int luma_def, chroma_def; h->use_weight= 0; h->use_weight_chroma= 0; h->luma_log2_weight_denom= get_ue_golomb(&s->gb); h->chroma_log2_weight_denom= get_ue_golomb(&s->gb); luma_def = 1<luma_log2_weight_denom; chroma_def = 1<chroma_log2_weight_denom; for(list=0; list<2; list++){ for(i=0; iref_count[list]; i++){ int luma_weight_flag, chroma_weight_flag; luma_weight_flag= get_bits1(&s->gb); if(luma_weight_flag){ h->luma_weight[list][i]= get_se_golomb(&s->gb); h->luma_offset[list][i]= get_se_golomb(&s->gb); if( h->luma_weight[list][i] != luma_def || h->luma_offset[list][i] != 0) h->use_weight= 1; }else{ h->luma_weight[list][i]= luma_def; h->luma_offset[list][i]= 0; } chroma_weight_flag= get_bits1(&s->gb); if(chroma_weight_flag){ int j; for(j=0; j<2; j++){ h->chroma_weight[list][i][j]= get_se_golomb(&s->gb); h->chroma_offset[list][i][j]= get_se_golomb(&s->gb); if( h->chroma_weight[list][i][j] != chroma_def || h->chroma_offset[list][i][j] != 0) h->use_weight_chroma= 1; } }else{ int j; for(j=0; j<2; j++){ h->chroma_weight[list][i][j]= chroma_def; h->chroma_offset[list][i][j]= 0; } } } if(h->slice_type != B_TYPE) break; } h->use_weight= h->use_weight || h->use_weight_chroma; return 0; } static void implicit_weight_table(H264Context *h){ MpegEncContext * const s = &h->s; int ref0, ref1; int cur_poc = s->current_picture_ptr->poc; if( h->ref_count[0] == 1 && h->ref_count[1] == 1 && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){ h->use_weight= 0; h->use_weight_chroma= 0; return; } h->use_weight= 2; h->use_weight_chroma= 2; h->luma_log2_weight_denom= 5; h->chroma_log2_weight_denom= 5; for(ref0=0; ref0 < h->ref_count[0]; ref0++){ int poc0 = h->ref_list[0][ref0].poc; for(ref1=0; ref1 < h->ref_count[1]; ref1++){ int poc1 = h->ref_list[1][ref1].poc; int td = av_clip(poc1 - poc0, -128, 127); if(td){ int tb = av_clip(cur_poc - poc0, -128, 127); int tx = (16384 + (FFABS(td) >> 1)) / td; int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2; if(dist_scale_factor < -64 || dist_scale_factor > 128) h->implicit_weight[ref0][ref1] = 32; else h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor; }else h->implicit_weight[ref0][ref1] = 32; } } } static inline void unreference_pic(H264Context *h, Picture *pic){ int i; pic->reference=0; if(pic == h->delayed_output_pic) pic->reference=1; else{ for(i = 0; h->delayed_pic[i]; i++) if(pic == h->delayed_pic[i]){ pic->reference=1; break; } } } /** * instantaneous decoder refresh. */ static void idr(H264Context *h){ int i; for(i=0; i<16; i++){ if (h->long_ref[i] != NULL) { unreference_pic(h, h->long_ref[i]); h->long_ref[i]= NULL; } } h->long_ref_count=0; for(i=0; ishort_ref_count; i++){ unreference_pic(h, h->short_ref[i]); h->short_ref[i]= NULL; } h->short_ref_count=0; } /* forget old pics after a seek */ static void flush_dpb(AVCodecContext *avctx){ H264Context *h= avctx->priv_data; int i; for(i=0; i<16; i++) { if(h->delayed_pic[i]) h->delayed_pic[i]->reference= 0; h->delayed_pic[i]= NULL; } if(h->delayed_output_pic) h->delayed_output_pic->reference= 0; h->delayed_output_pic= NULL; idr(h); if(h->s.current_picture_ptr) h->s.current_picture_ptr->reference= 0; } /** * * @return the removed picture or NULL if an error occurs */ static Picture * remove_short(H264Context *h, int frame_num){ MpegEncContext * const s = &h->s; int i; if(s->avctx->debug&FF_DEBUG_MMCO) av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count); for(i=0; ishort_ref_count; i++){ Picture *pic= h->short_ref[i]; if(s->avctx->debug&FF_DEBUG_MMCO) av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic); if(pic->frame_num == frame_num){ h->short_ref[i]= NULL; memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*)); h->short_ref_count--; return pic; } } return NULL; } /** * * @return the removed picture or NULL if an error occurs */ static Picture * remove_long(H264Context *h, int i){ Picture *pic; pic= h->long_ref[i]; h->long_ref[i]= NULL; if(pic) h->long_ref_count--; return pic; } /** * print short term list */ static void print_short_term(H264Context *h) { uint32_t i; if(h->s.avctx->debug&FF_DEBUG_MMCO) { av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n"); for(i=0; ishort_ref_count; i++){ Picture *pic= h->short_ref[i]; av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]); } } } /** * print long term list */ static void print_long_term(H264Context *h) { uint32_t i; if(h->s.avctx->debug&FF_DEBUG_MMCO) { av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n"); for(i = 0; i < 16; i++){ Picture *pic= h->long_ref[i]; if (pic) { av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]); } } } } /** * Executes the reference picture marking (memory management control operations). */ static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){ MpegEncContext * const s = &h->s; int i, j; int current_is_long=0; Picture *pic; if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0) av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n"); for(i=0; iavctx->debug&FF_DEBUG_MMCO) av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index); switch(mmco[i].opcode){ case MMCO_SHORT2UNUSED: pic= remove_short(h, mmco[i].short_frame_num); if(pic) unreference_pic(h, pic); else if(s->avctx->debug&FF_DEBUG_MMCO) av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_short() failure\n"); break; case MMCO_SHORT2LONG: pic= remove_long(h, mmco[i].long_index); if(pic) unreference_pic(h, pic); h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num); if (h->long_ref[ mmco[i].long_index ]){ h->long_ref[ mmco[i].long_index ]->long_ref=1; h->long_ref_count++; } break; case MMCO_LONG2UNUSED: pic= remove_long(h, mmco[i].long_index); if(pic) unreference_pic(h, pic); else if(s->avctx->debug&FF_DEBUG_MMCO) av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: remove_long() failure\n"); break; case MMCO_LONG: pic= remove_long(h, mmco[i].long_index); if(pic) unreference_pic(h, pic); h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr; h->long_ref[ mmco[i].long_index ]->long_ref=1; h->long_ref_count++; current_is_long=1; break; case MMCO_SET_MAX_LONG: assert(mmco[i].long_index <= 16); // just remove the long term which index is greater than new max for(j = mmco[i].long_index; j<16; j++){ pic = remove_long(h, j); if (pic) unreference_pic(h, pic); } break; case MMCO_RESET: while(h->short_ref_count){ pic= remove_short(h, h->short_ref[0]->frame_num); if(pic) unreference_pic(h, pic); } for(j = 0; j < 16; j++) { pic= remove_long(h, j); if(pic) unreference_pic(h, pic); } break; default: assert(0); } } if(!current_is_long){ pic= remove_short(h, s->current_picture_ptr->frame_num); if(pic){ unreference_pic(h, pic); av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n"); } if(h->short_ref_count) memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*)); h->short_ref[0]= s->current_picture_ptr; h->short_ref[0]->long_ref=0; h->short_ref_count++; } print_short_term(h); print_long_term(h); return 0; } static int decode_ref_pic_marking(H264Context *h){ MpegEncContext * const s = &h->s; int i; if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields s->broken_link= get_bits1(&s->gb) -1; h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx if(h->mmco[0].long_index == -1) h->mmco_index= 0; else{ h->mmco[0].opcode= MMCO_LONG; h->mmco_index= 1; } }else{ if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag for(i= 0; igb);; h->mmco[i].opcode= opcode; if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){ h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<sps.log2_max_frame_num)-1); //FIXME fields /* if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){ av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco); return -1; }*/ } if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){ unsigned int long_index= get_ue_golomb(&s->gb); if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ long_index >= 16){ av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode); return -1; } h->mmco[i].long_index= long_index; } if(opcode > (unsigned)MMCO_LONG){ av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode); return -1; } if(opcode == MMCO_END) break; } h->mmco_index= i; }else{ assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count); if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields h->mmco[0].opcode= MMCO_SHORT2UNUSED; h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num; h->mmco_index= 1; }else h->mmco_index= 0; } } return 0; } static int init_poc(H264Context *h){ MpegEncContext * const s = &h->s; const int max_frame_num= 1<sps.log2_max_frame_num; int field_poc[2]; if(h->nal_unit_type == NAL_IDR_SLICE){ h->frame_num_offset= 0; }else{ if(h->frame_num < h->prev_frame_num) h->frame_num_offset= h->prev_frame_num_offset + max_frame_num; else h->frame_num_offset= h->prev_frame_num_offset; } if(h->sps.poc_type==0){ const int max_poc_lsb= 1<sps.log2_max_poc_lsb; if(h->nal_unit_type == NAL_IDR_SLICE){ h->prev_poc_msb= h->prev_poc_lsb= 0; } if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2) h->poc_msb = h->prev_poc_msb + max_poc_lsb; else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2) h->poc_msb = h->prev_poc_msb - max_poc_lsb; else h->poc_msb = h->prev_poc_msb; //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb); field_poc[0] = field_poc[1] = h->poc_msb + h->poc_lsb; if(s->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc_bottom; }else if(h->sps.poc_type==1){ int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc; int i; if(h->sps.poc_cycle_length != 0) abs_frame_num = h->frame_num_offset + h->frame_num; else abs_frame_num = 0; if(h->nal_ref_idc==0 && abs_frame_num > 0) abs_frame_num--; expected_delta_per_poc_cycle = 0; for(i=0; i < h->sps.poc_cycle_length; i++) expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse if(abs_frame_num > 0){ int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length; int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length; expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle; for(i = 0; i <= frame_num_in_poc_cycle; i++) expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ]; } else expectedpoc = 0; if(h->nal_ref_idc == 0) expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic; field_poc[0] = expectedpoc + h->delta_poc[0]; field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field; if(s->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc[1]; }else{ int poc; if(h->nal_unit_type == NAL_IDR_SLICE){ poc= 0; }else{ if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num); else poc= 2*(h->frame_num_offset + h->frame_num) - 1; } field_poc[0]= poc; field_poc[1]= poc; } if(s->picture_structure != PICT_BOTTOM_FIELD) s->current_picture_ptr->field_poc[0]= field_poc[0]; if(s->picture_structure != PICT_TOP_FIELD) s->current_picture_ptr->field_poc[1]= field_poc[1]; if(s->picture_structure == PICT_FRAME) // FIXME field pix? s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]); return 0; } /** * decodes a slice header. * this will allso call MPV_common_init() and frame_start() as needed */ static int decode_slice_header(H264Context *h){ MpegEncContext * const s = &h->s; unsigned int first_mb_in_slice; unsigned int pps_id; int num_ref_idx_active_override_flag; static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE}; unsigned int slice_type, tmp; int default_ref_list_done = 0; s->current_picture.reference= h->nal_ref_idc != 0; s->dropable= h->nal_ref_idc == 0; first_mb_in_slice= get_ue_golomb(&s->gb); if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){ h->slice_num = 0; s->current_picture_ptr= NULL; } slice_type= get_ue_golomb(&s->gb); if(slice_type > 9){ av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y); return -1; } if(slice_type > 4){ slice_type -= 5; h->slice_type_fixed=1; }else h->slice_type_fixed=0; slice_type= slice_type_map[ slice_type ]; if (slice_type == I_TYPE || (h->slice_num != 0 && slice_type == h->slice_type) ) { default_ref_list_done = 1; } h->slice_type= slice_type; s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though pps_id= get_ue_golomb(&s->gb); if(pps_id>=MAX_PPS_COUNT){ av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n"); return -1; } h->pps= h->pps_buffer[pps_id]; if(h->pps.slice_group_count == 0){ av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n"); return -1; } h->sps= h->sps_buffer[ h->pps.sps_id ]; if(h->sps.log2_max_frame_num == 0){ av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n"); return -1; } if(h->dequant_coeff_pps != pps_id){ h->dequant_coeff_pps = pps_id; init_dequant_tables(h); } s->mb_width= h->sps.mb_width; s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag); h->b_stride= s->mb_width*4; h->b8_stride= s->mb_width*2; s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right ); if(h->sps.frame_mbs_only_flag) s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom); else s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck if (s->context_initialized && ( s->width != s->avctx->width || s->height != s->avctx->height)) { free_tables(h); MPV_common_end(s); } if (!s->context_initialized) { if (MPV_common_init(s) < 0) return -1; if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t)); memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t)); }else{ int i; for(i=0; i<16; i++){ #define T(x) (x>>2) | ((x<<2) & 0xF) h->zigzag_scan[i] = T(zigzag_scan[i]); h-> field_scan[i] = T( field_scan[i]); #undef T } } if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){ memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t)); memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t)); memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t)); memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t)); }else{ int i; for(i=0; i<64; i++){ #define T(x) (x>>3) | ((x&7)<<3) h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]); h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]); h->field_scan8x8[i] = T(field_scan8x8[i]); h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]); #undef T } } if(h->sps.transform_bypass){ //FIXME same ugly h->zigzag_scan_q0 = zigzag_scan; h->zigzag_scan8x8_q0 = zigzag_scan8x8; h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc; h->field_scan_q0 = field_scan; h->field_scan8x8_q0 = field_scan8x8; h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc; }else{ h->zigzag_scan_q0 = h->zigzag_scan; h->zigzag_scan8x8_q0 = h->zigzag_scan8x8; h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc; h->field_scan_q0 = h->field_scan; h->field_scan8x8_q0 = h->field_scan8x8; h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc; } alloc_tables(h); s->avctx->width = s->width; s->avctx->height = s->height; s->avctx->sample_aspect_ratio= h->sps.sar; if(!s->avctx->sample_aspect_ratio.den) s->avctx->sample_aspect_ratio.den = 1; if(h->sps.timing_info_present_flag){ s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale}; if(h->x264_build > 0 && h->x264_build < 44) s->avctx->time_base.den *= 2; av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den, s->avctx->time_base.num, s->avctx->time_base.den, 1<<30); } } if(h->slice_num == 0){ if(frame_start(h) < 0) return -1; } s->current_picture_ptr->frame_num= //FIXME frame_num cleanup h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num); h->mb_mbaff = 0; h->mb_aff_frame = 0; if(h->sps.frame_mbs_only_flag){ s->picture_structure= PICT_FRAME; }else{ if(get_bits1(&s->gb)) { //field_pic_flag s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag av_log(h->s.avctx, AV_LOG_ERROR, "PAFF interlacing is not implemented\n"); } else { s->picture_structure= PICT_FRAME; h->mb_aff_frame = h->sps.mb_aff; } } assert(s->mb_num == s->mb_width * s->mb_height); if(first_mb_in_slice << h->mb_aff_frame >= s->mb_num || first_mb_in_slice >= s->mb_num){ av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n"); return -1; } s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width; s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << h->mb_aff_frame; assert(s->mb_y < s->mb_height); if(s->picture_structure==PICT_FRAME){ h->curr_pic_num= h->frame_num; h->max_pic_num= 1<< h->sps.log2_max_frame_num; }else{ h->curr_pic_num= 2*h->frame_num; h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1); } if(h->nal_unit_type == NAL_IDR_SLICE){ get_ue_golomb(&s->gb); /* idr_pic_id */ } if(h->sps.poc_type==0){ h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb); if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){ h->delta_poc_bottom= get_se_golomb(&s->gb); } } if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){ h->delta_poc[0]= get_se_golomb(&s->gb); if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME) h->delta_poc[1]= get_se_golomb(&s->gb); } init_poc(h); if(h->pps.redundant_pic_cnt_present){ h->redundant_pic_count= get_ue_golomb(&s->gb); } //set defaults, might be overriden a few line later h->ref_count[0]= h->pps.ref_count[0]; h->ref_count[1]= h->pps.ref_count[1]; if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){ if(h->slice_type == B_TYPE){ h->direct_spatial_mv_pred= get_bits1(&s->gb); if(h->sps.mb_aff && h->direct_spatial_mv_pred) av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + spatial direct mode is not implemented\n"); } num_ref_idx_active_override_flag= get_bits1(&s->gb); if(num_ref_idx_active_override_flag){ h->ref_count[0]= get_ue_golomb(&s->gb) + 1; if(h->slice_type==B_TYPE) h->ref_count[1]= get_ue_golomb(&s->gb) + 1; if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){ av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n"); h->ref_count[0]= h->ref_count[1]= 1; return -1; } } if(h->slice_type == B_TYPE) h->list_count= 2; else h->list_count= 1; }else h->list_count= 0; if(!default_ref_list_done){ fill_default_ref_list(h); } if(decode_ref_pic_list_reordering(h) < 0) return -1; if( (h->pps.weighted_pred && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE )) || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) ) pred_weight_table(h); else if(h->pps.weighted_bipred_idc==2 && h->slice_type==B_TYPE) implicit_weight_table(h); else h->use_weight = 0; if(s->current_picture.reference) decode_ref_pic_marking(h); if(FRAME_MBAFF) fill_mbaff_ref_list(h); if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE && h->pps.cabac ){ tmp = get_ue_golomb(&s->gb); if(tmp > 2){ av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n"); return -1; } h->cabac_init_idc= tmp; } h->last_qscale_diff = 0; tmp = h->pps.init_qp + get_se_golomb(&s->gb); if(tmp>51){ av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp); return -1; } s->qscale= tmp; h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale); //FIXME qscale / qp ... stuff if(h->slice_type == SP_TYPE){ get_bits1(&s->gb); /* sp_for_switch_flag */ } if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){ get_se_golomb(&s->gb); /* slice_qs_delta */ } h->deblocking_filter = 1; h->slice_alpha_c0_offset = 0; h->slice_beta_offset = 0; if( h->pps.deblocking_filter_parameters_present ) { tmp= get_ue_golomb(&s->gb); if(tmp > 2){ av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp); return -1; } h->deblocking_filter= tmp; if(h->deblocking_filter < 2) h->deblocking_filter^= 1; // 1<->0 if( h->deblocking_filter ) { h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1; h->slice_beta_offset = get_se_golomb(&s->gb) << 1; } } if( s->avctx->skip_loop_filter >= AVDISCARD_ALL ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type != I_TYPE) ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type == B_TYPE) ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0)) h->deblocking_filter= 0; #if 0 //FMO if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5) slice_group_change_cycle= get_bits(&s->gb, ?); #endif h->slice_num++; h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; h->emu_edge_height= FRAME_MBAFF ? 0 : h->emu_edge_width; if(s->avctx->debug&FF_DEBUG_PICT_INFO){ av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s\n", h->slice_num, (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"), first_mb_in_slice, av_get_pict_type_char(h->slice_type), pps_id, h->frame_num, s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1], h->ref_count[0], h->ref_count[1], s->qscale, h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2, h->use_weight, h->use_weight==1 && h->use_weight_chroma ? "c" : "" ); } if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !s->current_picture.reference){ s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab; s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab; }else{ s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab; s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab; } return 0; } /** * */ static inline int get_level_prefix(GetBitContext *gb){ unsigned int buf; int log; OPEN_READER(re, gb); UPDATE_CACHE(re, gb); buf=GET_CACHE(re, gb); log= 32 - av_log2(buf); #ifdef TRACE print_bin(buf>>(32-log), log); av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__); #endif LAST_SKIP_BITS(re, gb, log); CLOSE_READER(re, gb); return log-1; } static inline int get_dct8x8_allowed(H264Context *h){ int i; for(i=0; i<4; i++){ if(!IS_SUB_8X8(h->sub_mb_type[i]) || (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i]))) return 0; } return 1; } /** * decodes a residual block. * @param n block index * @param scantable scantable * @param max_coeff number of coefficients in the block * @return <0 if an error occured */ static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){ MpegEncContext * const s = &h->s; static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3}; int level[16]; int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before; //FIXME put trailing_onex into the context if(n == CHROMA_DC_BLOCK_INDEX){ coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1); total_coeff= coeff_token>>2; }else{ if(n == LUMA_DC_BLOCK_INDEX){ total_coeff= pred_non_zero_count(h, 0); coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2); total_coeff= coeff_token>>2; }else{ total_coeff= pred_non_zero_count(h, n); coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2); total_coeff= coeff_token>>2; h->non_zero_count_cache[ scan8[n] ]= total_coeff; } } //FIXME set last_non_zero? if(total_coeff==0) return 0; if(total_coeff > (unsigned)max_coeff) { av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff); return -1; } trailing_ones= coeff_token&3; tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff); assert(total_coeff<=16); for(i=0; i 10 && trailing_ones < 3; int prefix= get_level_prefix(gb); //first coefficient has suffix_length equal to 0 or 1 if(prefix<14){ //FIXME try to build a large unified VLC table for all this if(suffix_length) level_code= (prefix<s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y); return -1; } if(trailing_ones < 3) level_code += 2; suffix_length = 1; if(level_code > 5) suffix_length++; mask= -(level_code&1); level[i]= (((2+level_code)>>1) ^ mask) - mask; i++; //remaining coefficients have suffix_length > 0 for(;is.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y); return -1; } mask= -(level_code&1); level[i]= (((2+level_code)>>1) ^ mask) - mask; if(level_code > suffix_limit[suffix_length]) suffix_length++; } } if(total_coeff == max_coeff) zeros_left=0; else{ if(n == CHROMA_DC_BLOCK_INDEX) zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1); else zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1); } coeff_num = zeros_left + total_coeff - 1; j = scantable[coeff_num]; if(n > 24){ block[j] = level[0]; for(i=1;i>6; for(i=1;i>6; } } if(zeros_left<0){ av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y); return -1; } return 0; } static void predict_field_decoding_flag(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; int mb_type = (h->slice_table[mb_xy-1] == h->slice_num) ? s->current_picture.mb_type[mb_xy-1] : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num) ? s->current_picture.mb_type[mb_xy-s->mb_stride] : 0; h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0; } /** * decodes a P_SKIP or B_SKIP macroblock */ static void decode_mb_skip(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; int mb_type=0; memset(h->non_zero_count[mb_xy], 0, 16); memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui if(MB_FIELD) mb_type|= MB_TYPE_INTERLACED; if( h->slice_type == B_TYPE ) { // just for fill_caches. pred_direct_motion will set the real mb_type mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP; fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ... pred_direct_motion(h, &mb_type); mb_type|= MB_TYPE_SKIP; } else { int mx, my; mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP; fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ... pred_pskip_motion(h, &mx, &my); fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1); fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4); } write_back_motion(h, mb_type); s->current_picture.mb_type[mb_xy]= mb_type; s->current_picture.qscale_table[mb_xy]= s->qscale; h->slice_table[ mb_xy ]= h->slice_num; h->prev_mb_skipped= 1; } /** * decodes a macroblock * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed */ static int decode_mb_cavlc(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; int partition_count; unsigned int mb_type, cbp; int dct8x8_allowed= h->pps.transform_8x8_mode; s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong? tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y); cbp = 0; /* avoid warning. FIXME: find a solution without slowing down the code */ if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){ if(s->mb_skip_run==-1) s->mb_skip_run= get_ue_golomb(&s->gb); if (s->mb_skip_run--) { if(FRAME_MBAFF && (s->mb_y&1) == 0){ if(s->mb_skip_run==0) h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb); else predict_field_decoding_flag(h); } decode_mb_skip(h); return 0; } } if(FRAME_MBAFF){ if( (s->mb_y&1) == 0 ) h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb); }else h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME); h->prev_mb_skipped= 0; mb_type= get_ue_golomb(&s->gb); if(h->slice_type == B_TYPE){ if(mb_type < 23){ partition_count= b_mb_type_info[mb_type].partition_count; mb_type= b_mb_type_info[mb_type].type; }else{ mb_type -= 23; goto decode_intra_mb; } }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){ if(mb_type < 5){ partition_count= p_mb_type_info[mb_type].partition_count; mb_type= p_mb_type_info[mb_type].type; }else{ mb_type -= 5; goto decode_intra_mb; } }else{ assert(h->slice_type == I_TYPE); decode_intra_mb: if(mb_type > 25){ av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y); return -1; } partition_count=0; cbp= i_mb_type_info[mb_type].cbp; h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode; mb_type= i_mb_type_info[mb_type].type; } if(MB_FIELD) mb_type |= MB_TYPE_INTERLACED; h->slice_table[ mb_xy ]= h->slice_num; if(IS_INTRA_PCM(mb_type)){ unsigned int x, y; // we assume these blocks are very rare so we dont optimize it align_get_bits(&s->gb); // The pixels are stored in the same order as levels in h->mb array. for(y=0; y<16; y++){ const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3); for(x=0; x<16; x++){ tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8)); h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8); } } for(y=0; y<8; y++){ const int index= 256 + 4*(y&3) + 32*(y>>2); for(x=0; x<8; x++){ tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8)); h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8); } } for(y=0; y<8; y++){ const int index= 256 + 64 + 4*(y&3) + 32*(y>>2); for(x=0; x<8; x++){ tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8)); h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8); } } // In deblocking, the quantizer is 0 s->current_picture.qscale_table[mb_xy]= 0; h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, 0); // All coeffs are present memset(h->non_zero_count[mb_xy], 16, 16); s->current_picture.mb_type[mb_xy]= mb_type; return 0; } if(MB_MBAFF){ h->ref_count[0] <<= 1; h->ref_count[1] <<= 1; } fill_caches(h, mb_type, 0); //mb_pred if(IS_INTRA(mb_type)){ int pred_mode; // init_top_left_availability(h); if(IS_INTRA4x4(mb_type)){ int i; int di = 1; if(dct8x8_allowed && get_bits1(&s->gb)){ mb_type |= MB_TYPE_8x8DCT; di = 4; } // fill_intra4x4_pred_table(h); for(i=0; i<16; i+=di){ int mode= pred_intra_mode(h, i); if(!get_bits1(&s->gb)){ const int rem_mode= get_bits(&s->gb, 3); mode = rem_mode + (rem_mode >= mode); } if(di==4) fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 ); else h->intra4x4_pred_mode_cache[ scan8[i] ] = mode; } write_back_intra_pred_mode(h); if( check_intra4x4_pred_mode(h) < 0) return -1; }else{ h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode); if(h->intra16x16_pred_mode < 0) return -1; } pred_mode= check_intra_pred_mode(h, get_ue_golomb(&s->gb)); if(pred_mode < 0) return -1; h->chroma_pred_mode= pred_mode; }else