/* * 4XM codec * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * 4XM codec. */ #include #include "libavutil/avassert.h" #include "libavutil/frame.h" #include "libavutil/imgutils.h" #include "libavutil/intreadwrite.h" #include "libavutil/mem_internal.h" #include "libavutil/thread.h" #include "avcodec.h" #include "blockdsp.h" #include "bswapdsp.h" #include "bytestream.h" #include "codec_internal.h" #include "decode.h" #include "get_bits.h" #define BLOCK_TYPE_VLC_BITS 5 #define ACDC_VLC_BITS 9 #define CFRAME_BUFFER_COUNT 100 static const uint8_t block_type_tab[2][4][8][2] = { { { // { 8, 4, 2 } x { 8, 4, 2} { 0, 1 }, { 2, 2 }, { 6, 3 }, { 14, 4 }, { 30, 5 }, { 31, 5 }, { 0, 0 } }, { // { 8, 4 } x 1 { 0, 1 }, { 0, 0 }, { 2, 2 }, { 6, 3 }, { 14, 4 }, { 15, 4 }, { 0, 0 } }, { // 1 x { 8, 4 } { 0, 1 }, { 2, 2 }, { 0, 0 }, { 6, 3 }, { 14, 4 }, { 15, 4 }, { 0, 0 } }, { // 1 x 2, 2 x 1 { 0, 1 }, { 0, 0 }, { 0, 0 }, { 2, 2 }, { 6, 3 }, { 14, 4 }, { 15, 4 } } }, { { // { 8, 4, 2 } x { 8, 4, 2} { 1, 2 }, { 4, 3 }, { 5, 3 }, { 0, 2 }, { 6, 3 }, { 7, 3 }, { 0, 0 } }, {// { 8, 4 } x 1 { 1, 2 }, { 0, 0 }, { 2, 2 }, { 0, 2 }, { 6, 3 }, { 7, 3 }, { 0, 0 } }, {// 1 x { 8, 4 } { 1, 2 }, { 2, 2 }, { 0, 0 }, { 0, 2 }, { 6, 3 }, { 7, 3 }, { 0, 0 } }, {// 1 x 2, 2 x 1 { 1, 2 }, { 0, 0 }, { 0, 0 }, { 0, 2 }, { 2, 2 }, { 6, 3 }, { 7, 3 } } } }; static const uint8_t size2index[4][4] = { { -1, 3, 1, 1 }, { 3, 0, 0, 0 }, { 2, 0, 0, 0 }, { 2, 0, 0, 0 }, }; static const int8_t mv[256][2] = { { 0, 0 }, { 0, -1 }, { -1, 0 }, { 1, 0 }, { 0, 1 }, { -1, -1 }, { 1, -1 }, { -1, 1 }, { 1, 1 }, { 0, -2 }, { -2, 0 }, { 2, 0 }, { 0, 2 }, { -1, -2 }, { 1, -2 }, { -2, -1 }, { 2, -1 }, { -2, 1 }, { 2, 1 }, { -1, 2 }, { 1, 2 }, { -2, -2 }, { 2, -2 }, { -2, 2 }, { 2, 2 }, { 0, -3 }, { -3, 0 }, { 3, 0 }, { 0, 3 }, { -1, -3 }, { 1, -3 }, { -3, -1 }, { 3, -1 }, { -3, 1 }, { 3, 1 }, { -1, 3 }, { 1, 3 }, { -2, -3 }, { 2, -3 }, { -3, -2 }, { 3, -2 }, { -3, 2 }, { 3, 2 }, { -2, 3 }, { 2, 3 }, { 0, -4 }, { -4, 0 }, { 4, 0 }, { 0, 4 }, { -1, -4 }, { 1, -4 }, { -4, -1 }, { 4, -1 }, { 4, 1 }, { -1, 4 }, { 1, 4 }, { -3, -3 }, { -3, 3 }, { 3, 3 }, { -2, -4 }, { -4, -2 }, { 4, -2 }, { -4, 2 }, { -2, 4 }, { 2, 4 }, { -3, -4 }, { 3, -4 }, { 4, -3 }, { -5, 0 }, { -4, 3 }, { -3, 4 }, { 3, 4 }, { -1, -5 }, { -5, -1 }, { -5, 1 }, { -1, 5 }, { -2, -5 }, { 2, -5 }, { 5, -2 }, { 5, 2 }, { -4, -4 }, { -4, 4 }, { -3, -5 }, { -5, -3 }, { -5, 3 }, { 3, 5 }, { -6, 0 }, { 0, 6 }, { -6, -1 }, { -6, 1 }, { 1, 6 }, { 2, -6 }, { -6, 2 }, { 2, 6 }, { -5, -4 }, { 5, 4 }, { 4, 5 }, { -6, -3 }, { 6, 3 }, { -7, 0 }, { -1, -7 }, { 5, -5 }, { -7, 1 }, { -1, 7 }, { 4, -6 }, { 6, 4 }, { -2, -7 }, { -7, 2 }, { -3, -7 }, { 7, -3 }, { 3, 7 }, { 6, -5 }, { 0, -8 }, { -1, -8 }, { -7, -4 }, { -8, 1 }, { 4, 7 }, { 2, -8 }, { -2, 8 }, { 6, 6 }, { -8, 3 }, { 5, -7 }, { -5, 7 }, { 8, -4 }, { 0, -9 }, { -9, -1 }, { 1, 9 }, { 7, -6 }, { -7, 6 }, { -5, -8 }, { -5, 8 }, { -9, 3 }, { 9, -4 }, { 7, -7 }, { 8, -6 }, { 6, 8 }, { 10, 1 }, { -10, 2 }, { 9, -5 }, { 10, -3 }, { -8, -7 }, { -10, -4 }, { 6, -9 }, { -11, 0 }, { 11, 1 }, { -11, -2 }, { -2, 11 }, { 7, -9 }, { -7, 9 }, { 10, 6 }, { -4, 11 }, { 8, -9 }, { 8, 9 }, { 5, 11 }, { 7, -10 }, { 12, -3 }, { 11, 6 }, { -9, -9 }, { 8, 10 }, { 5, 12 }, { -11, 7 }, { 13, 2 }, { 6, -12 }, { 