# Copyright (c) 2019 Guo Yejun # # This file is part of FFmpeg. # # FFmpeg is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # FFmpeg is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with FFmpeg; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # ============================================================================== import tensorflow as tf import numpy as np import sys, struct import convert_header as header __all__ = ['convert_from_tensorflow'] class Operand(object): IOTYPE_INPUT = 1 IOTYPE_OUTPUT = 2 IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT DTYPE_FLOAT = 1 DTYPE_UINT8 = 4 index = 0 def __init__(self, name, dtype, dims): self.name = name self.dtype = dtype self.dims = dims self.iotype = 0 self.used_count = 0 self.index = Operand.index Operand.index = Operand.index + 1 self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'} self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'} def add_iotype(self, iotype): self.iotype = self.iotype | iotype if iotype == Operand.IOTYPE_INPUT: self.used_count = self.used_count + 1 def __str__(self): return "{}: (name: {}, iotype: {}, dtype: {}, dims: ({},{},{},{}) used_count: {})".format(self.index, self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype], self.dims[0], self.dims[1], self.dims[2], self.dims[3], self.used_count) def __lt__(self, other): return self.index < other.index class TFConverter: def __init__(self, graph_def, nodes, outfile, dump4tb): self.graph_def = graph_def self.nodes = nodes self.outfile = outfile self.dump4tb = dump4tb self.layer_number = 0 self.output_names = [] self.name_node_dict = {} self.edges = {} self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4} self.conv_paddings = {'VALID':0, 'SAME':1} self.pool_paddings = {'VALID':0, 'SAME':1} self.converted_nodes = set() self.conv2d_scope_names = set() self.conv2d_scopename_inputname_dict = {} self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5, 'MathUnary':6, 'AvgPool':7} self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4} self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, 'Acosh':11, 'Atanh':12, 'Ceil':13, 'Floor':14} self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} self.name_operand_dict = {} def add_operand(self, name, type): node = self.name_node_dict[name] if name not in self.name_operand_dict: dtype = node.attr['dtype'].type if dtype == 0: dtype = node.attr['T'].type dims = [-1,-1,-1,-1] if 'shape' in node.attr: dims[0] = node.attr['shape'].shape.dim[0].size dims[1] = node.attr['shape'].shape.dim[1].size dims[2] = node.attr['shape'].shape.dim[2].size dims[3] = node.attr['shape'].shape.dim[3].size operand = Operand(name, dtype, dims) self.name_operand_dict[name] = operand; self.name_operand_dict[name].add_iotype(type) return self.name_operand_dict[name].index def dump_for_tensorboard(self): graph = tf.get_default_graph() tf.import_graph_def(self.graph_def, name="") tf.summary.FileWriter('/tmp/graph', graph) print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it') def get_conv2d_params(self, conv2d_scope_name): knode = self.name_node_dict[conv2d_scope_name + '/kernel'] bnode = self.name_node_dict[conv2d_scope_name + '/bias'] if conv2d_scope_name + '/dilation_rate' in self.name_node_dict: dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate'] else: dnode = None # the BiasAdd name is possible be changed into the output name, # if activation is None, and BiasAdd.next is the last op which is Identity if conv2d_scope_name + '/BiasAdd' in self.edges: anode = self.edges[conv2d_scope_name + '/BiasAdd'][0] if anode.op not in self.conv_activations: anode = None else: anode = None return knode, bnode, dnode, anode def dump_complex_conv2d_to_file(self, node, f): assert(node.op == 'Conv2D') self.layer_number = self.layer_number + 1 self.converted_nodes.add(node.name) scope_name = TFConverter.get_scope_name(node.name) #knode for kernel, bnode for bias, dnode for dilation, anode for activation knode, bnode, dnode, anode = self.get_conv2d_params(scope_name) if dnode is not None: dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0] else: dilation = 1 if anode is not None: activation = anode.op else: activation = 'None' padding = node.attr['padding'].s.decode("utf-8") # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method. if dilation > 1 and scope_name + '/stack' in self.name_node_dict: if self.name_node_dict[scope_name + '/stack'].op == "Const": padding = 'SAME' padding = self.conv_paddings[padding] ktensor = knode.attr['value'].tensor filter_height = ktensor.tensor_shape.dim[0].size filter_width = ktensor.tensor_shape.dim[1].size in_channels = ktensor.tensor_shape.dim[2].size out_channels = ktensor.tensor_shape.dim[3].size kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels) kernel = np.transpose(kernel, [3, 0, 1, 2]) has_bias = 1 