/* Copyright (C) 2001-2002 Michael Niedermayer This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* supported Input formats: YV12, I420/IYUV, YUY2, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09 supported output formats: YV12, I420/IYUV, BGR15, BGR16, BGR24, BGR32, Y8/Y800, YVU9/IF09 BGR15/16 support dithering unscaled special converters YV12/I420/IYUV -> BGR15/BGR16/BGR24/BGR32 YV12/I420/IYUV -> YV12/I420/IYUV YUY2/BGR15/BGR16/BGR24/BGR32/RGB24/RGB32 -> same format BGR24 -> BGR32 & RGB24 -> RGB32 BGR32 -> BGR24 & RGB32 -> RGB24 BGR15 -> BGR16 */ /* tested special converters YV12/I420 -> BGR16 YV12 -> YV12 BGR15 -> BGR16 BGR16 -> BGR16 untested special converters YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok) YV12/I420 -> YV12/I420 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format BGR24 -> BGR32 & RGB24 -> RGB32 BGR32 -> BGR24 & RGB32 -> RGB24 BGR24 -> YV12 */ #include #include #include #include #include "../config.h" #include "../mangle.h" #include #ifdef HAVE_MALLOC_H #include #else #include #endif #include "swscale.h" #include "../cpudetect.h" #include "../bswap.h" #include "../libvo/img_format.h" #include "rgb2rgb.h" #include "../libvo/fastmemcpy.h" #include "../mp_msg.h" #define MSG_WARN(args...) mp_msg(MSGT_SWS,MSGL_WARN, ##args ) #define MSG_FATAL(args...) mp_msg(MSGT_SWS,MSGL_FATAL, ##args ) #define MSG_ERR(args...) mp_msg(MSGT_SWS,MSGL_ERR, ##args ) #define MSG_V(args...) mp_msg(MSGT_SWS,MSGL_V, ##args ) #define MSG_DBG2(args...) mp_msg(MSGT_SWS,MSGL_DBG2, ##args ) #define MSG_INFO(args...) mp_msg(MSGT_SWS,MSGL_INFO, ##args ) #undef MOVNTQ #undef PAVGB //#undef HAVE_MMX2 //#define HAVE_3DNOW //#undef HAVE_MMX //#undef ARCH_X86 //#define WORDS_BIGENDIAN #define DITHER1XBPP #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit #define RET 0xC3 //near return opcode for X86 #ifdef MP_DEBUG #define ASSERT(x) assert(x); #else #define ASSERT(x) ; #endif #ifdef M_PI #define PI M_PI #else #define PI 3.14159265358979323846 #endif //FIXME replace this with something faster #define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_I420 || (x)==IMGFMT_YVU9) #define isYUV(x) ((x)==IMGFMT_YUY2 || isPlanarYUV(x)) #define isGray(x) ((x)==IMGFMT_Y800) #define isSupportedIn(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_I420 || (x)==IMGFMT_YUY2 \ || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\ || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\ || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9) #define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_I420 \ || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\ || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9) #define isRGB(x) (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB) #define isBGR(x) (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR) #define isPacked(x) ((x)==IMGFMT_YUY2 || isRGB(x) || isBGR(x)) #define RGB2YUV_SHIFT 16 #define BY ((int)( 0.098*(1<BGR scaler deglobalize yuv2rgb*.c */ #define ABS(a) ((a) > 0 ? (a) : (-(a))) #define MIN(a,b) ((a) > (b) ? (b) : (a)) #define MAX(a,b) ((a) < (b) ? (b) : (a)) #ifdef ARCH_X86 #define CAN_COMPILE_X86_ASM #endif #ifdef CAN_COMPILE_X86_ASM static uint64_t __attribute__((aligned(8))) yCoeff= 0x2568256825682568LL; static uint64_t __attribute__((aligned(8))) vrCoeff= 0x3343334333433343LL; static uint64_t __attribute__((aligned(8))) ubCoeff= 0x40cf40cf40cf40cfLL; static uint64_t __attribute__((aligned(8))) vgCoeff= 0xE5E2E5E2E5E2E5E2LL; static uint64_t __attribute__((aligned(8))) ugCoeff= 0xF36EF36EF36EF36ELL; static uint64_t __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL; static uint64_t __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL; static uint64_t __attribute__((aligned(8))) w400= 0x0400040004000400LL; static uint64_t __attribute__((aligned(8))) w80= 0x0080008000800080LL; static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL; static uint64_t __attribute__((aligned(8))) w02= 0x0002000200020002LL; static uint64_t __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL; static uint64_t __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL; static uint64_t __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL; static uint64_t __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL; static volatile uint64_t __attribute__((aligned(8))) b5Dither; static volatile uint64_t __attribute__((aligned(8))) g5Dither; static volatile uint64_t __attribute__((aligned(8))) g6Dither; static volatile uint64_t __attribute__((aligned(8))) r5Dither; static uint64_t __attribute__((aligned(8))) dither4[2]={ 0x0103010301030103LL, 0x0200020002000200LL,}; static uint64_t __attribute__((aligned(8))) dither8[2]={ 0x0602060206020602LL, 0x0004000400040004LL,}; static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL; static uint64_t __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL; static uint64_t __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL; static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL; static uint64_t __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL; static uint64_t __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL; static uint64_t __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL; static uint64_t __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL; static uint64_t __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL; #ifdef FAST_BGR2YV12 static const uint64_t bgr2YCoeff __attribute__((aligned(8))) = 0x000000210041000DULL; static const uint64_t bgr2UCoeff __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL; static const uint64_t bgr2VCoeff __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL; #else static const uint64_t bgr2YCoeff __attribute__((aligned(8))) = 0x000020E540830C8BULL; static const uint64_t bgr2UCoeff __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL; static const uint64_t bgr2VCoeff __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL; #endif static const uint64_t bgr2YOffset __attribute__((aligned(8))) = 0x1010101010101010ULL; static const uint64_t bgr2UVOffset __attribute__((aligned(8)))= 0x8080808080808080ULL; static const uint64_t w1111 __attribute__((aligned(8))) = 0x0001000100010001ULL; // FIXME remove static uint64_t __attribute__((aligned(8))) asm_yalpha1; static