10, 9 }, { -11, 8 }, { -7, 12 }, { 0, 14 }, { 14, -2 }, { -9, 11 }, { -6, 13 }, { -14, -4 }, { -5, -14 }, { 5, 14 }, { -15, -1 }, { -14, -6 }, { 3, -15 }, { 11, -11 }, { -7, 14 }, { -5, 15 }, { 8, -14 }, { 15, 6 }, { 3, 16 }, { 7, -15 }, { -16, 5 }, { 0, 17 }, { -16, -6 }, { -10, 14 }, { -16, 7 }, { 12, 13 }, { -16, 8 }, { -17, 6 }, { -18, 3 }, { -7, 17 }, { 15, 11 }, { 16, 10 }, { 2, -19 }, { 3, -19 }, { -11, -16 }, { -18, 8 }, { -19, -6 }, { 2, -20 }, { -17, -11 }, { -10, -18 }, { 8, 19 }, { -21, -1 }, { -20, 7 }, { -4, 21 }, { 21, 5 }, { 15, 16 }, { 2, -22 }, { -10, -20 }, { -22, 5 }, { 20, -11 }, { -7, -22 }, { -12, 20 }, { 23, -5 }, { 13, -20 }, { 24, -2 }, { -15, 19 }, { -11, 22 }, { 16, 19 }, { 23, -10 }, { -18, -18 }, { -9, -24 }, { 24, -10 }, { -3, 26 }, { -23, 13 }, { -18, -20 }, { 17, 21 }, { -4, 27 }, { 27, 6 }, { 1, -28 }, { -11, 26 }, { -17, -23 }, { 7, 28 }, { 11, -27 }, { 29, 5 }, { -23, -19 }, { -28, -11 }, { -21, 22 }, { -30, 7 }, { -17, 26 }, { -27, 16 }, { 13, 29 }, { 19, -26 }, { 10, -31 }, { -14, -30 }, { 20, -27 }, { -29, 18 }, { -16, -31 }, { -28, -22 }, { 21, -30 }, { -25, 28 }, { 26, -29 }, { 25, -32 }, { -32, -32 } }; /* This is simply the scaled down elementwise product of the standard JPEG * quantizer table and the AAN premul table. */ static const uint8_t dequant_table[64] = { 16, 15, 13, 19, 24, 31, 28, 17, 17, 23, 25, 31, 36, 63, 45, 21, 18, 24, 27, 37, 52, 59, 49, 20, 16, 28, 34, 40, 60, 80, 51, 20, 18, 31, 48, 66, 68, 86, 56, 21, 19, 38, 56, 59, 64, 64, 48, 20, 27, 48, 55, 55, 56, 51, 35, 15, 20, 35, 34, 32, 31, 22, 15, 8, }; static VLCElem block_type_vlc[2][4][32]; typedef struct CFrameBuffer { unsigned int allocated_size; unsigned int size; int id; uint8_t *data; } CFrameBuffer; typedef struct FourXContext { AVCodecContext *avctx; BlockDSPContext bdsp; BswapDSPContext bbdsp; uint16_t *frame_buffer; uint16_t *last_frame_buffer; GetBitContext pre_gb; ///< ac/dc prefix GetBitContext gb; GetByteContext g; GetByteContext g2; int mv[256]; VLC pre_vlc; int last_dc; DECLARE_ALIGNED(32, int16_t, block)[6][64]; void *bitstream_buffer; unsigned int bitstream_buffer_size; int version; CFrameBuffer cfrm[CFRAME_BUFFER_COUNT]; } FourXContext; #define FIX_1_082392200 70936 #define FIX_1_414213562 92682 #define FIX_1_847759065 121095 #define FIX_2_613125930 171254 #define MULTIPLY(var, const) ((int)((var) * (unsigned)(const)) >> 16) static void idct(int16_t block[64]) { int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; int tmp10, tmp11, tmp12, tmp13; int z5, z10, z11, z12, z13; int i; int temp[64]; for (i = 0; i < 8; i++) { tmp10 = block[8 * 0 + i] + block[8 * 4 + i]; tmp11 = block[8 * 0 + i] - block[8 * 4 + i]; tmp13 = block[8 * 2 + i] + block[8 * 6 + i]; tmp12 = MULTIPLY(block[8 * 2 + i] - block[8 * 6 + i], FIX_1_414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; z13 = block[8 * 5 + i] + block[8 * 3 + i]; z10 = block[8 * 5 + i] - block[8 * 3 + i]; z11 = block[8 * 1 + i] + block[8 * 7 + i]; z12 = block[8 * 1 + i] - block[8 * 7 + i]; tmp7 = z11 + z13; tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); z5 = MULTIPLY(z10 + z12, FIX_1_847759065); tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; tmp6 = tmp12 - tmp7; tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; temp[8 * 0 + i] = tmp0 + tmp7; temp[8 * 7 + i] = tmp0 - tmp7; temp[8 * 1 + i] = tmp1 + tmp6; temp[8 * 6 + i] = tmp1 - tmp6; temp[8 * 2 + i] = tmp2 + tmp5; temp[8 * 5 + i] = tmp2 - tmp5; temp[8 * 4 + i] = tmp3 + tmp4; temp[8 * 3 + i] = tmp3 - tmp4; } for (i = 0; i < 8 * 8; i += 8) { tmp10 = temp[0 + i] + temp[4 + i]; tmp11 = temp[0 + i] - temp[4 + i]; tmp13 = temp[2 + i] + temp[6 + i]; tmp12 = MULTIPLY(temp[2 + i] - temp[6 + i], FIX_1_414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; z13 = temp[5 + i] + temp[3 + i]; z10 = temp[5 + i] - temp[3 + i]; z11 = temp[1 + i] + temp[7 + i]; z12 = temp[1 + i] - temp[7 + i]; tmp7 = z11 + z13; tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); z5 = MULTIPLY(z10 + z12, FIX_1_847759065); tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; tmp6 = tmp12 - tmp7; tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; block[0 + i] = (tmp0 + tmp7) >> 6; block[7 + i] = (tmp0 - tmp7) >> 6; block[1 + i] = (tmp1 + tmp6) >> 6; block[6 + i] = (tmp1 - tmp6) >> 6; block[2 + i] = (tmp2 + tmp5) >> 6; block[5 + i] = (tmp2 - tmp5) >> 6; block[4 + i] = (tmp3 + tmp4) >> 6; block[3 + i] = (tmp3 - tmp4) >> 6; } } static av_cold void init_vlcs(void) { int i, j; for (i = 0; i < 2; i++) { for (j = 0; j < 4; j++) { ff_vlc_init_table_sparse(block_type_vlc[i][j], FF_ARRAY_ELEMS(block_type_vlc[i][j]), BLOCK_TYPE_VLC_BITS, 7, &block_type_tab[i][j][0][1], 2, 1, &block_type_tab[i][j][0][0], 2, 1, NULL, 0, 0, 0); } } } static void init_mv(FourXContext *f, int linesize) { int i; for (i = 0; i < 256; i++) { if (f->version > 1) f->mv[i] = mv[i][0] + mv[i][1] * linesize / 2; else f->mv[i] = (i & 15) - 8 + ((i >> 4) - 8) * linesize / 2; } } #if HAVE_BIGENDIAN #define LE_CENTRIC_MUL(dst, src, scale, dc) \ { \ unsigned tmpval = AV_RN32(src); \ tmpval = (tmpval << 16) | (tmpval >> 16); \ tmpval = tmpval * (scale) + (dc); \ tmpval = (tmpval << 16) | (tmpval >> 16); \ AV_WN32A(dst, tmpval); \ } #else #define LE_CENTRIC_MUL(dst, src, scale, dc) \ { \ unsigned tmpval = AV_RN32(src) * (scale) + (dc); \ AV_WN32A(dst, tmpval); \ } #endif static inline void mcdc(uint16_t *dst, const uint16_t *src, int log2w, int h, int stride, int scale, unsigned dc) { int i; dc *= 0x10001; switch (log2w) { case 0: for (i = 0; i < h; i++) { dst[0] = scale * src[0] + dc; if (scale) src += stride; dst += stride; } break; case 1: for (i = 0; i < h; i++) { LE_CENTRIC_MUL(dst, src, scale, dc); if (scale) src += stride; dst += stride; } break; case 2: for (i = 0; i < h; i++) { LE_CENTRIC_MUL(dst, src, scale, dc); LE_CENTRIC_MUL(dst + 2, src + 2, scale, dc); if (scale) src += stride; dst += stride; } break; case 3: for (i = 0; i < h; i++) { LE_CENTRIC_MUL(dst, src, scale, dc); LE_CENTRIC_MUL(dst + 2, src + 2, scale, dc); LE_CENTRIC_MUL(dst + 4, src + 4, scale, dc); LE_CENTRIC_MUL(dst + 6, src + 6, scale, dc); if (scale) src += stride; dst += stride; } break; default: av_assert0(0); } } static int decode_p_block(FourXContext *f, uint16_t *dst, const uint16_t *src, int log2w, int log2h, int stride) { int index, h, code, ret, scale = 1; uint16_t *start, *end; unsigned dc = 0; av_assert0(log2w >= 0 && log2h >= 0); index = size2index[log2h][log2w]; av_assert0(index >= 0); if (get_bits_left(&f->gb) < 1) return AVERROR_INVALIDDATA; h = 1 << log2h; code = get_vlc2(&f->gb, block_type_vlc[1 - (f->version > 1)][index], BLOCK_TYPE_VLC_BITS, 1); av_assert0(code >= 0 && code <= 6); start = f->last_frame_buffer; end = start + stride * (f->avctx->height - h + 1) - (1 << log2w); if (code == 1) { log2h--; if ((ret = decode_p_block(f, dst, src, log2w, log2h, stride)) < 0) return ret; return decode_p_block(f, dst + (stride << log2h), src + (stride << log2h), log2w, log2h, stride); } else if (code == 2) { log2w--; if ((ret = decode_p_block(f, dst , src, log2w, log2h, stride)) < 0) return ret; return decode_p_block(f, dst + (1 << log2w), src + (1 << log2w), log2w, log2h, stride); } else if (code == 6) { if (bytestream2_get_bytes_left(&f->g2) < 4) { av_log(f->avctx, AV_LOG_ERROR, "wordstream overread\n"); return AVERROR_INVALIDDATA; } if (log2w) { dst[0] = bytestream2_get_le16u(&f->g2); dst[1] = bytestream2_get_le16u(&f->g2); } else { dst[0] = bytestream2_get_le16u(&f->g2); dst[stride] = bytestream2_get_le16u(&f->g2); } return 0; } if ((code&3)==0 && bytestream2_get_bytes_left(&f->g) < 1) { av_log(f->avctx, AV_LOG_ERROR, "bytestream overread\n"); return AVERROR_INVALIDDATA; } if (code == 0) { src += f->mv[bytestream2_get_byte(&f->g)]; } else if (code == 3 && f->version >= 2) { return 0; } else if (code == 4) { src += f->mv[bytestream2_get_byte(&f->g)]; if (bytestream2_get_bytes_left(&f->g2) < 2){ av_log(f->avctx, AV_LOG_ERROR, "wordstream overread\n"); return AVERROR_INVALIDDATA; } dc = bytestream2_get_le16(&f->g2); } else if (code == 5) { if (bytestream2_get_bytes_left(&f->g2) < 2){ av_log(f->avctx, AV_LOG_ERROR, "wordstream overread\n"); return AVERROR_INVALIDDATA; } av_assert0(start <= src && src <= end); scale = 0; dc = bytestream2_get_le16(&f->g2); } if (start > src || src > end) { av_log(f->avctx, AV_LOG_ERROR, "mv out of pic\n"); return AVERROR_INVALIDDATA; } mcdc(dst, src, log2w, h, stride, scale, dc); return 0; } static int decode_p_frame(FourXContext *f, const uint8_t *buf, int length) { int x, y; const int width = f->avctx->width; const int height = f->avctx->height; uint16_t *dst = f->frame_buffer; uint16_t *src; unsigned int bitstream_size, bytestream_size, wordstream_size, extra, bytestream_offset, wordstream_offset; int ret; src = f->last_frame_buffer; if (f->version > 1) { extra = 20; if (length < extra) return AVERROR_INVALIDDATA; bitstream_size = AV_RL32(buf + 8); wordstream_size = AV_RL32(buf + 12); bytestream_size = AV_RL32(buf + 16); } else { extra = 0; bitstream_size = AV_RL16(buf - 4); wordstream_size = AV_RL16(buf - 2); bytestream_size = FFMAX(length - bitstream_size - wordstream_size, 0); } if (bitstream_size > length || bitstream_size >= INT_MAX/8 || bytestream_size > length - bitstream_size || wordstream_size > length - bytestream_size - bitstream_size || extra > length - bytestream_size - bitstream_size - wordstream_size) { av_log(f->avctx, AV_LOG_ERROR, "lengths %d %d %d %d\n", bitstream_size, bytestream_size, wordstream_size, bitstream_size+ bytestream_size+ wordstream_size - length); return AVERROR_INVALIDDATA; } av_fast_padded_malloc(&f->bitstream_buffer, &f->bitstream_buffer_size, bitstream_size); if (!f->bitstream_buffer) return AVERROR(ENOMEM); f->bbdsp.bswap_buf(f->bitstream_buffer, (const uint32_t *) (buf + extra), bitstream_size / 4); init_get_bits(&f->gb, f->bitstream_buffer, 8 * bitstream_size); wordstream_offset = extra + bitstream_size; bytestream_offset = extra + bitstream_size + wordstream_size; bytestream2_init(&f->g2, buf + wordstream_offset, length - wordstream_offset); bytestream2_init(&f->g, buf + bytestream_offset, length - bytestream_offset); init_mv(f, width * 2); for (y = 0; y < height; y += 8) { for (x = 0; x < width; x += 8) if ((ret = decode_p_block(f, dst + x, src + x, 3, 3, width)) < 0) return ret; src += 8 * width; dst += 8 * width; } return 0; } /** * decode block and dequantize. * Note this is almost identical to MJPEG. */ static int decode_i_block(FourXContext *f, int16_t *block) { int code, i, j, level, val; if (get_bits_left(&f->pre_gb) < 2) { av_log(f->avctx, AV_LOG_ERROR, "%d bits left before decode_i_block()\n", get_bits_left(&f->pre_gb)); return AVERROR_INVALIDDATA; } /* DC coef */ val = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3); if (val >> 4) { av_log(f->avctx, AV_LOG_ERROR, "error dc run != 0\n"); return AVERROR_INVALIDDATA; } if (val) val = get_xbits(&f->gb, val); val = val * dequant_table[0] + f->last_dc; f->last_dc = block[0] = val; /* AC coefs */ i = 1; for (;;) { code = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3); /* EOB */ if (code == 0) break; if (code == 0xf0) { i += 16; if (i >= 64) { av_log(f->avctx, AV_LOG_ERROR, "run %d overflow\n", i); return 0; } } else { if (code & 0xf) { level = get_xbits(&f->gb, code & 0xf); } else { av_log(f->avctx, AV_LOG_ERROR, "0 coeff\n"); return AVERROR_INVALIDDATA; } i += code >> 4; if (i >= 64) { av_log(f->avctx, AV_LOG_ERROR, "run %d overflow\n", i); return 0; } j = ff_zigzag_direct[i]; block[j] = level * dequant_table[j]; i++; if (i >= 64) break; } } return 0; } static inline void idct_put(FourXContext *f, int x, int y) { int16_t (*block)[64] = f->block; int stride = f->avctx->width; int i; uint16_t *dst = f->frame_buffer + y * stride + x; for (i = 0; i < 4; i++) { block[i][0] += 0x80 * 8 * 8; idct(block[i]); } if (!(f->avctx->flags & AV_CODEC_FLAG_GRAY)) { for (i = 4; i < 6; i++) idct(block[i]); } /* Note transform is: * y = ( 1b + 4g + 2r) / 14 * cb = ( 3b - 2g - 1r) / 14 * cr = (-1b - 4g + 5r) / 14 */ for (y = 0; y < 8; y++) { for (x = 0; x < 8; x++) { int16_t *temp = block[(x >> 2) + 2 * (y >> 2)] + 2 * (x & 3) + 2 * 8 * (y & 3); // FIXME optimize int cb = block[4][x + 8 * y]; int cr = block[5][x + 8 * y]; int cg = (cb + cr) >> 1; int y; cb += cb; y = temp[0]; dst[0] = ((y + cb) >> 3) + (((y - cg) & 0xFC) << 3) + (((y + cr) & 0xF8) << 8); y = temp[1]; dst[1] = ((y + cb) >> 3) + (((y - cg) & 0xFC) << 3) + (((y + cr) & 0xF8) << 8); y = temp[8]; dst[stride] = ((y + cb) >> 3) + (((y - cg) & 0xFC) << 3) + (((y + cr) & 0xF8) << 8); y = temp[9]; dst[1 + stride] = ((y + cb) >> 3) + (((y - cg) & 0xFC) << 3) + (((y + cr) & 0xF8) << 8); dst += 2; } dst += 2 * stride - 2 * 8; } } static int decode_i_mb(FourXContext *f) { int ret; int i; f->bdsp.clear_blocks(f->block[0]); for (i = 0; i < 6; i++) if ((ret = decode_i_block(f, f->block[i])) < 0) return ret; return 0; } static const uint8_t *read_huffman_tables(FourXContext *f, const uint8_t * const buf, int buf_size) { int frequency[512] = { 0 }; uint8_t flag[512]; int up[512]; uint8_t len_tab[257]; int bits_tab[257]; int start, end; const uint8_t *ptr = buf; const uint8_t *ptr_end = buf + buf_size; int j; memset(up, -1, sizeof(up)); start = *ptr++; end = *ptr++; for (;;) { int i; if (ptr_end - ptr < FFMAX(end - start + 1, 0) + 1) { av_log(f->avctx, AV_LOG_ERROR, "invalid data in read_huffman_tables\n"); return NULL; } for (i = start; i <= end; i++) frequency[i] = *ptr++; start = *ptr++; if (start == 0) break; end = *ptr++; } frequency[256] = 1; while ((ptr - buf) & 3) ptr++; // 4byte align if (ptr > ptr_end) { av_log(f->avctx, AV_LOG_ERROR, "ptr overflow in read_huffman_tables\n"); return NULL; } for (j = 257; j < 512; j++) { int min_freq[2] = { 256 * 256, 256 * 256 }; int smallest[2] = { 0, 0 }; int i; for (i = 0; i < j; i++) { if (frequency[i] == 0) continue; if (frequency[i] < min_freq[1]) { if (frequency[i] < min_freq[0]) { min_freq[1] = min_freq[0]; smallest[1] = smallest[0]; min_freq[0] = frequency[i]; smallest[0] = i; } else { min_freq[1] = frequency[i]; smallest[1] = i; } } } if (min_freq[1] == 256 * 256) break; frequency[j] = min_freq[0] + min_freq[1]; flag[smallest[0]] = 0; flag[smallest[1]] = 1; up[smallest[0]] = up[smallest[1]] = j; frequency[smallest[0]] = frequency[smallest[1]] = 0; } for (j = 0; j < 257; j++) { int node, len = 0, bits = 0; for (node = j; up[node] != -1; node = up[node]) { bits += flag[node] << len; len++; if (len > 31) // can this happen at all ? av_log(f->avctx, AV_LOG_ERROR, "vlc length overflow\n"); } bits_tab[j] = bits; len_tab[j] = len; } ff_vlc_free(&f->pre_vlc); if (vlc_init(&f->pre_vlc, ACDC_VLC_BITS, 257, len_tab, 1, 1, bits_tab, 4, 4, 0)) return NULL; return ptr; } static int mix(int c0, int c1) { int blue = 2 * (c0 & 0x001F) + (c1 & 0x001F); int green = (2 * (c0 & 0x03E0) + (c1 & 0x03E0)) >> 5; int red = 2 * (c0 >> 10) + (c1 >> 10); return red / 3 * 1024 + green / 3 * 32 + blue / 3; } static int decode_i2_frame(FourXContext *f, const uint8_t *buf, int length) { int x, y, x2, y2; const int width = f->avctx->width; const int height = f->avctx->height; const int mbs = (FFALIGN(width, 16) >> 4) * (FFALIGN(height, 16) >> 4); uint16_t *dst = f->frame_buffer; const uint8_t *buf_end = buf + length; GetByteContext g3; if (length < mbs * 8) { av_log(f->avctx, AV_LOG_ERROR, "packet size too small\n"); return AVERROR_INVALIDDATA; } bytestream2_init(&g3, buf, length); for (y = 0; y < height; y += 16) { for (x = 0; x < width; x += 16) { unsigned int color[4] = { 0 }, bits; if (buf_end - buf < 8) return AVERROR_INVALIDDATA; // warning following is purely guessed ... color[0] = bytestream2_get_le16u(&g3); color[1] = bytestream2_get_le16u(&g3); if (color[0] & 0x8000) av_log(f->avctx, AV_LOG_ERROR, "unk bit 1\n"); if (color[1] & 0x8000) av_log(f->avctx, AV_LOG_ERROR, "unk bit 2\n"); color[2] = mix(color[0], color[1]); color[3] = mix(color[1], color[0]); bits = bytestream2_get_le32u(&g3); for (y2 = 0; y2 < 16; y2++) { for (x2 = 0; x2 < 16; x2++) { int index = 2 * (x2 >> 2) + 8 * (y2 >> 2); dst[y2 * width + x2] = color[(bits >> index) & 3]; } } dst += 16; } dst += 16 * width - x; } return 0; } static int decode_i_frame(FourXContext *f, const uint8_t *buf, int length) { int x, y, ret; const int width = f->avctx->width; const int height = f->avctx->height; const unsigned int bitstream_size = AV_RL32(buf); unsigned int prestream_size; const uint8_t *prestream; if (bitstream_size > (1 << 26)) return