if(partition_count==4){ int i, j, sub_partition_count[4], list, ref[2][4]; if(h->slice_type == B_TYPE){ for(i=0; i<4; i++){ h->sub_mb_type[i]= get_ue_golomb(&s->gb); if(h->sub_mb_type[i] >=13){ av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y); return -1; } sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count; h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type; } if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1]) || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) { pred_direct_motion(h, &mb_type); h->ref_cache[0][scan8[4]] = h->ref_cache[1][scan8[4]] = h->ref_cache[0][scan8[12]] = h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE; } }else{ assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ? for(i=0; i<4; i++){ h->sub_mb_type[i]= get_ue_golomb(&s->gb); if(h->sub_mb_type[i] >=4){ av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y); return -1; } sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count; h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type; } } for(list=0; listlist_count; list++){ int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list]; for(i=0; i<4; i++){ if(IS_DIRECT(h->sub_mb_type[i])) continue; if(IS_DIR(h->sub_mb_type[i], 0, list)){ unsigned int tmp = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip? if(tmp>=ref_count){ av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp); return -1; } ref[list][i]= tmp; }else{ //FIXME ref[list][i] = -1; } } } if(dct8x8_allowed) dct8x8_allowed = get_dct8x8_allowed(h); for(list=0; listlist_count; list++){ const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list]; for(i=0; i<4; i++){ if(IS_DIRECT(h->sub_mb_type[i])) { h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ]; continue; } h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]= h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i]; if(IS_DIR(h->sub_mb_type[i], 0, list)){ const int sub_mb_type= h->sub_mb_type[i]; const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1; for(j=0; jmv_cache[list][ scan8[index] ]; pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my); mx += get_se_golomb(&s->gb); my += get_se_golomb(&s->gb); tprintf(s->avctx, "final mv:%d %d\n", mx, my); if(IS_SUB_8X8(sub_mb_type)){ mv_cache[ 1 ][0]= mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx; mv_cache[ 1 ][1]= mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my; }else if(IS_SUB_8X4(sub_mb_type)){ mv_cache[ 1 ][0]= mx; mv_cache[ 1 ][1]= my; }else if(IS_SUB_4X8(sub_mb_type)){ mv_cache[ 8 ][0]= mx; mv_cache[ 8 ][1]= my; } mv_cache[ 0 ][0]= mx; mv_cache[ 0 ][1]= my; } }else{ uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0]; p[0] = p[1]= p[8] = p[9]= 0; } } } }else if(IS_DIRECT(mb_type)){ pred_direct_motion(h, &mb_type); dct8x8_allowed &= h->sps.direct_8x8_inference_flag; }else{ int list, mx, my, i; //FIXME we should set ref_idx_l? to 0 if we use that later ... if(IS_16X16(mb_type)){ for(list=0; listlist_count; list++){ unsigned int val; if(IS_DIR(mb_type, 0, list)){ val= get_te0_golomb(&s->gb, h->ref_count[list]); if(val >= h->ref_count[list]){ av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val); return -1; } }else val= LIST_NOT_USED&0xFF; fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1); } for(list=0; listlist_count; list++){ unsigned int val; if(IS_DIR(mb_type, 0, list)){ pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my); mx += get_se_golomb(&s->gb); my += get_se_golomb(&s->gb); tprintf(s->avctx, "final mv:%d %d\n", mx, my); val= pack16to32(mx,my); }else val=0; fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4); } } else if(IS_16X8(mb_type)){ for(list=0; listlist_count; list++){ for(i=0; i<2; i++){ unsigned int val; if(IS_DIR(mb_type, i, list)){ val= get_te0_golomb(&s->gb, h->ref_count[list]); if(val >= h->ref_count[list]){ av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val); return -1; } }else val= LIST_NOT_USED&0xFF; fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1); } } for(list=0; listlist_count; list++){ for(i=0; i<2; i++){ unsigned int val; if(IS_DIR(mb_type, i, list)){ pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my); mx += get_se_golomb(&s->gb); my += get_se_golomb(&s->gb); tprintf(s->avctx, "final mv:%d %d\n", mx, my); val= pack16to32(mx,my); }else val=0; fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4); } } }else{ assert(IS_8X16(mb_type)); for(list=0; listlist_count; list++){ for(i=0; i<2; i++){ unsigned int val; if(IS_DIR(mb_type, i, list)){ //FIXME optimize val= get_te0_golomb(&s->gb, h->ref_count[list]); if(val >= h->ref_count[list]){ av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val); return -1; } }else val= LIST_NOT_USED&0xFF; fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1); } } for(list=0; listlist_count; list++){ for(i=0; i<2; i++){ unsigned int val; if(IS_DIR(mb_type, i, list)){ pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my); mx += get_se_golomb(&s->gb); my += get_se_golomb(&s->gb); tprintf(s->avctx, "final mv:%d %d\n", mx, my); val= pack16to32(mx,my); }else val=0; fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4); } } } } if(IS_INTER(mb_type)) write_back_motion(h, mb_type); if(!IS_INTRA16x16(mb_type)){ cbp= get_ue_golomb(&s->gb); if(cbp > 47){ av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y); return -1; } if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp[cbp]; else cbp= golomb_to_inter_cbp[cbp]; } h->cbp = cbp; if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){ if(get_bits1(&s->gb)) mb_type |= MB_TYPE_8x8DCT; } s->current_picture.mb_type[mb_xy]= mb_type; if(cbp || IS_INTRA16x16(mb_type)){ int i8x8, i4x4, chroma_idx; int chroma_qp, dquant; GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr; const uint8_t *scan, *scan8x8, *dc_scan; // fill_non_zero_count_cache(h); if(IS_INTERLACED(mb_type)){ scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0; scan= s->qscale ? h->field_scan : h->field_scan_q0; dc_scan= luma_dc_field_scan; }else{ scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0; scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0; dc_scan= luma_dc_zigzag_scan; } dquant= get_se_golomb(&s->gb); if( dquant > 25 || dquant < -26 ){ av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y); return -1; } s->qscale += dquant; if(((unsigned)s->qscale) > 51){ if(s->qscale<0) s->qscale+= 52; else s->qscale-= 52; } h->chroma_qp= chroma_qp= get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale); if(IS_INTRA16x16(mb_type)){ if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){ return -1; //FIXME continue if partitioned and other return -1 too } assert((cbp&15) == 0 || (cbp&15) == 15); if(cbp&15){ for(i8x8=0; i8x8<4; i8x8++){ for(i4x4=0; i4x4<4; i4x4++){ const int index= i4x4 + 4*i8x8; if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){ return -1; } } } }else{ fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1); } }else{ for(i8x8=0; i8x8<4; i8x8++){ if(cbp & (1<mb[64*i8x8]; uint8_t *nnz; for(i4x4=0; i4x4<4; i4x4++){ if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 ) return -1; } nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ]; nnz[0] += nnz[1] + nnz[8] + nnz[9]; }else{ for(i4x4=0; i4x4<4; i4x4++){ const int index= i4x4 + 4*i8x8; if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){ return -1; } } } }else{ uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ]; nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0; } } } if(cbp&0x30){ for(chroma_idx=0; chroma_idx<2; chroma_idx++) if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){ return -1; } } if(cbp&0x20){ for(chroma_idx=0; chroma_idx<2; chroma_idx++){ for(i4x4=0; i4x4<4; i4x4++){ const int index= 16 + 4*chroma_idx + i4x4; if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][chroma_qp], 15) < 0){ return -1; } } } }else{ uint8_t * const nnz= &h->non_zero_count_cache[0]; nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] = nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0; } }else{ uint8_t * const nnz= &h->non_zero_count_cache[0]; fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1); nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] = nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0; } s->current_picture.qscale_table[mb_xy]= s->qscale; write_back_non_zero_count(h); if(MB_MBAFF){ h->ref_count[0] >>= 1; h->ref_count[1] >>= 1; } return 0; } static int decode_cabac_field_decoding_flag(H264Context *h) { MpegEncContext * const s = &h->s; const int mb_x = s->mb_x; const int mb_y = s->mb_y & ~1; const int mba_xy = mb_x - 1 + mb_y *s->mb_stride; const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride; unsigned int ctx = 0; if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) { ctx += 1; } if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) { ctx += 1; } return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] ); } static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) { uint8_t *state= &h->cabac_state[ctx_base]; int mb_type; if(intra_slice){ MpegEncContext * const s = &h->s; const int mba_xy = h->left_mb_xy[0]; const int mbb_xy = h->top_mb_xy; int ctx=0; if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) ) ctx++; if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) ) ctx++; if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 ) return 0; /* I4x4 */ state += 2; }else{ if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 ) return 0; /* I4x4 */ } if( get_cabac_terminate( &h->cabac ) ) return 25; /* PCM */ mb_type = 1; /* I16x16 */ mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */ if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */ mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] ); mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] ); mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] ); return mb_type; } static int decode_cabac_mb_type( H264Context *h ) { MpegEncContext * const s = &h->s; if( h->slice_type == I_TYPE ) { return decode_cabac_intra_mb_type(h, 3, 1); } else if( h->slice_type == P_TYPE ) { if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) { /* P-type */ if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) { /* P_L0_D16x16, P_8x8 */ return 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] ); } else { /* P_L0_D8x16, P_L0_D16x8 */ return 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] ); } } else { return decode_cabac_intra_mb_type(h, 17, 0) + 5; } } else if( h->slice_type == B_TYPE ) { const int mba_xy = h->left_mb_xy[0]; const int mbb_xy = h->top_mb_xy; int ctx = 0; int bits; if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) ) ctx++; if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) ) ctx++; if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) ) return 0; /* B_Direct_16x16 */ if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) { return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */ } bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3; bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2; bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1; bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); if( bits < 8 ) return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */ else if( bits == 13 ) { return decode_cabac_intra_mb_type(h, 32, 0) + 23; } else if( bits == 14 ) return 11; /* B_L1_L0_8x16 */ else if( bits == 15 ) return 22; /* B_8x8 */ bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */ } else { /* TODO SI/SP frames? */ return -1; } } static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) { MpegEncContext * const s = &h->s; int mba_xy, mbb_xy; int ctx = 0; if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches? int mb_xy = mb_x + (mb_y&~1)*s->mb_stride; mba_xy = mb_xy - 1; if( (mb_y&1) && h->slice_table[mba_xy] == h->slice_num && MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) mba_xy += s->mb_stride; if( MB_FIELD ){ mbb_xy = mb_xy - s->mb_stride; if( !(mb_y&1) && h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) mbb_xy -= s->mb_stride; }else mbb_xy = mb_x + (mb_y-1)*s->mb_stride; }else{ int mb_xy = mb_x + mb_y*s->mb_stride; mba_xy = mb_xy - 1; mbb_xy = mb_xy - s->mb_stride; } if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] )) ctx++; if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] )) ctx++; if( h->slice_type == B_TYPE ) ctx += 13; return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] ); } static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) { int mode = 0; if( get_cabac( &h->cabac, &h->cabac_state[68] ) ) return pred_mode; mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] ); mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] ); mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] ); if( mode >= pred_mode ) return mode + 1; else return mode; } static int decode_cabac_mb_chroma_pre_mode( H264Context *h) { const int mba_xy = h->left_mb_xy[0]; const int mbb_xy = h->top_mb_xy; int ctx = 0; /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */ if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 ) ctx++; if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 ) ctx++; if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 ) return 0; if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 ) return 1; if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 ) return 2; else return 3; } static const uint8_t block_idx_x[16] = { 0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3 }; static const uint8_t block_idx_y[16] = { 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3 }; static const uint8_t block_idx_xy[4][4] = { { 0, 2, 8, 10}, { 1, 3, 9, 11}, { 4, 6, 12, 14}, { 5, 7, 13, 15} }; static int decode_cabac_mb_cbp_luma( H264Context *h) { int cbp = 0; int cbp_b = -1; int i8x8; if( h->slice_table[h->top_mb_xy] == h->slice_num ) { cbp_b = h->top_cbp; tprintf(h->s.avctx, "cbp_b = top_cbp = %x\n", cbp_b); } for( i8x8 = 0; i8x8 < 4; i8x8++ ) { int cbp_a = -1; int x, y; int ctx = 0; x = block_idx_x[4*i8x8]; y = block_idx_y[4*i8x8]; if( x > 0 ) cbp_a = cbp; else if( h->slice_table[h->left_mb_xy[0]] == h->slice_num ) { cbp_a = h->left_cbp; tprintf(h->s.avctx, "cbp_a = left_cbp = %x\n", cbp_a); } if( y > 0 ) cbp_b = cbp; /* No need to test for skip as we put 0 for skip block */ /* No need to test for IPCM as we put 1 for IPCM block */ if( cbp_a >= 0 ) { int i8x8a = block_idx_xy[(x-1)&0x03][y]/4; if( ((cbp_a >> i8x8a)&0x01) == 