uint64_t __attribute__((aligned(8))) asm_uvalpha1; #endif // clipping helper table for C implementations: static unsigned char clip_table[768]; static unsigned short clip_table16b[768]; static unsigned short clip_table16g[768]; static unsigned short clip_table16r[768]; static unsigned short clip_table15b[768]; static unsigned short clip_table15g[768]; static unsigned short clip_table15r[768]; // yuv->rgb conversion tables: static int yuvtab_2568[256]; static int yuvtab_3343[256]; static int yuvtab_0c92[256]; static int yuvtab_1a1e[256]; static int yuvtab_40cf[256]; // Needed for cubic scaler to catch overflows static int clip_yuvtab_2568[768]; static int clip_yuvtab_3343[768]; static int clip_yuvtab_0c92[768]; static int clip_yuvtab_1a1e[768]; static int clip_yuvtab_40cf[768]; //global sws_flags from the command line int sws_flags=2; //global srcFilter SwsFilter src_filter= {NULL, NULL, NULL, NULL}; float sws_lum_gblur= 0.0; float sws_chr_gblur= 0.0; int sws_chr_vshift= 0; int sws_chr_hshift= 0; float sws_chr_sharpen= 0.0; float sws_lum_sharpen= 0.0; /* cpuCaps combined from cpudetect and whats actually compiled in (if there is no support for something compiled in it wont appear here) */ static CpuCaps cpuCaps; void (*swScale)(SwsContext *context, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[])=NULL; static SwsVector *getConvVec(SwsVector *a, SwsVector *b); static inline void orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]); #ifdef CAN_COMPILE_X86_ASM void in_asm_used_var_warning_killer() { volatile int i= yCoeff+vrCoeff+ubCoeff+vgCoeff+ugCoeff+bF8+bFC+w400+w80+w10+ bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+asm_yalpha1+ asm_uvalpha1+ M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101; if(i) i=0; } #endif static int testFormat[]={ IMGFMT_YVU9, IMGFMT_YV12, //IMGFMT_IYUV, IMGFMT_I420, IMGFMT_BGR15, IMGFMT_BGR16, IMGFMT_BGR24, IMGFMT_BGR32, //IMGFMT_Y8, IMGFMT_Y800, //IMGFMT_YUY2, 0 }; static uint64_t getSSD(uint8_t *src1, uint8_t *src2, int stride1, int stride2, int w, int h){ int x,y; uint64_t ssd=0; for(y=0; y src -> dst -> out & compare out against ref // ref & out are YV12 static void doTest(uint8_t *ref[3], int refStride[3], int w, int h, int srcFormat, int dstFormat, int srcW, int srcH, int dstW, int dstH, int flags){ uint8_t *src[3]; uint8_t *dst[3]; uint8_t *out[3]; int srcStride[3], dstStride[3]; int i; uint64_t ssdY, ssdU, ssdV; SwsContext *srcContext, *dstContext, *outContext; for(i=0; i<3; i++){ srcStride[i]= srcW*4; dstStride[i]= dstW*4; src[i]= malloc(srcStride[i]*srcH); dst[i]= malloc(dstStride[i]*dstH); out[i]= malloc(refStride[i]*h); } srcContext= getSwsContext(w, h, IMGFMT_YV12, srcW, srcH, srcFormat, flags, NULL, NULL); dstContext= getSwsContext(srcW, srcH, srcFormat, dstW, dstH, dstFormat, flags, NULL, NULL); outContext= getSwsContext(dstW, dstH, dstFormat, w, h, IMGFMT_YV12, flags, NULL, NULL); if(srcContext==NULL ||dstContext==NULL ||outContext==NULL){ printf("Failed allocating swsContext\n"); goto end; } // printf("test %X %X %X -> %X %X %X\n", (int)ref[0], (int)ref[1], (int)ref[2], // (int)src[0], (int)src[1], (int)src[2]); srcContext->swScale(srcContext, ref, refStride, 0, h , src, srcStride); dstContext->swScale(dstContext, src, srcStride, 0, srcH, dst, dstStride); outContext->swScale(outContext, dst, dstStride, 0, dstH, out, refStride); ssdY= getSSD(ref[0], out[0], refStride[0], refStride[0], w, h); ssdU= getSSD(ref[1], out[1], refStride[1], refStride[1], (w+1)>>1, (h+1)>>1); ssdV= getSSD(ref[2], out[2], refStride[2], refStride[2], (w+1)>>1, (h+1)>>1); if(isGray(srcFormat) || isGray(dstFormat)) ssdU=ssdV=0; //FIXME check that output is really gray ssdY/= w*h; ssdU/= w*h/4; ssdV/= w*h/4; if(ssdY>100 || ssdU>50 || ssdV>50){ printf(" %s %dx%d -> %s %4dx%4d flags=%2d SSD=%5lld,%5lld,%5lld\n", vo_format_name(srcFormat), srcW, srcH, vo_format_name(dstFormat), dstW, dstH, flags, ssdY, ssdU, ssdV); } end: freeSwsContext(srcContext); freeSwsContext(dstContext); freeSwsContext(outContext); for(i=0; i<3; i++){ free(src[i]); free(dst[i]); free(out[i]); } } static void selfTest(uint8_t *src[3], int stride[3], int w, int h){ int srcFormat, dstFormat, srcFormatIndex, dstFormatIndex; int srcW, srcH, dstW, dstH; int flags; for(srcFormatIndex=0; ;srcFormatIndex++){ srcFormat= testFormat[srcFormatIndex]; if(!srcFormat) break; for(dstFormatIndex=0; ;dstFormatIndex++){ dstFormat= testFormat[dstFormatIndex]; if(!dstFormat) break; if(!isSupportedOut(dstFormat)) continue; srcW= w+w/3; srcH= h+h/3; for(dstW=w; dstW>19, 0), 255); } if(uDest != NULL) for(i=0; i>19, 0), 255); vDest[i]= MIN(MAX(v>>19, 0), 255); } } static inline void yuv2rgbXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize, int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize, uint8_t *dest, int dstW, int dstFormat) { if(dstFormat==IMGFMT_BGR32) { int i; #ifdef WORDS_BIGENDIAN dest++; #endif for(i=0; i<(dstW>>1); i++){ int j; int Y1=0; int Y2=0; int U=0; int V=0; int Cb, Cr, Cg; for(j=0; j>19) + 256 ]; Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; U >>= 19; V >>= 19; Cb= clip_yuvtab_40cf[U+ 256]; Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; Cr= clip_yuvtab_3343[V+ 256]; dest[8*i+0]=clip_table[((Y1 + Cb) >>13)]; dest[8*i+1]=clip_table[((Y1 + Cg) >>13)]; dest[8*i+2]=clip_table[((Y1 + Cr) >>13)]; dest[8*i+4]=clip_table[((Y2 + Cb) >>13)]; dest[8*i+5]=clip_table[((Y2 + Cg) >>13)]; dest[8*i+6]=clip_table[((Y2 + Cr) >>13)]; } } else if(dstFormat==IMGFMT_BGR24) { int i; for(i=0; i<(dstW>>1); i++){ int j; int Y1=0; int Y2=0; int U=0; int V=0; int Cb, Cr, Cg; for(j=0; j>19) + 256 ]; Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; U >>= 19; V >>= 19; Cb= clip_yuvtab_40cf[U+ 256]; Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; Cr= clip_yuvtab_3343[V+ 256]; dest[0]=clip_table[((Y1 + Cb) >>13)]; dest[1]=clip_table[((Y1 + Cg) >>13)]; dest[2]=clip_table[((Y1 + Cr) >>13)]; dest[3]=clip_table[((Y2 + Cb) >>13)]; dest[4]=clip_table[((Y2 + Cg) >>13)]; dest[5]=clip_table[((Y2 + Cr) >>13)]; dest+=6; } } else if(dstFormat==IMGFMT_BGR16) { int i; #ifdef DITHER1XBPP static int ditherb1=1<<14; static int ditherg1=1<<13; static int ditherr1=2<<14; static int ditherb2=3<<14; static int ditherg2=3<<13; static int