AVERROR_INVALIDDATA; if (length < bitstream_size + 12) { av_log(f->avctx, AV_LOG_ERROR, "packet size too small\n"); return AVERROR_INVALIDDATA; } prestream_size = 4 * AV_RL32(buf + bitstream_size + 4); prestream = buf + bitstream_size + 12; if (prestream_size + bitstream_size + 12 != length || prestream_size > (1 << 26)) { av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %d %d\n", prestream_size, bitstream_size, length); return AVERROR_INVALIDDATA; } prestream = read_huffman_tables(f, prestream, prestream_size); if (!prestream) { av_log(f->avctx, AV_LOG_ERROR, "Error reading Huffman tables.\n"); return AVERROR_INVALIDDATA; } av_assert0(prestream <= buf + length); init_get_bits(&f->gb, buf + 4, 8 * bitstream_size); prestream_size = length + buf - prestream; av_fast_padded_malloc(&f->bitstream_buffer, &f->bitstream_buffer_size, prestream_size); if (!f->bitstream_buffer) return AVERROR(ENOMEM); f->bbdsp.bswap_buf(f->bitstream_buffer, (const uint32_t *) prestream, prestream_size / 4); init_get_bits(&f->pre_gb, f->bitstream_buffer, 8 * prestream_size); f->last_dc = 0 * 128 * 8 * 8; for (y = 0; y < height; y += 16) { for (x = 0; x < width; x += 16) { if ((ret = decode_i_mb(f)) < 0) return ret; idct_put(f, x, y); } } if (get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3) != 256) av_log(f->avctx, AV_LOG_ERROR, "end mismatch\n"); return 0; } static int decode_frame(AVCodecContext *avctx, AVFrame *picture, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; FourXContext *const f = avctx->priv_data; int i, frame_4cc, frame_size, ret; if (buf_size < 20) return AVERROR_INVALIDDATA; av_assert0(avctx->width % 16 == 0 && avctx->height % 16 == 0); if (buf_size < AV_RL32(buf + 4) + 8) { av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %"PRIu32"\n", buf_size, AV_RL32(buf + 4)); return AVERROR_INVALIDDATA; } frame_4cc = AV_RL32(buf); if (frame_4cc == AV_RL32("cfrm")) { int free_index = -1; int id, whole_size; const int data_size = buf_size - 20; CFrameBuffer *cfrm; if (f->version <= 1) { av_log(f->avctx, AV_LOG_ERROR, "cfrm in version %d\n", f->version); return AVERROR_INVALIDDATA; } id = AV_RL32(buf + 12); whole_size = AV_RL32(buf + 16); if (data_size < 0 || whole_size < 0) { av_log(f->avctx, AV_LOG_ERROR, "sizes invalid\n"); return AVERROR_INVALIDDATA; } for (i = 0; i < CFRAME_BUFFER_COUNT; i++) if (f->cfrm[i].id && f->cfrm[i].id < avctx->frame_num) av_log(f->avctx, AV_LOG_ERROR, "lost c frame %d\n", f->cfrm[i].id); for (i = 0; i < CFRAME_BUFFER_COUNT; i++) { if (f->cfrm[i].id == id) break; if (f->cfrm[i].size == 0) free_index = i; } if (i >= CFRAME_BUFFER_COUNT) { i = free_index; f->cfrm[i].id = id; } cfrm = &f->cfrm[i]; if (data_size > UINT_MAX - cfrm->size - AV_INPUT_BUFFER_PADDING_SIZE) return AVERROR_INVALIDDATA; cfrm->data = av_fast_realloc(cfrm->data, &cfrm->allocated_size, cfrm->size + data_size + AV_INPUT_BUFFER_PADDING_SIZE); // explicit check needed as memcpy below might not catch a NULL if (!cfrm->data) { av_log(f->avctx, AV_LOG_ERROR, "realloc failure\n"); return AVERROR(ENOMEM); } memcpy(cfrm->data + cfrm->size, buf + 20, data_size); cfrm->size += data_size; if (cfrm->size >= whole_size) { buf = cfrm->data; frame_size = cfrm->size; if (id != avctx->frame_num) av_log(f->avctx, AV_LOG_ERROR, "cframe id mismatch %d %"PRId64"\n", id, avctx->frame_num); if (f->version <= 1) return AVERROR_INVALIDDATA; cfrm->size = cfrm->id = 0; frame_4cc = AV_RL32("pfrm"); } else return buf_size; } else { buf = buf + 12; frame_size = buf_size - 12; } if ((ret = ff_get_buffer(avctx, picture, 0)) < 0) return ret; if (frame_4cc == AV_RL32("ifr2")) { picture->pict_type = AV_PICTURE_TYPE_I; if ((ret = decode_i2_frame(f, buf - 4, frame_size + 4)) < 0) { av_log(f->avctx, AV_LOG_ERROR, "decode i2 frame failed\n"); return ret; } } else if (frame_4cc == AV_RL32("ifrm")) { picture->pict_type = AV_PICTURE_TYPE_I; if ((ret = decode_i_frame(f, buf, frame_size)) < 0) { av_log(f->avctx, AV_LOG_ERROR, "decode i frame failed\n"); return ret; } } else if (frame_4cc == AV_RL32("pfrm") || frame_4cc == AV_RL32("pfr2")) { picture->pict_type = AV_PICTURE_TYPE_P; if ((ret = decode_p_frame(f, buf, frame_size)) < 0) { av_log(f->avctx, AV_LOG_ERROR, "decode p frame failed\n"); return ret; } } else if (frame_4cc == AV_RL32("snd_")) { av_log(avctx, AV_LOG_ERROR, "ignoring snd_ chunk length:%d\n", buf_size); return AVERROR_INVALIDDATA; } else { av_log(avctx, AV_LOG_ERROR, "ignoring unknown chunk length:%d\n", buf_size); return AVERROR_INVALIDDATA; } if (picture->pict_type == AV_PICTURE_TYPE_I) picture->flags |= AV_FRAME_FLAG_KEY; else picture->flags &= ~AV_FRAME_FLAG_KEY; av_image_copy_plane(picture->data[0], picture->linesize[0], (const uint8_t*)f->frame_buffer, avctx->width * 2, avctx->width * 2, avctx->height); FFSWAP(uint16_t *, f->frame_buffer, f->last_frame_buffer); *got_frame = 1; return buf_size; } static av_cold int decode_end(AVCodecContext *avctx) { FourXContext * const f = avctx->priv_data; int i; av_freep(&f->frame_buffer); av_freep(&f->last_frame_buffer); av_freep(&f->bitstream_buffer); f->bitstream_buffer_size = 0; for (i = 0; i < CFRAME_BUFFER_COUNT; i++) { av_freep(&f->cfrm[i].data); f->cfrm[i].allocated_size = 0; } ff_vlc_free(&f->pre_vlc); return 0; } static av_cold int decode_init(AVCodecContext *avctx) { static AVOnce init_static_once = AV_ONCE_INIT; FourXContext * const f = avctx->priv_data; int ret; if (avctx->extradata_size != 4 || !avctx->extradata) { av_log(avctx, AV_LOG_ERROR, "extradata wrong or missing\n"); return AVERROR_INVALIDDATA; } if((avctx->width % 16) || (avctx->height % 16)) { av_log(avctx, AV_LOG_ERROR, "unsupported width/height\n"); return AVERROR_INVALIDDATA; } ret = av_image_check_size(avctx->width, avctx->height, 0, avctx); if (ret < 0) return ret; f->frame_buffer = av_mallocz(avctx->width * avctx->height * 2); f->last_frame_buffer = av_mallocz(avctx->width * avctx->height * 2); if (!f->frame_buffer || !f->last_frame_buffer) return AVERROR(ENOMEM); f->version = AV_RL32(avctx->extradata) >> 16; ff_blockdsp_init(&f->bdsp); ff_bswapdsp_init(&f->bbdsp); f->avctx = avctx; if (f->version > 2) avctx->pix_fmt = AV_PIX_FMT_RGB565; else avctx->pix_fmt = AV_PIX_FMT_BGR555; ff_thread_once(&init_static_once, init_vlcs); return 0; } const FFCodec ff_fourxm_decoder = { .p.name = "4xm", CODEC_LONG_NAME("4X Movie"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_4XM, .priv_data_size = sizeof(FourXContext), .init = decode_init, .close = decode_end, FF_CODEC_DECODE_CB(decode_frame), .p.capabilities = AV_CODEC_CAP_DR1, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, };