0 ) ctx++; } if( cbp_b >= 0 ) { int i8x8b = block_idx_xy[x][(y-1)&0x03]/4; if( ((cbp_b >> i8x8b)&0x01) == 0 ) ctx += 2; } if( get_cabac( &h->cabac, &h->cabac_state[73 + ctx] ) ) { cbp |= 1 << i8x8; } } return cbp; } static int decode_cabac_mb_cbp_chroma( H264Context *h) { int ctx; int cbp_a, cbp_b; cbp_a = (h->left_cbp>>4)&0x03; cbp_b = (h-> top_cbp>>4)&0x03; ctx = 0; if( cbp_a > 0 ) ctx++; if( cbp_b > 0 ) ctx += 2; if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 ) return 0; ctx = 4; if( cbp_a == 2 ) ctx++; if( cbp_b == 2 ) ctx += 2; return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ); } static int decode_cabac_mb_dqp( H264Context *h) { MpegEncContext * const s = &h->s; int mbn_xy; int ctx = 0; int val = 0; if( s->mb_x > 0 ) mbn_xy = s->mb_x + s->mb_y*s->mb_stride - 1; else mbn_xy = s->mb_width - 1 + (s->mb_y-1)*s->mb_stride; if( h->last_qscale_diff != 0 ) ctx++; while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) { if( ctx < 2 ) ctx = 2; else ctx = 3; val++; if(val > 102) //prevent infinite loop return INT_MIN; } if( val&0x01 ) return (val + 1)/2; else return -(val + 1)/2; } static int decode_cabac_p_mb_sub_type( H264Context *h ) { if( get_cabac( &h->cabac, &h->cabac_state[21] ) ) return 0; /* 8x8 */ if( !get_cabac( &h->cabac, &h->cabac_state[22] ) ) return 1; /* 8x4 */ if( get_cabac( &h->cabac, &h->cabac_state[23] ) ) return 2; /* 4x8 */ return 3; /* 4x4 */ } static int decode_cabac_b_mb_sub_type( H264Context *h ) { int type; if( !get_cabac( &h->cabac, &h->cabac_state[36] ) ) return 0; /* B_Direct_8x8 */ if( !get_cabac( &h->cabac, &h->cabac_state[37] ) ) return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */ type = 3; if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) { if( get_cabac( &h->cabac, &h->cabac_state[39] ) ) return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */ type += 4; } type += 2*get_cabac( &h->cabac, &h->cabac_state[39] ); type += get_cabac( &h->cabac, &h->cabac_state[39] ); return type; } static inline int decode_cabac_mb_transform_size( H264Context *h ) { return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] ); } static int decode_cabac_mb_ref( H264Context *h, int list, int n ) { int refa = h->ref_cache[list][scan8[n] - 1]; int refb = h->ref_cache[list][scan8[n] - 8]; int ref = 0; int ctx = 0; if( h->slice_type == B_TYPE) { if( refa > 0 && !h->direct_cache[scan8[n] - 1] ) ctx++; if( refb > 0 && !h->direct_cache[scan8[n] - 8] ) ctx += 2; } else { if( refa > 0 ) ctx++; if( refb > 0 ) ctx += 2; } while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) { ref++; if( ctx < 4 ) ctx = 4; else ctx = 5; if(ref >= 32 /*h->ref_list[list]*/){ av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_ref\n"); return 0; //FIXME we should return -1 and check the return everywhere } } return ref; } static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) { int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) + abs( h->mvd_cache[list][scan8[n] - 8][l] ); int ctxbase = (l == 0) ? 40 : 47; int ctx, mvd; if( amvd < 3 ) ctx = 0; else if( amvd > 32 ) ctx = 2; else ctx = 1; if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx])) return 0; mvd= 1; ctx= 3; while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) { mvd++; if( ctx < 6 ) ctx++; } if( mvd >= 9 ) { int k = 3; while( get_cabac_bypass( &h->cabac ) ) { mvd += 1 << k; k++; if(k>24){ av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n"); return INT_MIN; } } while( k-- ) { if( get_cabac_bypass( &h->cabac ) ) mvd += 1 << k; } } return get_cabac_bypass_sign( &h->cabac, -mvd ); } static int inline get_cabac_cbf_ctx( H264Context *h, int cat, int idx ) { int nza, nzb; int ctx = 0; if( cat == 0 ) { nza = h->left_cbp&0x100; nzb = h-> top_cbp&0x100; } else if( cat == 1 || cat == 2 ) { nza = h->non_zero_count_cache[scan8[idx] - 1]; nzb = h->non_zero_count_cache[scan8[idx] - 8]; } else if( cat == 3 ) { nza = (h->left_cbp>>(6+idx))&0x01; nzb = (h-> top_cbp>>(6+idx))&0x01; } else { assert(cat == 4); nza = h->non_zero_count_cache[scan8[16+idx] - 1]; nzb = h->non_zero_count_cache[scan8[16+idx] - 8]; } if( nza > 0 ) ctx++; if( nzb > 0 ) ctx += 2; return ctx + 4 * cat; } static const __attribute((used)) uint8_t last_coeff_flag_offset_8x8[63] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8 }; static int decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff) { const int mb_xy = h->s.mb_x + h->s.mb_y*h->s.mb_stride; static const int significant_coeff_flag_offset[2][6] = { { 105+0, 105+15, 105+29, 105+44, 105+47, 402 }, { 277+0, 277+15, 277+29, 277+44, 277+47, 436 } }; static const int last_coeff_flag_offset[2][6] = { { 166+0, 166+15, 166+29, 166+44, 166+47, 417 }, { 338+0, 338+15, 338+29, 338+44, 338+47, 451 } }; static const int coeff_abs_level_m1_offset[6] = { 227+0, 227+10, 227+20, 227+30, 227+39, 426 }; static const uint8_t significant_coeff_flag_offset_8x8[2][63] = { { 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5, 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7, 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11, 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 }, { 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5, 6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9, 9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 } }; int index[64]; int last; int coeff_count = 0; int abslevel1 = 1; int abslevelgt1 = 0; uint8_t *significant_coeff_ctx_base; uint8_t *last_coeff_ctx_base; uint8_t *abs_level_m1_ctx_base; #ifndef ARCH_X86 #define CABAC_ON_STACK #endif #ifdef CABAC_ON_STACK #define CC &cc CABACContext cc; cc.range = h->cabac.range; cc.low = h->cabac.low; cc.bytestream= h->cabac.bytestream; #else #define CC &h->cabac #endif /* cat: 0-> DC 16x16 n = 0 * 1-> AC 16x16 n = luma4x4idx * 2-> Luma4x4 n = luma4x4idx * 3-> DC Chroma n = iCbCr * 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx * 5-> Luma8x8 n = 4 * luma8x8idx */ /* read coded block flag */ if( cat != 5 ) { if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n ) ] ) == 0 ) { if( cat == 1 || cat == 2 ) h->non_zero_count_cache[scan8[n]] = 0; else if( cat == 4 ) h->non_zero_count_cache[scan8[16+n]] = 0; #ifdef CABAC_ON_STACK h->cabac.range = cc.range ; h->cabac.low = cc.low ; h->cabac.bytestream= cc.bytestream; #endif return 0; } } significant_coeff_ctx_base = h->cabac_state + significant_coeff_flag_offset[MB_FIELD][cat]; last_coeff_ctx_base = h->cabac_state + last_coeff_flag_offset[MB_FIELD][cat]; abs_level_m1_ctx_base = h->cabac_state + coeff_abs_level_m1_offset[cat]; if( cat == 5 ) { #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \ for(last= 0; last < coefs; last++) { \ uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \ if( get_cabac( CC, sig_ctx )) { \ uint8_t *last_ctx = last_coeff_ctx_base + last_off; \ index[coeff_count++] = last; \ if( get_cabac( CC, last_ctx ) ) { \ last= max_coeff; \ break; \ } \ } \ }\ if( last == max_coeff -1 ) {\ index[coeff_count++] = last;\ } const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD]; #if defined(ARCH_X86) && defined(CONFIG_7REGS) && defined(HAVE_EBX_AVAILABLE) coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off); } else { coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index); #else DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] ); } else { DECODE_SIGNIFICANCE( max_coeff - 1, last, last ); #endif } assert(coeff_count > 0); if( cat == 0 ) h->cbp_table[mb_xy] |= 0x100; else if( cat == 1 || cat == 2 ) h->non_zero_count_cache[scan8[n]] = coeff_count; else if( cat == 3 ) h->cbp_table[mb_xy] |= 0x40 << n; else if( cat == 4 ) h->non_zero_count_cache[scan8[16+n]] = coeff_count; else { assert( cat == 5 ); fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1); } for( coeff_count--; coeff_count >= 0; coeff_count-- ) { uint8_t *ctx = (abslevelgt1 != 0 ? 0 : FFMIN( 4, abslevel1 )) + abs_level_m1_ctx_base; int j= scantable[index[coeff_count]]; if( get_cabac( CC, ctx ) == 0 ) { if( !qmul ) { block[j] = get_cabac_bypass_sign( CC, -1); }else{ block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;; } abslevel1++; } else { int coeff_abs = 2; ctx = 5 + FFMIN( 4, abslevelgt1 ) + abs_level_m1_ctx_base; while( coeff_abs < 15 && get_cabac( CC, ctx ) ) { coeff_abs++; } if( coeff_abs >= 15 ) { int j = 0; while( get_cabac_bypass( CC ) ) { j++; } coeff_abs=1; while( j-- ) { coeff_abs += coeff_abs + get_cabac_bypass( CC ); } coeff_abs+= 14; } if( !qmul ) { if( get_cabac_bypass( CC ) ) block[j] = -coeff_abs; else block[j] = coeff_abs; }else{ if( get_cabac_bypass( CC ) ) block[j] = (-coeff_abs * qmul[j] + 32) >> 6; else block[j] = ( coeff_abs * qmul[j] + 32) >> 6; } abslevelgt1++; } } #ifdef CABAC_ON_STACK h->cabac.range = cc.range ; h->cabac.low = cc.low ; h->cabac.bytestream= cc.bytestream; #endif return 0; } static void inline compute_mb_neighbors(H264Context *h) { MpegEncContext * const s = &h->s; const int mb_xy = s->mb_x + s->mb_y*s->mb_stride; h->top_mb_xy = mb_xy - s->mb_stride; h->left_mb_xy[0] = mb_xy - 1; if(FRAME_MBAFF){ const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride; const int top_pair_xy = pair_xy - s->mb_stride; const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]); const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]); const int curr_mb_frame_flag = !MB_FIELD; const int bottom = (s->mb_y & 1); if (bottom ? !curr_mb_frame_flag // bottom macroblock : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock ) { h->top_mb_xy -= s->mb_stride; } if (left_mb_frame_flag != curr_mb_frame_flag) { h->left_mb_xy[0] = pair_xy - 1; } } return; } /** * decodes a macroblock * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed */ static int decode_mb_cabac(H264Context *h) { MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; int mb_type, partition_count, cbp = 0; int dct8x8_allowed= h->pps.transform_8x8_mode; s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?) tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y); if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE ) { int skip; /* a skipped mb needs the aff flag from the following mb */ if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 ) predict_field_decoding_flag(h); if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped ) skip = h->next_mb_skipped; else skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y ); /* read skip flags */ if( skip ) { if( FRAME_MBAFF && (s->mb_y&1)==0 ){ s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP; h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 ); if(h->next_mb_skipped) predict_field_decoding_flag(h); else h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h); } decode_mb_skip(h); h->cbp_table[mb_xy] = 0; h->chroma_pred_mode_table[mb_xy] = 0; h->last_qscale_diff = 0; return 0; } } if(FRAME_MBAFF){ if( (s->mb_y&1) == 0 ) h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h); }else h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME); h->prev_mb_skipped = 0; compute_mb_neighbors(h); if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) { av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" ); return -1; } if( h->slice_type == B_TYPE ) { if( mb_type < 23 ){ partition_count= b_mb_type_info[mb_type].partition_count; mb_type= b_mb_type_info[mb_type].type; }else{ mb_type -= 23; goto decode_intra_mb; } } else if( h->slice_type == P_TYPE ) { if( mb_type < 5) { partition_count= p_mb_type_info[mb_type].partition_count; mb_type= p_mb_type_info[mb_type].type; } else { mb_type -= 5; goto decode_intra_mb; } } else { assert(h->slice_type == I_TYPE); decode_intra_mb: partition_count = 0; cbp= i_mb_type_info[mb_type].cbp; h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode; mb_type= i_mb_type_info[mb_type].type; } if(MB_FIELD) mb_type |= MB_TYPE_INTERLACED; h->slice_table[ mb_xy ]= h->slice_num; if(IS_INTRA_PCM(mb_type)) { const uint8_t *ptr; unsigned int x, y; // We assume these blocks are very rare so we dont optimize it. // FIXME The two following lines get the bitstream position in the cabac // decode, I think it should be done by a function in cabac.h (or cabac.c). ptr= h->cabac.bytestream; if(h->cabac.low&0x1) ptr--; if(CABAC_BITS==16){ if(h->cabac.low&0x1FF) ptr--; } // The pixels are stored in the same order as levels in h->mb array. for(y=0; y<16; y++){ const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3); for(x=0; x<16; x++){ tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", *ptr); h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++; } } for(y=0; y<8; y++){ const int index= 256 + 4*(y&3) + 32*(y>>2); for(x=0; x<8; x++){ tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", *ptr); h->mb[index + (x&3) + 16*(x>>2)]= *ptr++; } } for(y=0; y<8; y++){ const int index= 256 + 64 + 4*(y&3) + 32*(y>>2); for(x=0; x<8; x++){ tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", *ptr); h->mb[index + (x&3) + 16*(x>>2)]= *ptr++; } } ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr); // All blocks are present h->cbp_table[mb_xy] = 0x1ef; h->chroma_pred_mode_table[mb_xy] = 0; // In deblocking, the quantizer is 0 s->current_picture.qscale_table[mb_xy]= 0; h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, 0); // All coeffs are present memset(h->non_zero_count[mb_xy], 16, 16); s->current_picture.mb_type[mb_xy]= mb_type; return 0; } if(MB_MBAFF){ h->ref_count[0] <<= 1; h->ref_count[1] <<= 1; } fill_caches(h, mb_type, 0); if( IS_INTRA( mb_type ) ) { int i, pred_mode; if( IS_INTRA4x4( mb_type ) ) { if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) { mb_type |= MB_TYPE_8x8DCT; for( i = 0; i < 16; i+=4 ) { int pred = pred_intra_mode( h, i ); int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred ); fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 ); } } else { for( i = 0; i < 16; i++ ) { int pred = pred_intra_mode( h, i ); h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred ); //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] ); } } write_back_intra_pred_mode(h); if( check_intra4x4_pred_mode(h) < 0 ) return -1; } else { h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode ); if( h->intra16x16_pred_mode < 0 ) return -1; } h->chroma_pred_mode_table[mb_xy] = pred_mode = decode_cabac_mb_chroma_pre_mode( h ); pred_mode= check_intra_pred_mode( h, pred_mode ); if( pred_mode < 0 ) return -1; h->chroma_pred_mode= pred_mode; } else if( partition_count == 4 ) { int i, j, sub_partition_count[4], list, ref[2][4]; if( h->slice_type == B_TYPE ) { for( i = 0; i < 4; i++ ) { h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h ); sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count; h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type; } if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] | h->sub_mb_type[2] | h->sub_mb_type[3]) ) { pred_direct_motion(h, &mb_type); if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) { for( i = 0; i < 4; i++ ) if( IS_DIRECT(h->sub_mb_type[i]) ) fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 ); } } } else { for( i = 0; i < 4; i++ ) { h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h ); sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count; h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type; } } for( list = 0; list < h->list_count; list++ ) { for( i = 0; i < 4; i++ ) { if(IS_DIRECT(h->sub_mb_type[i])) continue; if(IS_DIR(h->sub_mb_type[i], 0, list)){ if( h->ref_count[list] > 1 ) ref[list][i] = decode_cabac_mb_ref( h, list, 4*i ); else ref[list][i] = 0; } else { ref[list][i] = -1; } h->ref_cache[list][ scan8[4*i]+1 ]= h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i]; } } if(dct8x8_allowed) dct8x8_allowed = get_dct8x8_allowed(h); for(list=0; listlist_count; list++){ for(i=0; i<4; i++){ if(IS_DIRECT(h->sub_mb_type[i])){ fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4); continue; } h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]; if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){ const int sub_mb_type= h->sub_mb_type[i]; const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1; for(j=0; jmv_cache[list][ scan8[index] ]; int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ]; pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy); mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 ); my = mpy + decode_cabac_mb_mvd( h, list, index, 1 ); tprintf(s->avctx, "final mv:%d %d\n", mx, my); if(IS_SUB_8X8(sub_mb_type)){ mv_cache[ 1 ][0]= mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx; mv_cache[ 1 ][1]= mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my; mvd_cache[ 1 ][0]= mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx; mvd_cache[ 1 ][1]= mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy; }else if(IS_SUB_8X4(sub_mb_type)){ mv_cache[ 1 ][0]= mx; mv_cache[ 1 ][1]= my; mvd_cache[ 1 ][0]= mx - mpx; mvd_cache[ 1 ][1]= my - mpy; }else if(IS_SUB_4X8(sub_mb_type)){ mv_cache[ 8 ][0]= mx; mv_cache[ 8 ][1]= my; mvd_cache[ 8 ][0]= mx - mpx; mvd_cache[ 8 ][1]= my - mpy; } mv_cache[ 0 ][0]= mx; mv_cache[ 0 ][1]= my; mvd_cache[ 0 ][0]= mx - mpx; mvd_cache[ 0 ][1]= my - mpy; } }else{ uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0]; uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0]; p[0] = p[1] = p[8] = p[9] = 0; pd[0]= pd[1]= pd[8]= pd[9]= 0; } } } } else if( IS_DIRECT(mb_type) ) { pred_direct_motion(h, &mb_type); fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4); fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4); dct8x8_allowed &= h->sps.direct_8x8_inference_flag; } else { int list, mx, my, i, mpx, mpy; if(IS_16X16(mb_type)){ for(list=0; listlist_count; list++){ if(IS_DIR(mb_type, 0, list)){ const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0; fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1); }else fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too } for(list=0; listlist_count; list++){ if(IS_DIR(mb_type, 0, list)){ pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy); mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 ); my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 ); tprintf(s->avctx, "final mv:%d %d\n", mx, my); fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4); fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4); }else fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4); } } else if(IS_16X8(mb_type)){ for(list=0; listlist_count; list++){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0; fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1); }else fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1); } } for(list=0; listlist_count; list++){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy); mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 ); my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 ); tprintf(s->avctx, "final mv:%d %d\n", mx, my); fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4); fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4); }else{ fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4); fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4); } } } }else{ assert(IS_8X16(mb_type)); for(list=0; listlist_count; list++){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ //FIXME optimize const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0; fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1); }else fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1); } } for(list=0; listlist_count; list++){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy); mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 ); my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 ); tprintf(s->avctx, "final mv:%d %d\n", mx, my); fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4); fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4); }else{ fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4); fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4); } } } } } if( IS_INTER( mb_type ) ) { h->chroma_pred_mode_table[mb_xy] = 0; write_back_motion( h, mb_type ); } if( !IS_INTRA16x16( mb_type ) ) { cbp = decode_cabac_mb_cbp_luma( h ); cbp |= decode_cabac_mb_cbp_chroma( h ) << 4; } h->cbp_table[mb_xy] = h->cbp = cbp; if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) { if( decode_cabac_mb_transform_size( h ) ) mb_type |= MB_TYPE_8x8DCT; } s->current_picture.mb_type[mb_xy]= mb_type; if( cbp || IS_INTRA16x16( mb_type ) ) { const uint8_t *scan, *scan8x8, *dc_scan; int dqp; if(IS_INTERLACED(mb_type)){ scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0; scan= s->qscale ? h->field_scan : h->field_scan_q0; dc_scan= luma_dc_field_scan; }else{ scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0; scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0; dc_scan= luma_dc_zigzag_scan; } h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h ); if( dqp == INT_MIN ){ av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y); return -1; } s->qscale += dqp; if(((unsigned)s->qscale) > 51){ if(s->qscale<0) s->qscale+= 52; else s->qscale-= 52; } h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale); if( IS_INTRA16x16( mb_type ) ) { int i; //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" ); if( decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16) < 0) return -1; if( cbp&15 ) { for( i = 0; i < 16; i++ ) { //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i ); if( decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ) return -1; } } else { fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1); } } else { int i8x8, i4x4; for( i8x8 = 0; i8x8 < 4; i8x8++ ) { if( cbp & (1<mb + 64*i8x8, 5, 4*i8x8, scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64) < 0 ) return -1; } else for( i4x4 = 0; i4x4 < 4; i4x4++ ) { const int index = 4*i8x8 + i4x4; //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index ); //START_TIMER if( decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) < 0 ) return -1; //STOP_TIMER("decode_residual") } } else { uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ]; nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0; } } } if( cbp&0x30 ){ int c; for( c = 0; c < 2; c++ ) { //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c ); if( decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4) < 0) return -1; } } if( cbp&0x20 ) { int c, i; for( c = 0; c < 2; c++ ) { for( i = 0; i < 4; i++ ) { const int index = 16 + 4 * c + i; //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 ); if( decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp], 15) < 0) return -1; } } } else { uint8_t * const nnz= &h->non_zero_count_cache[0]; nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] = nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0; } } else { uint8_t * const nnz= &h->non_zero_count_cache[0]; fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1); nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] = nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0; h->last_qscale_diff = 0; } s->current_picture.qscale_table[mb_xy]= s->qscale; write_back_non_zero_count(h); if(MB_MBAFF){ h->ref_count[0] >>= 1; h->ref_count[1] >>= 1; } return 0; } static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) { int i, d; const int index_a = qp + h->slice_alpha_c0_offset; const int alpha = (alpha_table+52)[index_a]; const int beta = (beta_table+52)[qp + h->slice_beta_offset]; if( bS[0] < 4 ) { int8_t tc[4]; for(i=0; i<4; i++) tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1; h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc); } else { /* 16px edge length, because bS=4 is triggered by being at * the edge of an intra MB, so all 4 bS are the same */ for( d = 0; d < 16; d++ ) { const int p0 = pix[-1]; const int p1 = pix[-2]; const int p2 = pix[-3]; const int q0 = pix[0]; const int q1 = pix[1]; const int q2 = pix[2]; if( FFABS( p0 - q0 ) < alpha && FFABS( p1 - p0 ) < beta && FFABS( q1 - q0 ) < beta ) { if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){ if( FFABS( p2 - p0 ) < beta) { const int p3 = pix[-4]; /* p0', p1', p2' */ pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3; pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2; pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3; } else { /* p0' */ pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; } if( FFABS( q2 - q0 ) < beta) { const int q3 = pix[3]; /* q0', q1', q2' */ pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3; pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2; pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3; } else { /* q0' */ pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; } }else{ /* p0', q0' */ pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; } tprintf(h->s.avctx, "filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]); } pix += stride; } } } static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) { int i; const int index_a = qp + h->slice_alpha_c0_offset; const int alpha = (alpha_table+52)[index_a]; const int beta = (beta_table+52)[qp + h->slice_beta_offset]; if( bS[0] < 4 ) { int8_t tc[4]; for(i=0; i<4; i++) tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0; h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc); } else { h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta); } } static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) { int i; for( i = 0; i < 16; i++, pix += stride) { int index_a; int alpha; int beta; int qp_index; int bS_index = (i >> 1); if (!MB_FIELD) { bS_index &= ~1; bS_index |= (i & 1); } if( bS[bS_index] == 0 ) { continue; } qp_index = MB_FIELD ? (i >> 3) : (i & 1); index_a = qp[qp_index] + h->slice_alpha_c0_offset; alpha = (alpha_table+52)[index_a]; beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset]; if( bS[bS_index] < 4 ) { const int tc0 = (tc0_table+52)[index_a][bS[bS_index] - 1]; const int p0 = pix[-1]; const int p1 = pix[-2]; const int p2 = pix[-3]; const int q0 = pix[0]; const int q1 = pix[1]; const int q2 = pix[2]; if( FFABS( p0 - q0 ) < alpha && FFABS( p1 - p0 ) < beta && FFABS( q1 - q0 ) < beta ) { int tc = tc0; int i_delta; if( FFABS( p2 - p0 ) < beta ) { pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 ); tc++; } if( FFABS( q2 - q0 ) < beta ) { pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 ); tc++; } i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc ); pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */ pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */ tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1); } }else{ const int p0 = pix[-1]; const int p1 = pix[-2]; const int p2 = pix[-3]; const int q0 = pix[0]; const int q1 = pix[1]; const int q2 = pix[2]; if( FFABS( p0 - q0 ) < alpha && FFABS( p1 - p0 ) < beta && FFABS( q1 - q0 ) < beta ) { if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){ if( FFABS( p2 - p0 ) < beta) { const int p3 = pix[-4]; /* p0', p1', p2' */ pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3; pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2; pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3; } else { /* p0' */ pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; } if( FFABS( q2 - q0 ) < beta) { const int q3 = pix[3]; /* q0', q1', q2' */ pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3; pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2; pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3; } else { /* q0' */ pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; } }else{ /* p0', q0' */ pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; } tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]); } } } } static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) { int i; for( i = 0; i < 8; i++, pix += stride) { int index_a; int alpha; int beta; int qp_index; int bS_index = i; if( bS[bS_index] == 0 ) { continue; } qp_index = MB_FIELD ? (i >> 2) : (i & 1); index_a = qp[qp_index] + h->slice_alpha_c0_offset; alpha = (alpha_table+52)[index_a]; beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset]; if( bS[bS_index] < 4 ) { const int tc = (tc0_table+52)[index_a][bS[bS_index] - 1] + 1; const int p0 = pix[-1]; const int p1 = pix[-2]; const int q0 = pix[0]; const int q1 = pix[1]; if( FFABS( p0 - q0 ) < alpha && FFABS( p1 - p0 ) < beta && FFABS( q1 - q0 ) < beta ) { const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc ); pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */ pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */ tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1); } }else{ const int p0 = pix[-1]; const int p1 = pix[-2]; const int q0 = pix[0]; const int q1 = pix[1]; if( FFABS( p0 - q0 ) < alpha && FFABS( p1 - p0 ) < beta && FFABS( q1 - q0 ) < beta ) { pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */ pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */ tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]); } } } } static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) { int