ditherr2=0<<14; ditherb1 ^= (1^2)<<14; ditherg1 ^= (1^2)<<13; ditherr1 ^= (1^2)<<14; ditherb2 ^= (3^0)<<14; ditherg2 ^= (3^0)<<13; ditherr2 ^= (3^0)<<14; #else const int ditherb1=0; const int ditherg1=0; const int ditherr1=0; const int ditherb2=0; const int ditherg2=0; const int ditherr2=0; #endif for(i=0; i<(dstW>>1); i++){ int j; int Y1=0; int Y2=0; int U=0; int V=0; int Cb, Cr, Cg; for(j=0; j>19) + 256 ]; Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; U >>= 19; V >>= 19; Cb= clip_yuvtab_40cf[U+ 256]; Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; Cr= clip_yuvtab_3343[V+ 256]; ((uint16_t*)dest)[2*i] = clip_table16b[(Y1 + Cb + ditherb1) >>13] | clip_table16g[(Y1 + Cg + ditherg1) >>13] | clip_table16r[(Y1 + Cr + ditherr1) >>13]; ((uint16_t*)dest)[2*i+1] = clip_table16b[(Y2 + Cb + ditherb2) >>13] | clip_table16g[(Y2 + Cg + ditherg2) >>13] | clip_table16r[(Y2 + Cr + ditherr2) >>13]; } } else if(dstFormat==IMGFMT_BGR15) { int i; #ifdef DITHER1XBPP static int ditherb1=1<<14; static int ditherg1=1<<14; static int ditherr1=2<<14; static int ditherb2=3<<14; static int ditherg2=3<<14; static int ditherr2=0<<14; ditherb1 ^= (1^2)<<14; ditherg1 ^= (1^2)<<14; ditherr1 ^= (1^2)<<14; ditherb2 ^= (3^0)<<14; ditherg2 ^= (3^0)<<14; ditherr2 ^= (3^0)<<14; #else const int ditherb1=0; const int ditherg1=0; const int ditherr1=0; const int ditherb2=0; const int ditherg2=0; const int ditherr2=0; #endif for(i=0; i<(dstW>>1); i++){ int j; int Y1=0; int Y2=0; int U=0; int V=0; int Cb, Cr, Cg; for(j=0; j>19) + 256 ]; Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; U >>= 19; V >>= 19; Cb= clip_yuvtab_40cf[U+ 256]; Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; Cr= clip_yuvtab_3343[V+ 256]; ((uint16_t*)dest)[2*i] = clip_table15b[(Y1 + Cb + ditherb1) >>13] | clip_table15g[(Y1 + Cg + ditherg1) >>13] | clip_table15r[(Y1 + Cr + ditherr1) >>13]; ((uint16_t*)dest)[2*i+1] = clip_table15b[(Y2 + Cb + ditherb2) >>13] | clip_table15g[(Y2 + Cg + ditherg2) >>13] | clip_table15r[(Y2 + Cr + ditherr2) >>13]; } } } //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one //Plain C versions #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) #define COMPILE_C #endif #ifdef CAN_COMPILE_X86_ASM #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT) #define COMPILE_MMX #endif #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT) #define COMPILE_MMX2 #endif #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT) #define COMPILE_3DNOW #endif #endif //CAN_COMPILE_X86_ASM #undef HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #ifdef COMPILE_C #undef HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #define RENAME(a) a ## _C #include "swscale_template.c" #endif #ifdef CAN_COMPILE_X86_ASM //X86 versions /* #undef RENAME #undef HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #define ARCH_X86 #define RENAME(a) a ## _X86 #include "swscale_template.c" */ //MMX versions #ifdef COMPILE_MMX #undef RENAME #define HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #define RENAME(a) a ## _MMX #include "swscale_template.c" #endif //MMX2 versions #ifdef COMPILE_MMX2 #undef RENAME #define HAVE_MMX #define HAVE_MMX2 #undef HAVE_3DNOW #define RENAME(a) a ## _MMX2 #include "swscale_template.c" #endif //3DNOW versions #ifdef COMPILE_3DNOW #undef RENAME #define HAVE_MMX #undef HAVE_MMX2 #define HAVE_3DNOW #define RENAME(a) a ## _3DNow #include "swscale_template.c" #endif #endif //CAN_COMPILE_X86_ASM // minor note: the HAVE_xyz is messed up after that line so dont use it // old global scaler, dont use for new code // will use sws_flags from the command line void SwScale_YV12slice(unsigned char* src[], int srcStride[], int srcSliceY , int srcSliceH, uint8_t* dst[], int dstStride, int dstbpp, int srcW, int srcH, int dstW, int dstH){ static SwsContext *context=NULL; int dstFormat; int dstStride3[3]= {dstStride, dstStride>>1, dstStride>>1}; switch(dstbpp) { case 8 : dstFormat= IMGFMT_Y8; break; case 12: dstFormat= IMGFMT_YV12; break; case 15: dstFormat= IMGFMT_BGR15; break; case 16: dstFormat= IMGFMT_BGR16; break; case 24: dstFormat= IMGFMT_BGR24; break; case 32: dstFormat= IMGFMT_BGR32; break; default: return; } if(!context) context=getSwsContextFromCmdLine(srcW, srcH, IMGFMT_YV12, dstW, dstH, dstFormat); context->swScale(context, src, srcStride, srcSliceY, srcSliceH, dst, dstStride3); } void swsGetFlagsAndFilterFromCmdLine(int *flags, SwsFilter **srcFilterParam, SwsFilter **dstFilterParam) { static int firstTime=1; *flags=0; #ifdef ARCH_X86 if(gCpuCaps.hasMMX) asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions) #endif if(firstTime) { firstTime=0; *flags= SWS_PRINT_INFO; } else if(verbose>1) *flags= SWS_PRINT_INFO; if(src_filter.lumH) freeVec(src_filter.lumH); if(src_filter.lumV) freeVec(src_filter.lumV); if(src_filter.chrH) freeVec(src_filter.chrH); if(src_filter.chrV) freeVec(src_filter.chrV); if(sws_lum_gblur!=0.0){ src_filter.lumH= getGaussianVec(sws_lum_gblur, 3.0); src_filter.lumV= getGaussianVec(sws_lum_gblur, 3.0); }else{ src_filter.lumH= getIdentityVec(); src_filter.lumV= getIdentityVec(); } if(sws_chr_gblur!=0.0){ src_filter.chrH= getGaussianVec(sws_chr_gblur, 3.0); src_filter.chrV= getGaussianVec(sws_chr_gblur, 3.0); }else{ src_filter.chrH= getIdentityVec(); src_filter.chrV= getIdentityVec(); } if(sws_chr_sharpen!=0.0){ SwsVector *g= getConstVec(-1.0, 3); SwsVector *id= getConstVec(10.0/sws_chr_sharpen, 1); g->coeff[1]=2.0; addVec(id, g); convVec(src_filter.chrH, id); convVec(src_filter.chrV, id); freeVec(g); freeVec(id); } if(sws_lum_sharpen!