np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f) kernel.tofile(f) btensor = bnode.attr['value'].tensor if btensor.tensor_shape.dim[0].size == 1: bias = struct.pack("f", btensor.float_val[0]) else: bias = btensor.tensor_content f.write(bias) input_name = self.conv2d_scopename_inputname_dict[scope_name] input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) if anode is not None: output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT) else: output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT) np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) def dump_simple_conv2d_to_file(self, node, f): assert(node.op == 'Conv2D') self.layer_number = self.layer_number + 1 self.converted_nodes.add(node.name) node0 = self.name_node_dict[node.input[0]] node1 = self.name_node_dict[node.input[1]] if node0.op == 'Const': knode = node0 input_name = node.input[1] else: knode = node1 input_name = node.input[0] ktensor = knode.attr['value'].tensor filter_height = ktensor.tensor_shape.dim[0].size filter_width = ktensor.tensor_shape.dim[1].size in_channels = ktensor.tensor_shape.dim[2].size out_channels = ktensor.tensor_shape.dim[3].size if filter_height * filter_width * in_channels * out_channels == 1: kernel = np.float32(ktensor.float_val[0]) else: kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels) kernel = np.transpose(kernel, [3, 0, 1, 2]) has_bias = 0 dilation = 1 padding = node.attr['padding'].s.decode("utf-8") np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f) kernel.tofile(f) input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) def dump_depth2space_to_file(self, node, f): assert(node.op == 'DepthToSpace') self.layer_number = self.layer_number + 1 block_size = node.attr['block_size'].i np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f) self.converted_nodes.add(node.name) input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) def dump_mirrorpad_to_file(self, node, f): assert(node.op == 'MirrorPad') self.layer_number = self.layer_number + 1 mode = node.attr['mode'].s mode = self.mirrorpad_mode[mode.decode("utf-8")] np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f) pnode = self.name_node_dict[node.input[1]] self.converted_nodes.add(pnode.name) paddings = pnode.attr['value'].tensor.tensor_content f.write(paddings) self.converted_nodes.add(node.name) input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) def dump_maximum_to_file(self, node, f): assert(node.op == 'Maximum') self.layer_number = self.layer_number + 1 ynode = self.name_node_dict[node.input[1]] y = ynode.attr['value'].tensor.float_val[0] np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f) np.array([y], dtype=np.float32).tofile(f) self.converted_nodes.add(node.name) input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) def dump_mathbinary_to_file(self, node, f): self.layer_number = self.layer_number + 1 self.converted_nodes.add(node.name) i0_node = self.name_node_dict[node.input[0]] i1_node = self.name_node_dict[node.input[1]] np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f) if i0_node.op == 'Const': scalar = i0_node.attr['value'].tensor.float_val[0] np.array([1], dtype=np.uint32).tofile(f) # broadcast: 1 np.array([scalar], dtype=np.float32).tofile(f) np.array([0], dtype=np.uint32).tofile(f) # broadcast: 0 input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) np.array([input_operand_index], dtype=np.uint32).tofile(f) elif i1_node.op == 'Const': scalar = i1_node.attr['value'].tensor.float_val[0] np.array([0], dtype=np.uint32).tofile(f) input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) np.array([input_operand_index], dtype=np.uint32).tofile(f) np.array([1], dtype=np.uint32).tofile(f) np.array([scalar], dtype=np.float32).tofile(f) else: np.array([0], dtype=np.uint32).tofile(f) input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) np.array([input_operand_index], dtype=np.uint32).tofile(f) np.array([0], dtype=np.uint32).tofile(f) input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) np.array([input_operand_index], dtype=np.uint32).tofile(f) output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) np.array([output_operand_index], dtype=np.uint32).tofile(f) def dump_mathunary_to_file(self, node, f): self.layer_number = self.layer_number + 1 self.converted_nodes.add(node.name) i0_node = self.name_node_dict[node.input[0]] np.array([self.op2code['MathUnary'], self.mathun2code[node.op]], dtype=np.uint32).tofile(f) input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) np.array([input_operand_index], dtype=np.uint32).tofile(f) output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) np.array([output_operand_index],dtype=np.uint32).tofile(f) def dump_avg_pool_to_file(self, node, f): assert(node.op == 'AvgPool') self.layer_number = self.layer_number + 1 self.converted_nodes.add(node.name) node0 = self.name_node_dict[node.input[0]] strides = node.attr['strides'] # Tensorflow do not support pooling strides in batch dimension and # current native NN do not support pooling strides in channel dimension, added assert() here. assert(strides.list.i[1]==strides.list.i[2]) assert(strides.list.i[0]==1) assert(strides.list.i[3]==1) strides = strides.list.i[1] filter_node = node.attr['ksize'] input_name = node.input[0] # Tensorflow do not support pooling ksize in batch dimension and channel dimension. assert(filter_node.list.i[0]==1) assert(filter_node.list.i[3]==1) filter_height = filter_node.list.i[1] filter_width = filter_node.list.i[2] padding = node.attr['padding'].s.decode("utf-8") np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height], dtype=np.uint32).tofile(f) input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f) def dump_layers_to_file(self, f): for node in self.nodes: if node.name in self.converted_nodes: continue # conv2d with dilation generates very complex nodes, so handle it in special if self.in_conv2d_scope(node.name): if node.op == 'Conv2D': self.dump_complex_conv2d_to_file(node, f) continue if node.op == 'Conv2D': self.dump_simple_conv2d_to_file(node, f) if node.op == 'AvgPool': self.dump_avg_pool_to_file(node, f) elif node.op == 'DepthToSpace': self.dump_depth2space_to_file(node, f) elif node.op == 'MirrorPad': self.dump_mirrorpad_to_file(node, f) elif node.op == 'Maximum': self.dump_maximum_to_file(node, f) elif node.op in self.mathbin2code: self.dump_mathbinary_to_file(node, f) elif node.op in self.mathun2code: self.dump_mathunary_to_file(node, f) def dump_operands_to_file(self, f): operands = sorted(self.name_operand_dict.values()) for operand in operands: #print('{}'.format(operand)) np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f) f.write(operand.name.encode('utf-8')) np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f) np.array([operand.dims[0], operand.dims[1], operand.dims[2], operand.dims[3]], dtype=np.uint32).tofile(f) def dump_to_file(self): with open(self.outfile, 'wb') as f: f.write(header.str.encode('utf-8')) np.array([header.major, header.minor], dtype=np.uint32).tofile(f) self.dump_layers_to_file(f) self.dump_operands_to_file(f) np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f) def generate_name_node_dict(self): for node in self.nodes: self.name_node_dict[node.name] = node def generate_output_names(self): used_names = [] for node in self.nodes: for input in node.input: used_names.append(input) for node in self.nodes: if node.name not in used_names: self.output_names.append(node.name) def remove_identity(self): id_nodes = [] id_dict = {} for node in self.nodes: if node.op == 'Identity': name = node.name input = node.input[0] id_nodes.append(node) # do not change the output name if name in self.output_names: self.name_node_dict[input].name = name self.name_node_dict[name] = self.name_node_dict[input] del self.name_node_dict[input] else: id_dict[name] = input for idnode in id_nodes: self.nodes.remove(idnode) for node in self.nodes: for i in range(len(node.input)): input = node.input[i] if input in id_dict: node.input[i] = id_dict[input] def generate_edges(self): for node in self.nodes: for input in node.input: if input in self.edges: self.edges[input].append(node) else: self.edges[input] = [node] @staticmethod def get_scope_name(name): index = name.rfind('/') if index == -1: return "" return name[0:index] def in_conv2d_scope(self, name): inner_scope = TFConverter.get_scope_name(name) if inner_scope == "": return False; for scope in self.conv2d_scope_names: index = inner_scope.find(scope) if index == 0: return True return False def generate_conv2d_scope_info(self): # mostly, conv2d is a sub block in graph, get the scope name for node in self.nodes: if node.op == 'Conv2D': scope = TFConverter.get_scope_name(node.name) # for the case tf.nn.conv2d is called directly if scope == '': continue # for the case tf.nn.conv2d is called within a scope if scope + '/kernel' not in self.name_node_dict: continue self.conv2d_scope_names.add(scope) # get the input name to the conv2d sub block for node in self.nodes: scope = TFConverter.get_scope_name(node.name) if scope in self.conv2d_scope_names: if node.op == 'Conv2D' or node.op == 'Shape': for inp in node.input: if TFConverter.get_scope_name(inp) != scope: self.conv2d_scopename_inputname_dict[scope] = inp def run(self): self.generate_name_node_dict() self.generate_output_names() self.remove_identity() self.generate_edges() self.generate_conv2d_scope_info() if self.dump4tb: self.dump_for_tensorboard() self.dump_to_file() def convert_from_tensorflow(infile, outfile, dump4tb): with open(infile, 'rb') as f: # read the file in .proto format graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) nodes = graph_def.node converter = TFConverter(graph_def, nodes, outfile, dump4tb) converter.run()