i, d; const int index_a = qp + h->slice_alpha_c0_offset; const int alpha = (alpha_table+52)[index_a]; const int beta = (beta_table+52)[qp + h->slice_beta_offset]; const int pix_next = stride; if( bS[0] < 4 ) { int8_t tc[4]; for(i=0; i<4; i++) tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1; h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc); } else { /* 16px edge length, see filter_mb_edgev */ for( d = 0; d < 16; d++ ) { const int p0 = pix[-1*pix_next]; const int p1 = pix[-2*pix_next]; const int p2 = pix[-3*pix_next]; const int q0 = pix[0]; const int q1 = pix[1*pix_next]; const int q2 = pix[2*pix_next]; if( FFABS( p0 - q0 ) < alpha && FFABS( p1 - p0 ) < beta && FFABS( q1 - q0 ) < beta ) { const int p3 = pix[-4*pix_next]; const int q3 = pix[ 3*pix_next]; if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){ if( FFABS( p2 - p0 ) < beta) { /* p0', p1', p2' */ pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3; pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2; pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3; } else { /* p0' */ pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2; } if( FFABS( q2 - q0 ) < beta) { /* q0', q1', q2' */ pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3; pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2; pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3; } else { /* q0' */ pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2; } }else{ /* p0', q0' */ pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2; pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2; } tprintf(h->s.avctx, "filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]); } pix++; } } } static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) { int i; const int index_a = qp + h->slice_alpha_c0_offset; const int alpha = (alpha_table+52)[index_a]; const int beta = (beta_table+52)[qp + h->slice_beta_offset]; if( bS[0] < 4 ) { int8_t tc[4]; for(i=0; i<4; i++) tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0; h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc); } else { h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta); } } static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) { MpegEncContext * const s = &h->s; int mb_xy, mb_type; int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh; if(mb_x==0 || mb_y==0 || !s->dsp.h264_loop_filter_strength) { filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize); return; } assert(!FRAME_MBAFF); mb_xy = mb_x + mb_y*s->mb_stride; mb_type = s->current_picture.mb_type[mb_xy]; qp = s->current_picture.qscale_table[mb_xy]; qp0 = s->current_picture.qscale_table[mb_xy-1]; qp1 = s->current_picture.qscale_table[h->top_mb_xy]; qpc = get_chroma_qp( h->pps.chroma_qp_index_offset, qp ); qpc0 = get_chroma_qp( h->pps.chroma_qp_index_offset, qp0 ); qpc1 = get_chroma_qp( h->pps.chroma_qp_index_offset, qp1 ); qp0 = (qp + qp0 + 1) >> 1; qp1 = (qp + qp1 + 1) >> 1; qpc0 = (qpc + qpc0 + 1) >> 1; qpc1 = (qpc + qpc1 + 1) >> 1; qp_thresh = 15 - h->slice_alpha_c0_offset; if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh && qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh) return; if( IS_INTRA(mb_type) ) { int16_t bS4[4] = {4,4,4,4}; int16_t bS3[4] = {3,3,3,3}; if( IS_8x8DCT(mb_type) ) { filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 ); filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp ); filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bS4, qp1 ); filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp ); } else { filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 ); filter_mb_edgev( h, &img_y[4*1], linesize, bS3, qp ); filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp ); filter_mb_edgev( h, &img_y[4*3], linesize, bS3, qp ); filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bS4, qp1 ); filter_mb_edgeh( h, &img_y[4*1*linesize], linesize, bS3, qp ); filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp ); filter_mb_edgeh( h, &img_y[4*3*linesize], linesize, bS3, qp ); } filter_mb_edgecv( h, &img_cb[2*0], uvlinesize, bS4, qpc0 ); filter_mb_edgecv( h, &img_cb[2*2], uvlinesize, bS3, qpc ); filter_mb_edgecv( h, &img_cr[2*0], uvlinesize, bS4, qpc0 ); filter_mb_edgecv( h, &img_cr[2*2], uvlinesize, bS3, qpc ); filter_mb_edgech( h, &img_cb[2*0*uvlinesize], uvlinesize, bS4, qpc1 ); filter_mb_edgech( h, &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc ); filter_mb_edgech( h, &img_cr[2*0*uvlinesize], uvlinesize, bS4, qpc1 ); filter_mb_edgech( h, &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc ); return; } else { DECLARE_ALIGNED_8(int16_t, bS[2][4][4]); uint64_t (*bSv)[4] = (uint64_t(*)[4])bS; int edges; if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) { edges = 4; bSv[0][0] = bSv[0][2] = bSv[1][0] = bSv[1][2] = 0x0002000200020002ULL; } else { int mask_edge1 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 : (mb_type & MB_TYPE_16x8) ? 1 : 0; int mask_edge0 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) && (s->current_picture.mb_type[mb_xy-1] & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 : 0; int step = IS_8x8DCT(mb_type) ? 2 : 1; edges = (mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4; s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache, (h->slice_type == B_TYPE), edges, step, mask_edge0, mask_edge1 ); } if( IS_INTRA(s->current_picture.mb_type[mb_xy-1]) ) bSv[0][0] = 0x0004000400040004ULL; if( IS_INTRA(s->current_picture.mb_type[h->top_mb_xy]) ) bSv[1][0] = 0x0004000400040004ULL; #define FILTER(hv,dir,edge)\ if(bSv[dir][edge]) {\ filter_mb_edge##hv( h, &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir );\ if(!(edge&1)) {\ filter_mb_edgec##hv( h, &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\ filter_mb_edgec##hv( h, &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\ }\ } if( edges == 1 ) { FILTER(v,0,0); FILTER(h,1,0); } else if( IS_8x8DCT(mb_type) ) { FILTER(v,0,0); FILTER(v,0,2); FILTER(h,1,0); FILTER(h,1,2); } else { FILTER(v,0,0); FILTER(v,0,1); FILTER(v,0,2); FILTER(v,0,3); FILTER(h,1,0); FILTER(h,1,1); FILTER(h,1,2); FILTER(h,1,3); } #undef FILTER } } static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) { MpegEncContext * const s = &h->s; const int mb_xy= mb_x + mb_y*s->mb_stride; const int mb_type = s->current_picture.mb_type[mb_xy]; const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4; int first_vertical_edge_done = 0; int dir; /* FIXME: A given frame may occupy more than one position in * the reference list. So ref2frm should be populated with * frame numbers, not indices. */ static const int ref2frm[34] = {-1,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31}; //for sufficiently low qp, filtering wouldn't do anything //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp if(!FRAME_MBAFF){ int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX(0, h->pps.chroma_qp_index_offset); int qp = s->current_picture.qscale_table[mb_xy]; if(qp <= qp_thresh && (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh) && (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){ return; } } if (FRAME_MBAFF // left mb is in picture && h->slice_table[mb_xy-1] != 255 // and current and left pair do not have the same interlaced type && (IS_INTERLACED(mb_type) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1])) // and left mb is in the same slice if deblocking_filter == 2 && (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) { /* First vertical edge is different in MBAFF frames * There are 8 different bS to compute and 2 different Qp */ const int pair_xy = mb_x + (mb_y&~1)*s->mb_stride; const int left_mb_xy[2] = { pair_xy-1, pair_xy-1+s->mb_stride }; int16_t bS[8]; int qp[2]; int chroma_qp[2]; int mb_qp, mbn0_qp, mbn1_qp; int i; first_vertical_edge_done = 1; if( IS_INTRA(mb_type) ) bS[0] = bS[1] = bS[2] = bS[3] = bS[4] = bS[5] = bS[6] = bS[7] = 4; else { for( i = 0; i < 8; i++ ) { int mbn_xy = MB_FIELD ? left_mb_xy[i>>2] : left_mb_xy[i&1]; if( IS_INTRA( s->current_picture.mb_type[mbn_xy] ) ) bS[i] = 4; else if( h->non_zero_count_cache[12+8*(i>>1)] != 0 || /* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */ h->non_zero_count[mbn_xy][MB_FIELD ? i&3 : (i>>2)+(mb_y&1)*2] ) bS[i] = 2; else bS[i] = 1; } } mb_qp = s->current_picture.qscale_table[mb_xy]; mbn0_qp = s->current_picture.qscale_table[left_mb_xy[0]]; mbn1_qp = s->current_picture.qscale_table[left_mb_xy[1]]; qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1; chroma_qp[0] = ( get_chroma_qp( h->pps.chroma_qp_index_offset, mb_qp ) + get_chroma_qp( h->pps.chroma_qp_index_offset, mbn0_qp ) + 1 ) >> 1; qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1; chroma_qp[1] = ( get_chroma_qp( h->pps.chroma_qp_index_offset, mb_qp ) + get_chroma_qp( h->pps.chroma_qp_index_offset, mbn1_qp ) + 1 ) >> 1; /* Filter edge */ tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPc:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], chroma_qp[0], chroma_qp[1], linesize, uvlinesize); { int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); } filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp ); filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, chroma_qp ); filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, chroma_qp ); } /* dir : 0 -> vertical edge, 1 -> horizontal edge */ for( dir = 0; dir < 2; dir++ ) { int edge; const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy; const int mbm_type = s->current_picture.mb_type[mbm_xy]; int start = h->slice_table[mbm_xy] == 255 ? 1 : 0; const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP)) == (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4; // how often to recheck mv-based bS when iterating between edges const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 : (mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0; // how often to recheck mv-based bS when iterating along each edge const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)); if (first_vertical_edge_done) { start = 1; first_vertical_edge_done = 0; } if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy]) start = 1; if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && start == 0 && !IS_INTERLACED(mb_type) && IS_INTERLACED(mbm_type) ) { // This is a special case in the norm where the filtering must // be done twice (one each of the field) even if we are in a // frame macroblock. // static const int nnz_idx[4] = {4,5,6,3}; unsigned int tmp_linesize = 2 * linesize; unsigned int tmp_uvlinesize = 2 * uvlinesize; int mbn_xy = mb_xy - 2 * s->mb_stride; int qp, chroma_qp; int i, j; int16_t bS[4]; for(j=0; j<2; j++, mbn_xy += s->mb_stride){ if( IS_INTRA(mb_type) || IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) { bS[0] = bS[1] = bS[2] = bS[3] = 3; } else { const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy]; for( i = 0; i < 4; i++ ) { if( h->non_zero_count_cache[scan8[0]+i] != 0 || mbn_nnz[nnz_idx[i]] != 0 ) bS[i] = 2; else bS[i] = 1; } } // Do not use s->qscale as luma quantizer because it has not the same // value in IPCM macroblocks. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1; tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize); { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); } filter_mb_edgeh( h, &img_y[j*linesize], tmp_linesize, bS, qp ); chroma_qp = ( h->chroma_qp + get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1; filter_mb_edgech( h, &img_cb[j*uvlinesize], tmp_uvlinesize, bS, chroma_qp ); filter_mb_edgech( h, &img_cr[j*uvlinesize], tmp_uvlinesize, bS, chroma_qp ); } start = 1; } /* Calculate bS */ for( edge = start; edge < edges; edge++ ) { /* mbn_xy: neighbor macroblock */ const int mbn_xy = edge > 0 ? mb_xy : mbm_xy; const int mbn_type = s->current_picture.mb_type[mbn_xy]; int16_t bS[4]; int qp; if( (edge&1) && IS_8x8DCT(mb_type) ) continue; if( IS_INTRA(mb_type) || IS_INTRA(mbn_type) ) { int value; if (edge == 0) { if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type)) || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0)) ) { value = 4; } else { value = 3; } } else { value = 3; } bS[0] = bS[1] = bS[2] = bS[3] = value; } else { int i, l; int mv_done; if( edge & mask_edge ) { bS[0] = bS[1] = bS[2] = bS[3] = 0; mv_done = 1; } else if( FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbn_type)) { bS[0] = bS[1] = bS[2] = bS[3] = 1; mv_done = 1; } else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) { int b_idx= 8 + 4 + edge * (dir ? 8:1); int bn_idx= b_idx - (dir ? 8:1); int v = 0; for( l = 0; !v && l < 1 + (h->slice_type == B_TYPE); l++ ) { v |= ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] || FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 || FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit; } bS[0] = bS[1] = bS[2] = bS[3] = v; mv_done = 1; } else mv_done = 0; for( i = 0; i < 4; i++ ) { int x = dir == 0 ? edge : i; int y = dir == 0 ? i : edge; int b_idx= 8 + 4 + x + 8*y; int bn_idx= b_idx - (dir ? 8:1); if( h->non_zero_count_cache[b_idx] != 0 || h->non_zero_count_cache[bn_idx] != 0 ) { bS[i] = 2; } else if(!mv_done) { bS[i] = 0; for( l = 0; l < 1 + (h->slice_type == B_TYPE); l++ ) { if( ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] || FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 || FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit ) { bS[i] = 1; break; } } } } if(bS[0]+bS[1]+bS[2]+bS[3] == 0) continue; } /* Filter edge */ // Do not use s->qscale as luma quantizer because it has not the same // value in IPCM macroblocks. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1; //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]); tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize); { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); } if( dir == 0 ) { filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp ); if( (edge&1) == 0 ) { int chroma_qp = ( h->chroma_qp + get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1; filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS, chroma_qp ); filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS, chroma_qp ); } } else { filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp ); if( (edge&1) == 0 ) { int chroma_qp = ( h->chroma_qp + get_chroma_qp( h->pps.chroma_qp_index_offset, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1; filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS, chroma_qp ); filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS, chroma_qp ); } } } } } static int decode_slice(H264Context *h){ MpegEncContext * const s = &h->s; const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F; s->mb_skip_run= -1; if( h->pps.cabac ) { int i; /* realign */ align_get_bits( &s->gb ); /* init cabac */ ff_init_cabac_states( &h->cabac); ff_init_cabac_decoder( &h->cabac, s->gb.buffer + get_bits_count(&s->gb)/8, ( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8); /* calculate pre-state */ for( i= 0; i < 460; i++ ) { int pre; if( h->slice_type == I_TYPE ) pre = av_clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 ); else pre = av_clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 ); if( pre <= 63 ) h->cabac_state[i] = 2 * ( 63 - pre ) + 0; else h->cabac_state[i] = 2 * ( pre - 64 ) + 1; } for(;;){ //START_TIMER int ret = decode_mb_cabac(h); int eos; //STOP_TIMER("decode_mb_cabac") if(ret>=0) hl_decode_mb(h); if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ? s->mb_y++; if(ret>=0) ret = decode_mb_cabac(h); if(ret>=0) hl_decode_mb(h); s->mb_y--; } eos = get_cabac_terminate( &h->cabac ); if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) { av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%d)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } if( ++s->mb_x >= s->mb_width ) { s->mb_x = 0; ff_draw_horiz_band(s, 16*s->mb_y, 16); ++s->mb_y; if(FRAME_MBAFF) { ++s->mb_y; } } if( eos || s->mb_y >= s->mb_height ) { tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; } } } else { for(;;){ int ret = decode_mb_cavlc(h); if(ret>=0) hl_decode_mb(h); if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ? s->mb_y++; ret = decode_mb_cavlc(h); if(ret>=0) hl_decode_mb(h); s->mb_y--; } if(ret<0){ av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } if(++s->mb_x >= s->mb_width){ s->mb_x=0; ff_draw_horiz_band(s, 16*s->mb_y, 16); ++s->mb_y; if(FRAME_MBAFF) { ++s->mb_y; } if(s->mb_y >= s->mb_height){ tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits); if(get_bits_count(&s->gb) == s->gb.size_in_bits ) { ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return -1; } } } if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){ tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits); if(get_bits_count(&s->gb) == s->gb.size_in_bits ){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } } } } #if 0 for(;s->mb_y < s->mb_height; s->mb_y++){ for(;s->mb_x < s->mb_width; s->mb_x++){ int ret= decode_mb(h); hl_decode_mb(h); if(ret<0){ av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } if(++s->mb_x >= s->mb_width){ s->mb_x=0; if(++s->mb_y >= s->mb_height){ if(get_bits_count(s->gb) == s->gb.size_in_bits){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return -1; } } } if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){ if(get_bits_count(s->gb) == s->gb.size_in_bits){ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask); return 0; }else{ ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask); return -1; } } } s->mb_x=0; ff_draw_horiz_band(s, 16*s->mb_y, 16); } #endif return -1; //not reached } static int decode_unregistered_user_data(H264Context *h, int size){ MpegEncContext * const s = &h->s; uint8_t user_data[16+256]; int e, build, i; if(size<16) return -1; for(i=0; igb, 8); } user_data[i]= 0; e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build); if(e==1 && build>=0) h->x264_build= build; if(s->avctx->debug & FF_DEBUG_BUGS) av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16); for(; igb, 8); return 0; } static int decode_sei(H264Context *h){ MpegEncContext * const s = &h->s; while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){ int size, type; type=0; do{ type+= show_bits(&s->gb, 8); }while(get_bits(&s->gb, 8) == 255); size=0; do{ size+= show_bits(&s->gb, 8); }while(get_bits(&s->gb, 8) == 255); switch(type){ case 5: if(decode_unregistered_user_data(h, size) < 0) return -1; break; default: skip_bits(&s->gb, 8*size); } //FIXME check bits here align_get_bits(&s->gb); } return 0; } static inline void decode_hrd_parameters(H264Context *h, SPS *sps){ MpegEncContext * const s = &h->s; int cpb_count, i; cpb_count = get_ue_golomb(&s->gb) + 1; get_bits(&s->gb, 4); /* bit_rate_scale */ get_bits(&s->gb, 4); /* cpb_size_scale */ for(i=0; igb); /* bit_rate_value_minus1 */ get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */ get_bits1(&s->gb); /* cbr_flag */ } get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */ get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */ get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */ get_bits(&s->gb, 5); /* time_offset_length */ } static inline int decode_vui_parameters(H264Context *h, SPS *sps){ MpegEncContext * const s = &h->s; int aspect_ratio_info_present_flag; unsigned int aspect_ratio_idc; int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag; aspect_ratio_info_present_flag= get_bits1(&s->gb); if( aspect_ratio_info_present_flag ) { aspect_ratio_idc= get_bits(&s->gb, 8); if( aspect_ratio_idc == EXTENDED_SAR ) { sps->sar.num= get_bits(&s->gb, 16); sps->sar.den= get_bits(&s->gb, 16); }else if(aspect_ratio_idc < 14){ sps->sar= pixel_aspect[aspect_ratio_idc]; }else{ av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n"); return -1; } }else{ sps->sar.num= sps->sar.den= 0; } // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height); if(get_bits1(&s->gb)){ /* overscan_info_present_flag */ get_bits1(&s->gb); /* overscan_appropriate_flag */ } if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */ get_bits(&s->gb, 3); /* video_format */ get_bits1(&s->gb); /* video_full_range_flag */ if(get_bits1(&s->gb)){ /* colour_description_present_flag */ get_bits(&s->gb, 8); /* colour_primaries */ get_bits(&s->gb, 8); /* transfer_characteristics */ get_bits(&s->gb, 8); /* matrix_coefficients */ } } if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */ get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */ get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */ } sps->timing_info_present_flag = get_bits1(&s->gb); if(sps->timing_info_present_flag){ sps->num_units_in_tick = get_bits_long(&s->gb, 32); sps->time_scale = get_bits_long(&s->gb, 32); sps->fixed_frame_rate_flag = get_bits1(&s->gb); } nal_hrd_parameters_present_flag = get_bits1(&s->gb); if(nal_hrd_parameters_present_flag) decode_hrd_parameters(h, sps); vcl_hrd_parameters_present_flag = get_bits1(&s->gb); if(vcl_hrd_parameters_present_flag) decode_hrd_parameters(h, sps); if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag) get_bits1(&s->gb); /* low_delay_hrd_flag */ get_bits1(&s->gb); /* pic_struct_present_flag */ sps->bitstream_restriction_flag = get_bits1(&s->gb); if(sps->bitstream_restriction_flag){ unsigned int num_reorder_frames; get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */ get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */ get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */ get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */ get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */ num_reorder_frames= get_ue_golomb(&s->gb); get_ue_golomb(&s->gb); /*max_dec_frame_buffering*/ if(num_reorder_frames > 16 /*max_dec_frame_buffering || max_dec_frame_buffering > 16*/){ av_log(h->s.avctx, AV_LOG_ERROR, "illegal num_reorder_frames %d\n", num_reorder_frames); return -1; } sps->num_reorder_frames= num_reorder_frames; } return 0; } static void decode_scaling_list(H264Context *h, uint8_t *factors, int size, const uint8_t *jvt_list, const uint8_t *fallback_list){ MpegEncContext * const s = &h->s; int i, last = 8, next = 8; const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8; if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */ memcpy(factors, fallback_list, size*sizeof(uint8_t)); else for(i=0;igb)) & 0xff; if(!i && !next){ /* matrix not written, we use the preset one */ memcpy(factors, jvt_list, size*sizeof(uint8_t)); break; } last = factors[scan[i]] = next ? next : last; } } static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps, uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){ MpegEncContext * const s = &h->s; int fallback_sps = !is_sps && sps->scaling_matrix_present; const uint8_t *fallback[4] = { fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0], fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1], fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0], fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1] }; if(get_bits1(&s->gb)){ sps->scaling_matrix_present |= is_sps; decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb if(is_sps || pps->transform_8x8_mode){ decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y } } else if(fallback_sps) { memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t)); memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t)); } } static inline int decode_seq_parameter_set(H264Context *h){ MpegEncContext * const s = &h->s; int profile_idc, level_idc; unsigned int sps_id, tmp, mb_width, mb_height; int i; SPS *sps; profile_idc= get_bits(&s->gb, 8); get_bits1(&s->gb); //constraint_set0_flag get_bits1(&s->gb); //constraint_set1_flag get_bits1(&s->gb); //constraint_set2_flag get_bits1(&s->gb); //constraint_set3_flag get_bits(&s->gb, 4); // reserved level_idc= get_bits(&s->gb, 8); sps_id= get_ue_golomb(&s->gb); if (sps_id >= MAX_SPS_COUNT){ // ok it has gone out of hand, someone is sending us bad stuff. av_log(h->s.avctx, AV_LOG_ERROR, "illegal sps_id (%d)\n", sps_id); return -1; } sps= &h->sps_buffer[ sps_id ]; sps->profile_idc= profile_idc; sps->level_idc= level_idc; if(sps->profile_idc >= 100){ //high profile if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc get_bits1(&s->gb); //residual_color_transform_flag get_ue_golomb(&s->gb); //bit_depth_luma_minus8 get_ue_golomb(&s->gb); //bit_depth_chroma_minus8 sps->transform_bypass = get_bits1(&s->gb); decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8); }else sps->scaling_matrix_present = 0; sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4; sps->poc_type= get_ue_golomb(&s->gb); if(sps->poc_type == 0){ //FIXME #define sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4; } else if(sps->poc_type == 1){//FIXME #define sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb); sps->offset_for_non_ref_pic= get_se_golomb(&s->gb); sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb); tmp= get_ue_golomb(&s->gb); if(tmp >= sizeof(sps->offset_for_ref_frame) / sizeof(sps->offset_for_ref_frame[0])){ av_log(h->s.avctx, AV_LOG_ERROR, "poc_cycle_length overflow %u\n", tmp); return -1; } sps->poc_cycle_length= tmp; for(i=0; ipoc_cycle_length; i++) sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb); }else if(sps->poc_type != 2){ av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type); return -1; } tmp= get_ue_golomb(&s->gb); if(tmp > MAX_PICTURE_COUNT-2){ av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n"); } sps->ref_frame_count= tmp; sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb); mb_width= get_ue_golomb(&s->gb) + 1; mb_height= get_ue_golomb(&s->gb) + 1; if(mb_width >= INT_MAX/16 || mb_height >= INT_MAX/16 || avcodec_check_dimensions(NULL, 16*mb_width, 16*mb_height)){ av_log(h->s.avctx, AV_LOG_ERROR, "mb_width/height overflow\n"); return -1; } sps->mb_width = mb_width; sps->mb_height= mb_height; sps->frame_mbs_only_flag= get_bits1(&s->gb); if(!sps->frame_mbs_only_flag) sps->mb_aff= get_bits1(&s->gb); else sps->mb_aff= 0; sps->direct_8x8_inference_flag= get_bits1(&s->gb); #ifndef ALLOW_INTERLACE if(sps->mb_aff) av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF support not included; enable it at compile-time.\n"); #endif if(!sps->direct_8x8_inference_flag && sps->mb_aff) av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + !direct_8x8_inference is not implemented\n"); sps->crop= get_bits1(&s->gb); if(sps->crop){ sps->crop_left = get_ue_golomb(&s->gb); sps->crop_right = get_ue_golomb(&s->gb); sps->crop_top = get_ue_golomb(&s->gb); sps->crop_bottom= get_ue_golomb(&s->gb); if(sps->crop_left || sps->crop_top){ av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n"); } }else{ sps->crop_left = sps->crop_right = sps->crop_top = sps->crop_bottom= 0; } sps->vui_parameters_present_flag= get_bits1(&s->gb); if( sps->vui_parameters_present_flag ) decode_vui_parameters(h, sps); if(s->avctx->debug&FF_DEBUG_PICT_INFO){ av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n", sps_id, sps->profile_idc, sps->level_idc, sps->poc_type, sps->ref_frame_count, sps->mb_width, sps->mb_height, sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"), sps->direct_8x8_inference_flag ? "8B8" : "", sps->crop_left, sps->crop_right, sps->crop_top, sps->crop_bottom, sps->vui_parameters_present_flag ? "VUI" : "" ); } return 0; } static inline int decode_picture_parameter_set(H264Context *h, int bit_length){ MpegEncContext * const s = &h->s; unsigned int tmp, pps_id= get_ue_golomb(&s->gb); PPS *pps; if(pps_id>=MAX_PPS_COUNT){ av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n"); return -1; } pps = &h->pps_buffer[pps_id]; tmp= get_ue_golomb(&s->gb); if(tmp>=MAX_SPS_COUNT){ av_log(h->s.avctx, AV_LOG_ERROR, "sps_id out of range\n"); return -1; } pps->sps_id= tmp; pps->cabac= get_bits1(&s->gb); pps->pic_order_present= get_bits1(&s->gb); pps->slice_group_count= get_ue_golomb(&s->gb) + 1; if(pps->slice_group_count > 1 ){ pps->mb_slice_group_map_type= get_ue_golomb(&s->gb); av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n"); switch(pps->mb_slice_group_map_type){ case 0: #if 0 | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | | | run_length[ i ] |1 |ue(v) | #endif break; case 2: #if 0 | for( i = 0; i < num_slice_groups_minus1; i++ ) | | | |{ | | | | top_left_mb[ i ] |1 |ue(v) | | bottom_right_mb[ i ] |1 |ue(v) | | } | | | #endif break; case 3: case 4: case 5: #if 0 | slice_group_change_direction_flag |1 |u(1) | | slice_group_change_rate_minus1 |1 |ue(v) | #endif break; case 6: #if 0 | slice_group_id_cnt_minus1 |1 |ue(v) | | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | | |) | | | | slice_group_id[ i ] |1 |u(v) | #endif break; } } pps->ref_count[0]= get_ue_golomb(&s->gb) + 1; pps->ref_count[1]= get_ue_golomb(&s->gb) + 1; if(pps->ref_count[0]-1 > 32-1 || pps->ref_count[1]-1 > 32-1){ av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n"); pps->ref_count[0]= pps->ref_count[1]= 1; return -1; } pps->weighted_pred= get_bits1(&s->gb); pps->weighted_bipred_idc= get_bits(&s->gb, 2); pps->init_qp= get_se_golomb(&s->gb) + 26; pps->init_qs= get_se_golomb(&s->gb) + 26; pps->chroma_qp_index_offset= get_se_golomb(&s->gb); pps->deblocking_filter_parameters_present= get_bits1(&s->gb); pps->constrained_intra_pred= get_bits1(&s->gb); pps->redundant_pic_cnt_present = get_bits1(&s->gb); pps->transform_8x8_mode= 0; h->dequant_coeff_pps= -1; //contents of sps/pps can change even if id doesn't, so reinit memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t)); memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t)); if(get_bits_count(&s->gb) < bit_length){ pps->transform_8x8_mode= get_bits1(&s->gb); decode_scaling_matrices(h, &h->sps_buffer[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8); get_se_golomb(&s->gb); //second_chroma_qp_index_offset } if(s->avctx->debug&FF_DEBUG_PICT_INFO){ av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%u sps:%u %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d %s %s %s %s\n", pps_id, pps->sps_id, pps->cabac ? "CABAC" : "CAVLC", pps->slice_group_count, pps->ref_count[0], pps->ref_count[1], pps->weighted_pred ? "weighted" : "", pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset, pps->deblocking_filter_parameters_present ? "LPAR" : "", pps->constrained_intra_pred ? "CONSTR" : "", pps->redundant_pic_cnt_present ? "REDU" : "", pps->transform_8x8_mode ? "8x8DCT" : "" ); } return 0; } /** * finds the end of the current frame in the bitstream. * @return the position of the first byte of the next frame, or -1 */ static int find_frame_end(H264Context *h, const uint8_t *buf, int buf_size){ int i; uint32_t state; ParseContext *pc = &(h->s.parse_context); //printf("first %02X%02X%02X%02X\n", buf[0], buf[1],buf[2],buf[3]); // mb_addr= pc->mb_addr - 1; state= pc->state; if(state>13) state= 7; for(i=0; i7, 1->4, 0->5 else if(buf[i]) state = 7; else state>>=1; //2->1, 1->0, 0->0 }else if(state<=5){ int v= buf[i] & 0x1F; if(v==7 || v==8 || v==9){ if(pc->frame_start_found){ i++; found: pc->state=7; pc->frame_start_found= 0; return i-(state&5); } }else if(v==1 || v==2 || v==5){ if(pc->frame_start_found){ state+=8; continue; }else pc->frame_start_found = 1; } state= 7; }else{ if(buf[i] & 0x80) goto found; state= 7; } } pc->state= state; return END_NOT_FOUND; } #ifdef CONFIG_H264_PARSER static int h264_parse(AVCodecParserContext *s, AVCodecContext *avctx, uint8_t **poutbuf, int *poutbuf_size, const uint8_t *buf, int buf_size) { H264Context *h = s->priv_data; ParseContext *pc = &h->s.parse_context; int next; if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){ next= buf_size; }else{ next= find_frame_end(h, buf, buf_size); if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) { *poutbuf = NULL; *poutbuf_size = 0; return buf_size; } if(next<0 && next != END_NOT_FOUND){ assert(pc->last_index + next >= 0 ); find_frame_end(h, &pc->buffer[pc->last_index + next], -next); //update state } } *poutbuf = (uint8_t *)buf; *poutbuf_size = buf_size; return next; } static int h264_split(AVCodecContext *avctx, const uint8_t *buf, int buf_size) { int i; uint32_t state = -1; int has_sps= 0; for(i=0; i<=buf_size; i++){ if((state&0xFFFFFF1F) == 0x107) has_sps=1; /* if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){ }*/ if((state&0xFFFFFF00) == 0x100 && (state&0xFFFFFF1F) != 0x107 && (state&0xFFFFFF1F) != 0x108 && (state&0xFFFFFF1F) != 0x109){ if(has_sps){ while(i>4 && buf[i-5]==0) i--; return i-4; } } if (is; AVCodecContext * const avctx= s->avctx; int buf_index=0; #if 0 int i; for(i=0; i<50; i++){ av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]); } #endif if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){ h->slice_num = 0; s->current_picture_ptr= NULL; } for(;;){ int consumed; int dst_length; int bit_length; uint8_t *ptr; int i, nalsize = 0; if(h->is_avc) { if(buf_index >= buf_size) break; nalsize = 0; for(i = 0; i < h->nal_length_size; i++) nalsize = (nalsize << 8) | buf[buf_index++]; if(nalsize <= 1 || nalsize > buf_size){ if(nalsize == 1){ buf_index++; continue; }else{ av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize); break; } } } else { // start code prefix search for(; buf_index + 3 < buf_size; buf_index++){ // This should always succeed in the first iteration. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1) break; } if(buf_index+3 >= buf_size) break; buf_index+=3; } ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index); if (ptr==NULL || dst_length < 0){ return -1; } while(ptr[dst_length - 1] == 0 && dst_length > 0) dst_length--; bit_length= !dst_length ? 0 : (8*dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1)); if(s->avctx->debug&FF_DEBUG_STARTCODE){ av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", h->nal_unit_type, buf_index, buf_size, dst_length); } if (h->is_avc && (nalsize != consumed)) av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize); buf_index += consumed; if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME dont discard SEI id ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0)) continue; switch(h->nal_unit_type){ case NAL_IDR_SLICE: idr(h); //FIXME ensure we don't loose some frames if there is reordering case NAL_SLICE: init_get_bits(&s->gb, ptr, bit_length); h->intra_gb_ptr= h->inter_gb_ptr= &s->gb; s->data_partitioning = 0; if(decode_slice_header(h) < 0){ av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n"); break; } s->current_picture_ptr->key_frame= (h->nal_unit_type == NAL_IDR_SLICE); if(h->redundant_pic_count==0 && s->hurry_up < 5 && (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE) && (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE) && avctx->skip_frame < AVDISCARD_ALL) decode_slice(h); break; case NAL_DPA: init_get_bits(&s->gb, ptr, bit_length); h->intra_gb_ptr= h->inter_gb_ptr= NULL; s->data_partitioning = 1; if(decode_slice_header(h) < 0){ av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n"); } break; case NAL_DPB: init_get_bits(&h->intra_gb, ptr, bit_length); h->intra_gb_ptr= &h->intra_gb; break; case NAL_DPC: init_get_bits(&h->inter_gb, ptr, bit_length); h->inter_gb_ptr= &h->inter_gb; if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning && s->context_initialized && s->hurry_up < 5 && (avctx->skip_frame < AVDISCARD_NONREF || h->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || h->slice_type!=B_TYPE) && (avctx->skip_frame < AVDISCARD_NONKEY || h->slice_type==I_TYPE) && avctx->skip_frame < AVDISCARD_ALL) decode_slice(h); break; case NAL_SEI: init_get_bits(&s->gb, ptr, bit_length); decode_sei(h); break; case NAL_SPS: init_get_bits(&s->gb, ptr, bit_length); decode_seq_parameter_set(h); if(s->flags& CODEC_FLAG_LOW_DELAY) s->low_delay=1; if(avctx->has_b_frames < 2) avctx->has_b_frames= !s->low_delay; break; case NAL_PPS: init_get_bits(&s->gb, ptr, bit_length); decode_picture_parameter_set(h, bit_length); break; case NAL_AUD: case NAL_END_SEQUENCE: case NAL_END_STREAM: case NAL_FILLER_DATA: case NAL_SPS_EXT: case NAL_AUXILIARY_SLICE: break; default: av_log(avctx, AV_LOG_ERROR, "Unknown NAL code: %d\n", h->nal_unit_type); } } return buf_index; } /** * returns the number of bytes consumed for building the current frame */ static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){ if(s->flags&CODEC_FLAG_TRUNCATED){ pos -= s->parse_context.last_index; if(pos<0) pos=0; // FIXME remove (unneeded?) return pos; }else{ if(pos==0) pos=1; //avoid infinite loops (i doubt thats needed but ...) if(pos+10>buf_size) pos=buf_size; // oops ;) return pos; } } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { H264Context *h = avctx->priv_data; MpegEncContext *s = &h->s; AVFrame *pict = data; int buf_index; s->flags= avctx->flags; s->flags2= avctx->flags2; /* no supplementary picture */ if (buf_size == 0) { Picture *out; int i, out_idx; //FIXME factorize this with the output code below out = h->delayed_pic[0]; out_idx = 0; for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++) if(h->delayed_pic[i]->poc < out->poc){ out = h->delayed_pic[i]; out_idx = i; } for(i=out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i+1]; if(out){ *data_size = sizeof(AVFrame); *pict= *(AVFrame*)out; } return 0; } if(s->flags&CODEC_FLAG_TRUNCATED){ int next= find_frame_end(h, buf, buf_size); if( ff_combine_frame(&s->parse_context, next, &buf, &buf_size) < 0 ) return buf_size; //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index); } if(h->is_avc && !h->got_avcC) { int i, cnt, nalsize; unsigned char *p = avctx->extradata; if(avctx->extradata_size < 7) { av_log(avctx, AV_LOG_ERROR, "avcC too short\n"); return -1; } if(*p != 1) { av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p); return -1; } /* sps and pps in the avcC always have length coded with 2 bytes, so put a fake nal_length_size = 2 while parsing them */ h->nal_length_size = 2; // Decode sps from avcC cnt = *(p+5) & 0x1f; // Number of sps p += 6; for (i = 0; i < cnt; i++) { nalsize = AV_RB16(p) + 2; if(decode_nal_units(h, p, nalsize) < 0) { av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i); return -1; } p += nalsize; } // Decode pps from avcC cnt = *(p++); // Number of pps for (i = 0; i < cnt; i++) { nalsize = AV_RB16(p) + 2; if(decode_nal_units(h, p, nalsize) != nalsize) { av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i); return -1; } p += nalsize; } // Now store right nal length size, that will be use to parse all other nals h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1; // Do not reparse avcC h->got_avcC = 1; } if(avctx->frame_number==0 && !h->is_avc && s->avctx->extradata_size){ if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0) return -1; } buf_index=decode_nal_units(h, buf, buf_size); if(buf_index < 0) return -1; if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){ av_log(avctx, AV_LOG_ERROR, "no frame!\n"); return -1; } if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){ Picture *out = s->current_picture_ptr; Picture *cur = s->current_picture_ptr; Picture *prev = h->delayed_output_pic; int i, pics, cross_idr, out_of_order, out_idx; s->mb_y= 0; s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264; s->current_picture_ptr->pict_type= s->pict_type; h->prev_frame_num_offset= h->frame_num_offset; h->prev_frame_num= h->frame_num; if(s->current_picture_ptr->reference){ h->prev_poc_msb= h->poc_msb; h->prev_poc_lsb= h->poc_lsb; } if(s->current_picture_ptr->reference) execute_ref_pic_marking(h, h->mmco, h->mmco_index); ff_er_frame_end(s); MPV_frame_end(s); //FIXME do something with unavailable reference frames #if 0 //decode order *data_size = sizeof(AVFrame); #else /* Sort B-frames into display order */ if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){ s->avctx->has_b_frames = h->sps.num_reorder_frames; s->low_delay = 0; } pics = 0; while(h->delayed_pic[pics]) pics++; assert(pics+1 < sizeof(h->delayed_pic) / sizeof(h->delayed_pic[0])); h->delayed_pic[pics++] = cur; if(cur->reference == 0) cur->reference = 1; cross_idr = 0; for(i=0; h->delayed_pic[i]; i++) if(h->delayed_pic[i]->key_frame || h->delayed_pic[i]->poc==0) cross_idr = 1; out = h->delayed_pic[0]; out_idx = 0; for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++) if(h->delayed_pic[i]->poc < out->poc){ out = h->delayed_pic[i]; out_idx = i; } out_of_order = !cross_idr && prev && out->poc < prev->poc; if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames) { } else if(prev && pics <= s->avctx->has_b_frames) out = prev; else if((out_of_order && pics-1 == s->avctx->has_b_frames && pics < 15) || (s->low_delay && ((!cross_idr && prev && out->poc > prev->poc + 2) || cur->pict_type == B_TYPE))) { s->low_delay = 0; s->avctx->has_b_frames++; out = prev; } else if(out_of_order) out = prev; if(out_of_order || pics > s->avctx->has_b_frames){ for(i=out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i+1]; } if(prev == out) *data_size = 0; else *data_size = sizeof(AVFrame); if(prev && prev != out && prev->reference == 1) prev->reference = 0; h->delayed_output_pic = out; #endif if(out) *pict= *(AVFrame*)out; else av_log(avctx, AV_LOG_DEBUG, "no picture\n"); } assert(pict->data[0] || !*data_size); ff_print_debug_info(s, pict); //printf("out %d\n", (int)pict->data[0]); #if 0 //? /* Return the Picture timestamp as the frame number */ /* we substract 1 because it is added on utils.c */ avctx->frame_number = s->picture_number - 1; #endif return get_consumed_bytes(s, buf_index, buf_size); } #if 0 static inline void fill_mb_avail(H264Context *h){ MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; if(s->mb_y){ h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num; h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num; h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num; }else{ h->mb_avail[0]= h->mb_avail[1]= h->mb_avail[2]= 0; } h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num; h->mb_avail[4]= 1; //FIXME move out h->mb_avail[5]= 0; //FIXME move out } #endif #if 0 //selftest #define COUNT 8000 #define SIZE (COUNT*40) int main(){ int i; uint8_t temp[SIZE]; PutBitContext pb; GetBitContext gb; // int int_temp[10000]; DSPContext dsp; AVCodecContext avctx; dsputil_init(&dsp, &avctx); init_put_bits(&pb, temp, SIZE); printf("testing unsigned exp golomb\n"); for(i=0; idsp.h264_idct_add(ref, block, 4); /* for(j=0; j<16; j++){ printf("%d ", ref[j]); } printf("\n");*/ for(j=0; j<16; j++){ int diff= FFABS(src[j] - ref[j]); error+= diff*diff; max_error= FFMAX(max_error, diff); } } printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error ); #if 0 printf("testing quantizer\n"); for(qp=0; qp<52; qp++){ for(i=0; i<16; i++) src1_block[i]= src2_block[i]= random()%255; } #endif printf("Testing NAL layer\n"); uint8_t bitstream[COUNT]; uint8_t nal[COUNT*2]; H264Context h; memset(&h, 0, sizeof(H264Context)); for(i=0; ipriv_data; MpegEncContext *s = &h->s; av_freep(&h->rbsp_buffer); free_tables(h); //FIXME cleanup init stuff perhaps MPV_common_end(s); // memset(h, 0, sizeof(H264Context)); return 0; } AVCodec h264_decoder = { "h264", CODEC_TYPE_VIDEO, CODEC_ID_H264, sizeof(H264Context), decode_init, NULL, decode_end, decode_frame, /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED | CODEC_CAP_DELAY, .flush= flush_dpb, }; #ifdef CONFIG_H264_PARSER AVCodecParser h264_parser = { { CODEC_ID_H264 }, sizeof(H264Context), NULL, h264_parse, ff_parse_close, h264_split, }; #endif #include "svq3.c"