=0.0){ SwsVector *g= getConstVec(-1.0, 3); SwsVector *id= getConstVec(10.0/sws_lum_sharpen, 1); g->coeff[1]=2.0; addVec(id, g); convVec(src_filter.lumH, id); convVec(src_filter.lumV, id); freeVec(g); freeVec(id); } if(sws_chr_hshift) shiftVec(src_filter.chrH, sws_chr_hshift); if(sws_chr_vshift) shiftVec(src_filter.chrV, sws_chr_vshift); normalizeVec(src_filter.chrH, 1.0); normalizeVec(src_filter.chrV, 1.0); normalizeVec(src_filter.lumH, 1.0); normalizeVec(src_filter.lumV, 1.0); if(verbose > 1) printVec(src_filter.chrH); if(verbose > 1) printVec(src_filter.lumH); switch(sws_flags) { case 0: *flags|= SWS_FAST_BILINEAR; break; case 1: *flags|= SWS_BILINEAR; break; case 2: *flags|= SWS_BICUBIC; break; case 3: *flags|= SWS_X; break; case 4: *flags|= SWS_POINT; break; case 5: *flags|= SWS_AREA; break; default:*flags|= SWS_BILINEAR; break; } *srcFilterParam= &src_filter; *dstFilterParam= NULL; } // will use sws_flags & src_filter (from cmd line) SwsContext *getSwsContextFromCmdLine(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat) { int flags; SwsFilter *dstFilterParam, *srcFilterParam; swsGetFlagsAndFilterFromCmdLine(&flags, &srcFilterParam, &dstFilterParam); return getSwsContext(srcW, srcH, srcFormat, dstW, dstH, dstFormat, flags, srcFilterParam, dstFilterParam); } static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, SwsVector *srcFilter, SwsVector *dstFilter) { int i; int filterSize; int filter2Size; int minFilterSize; double *filter=NULL; double *filter2=NULL; #ifdef ARCH_X86 if(gCpuCaps.hasMMX) asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions) #endif // Note the +1 is for the MMXscaler which reads over the end *filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t)); if(ABS(xInc - 0x10000) <10) // unscaled { int i; filterSize= 1; filter= (double*)memalign(8, dstW*sizeof(double)*filterSize); for(i=0; i>16; (*filterPos)[i]= xx; filter[i]= 1.0; xDstInSrc+= xInc; } } else if(xInc <= (1<<16) || (flags&SWS_FAST_BILINEAR)) // upscale { int i; int xDstInSrc; if (flags&SWS_BICUBIC) filterSize= 4; else if(flags&SWS_X ) filterSize= 4; else filterSize= 2; // SWS_BILINEAR / SWS_AREA filter= (double*)memalign(8, dstW*sizeof(double)*filterSize); xDstInSrc= xInc/2 - 0x8000; for(i=0; i>16; int j; (*filterPos)[i]= xx; if((flags & SWS_BICUBIC) || (flags & SWS_X)) { double d= ABS(((xx+1)<<16) - xDstInSrc)/(double)(1<<16); double y1,y2,y3,y4; double A= -0.6; if(flags & SWS_BICUBIC){ // Equation is from VirtualDub y1 = ( + A*d - 2.0*A*d*d + A*d*d*d); y2 = (+ 1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d); y3 = ( - A*d + (2.0*A+3.0)*d*d - (A+2.0)*d*d*d); y4 = ( + A*d*d - A*d*d*d); }else{ // cubic interpolation (derived it myself) y1 = ( -2.0*d + 3.0*d*d - 1.0*d*d*d)/6.0; y2 = (6.0 -3.0*d - 6.0*d*d + 3.0*d*d*d)/6.0; y3 = ( +6.0*d + 3.0*d*d - 3.0*d*d*d)/6.0; y4 = ( -1.0*d + 1.0*d*d*d)/6.0; } filter[i*filterSize + 0]= y1; filter[i*filterSize + 1]= y2; filter[i*filterSize + 2]= y3; filter[i*filterSize + 3]= y4; } else { //Bilinear upscale / linear interpolate / Area averaging for(j=0; j filter2 free(filter); */ ASSERT(filterSize>0) filter2Size= filterSize; if(srcFilter) filter2Size+= srcFilter->length - 1; if(dstFilter) filter2Size+= dstFilter->length - 1; ASSERT(filter2Size>0) filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double)); for(i=0; ilength == filter2Size) //FIXME dstFilter for(j=0; jlength; j++) { filter2[i*filter2Size + j]= outVec->coeff[j]; } (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2; if(outVec != &scaleFilter) freeVec(outVec); } free(filter); filter=NULL; /* try to reduce the filter-size (step1 find size and shift left) */ // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not) minFilterSize= 0; for(i=dstW-1; i>=0; i--) { int min= filter2Size; int j; double cutOff=0.0; /* get rid off near zero elements on the left by shifting left */ for(j=0; j SWS_MAX_REDUCE_CUTOFF) break; /* preserve Monotonicity because the core cant handle the filter otherwise */ if(i= (*filterPos)[i+1]) break; // Move filter coeffs left for(k=1; k0; j--) { cutOff += ABS(filter2[i*filter2Size + j]); if(cutOff > SWS_MAX_REDUCE_CUTOFF) break; min--; } if(min>minFilterSize) minFilterSize= min; } ASSERT(minFilterSize > 0) filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1)); ASSERT(filterSize > 0) filter= (double*)memalign(8, filterSize*dstW*sizeof(double)); *outFilterSize= filterSize; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize); /* try to reduce the filter-size (step2 reduce it) */ for(i=0; i=filter2Size) filter[i*filterSize + j]= 0.0; else filter[i*filterSize + j]= filter2[i*filter2Size + j]; } } free(filter2); filter2=NULL; //FIXME try to align filterpos if possible //fix borders for(i=0; i srcW) { int shift= (*filterPos)[i] + filterSize - srcW; // Move filter coeffs right to compensate for filterPos for(j=filterSize-2; j>=0; j--) { int right= MIN(j + shift, filterSize-1); filter[i*filterSize +right] += filter[i*filterSize +j]; filter[i*filterSize +j]=0; } (*filterPos)[i]= srcW - filterSize; } } // Note the +1 is for the MMXscaler which reads over the end *outFilter= (int16_t*)memalign(8, *outFilterSize*(dstW+1)*sizeof(int16_t)); memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t)); /* Normalize & Store in outFilter */ for(i=0; i>16; if((i&3) == 0) { int a=0; int b=((xpos+xInc)>>16) - xx; int c=((xpos+xInc*2)>>16) - xx; int d=((xpos+xInc*3)>>16) - xx; filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9; filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9; filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9; filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9; filterPos[i/2]= xx; if(d+1<4) { int maxShift= 3-(d+1); int shift=0; memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB); funnyCode[fragmentPos + imm8OfPShufW1B]= (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6); funnyCode[fragmentPos + imm8OfPShufW2B]= a | (b<<2) | (c<<4) | (d<<6); if(i+3>=dstW) shift=maxShift; //avoid overread else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align if(shift && i>=shift) { funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift; funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift; filterPos[i/2]-=shift; } fragmentPos+= fragmentLengthB; } else { int maxShift= 3-d; int shift=0; memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA); funnyCode[fragmentPos + imm8OfPShufW1A]= funnyCode[fragmentPos + imm8OfPShufW2A]= a | (b<<2) | (c<<4) | (d<<6); if(i+4>=dstW) shift=maxShift; //avoid overread else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align if(shift && i>=shift) { funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift; funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift; filterPos[i/2]-=shift; } fragmentPos+= fragmentLengthA; } funnyCode[fragmentPos]= RET; } xpos+=xInc; } filterPos[i/2]= xpos>>16; // needed to jump to the next part } #endif // ARCH_X86 //FIXME remove void SwScale_Init(){ } static void globalInit(){ // generating