/* * AAC Spectral Band Replication decoding functions * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl ) * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Note: Rounding-to-nearest used unless otherwise stated * */ #define USE_FIXED 1 #include "aac.h" #include "config.h" #include "libavutil/attributes.h" #include "libavutil/intfloat.h" #include "sbrdsp.h" static SoftFloat sbr_sum_square_c(int (*x)[2], int n) { SoftFloat ret; uint64_t accu = 0, round; uint64_t accu0 = 0, accu1 = 0, accu2 = 0, accu3 = 0; int i, nz, nz0; unsigned u; nz = 0; for (i = 0; i < n; i += 2) { accu0 += (int64_t)x[i + 0][0] * x[i + 0][0]; accu1 += (int64_t)x[i + 0][1] * x[i + 0][1]; accu2 += (int64_t)x[i + 1][0] * x[i + 1][0]; accu3 += (int64_t)x[i + 1][1] * x[i + 1][1]; if ((accu0|accu1|accu2|accu3) > UINT64_MAX - INT32_MIN*(int64_t)INT32_MIN || i+2>=n) { accu0 >>= nz; accu1 >>= nz; accu2 >>= nz; accu3 >>= nz; while ((accu0|accu1|accu2|accu3) > (UINT64_MAX - accu) >> 2) { accu0 >>= 1; accu1 >>= 1; accu2 >>= 1; accu3 >>= 1; accu >>= 1; nz ++; } accu += accu0 + accu1 + accu2 + accu3; accu0 = accu1 = accu2 = accu3 = 0; } } nz0 = 15 - nz; u = accu >> 32; if (u) { nz = 33; while (u < 0x80000000U) { u <<= 1; nz--; } } else nz = 1; round = 1ULL << (nz-1); u = ((accu + round) >> nz); u >>= 1; ret = av_int2sf(u, nz0 - nz); return ret; } static void sbr_neg_odd_64_c(int *x) { int i; for (i = 1; i < 64; i += 2) x[i] = -x[i]; } static void sbr_qmf_pre_shuffle_c(int *z) { int k; z[64] = z[0]; z[65] = z[1]; for (k = 1; k < 32; k++) { z[64+2*k ] = -z[64 - k]; z[64+2*k+1] = z[ k + 1]; } } static void sbr_qmf_post_shuffle_c(int W[32][2], const int *z) { int k; for (k = 0; k < 32; k++) { W[k][0] = -z[63-k]; W[k][1] = z[k]; } } static void sbr_qmf_deint_neg_c(int *v, const int *src) { int i; for (i = 0; i < 32; i++) { v[ i] = ( src[63 - 2*i ] + 0x10) >> 5; v[63 - i] = (-src[63 - 2*i - 1] + 0x10) >> 5; } } static av_always_inline SoftFloat autocorr_calc(int64_t accu) { int nz, mant, expo; unsigned round; int i = (int)(accu >> 32); if (i == 0) { nz = 1; } else { nz = 0; while (FFABS(i) < 0x40000000) { i *= 2; nz++; } nz = 32-nz; } round = 1U << (nz-1); mant = (int)((accu + round) >> nz); mant = (mant + 0x40LL)>>7; mant *= 64; expo = nz + 15; return av_int2sf(mant, 30 - expo); } static av_always_inline void autocorrelate(const int x[40][2], SoftFloat phi[3][2][2], int lag) { int i; int64_t real_sum, imag_sum; int64_t accu_re = 0, accu_im = 0; if (lag) { for (i = 1; i < 38; i++) { accu_re += (uint64_t)x[i][0] * x[i+lag][0]; accu_re += (uint64_t)x[i][1] * x[i+lag][1]; accu_im += (uint64_t)x[i][0] * x[i+lag][1]; accu_im -= (uint64_t)x[i][1] * x[i+lag][0]; } real_sum = accu_re; imag_sum = accu_im; accu_re += (uint64_t)x[ 0][0] * x[lag][0]; accu_re += (uint64_t)x[ 0][1] * x[lag][1]; accu_im += (uint64_t)x[ 0][0] * x[lag][1]; accu_im -= (uint64_t)x[ 0][1] * x[lag][0]; phi[2-lag][1][0] = autocorr_calc(accu_re); phi[2-lag][1][1] = autocorr_calc(accu_im); if (lag == 1) { accu_re = real_sum; accu_im = imag_sum; accu_re += (uint64_t)x[38][0] * x[39][0]; accu_re += (uint64_t)x[38][1] * x[39][1]; accu_im += (uint64_t)x[38][0] * x[39][1]; accu_im -= (uint64_t)x[38][1] * x[39][0]; phi[0][0][0] = autocorr_calc(accu_re); phi[0][0][1] = autocorr_calc(accu_im); } } else { for (i = 1; i < 38; i++) { accu_re += (uint64_t)x[i][0] * x[i][0]; accu_re += (uint64_t)x[i][1] * x[i][1]; } real_sum = accu_re; accu_re += (uint64_t)x[ 0][0] * x[ 0][0]; accu_re += (uint64_t)x[ 0][1] * x[ 0][1]; phi[2][1][0] = autocorr_calc(accu_re); accu_re = real_sum; accu_re += (uint64_t)x[38][0] * x[38][0]; accu_re += (uint64_t)x[38][1] * x[38][1]; phi[1][0][0] = autocorr_calc(accu_re); } } static void sbr_autocorrelate_c(const int x[40][2], SoftFloat phi[3][2][2]) { autocorrelate(x, phi, 0); autocorrelate(x, phi, 1); autocorrelate(x, phi, 2); } static void sbr_hf_gen_c(int (*X_high)[2], const int (*X_low)[2], const int alpha0[2], const int alpha1[2], int bw, int start, int end) { int alpha[4]; int i; int64_t accu; accu = (int64_t)alpha0[0] * bw; alpha[2] = (int)((accu + 0x40000000) >> 31); accu = (int64_t)alpha0[1] * bw; alpha[3] = (int)((accu + 0x40000000) >> 31); accu = (int64_t)bw * bw; bw = (int)((accu + 0x40000000) >> 31); accu = (int64_t)alpha1[0] * bw; alpha[0] = (int)((accu + 0x40000000) >> 31); accu = (int64_t)alpha1[1] * bw; alpha[1] = (int)((accu + 0x40000000) >> 31); for (i = start; i < end; i++) { accu = (int64_t)X_low[i][0] * 0x20000000; accu += (int64_t)X_low[i - 2][0] * alpha[0]; accu -= (int64_t)X_low[i - 2][1] * alpha[1]; accu += (int64_t)X_low[i - 1][0] * alpha[2]; accu -= (int64_t)X_low[i - 1][1] * alpha[3]; X_high[i][0] = (int)((accu + 0x10000000) >> 29); accu = (int64_t)X_low[i][1] * 0x20000000; accu += (int64_t)X_low[i - 2][1] * alpha[0]; accu += (int64_t)X_low[i - 2][0] * alpha[1]; accu += (int64_t)X_low[i - 1][1] * alpha[2]; accu += (int64_t)X_low[i - 1][0] * alpha[3]; X_high[i][1] = (int)((accu + 0x10000000) >> 29); } } static void sbr_hf_g_filt_c(int (*Y)[2], const int (*X_high)[40][2], const SoftFloat *g_filt, int m_max, intptr_t ixh) { int m; int64_t accu; for (m = 0; m < m_max; m++) { if (22 - g_filt[m].exp < 61) { int64_t r = 1LL << (22-g_filt[m].exp); accu = (int64_t)X_high[m][ixh][0] * ((g_filt[m].mant + 0x40)>>7); Y[m][0] = (int)((accu + r) >> (23-g_filt[m].exp)); accu = (int64_t)X_high[m][ixh][1] * ((g_filt[m].mant + 0x40)>>7); Y[m][1] = (int)((accu + r) >> (23-g_filt[m].exp)); } } } static av_always_inline int sbr_hf_apply_noise(int (*Y)[2], const SoftFloat *s_m, const SoftFloat *q_filt, int noise, int phi_sign0, int phi_sign1, int m_max) { int m; for (m = 0; m < m_max; m++) { unsigned y0 = Y[m][0]; unsigned y1 = Y[m][1]; noise = (noise + 1) & 0x1ff; if (s_m[m].mant) { int shift, round; shift = 22 - s_m[m].exp; if (shift < 1) { av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_apply_noise, shift=%d\n", shift); return AVERROR(ERANGE); } else if (shift < 30) { round = 1 << (shift-1); y0 += (s_m[m].mant * phi_sign0 + round) >> shift; y1 += (s_m[m].mant * phi_sign1 + round) >> shift; } } else { int shift, round, tmp; int64_t accu; shift = 22 - q_filt[m].exp; if (shift < 1) { av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_apply_noise, shift=%d\n", shift); return AVERROR(ERANGE); } else if (shift < 30) { round = 1 << (shift-1); accu = (int64_t)q_filt[m].mant * ff_sbr_noise_table_fixed[noise][0]; tmp = (int)((accu + 0x40000000) >> 31); y0 += (tmp + round) >> shift; accu = (int64_t)q_filt[m].mant * ff_sbr_noise_table_fixed[noise][1]; tmp = (int)((accu + 0x40000000) >> 31); y1 += (tmp + round) >> shift; } } Y[m][0] = y0; Y[m][1] = y1; phi_sign1 = -phi_sign1; } return 0; } #include "sbrdsp_template.c"