tables: int i; for(i=0; i<768; i++){ int c= MIN(MAX(i-256, 0), 255); clip_table[i]=c; yuvtab_2568[c]= clip_yuvtab_2568[i]=(0x2568*(c-16))+(256<<13); yuvtab_3343[c]= clip_yuvtab_3343[i]=0x3343*(c-128); yuvtab_0c92[c]= clip_yuvtab_0c92[i]=-0x0c92*(c-128); yuvtab_1a1e[c]= clip_yuvtab_1a1e[i]=-0x1a1e*(c-128); yuvtab_40cf[c]= clip_yuvtab_40cf[i]=0x40cf*(c-128); } for(i=0; i<768; i++) { int v= clip_table[i]; clip_table16b[i]= v>>3; clip_table16g[i]= (v<<3)&0x07E0; clip_table16r[i]= (v<<8)&0xF800; clip_table15b[i]= v>>3; clip_table15g[i]= (v<<2)&0x03E0; clip_table15r[i]= (v<<7)&0x7C00; } cpuCaps= gCpuCaps; #ifdef RUNTIME_CPUDETECT #ifdef CAN_COMPILE_X86_ASM // ordered per speed fasterst first if(gCpuCaps.hasMMX2) swScale= swScale_MMX2; else if(gCpuCaps.has3DNow) swScale= swScale_3DNow; else if(gCpuCaps.hasMMX) swScale= swScale_MMX; else swScale= swScale_C; #else swScale= swScale_C; cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0; #endif #else //RUNTIME_CPUDETECT #ifdef HAVE_MMX2 swScale= swScale_MMX2; cpuCaps.has3DNow = 0; #elif defined (HAVE_3DNOW) swScale= swScale_3DNow; cpuCaps.hasMMX2 = 0; #elif defined (HAVE_MMX) swScale= swScale_MMX; cpuCaps.hasMMX2 = cpuCaps.has3DNow = 0; #else swScale= swScale_C; cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0; #endif #endif //!RUNTIME_CPUDETECT } static void PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]){ uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY; /* Copy Y plane */ if(dstStride[0]==srcStride[0]) memcpy(dst, src[0], srcSliceH*dstStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst; for(i=0; isrcFormat==IMGFMT_YV12) interleaveBytes( src[1],src[2],dst,c->srcW,srcSliceH,srcStride[1],srcStride[2],dstStride[0] ); else /* I420 & IYUV */ interleaveBytes( src[2],src[1],dst,c->srcW,srcSliceH,srcStride[2],srcStride[1],dstStride[0] ); } /* Warper functions for yuv2bgr */ static void planarYuvToBgr(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]){ uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY; if(c->srcFormat==IMGFMT_YV12) yuv2rgb( dst,src[0],src[1],src[2],c->srcW,srcSliceH,dstStride[0],srcStride[0],srcStride[1] ); else /* I420 & IYUV */ yuv2rgb( dst,src[0],src[2],src[1],c->srcW,srcSliceH,dstStride[0],srcStride[0],srcStride[1] ); } static void PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]){ uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY; if(c->srcFormat==IMGFMT_YV12) yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] ); else /* I420 & IYUV */ yv12toyuy2( src[0],src[2],src[1],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] ); } static void bgr24to32Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(dstStride[0]*3==srcStride[0]*4) rgb24to32(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW*3); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } static void bgr24to16Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(dstStride[0]*3==srcStride[0]*2) rgb24to16(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW*3); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } static void bgr24to15Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(dstStride[0]*3==srcStride[0]*2) rgb24to15(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW*3); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } static void bgr32to24Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(dstStride[0]*4==srcStride[0]*3) rgb32to24(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW<<2); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } static void bgr32to16Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(dstStride[0]*4==srcStride[0]*2) rgb32to16(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW<<2); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } static void bgr32to15Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(dstStride[0]*4==srcStride[0]*2) rgb32to15(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW<<2); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } static void bgr15to16Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(dstStride[0]==srcStride[0]) rgb15to16(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW<<1); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } static void bgr15to24Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(dstStride[0]*2==srcStride[0]*3) rgb15to24(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW<<1); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } static void bgr15to32Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(dstStride[0]*2==srcStride[0]*4) rgb15to32(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW<<1); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } static void bgr16to24Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(dstStride[0]*2==srcStride[0]*3) rgb16to24(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW<<1); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } static void bgr16to32Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ if(dstStride[0]*2==srcStride[0]*4) rgb16to32(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for(i=0; isrcW<<1); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } static void bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]){ rgb24toyv12( src[0], dst[0]+ srcSliceY *dstStride[0], dst[1]+(srcSliceY>>1)*dstStride[1], dst[2]+(srcSliceY>>1)*dstStride[2], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]); } /** * bring pointers in YUV order instead of YVU */ static inline void orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){ if(format == IMGFMT_YV12 || format == IMGFMT_YVU9){ sortedP[0]= p[0]; sortedP[1]= p[1]; sortedP[2]= p[2]; sortedStride[0]= stride[0]; sortedStride[1]= stride[1]; sortedStride[2]= stride[2]; } else if(isPacked(format) || isGray(format)) { sortedP[0]= p[0]; sortedP[1]= sortedP[2]= NULL; sortedStride[0]= stride[0]; sortedStride[1]= sortedStride[2]= 0; } else /* I420 */ { sortedP[0]= p[0]; sortedP[1]= p[2]; sortedP[2]= p[1]; sortedStride[0]= stride[0]; sortedStride[1]= stride[2]; sortedStride[2]= stride[1]; } } /* unscaled copy like stuff (assumes nearly identical formats) */ static void simpleCopy(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){ int srcStride[3]; int dstStride[3]; uint8_t *src[3]; uint8_t *dst[3]; orderYUV(c->srcFormat, src, srcStride, srcParam, srcStrideParam); orderYUV(c->dstFormat, dst, dstStride, dstParam, dstStrideParam); if(isPacked(c->srcFormat)) { if(dstStride[0]==srcStride[0]) memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; int length=0; /* universal length finder */ while(length+c->srcW <= ABS(dstStride[0]) && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW; ASSERT(length!=0); for(i=0; isrcW : -((-c->srcW )>>c->chrDstHSubSample); int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample); int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample); if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0) { if(!isGray(c->dstFormat)) memset(dst[plane], 128, dstStride[plane]*height); } else { if(dstStride[plane]==srcStride[plane]) memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]); else { int i; uint8_t *srcPtr= src[plane]; uint8_t *dstPtr= dst[plane] + dstStride[plane]*y; for(i=0; i %dx%d is invalid scaling dimension\n", srcW, srcH, dstW, dstH); return NULL; } if(!dstFilter) dstFilter= &dummyFilter; if(!srcFilter) srcFilter= &dummyFilter; c= memalign(64, sizeof(SwsContext)); memset(c, 0, sizeof(SwsContext)); c->srcW= srcW; c->srcH= srcH; c->dstW= dstW; c->dstH= dstH; c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW; c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH; c->flags= flags; c->dstFormat= dstFormat; c->srcFormat= srcFormat; usesFilter=0; if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesFilter=1; if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesFilter=1; if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesFilter=1; if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesFilter=1; if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesFilter=1; if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesFilter=1; if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesFilter=1; if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesFilter=1; getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat); getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat); // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1; // drop some chroma lines if the user wants it c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT; c->chrSrcVSubSample+= c->vChrDrop; // drop every 2. pixel for chroma calculation unless user wants full chroma if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) c->chrSrcHSubSample=1; c->chrIntHSubSample= c->chrDstHSubSample; c->chrIntVSubSample= c->chrSrcVSubSample; // note the -((-x)>>y) is so that we allways round toward +inf c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample); c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample); c->chrDstW= -((-dstW) >> c->chrDstHSubSample); c->chrDstH= -((-dstH) >> c->chrDstVSubSample); /* printf("%d %d %d %d / %d %d %d %d //\n", c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, srcW, srcH, dstW, dstH);*/ /* unscaled special Cases */ if(unscaled && !usesFilter) { /* yv12_to_nv12 */ if((srcFormat == IMGFMT_YV12||srcFormat==IMGFMT_I420)&&dstFormat == IMGFMT_NV12) { c->swScale= PlanarToNV12Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } /* yv12_to_yuy2 */ if((srcFormat == IMGFMT_YV12||srcFormat==IMGFMT_I420)&&dstFormat == IMGFMT_YUY2) { c->swScale= PlanarToYuy2Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } /* yuv2bgr */ if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_I420) && isBGR(dstFormat)) { // FIXME multiple yuv2rgb converters wont work that way cuz that thing is full of globals&statics #ifdef WORDS_BIGENDIAN if(dstFormat==IMGFMT_BGR32) yuv2rgb_init( dstFormat&0xFF /* =bpp */, MODE_BGR); else yuv2rgb_init( dstFormat&0xFF /* =bpp */, MODE_RGB); #else yuv2rgb_init( dstFormat&0xFF /* =bpp */, MODE_RGB); #endif c->swScale= planarYuvToBgr; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } #if 1 /* simple copy */ if( srcFormat == dstFormat || (srcFormat==IMGFMT_YV12 && dstFormat==IMGFMT_I420) || (srcFormat==IMGFMT_I420 && dstFormat==IMGFMT_YV12) || (isPlanarYUV(srcFormat) && isGray(dstFormat)) || (isPlanarYUV(dstFormat) && isGray(srcFormat)) ) { c->swScale= simpleCopy; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } #endif /* bgr32to24 & rgb32to24*/ if((srcFormat==IMGFMT_BGR32 && dstFormat==IMGFMT_BGR24) ||(srcFormat==IMGFMT_RGB32 && dstFormat==IMGFMT_RGB24)) { c->swScale= bgr32to24Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } /* bgr32to16 & rgb32to16*/ if((srcFormat==IMGFMT_BGR32 && dstFormat==IMGFMT_BGR16) ||(srcFormat==IMGFMT_RGB32 && dstFormat==IMGFMT_RGB16)) { c->swScale= bgr32to16Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } /* bgr32to15 & rgb32to15*/ if((srcFormat==IMGFMT_BGR32 && dstFormat==IMGFMT_BGR15) ||(srcFormat==IMGFMT_RGB32 && dstFormat==IMGFMT_RGB15)) { c->swScale= bgr32to15Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } /* bgr24to32 & rgb24to32*/ if((srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_BGR32) ||(srcFormat==IMGFMT_RGB24 && dstFormat==IMGFMT_RGB32)) { c->swScale= bgr24to32Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } /* bgr24to16 & rgb24to16*/ if((srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_BGR16) ||(srcFormat==IMGFMT_RGB24 && dstFormat==IMGFMT_RGB16)) { c->swScale= bgr24to16Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } /* bgr24to15 & rgb24to15*/ if((srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_BGR15) ||(srcFormat==IMGFMT_RGB24 && dstFormat==IMGFMT_RGB15)) { c->swScale= bgr24to15Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } /* bgr15to16 */ if(srcFormat==IMGFMT_BGR15 && dstFormat==IMGFMT_BGR16) { c->swScale= bgr15to16Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } /* bgr15to24 */ if((srcFormat==IMGFMT_BGR15 && dstFormat==IMGFMT_BGR24) ||(srcFormat==IMGFMT_RGB15 && dstFormat==IMGFMT_RGB24)) { c->swScale= bgr15to24Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } #if 0 //segfaults /* bgr15to32 */ if((srcFormat==IMGFMT_BGR15 && dstFormat==IMGFMT_BGR32) ||(srcFormat==IMGFMT_RGB15 && dstFormat==IMGFMT_RGB32)) { c->swScale= bgr15to32Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } #endif /* bgr16to24 */ if((srcFormat==IMGFMT_BGR16 && dstFormat==IMGFMT_BGR24) ||(srcFormat==IMGFMT_RGB16 && dstFormat==IMGFMT_RGB24)) { c->swScale= bgr16to24Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } #if 0 //segfaults /* bgr16to32 */ if((srcFormat==IMGFMT_BGR16 && dstFormat==IMGFMT_BGR32) ||(srcFormat==IMGFMT_RGB16 && dstFormat==IMGFMT_RGB32)) { c->swScale= bgr16to32Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } #endif /* bgr24toYV12 */ if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12) { c->swScale= bgr24toyv12Wrapper; if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", vo_format_name(srcFormat), vo_format_name(dstFormat)); return c; } } if(cpuCaps.hasMMX2) { c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0; if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) { if(flags&SWS_PRINT_INFO) MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n"); } } else c->canMMX2BeUsed=0; c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW; c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH; // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst // but only for the FAST_BILINEAR mode otherwise do correct scaling // n-2 is the last chrominance sample available // this is not perfect, but noone shuld notice the difference, the more correct variant // would be like the vertical one, but that would require some special code for the // first and last pixel if(flags&SWS_FAST_BILINEAR) { if(c->canMMX2BeUsed) { c->lumXInc+= 20; c->chrXInc+= 20; } //we dont use the x86asm scaler if mmx is available else if(cpuCaps.hasMMX) { c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20; c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20; } } /* precalculate horizontal scaler filter coefficients */ { const int filterAlign= cpuCaps.hasMMX ? 4 : 1; initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc, srcW , dstW, filterAlign, 1<<14, flags, srcFilter->lumH, dstFilter->lumH); initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc, c->chrSrcW, c->chrDstW, filterAlign, 1<<14, flags, srcFilter->chrH, dstFilter->chrH); #ifdef ARCH_X86 // cant downscale !!! if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) { c->lumMmx2Filter = (int16_t*)memalign(8, (dstW /8+8)*sizeof(int16_t)); c->chrMmx2Filter = (int16_t*)memalign(8, (c->chrDstW /4+8)*sizeof(int16_t)); c->lumMmx2FilterPos= (int32_t*)memalign(8, (dstW /2/8+8)*sizeof(int32_t)); c->chrMmx2FilterPos= (int32_t*)memalign(8, (c->chrDstW/2/4+8)*sizeof(int32_t)); initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8); initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4); } #endif } // Init Horizontal stuff /* precalculate vertical scaler filter coefficients */ initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc, srcH , dstH, 1, (1<<12)-4, flags, srcFilter->lumV, dstFilter->lumV); initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc, c->chrSrcH, c->chrDstH, 1, (1<<12)-4, flags, srcFilter->chrV, dstFilter->chrV); // Calculate Buffer Sizes so that they wont run out while handling these damn slices c->vLumBufSize= c->vLumFilterSize; c->vChrBufSize= c->vChrFilterSize; for(i=0; ichrDstH / dstH; int nextSlice= MAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1, ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<chrSrcVSubSample)); nextSlice&= ~3; // Slices start at boundaries which are divisable through 4 if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice) c->vLumBufSize= nextSlice - c->vLumFilterPos[i ]; if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample)) c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI]; } // allocate pixbufs (we use dynamic allocation because otherwise we would need to c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*)); c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*)); //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000) for(i=0; ivLumBufSize; i++) c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000); for(i=0; ivChrBufSize; i++) c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000); //try to avoid drawing green stuff between the right end and the stride end for(i=0; ivLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000); for(i=0; ivChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000); ASSERT(c->chrDstH <= dstH) // pack filter data for mmx code if(cpuCaps.hasMMX) { c->lumMmxFilter= (int16_t*)memalign(8, c->vLumFilterSize* dstH*4*sizeof(int16_t)); c->chrMmxFilter= (int16_t*)memalign(8, c->vChrFilterSize*c->chrDstH*4*sizeof(int16_t)); for(i=0; ivLumFilterSize*dstH; i++) c->lumMmxFilter[4*i]=c->lumMmxFilter[4*i+1]=c->lumMmxFilter[4*i+2]=c->lumMmxFilter[4*i+3]= c->vLumFilter[i]; for(i=0; ivChrFilterSize*c->chrDstH; i++) c->chrMmxFilter[4*i]=c->chrMmxFilter[4*i+1]=c->chrMmxFilter[4*i+2]=c->chrMmxFilter[4*i+3]= c->vChrFilter[i]; } if(flags&SWS_PRINT_INFO) { #ifdef DITHER1XBPP char *dither= " dithered"; #else char *dither= ""; #endif if(flags&SWS_FAST_BILINEAR) MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, "); else if(flags&SWS_BILINEAR) MSG_INFO("\nSwScaler: BILINEAR scaler, "); else if(flags&SWS_BICUBIC) MSG_INFO("\nSwScaler: BICUBIC scaler, "); else if(flags&SWS_X) MSG_INFO("\nSwScaler: Experimental scaler, "); else if(flags&SWS_POINT) MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, "); else if(flags&SWS_AREA) MSG_INFO("\nSwScaler: Area Averageing scaler, "); else MSG_INFO("\nSwScaler: ehh flags invalid?! "); if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16) MSG_INFO("from %s to%s %s ", vo_format_name(srcFormat), dither, vo_format_name(dstFormat)); else MSG_INFO("from %s to %s ", vo_format_name(srcFormat), vo_format_name(dstFormat)); if(cpuCaps.hasMMX2) MSG_INFO("using MMX2\n"); else if(cpuCaps.has3DNow) MSG_INFO("using 3DNOW\n"); else if(cpuCaps.hasMMX) MSG_INFO("using MMX\n"); else MSG_INFO("using C\n"); } if((flags & SWS_PRINT_INFO) && verbose) { if(cpuCaps.hasMMX) { if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR)) MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n"); else { if(c->hLumFilterSize==4) MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n"); else if(c->hLumFilterSize==8) MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n"); else MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n"); if(c->hChrFilterSize==4) MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n"); else if(c->hChrFilterSize==8) MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n"); else MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n"); } } else { #ifdef ARCH_X86 MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n"); #else if(flags & SWS_FAST_BILINEAR) MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n"); else MSG_V("SwScaler: using C scaler for horizontal scaling\n"); #endif } if(isPlanarYUV(dstFormat)) { if(c->vLumFilterSize==1) MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", cpuCaps.hasMMX ? "MMX" : "C"); else MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", cpuCaps.hasMMX ? "MMX" : "C"); } else { if(c->vLumFilterSize==1 && c->vChrFilterSize==2) MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n" "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",cpuCaps.hasMMX ? "MMX" : "C"); else if(c->vLumFilterSize==2 && c->vChrFilterSize==2) MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C"); else MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C"); } if(dstFormat==IMGFMT_BGR24) MSG_V("SwScaler: using %s YV12->BGR24 Converter\n", cpuCaps.hasMMX2 ? "MMX2" : (cpuCaps.hasMMX ? "MMX" : "C")); else if(dstFormat==IMGFMT_BGR32) MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", cpuCaps.hasMMX ? "MMX" : "C"); else if(dstFormat==IMGFMT_BGR16) MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", cpuCaps.hasMMX ? "MMX" : "C"); else if(dstFormat==IMGFMT_BGR15) MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", cpuCaps.hasMMX ? "MMX" : "C"); MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH); } if((flags & SWS_PRINT_INFO) && verbose>1) { MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc); MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc); } c->swScale= swScale; return c; } /** * returns a normalized gaussian curve used to filter stuff * quality=3 is high quality, lowwer is lowwer quality */ SwsVector *getGaussianVec(double variance, double quality){ const int length= (int)(variance*quality + 0.5) | 1; int i; double *coeff= memalign(sizeof(double), length*sizeof(double)); double middle= (length-1)*0.5; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; icoeff= coeff; vec->length= length; for(i=0; icoeff= coeff; vec->length= 1; return vec; } void normalizeVec(SwsVector *a, double height){ int i; double sum=0; double inv; for(i=0; ilength; i++) sum+= a->coeff[i]; inv= height/sum; for(i=0; ilength; i++) a->coeff[i]*= height; } void scaleVec(SwsVector *a, double scalar){ int i; for(i=0; ilength; i++) a->coeff[i]*= scalar; } static SwsVector *getConvVec(SwsVector *a, SwsVector *b){ int length= a->length + b->length - 1; double *coeff= memalign(sizeof(double), length*sizeof(double)); int i, j; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) { for(j=0; jlength; j++) { coeff[i+j]+= a->coeff[i]*b->coeff[j]; } } return vec; } static SwsVector *sumVec(SwsVector *a, SwsVector *b){ int length= MAX(a->length, b->length); double *coeff= memalign(sizeof(double), length*sizeof(double)); int i; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i]; return vec; } static SwsVector *diffVec(SwsVector *a, SwsVector *b){ int length= MAX(a->length, b->length); double *coeff= memalign(sizeof(double), length*sizeof(double)); int i; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i]; return vec; } /* shift left / or right if "shift" is negative */ static SwsVector *getShiftedVec(SwsVector *a, int shift){ int length= a->length + ABS(shift)*2; double *coeff= memalign(sizeof(double), length*sizeof(double)); int i; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) { coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i]; } return vec; } void shiftVec(SwsVector *a, int shift){ SwsVector *shifted= getShiftedVec(a, shift); free(a->coeff); a->coeff= shifted->coeff; a->length= shifted->length; free(shifted); } void addVec(SwsVector *a, SwsVector *b){ SwsVector *sum= sumVec(a, b); free(a->coeff); a->coeff= sum->coeff; a->length= sum->length; free(sum); } void subVec(SwsVector *a, SwsVector *b){ SwsVector *diff= diffVec(a, b); free(a->coeff); a->coeff= diff->coeff; a->length= diff->length; free(diff); } void convVec(SwsVector *a, SwsVector *b){ SwsVector *conv= getConvVec(a, b); free(a->coeff); a->coeff= conv->coeff; a->length= conv->length; free(conv); } SwsVector *cloneVec(SwsVector *a){ double *coeff= memalign(sizeof(double), a->length*sizeof(double)); int i; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= a->length; for(i=0; ilength; i++) coeff[i]= a->coeff[i]; return vec; } void printVec(SwsVector *a){ int i; double max=0; double min=0; double range; for(i=0; ilength; i++) if(a->coeff[i]>max) max= a->coeff[i]; for(i=0; ilength; i++) if(a->coeff[i]coeff[i]; range= max - min; for(i=0; ilength; i++) { int x= (int)((a->coeff[i]-min)*60.0/range +0.5); MSG_DBG2("%1.3f ", a->coeff[i]); for(;x>0; x--) MSG_DBG2(" "); MSG_DBG2("|\n"); } } void freeVec(SwsVector *a){ if(!a) return; if(a->coeff) free(a->coeff); a->coeff=NULL; a->length=0; free(a); } void freeSwsContext(SwsContext *c){ int i; if(!c) return; if(c->lumPixBuf) { for(i=0; ivLumBufSize; i++) { if(c->lumPixBuf[i]) free(c->lumPixBuf[i]); c->lumPixBuf[i]=NULL; } free(c->lumPixBuf); c->lumPixBuf=NULL; } if(c->chrPixBuf) { for(i=0; ivChrBufSize; i++) { if(c->chrPixBuf[i]) free(c->chrPixBuf[i]); c->chrPixBuf[i]=NULL; } free(c->chrPixBuf); c->chrPixBuf=NULL; } if(c->vLumFilter) free(c->vLumFilter); c->vLumFilter = NULL; if(c->vChrFilter) free(c->vChrFilter); c->vChrFilter = NULL; if(c->hLumFilter) free(c->hLumFilter); c->hLumFilter = NULL; if(c->hChrFilter) free(c->hChrFilter); c->hChrFilter = NULL; if(c->vLumFilterPos) free(c->vLumFilterPos); c->vLumFilterPos = NULL; if(c->vChrFilterPos) free(c->vChrFilterPos); c->vChrFilterPos = NULL; if(c->hLumFilterPos) free(c->hLumFilterPos); c->hLumFilterPos = NULL; if(c->hChrFilterPos) free(c->hChrFilterPos); c->hChrFilterPos = NULL; if(c->lumMmxFilter) free(c->lumMmxFilter); c->lumMmxFilter = NULL; if(c->chrMmxFilter) free(c->chrMmxFilter); c->chrMmxFilter = NULL; if(c->lumMmx2Filter) free(c->lumMmx2Filter); c->lumMmx2Filter=NULL; if(c->chrMmx2Filter) free(c->chrMmx2Filter); c->chrMmx2Filter=NULL; if(c->lumMmx2FilterPos) free(c->lumMmx2FilterPos); c->lumMmx2FilterPos=NULL; if(c->chrMmx2FilterPos) free(c->chrMmx2FilterPos); c->chrMmx2FilterPos=NULL; free(c); }