/* * Copyright (c) 2016 Martin Storsjo * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with FFmpeg; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include "checkasm.h" #include "libavcodec/h264dsp.h" #include "libavcodec/h264data.h" #include "libavcodec/h264_parse.h" #include "libavutil/common.h" #include "libavutil/intreadwrite.h" #include "libavutil/mem_internal.h" static const uint32_t pixel_mask[5] = { 0xffffffff, 0x01ff01ff, 0x03ff03ff, 0x0fff0fff, 0x3fff3fff }; static const uint32_t pixel_mask_lf[3] = { 0xff0fff0f, 0x01ff000f, 0x03ff000f }; #define SIZEOF_PIXEL ((bit_depth + 7) / 8) #define SIZEOF_COEF (2 * ((bit_depth + 7) / 8)) #define PIXEL_STRIDE 16 #define randomize_buffers(idx) \ do { \ int x, y; \ uint32_t mask = pixel_mask[(idx)]; \ for (y = 0; y < sz; y++) { \ for (x = 0; x < PIXEL_STRIDE; x += 4) { \ AV_WN32A(src + y * PIXEL_STRIDE + x, rnd() & mask); \ AV_WN32A(dst + y * PIXEL_STRIDE + x, rnd() & mask); \ } \ for (x = 0; x < sz; x++) { \ if (bit_depth == 8) { \ coef[y * sz + x] = src[y * PIXEL_STRIDE + x] - \ dst[y * PIXEL_STRIDE + x]; \ } else { \ ((int32_t *)coef)[y * sz + x] = \ ((uint16_t *)src)[y * (PIXEL_STRIDE/2) + x] - \ ((uint16_t *)dst)[y * (PIXEL_STRIDE/2) + x]; \ } \ } \ } \ } while (0) #define dct4x4_impl(size, dctcoef) \ static void dct4x4_##size(dctcoef *coef) \ { \ int i, y, x; \ dctcoef tmp[16]; \ for (i = 0; i < 4; i++) { \ const int z0 = coef[i*4 + 0] + coef[i*4 + 3]; \ const int z1 = coef[i*4 + 1] + coef[i*4 + 2]; \ const int z2 = coef[i*4 + 0] - coef[i*4 + 3]; \ const int z3 = coef[i*4 + 1] - coef[i*4 + 2]; \ tmp[i + 4*0] = z0 + z1; \ tmp[i + 4*1] = 2*z2 + z3; \ tmp[i + 4*2] = z0 - z1; \ tmp[i + 4*3] = z2 - 2*z3; \ } \ for (i = 0; i < 4; i++) { \ const int z0 = tmp[i*4 + 0] + tmp[i*4 + 3]; \ const int z1 = tmp[i*4 + 1] + tmp[i*4 + 2]; \ const int z2 = tmp[i*4 + 0] - tmp[i*4 + 3]; \ const int z3 = tmp[i*4 + 1] - tmp[i*4 + 2]; \ coef[i*4 + 0] = z0 + z1; \ coef[i*4 + 1] = 2*z2 + z3; \ coef[i*4 + 2] = z0 - z1; \ coef[i*4 + 3] = z2 - 2*z3; \ } \ for (y = 0; y < 4; y++) { \ for (x = 0; x < 4; x++) { \ const int64_t scale[] = { 13107 * 10, 8066 * 13, 5243 * 16 }; \ const int idx = (y & 1) + (x & 1); \ coef[y*4 + x] = (coef[y*4 + x] * scale[idx] + (1 << 14)) >> 15; \ } \ } \ } #define DCT8_1D(src, srcstride, dst, dststride) do { \ const int a0 = (src)[srcstride * 0] + (src)[srcstride * 7]; \ const int a1 = (src)[srcstride * 0] - (src)[srcstride * 7]; \ const int a2 = (src)[srcstride * 1] + (src)[srcstride * 6]; \ const int a3 = (src)[srcstride * 1] - (src)[srcstride * 6]; \ const int a4 = (src)[srcstride * 2] + (src)[srcstride * 5]; \ const int a5 = (src)[srcstride * 2] - (src)[srcstride * 5]; \ const int a6 = (src)[srcstride * 3] + (src)[srcstride * 4]; \ const int a7 = (src)[srcstride * 3] - (src)[srcstride * 4]; \ const int b0 = a0 + a6; \ const int b1 = a2 + a4; \ const int b2 = a0 - a6; \ const int b3 = a2 - a4; \ const int b4 = a3 + a5 + (a1 + (a1 >> 1)); \ const int b5 = a1 - a7 - (a5 + (a5 >> 1)); \ const int b6 = a1 + a7 - (a3 + (a3 >> 1)); \ const int b7 = a3 - a5 + (a7 + (a7 >> 1)); \ (dst)[dststride * 0] = b0 + b1; \ (dst)[dststride * 1] = b4 + (b7 >> 2); \ (dst)[dststride * 2] = b2 + (b3 >> 1); \ (dst)[dststride * 3] = b5 + (b6 >> 2); \ (dst)[dststride * 4] = b0 - b1; \ (dst)[dststride * 5] = b6 - (b5 >> 2); \ (dst)[dststride * 6] = (b2 >> 1) - b3; \ (dst)[dststride * 7] = (b4 >> 2) - b7; \ } while (0) #define dct8x8_impl(size, dctcoef) \ static void dct8x8_##size(dctcoef *coef) \ { \ int i, x, y; \ dctcoef tmp[64]; \ for (i = 0; i < 8; i++) \ DCT8_1D(coef + i, 8, tmp + i, 8); \ \ for (i = 0; i < 8; i++) \ DCT8_1D(tmp + 8*i, 1, coef + i, 8); \ \ for (y = 0; y < 8; y++) { \ for (x = 0; x < 8; x++) { \ static const int scale[] = { \ 13107 * 20, 11428 * 18, 20972 * 32, \ 12222 * 19, 16777 * 25, 15481 * 24, \ }; \ static const int idxmap[] = { \ 0, 3, 4, 3, \ 3, 1, 5, 1, \ 4, 5, 2, 5, \ 3, 1, 5, 1, \ }; \ const int idx = idxmap[(y & 3) * 4 + (x & 3)]; \ coef[y*8 + x] = ((int64_t)coef[y*8 + x] * \ scale[idx] + (1 << 17)) >> 18; \ } \ } \ } dct4x4_impl(16, int16_t) dct4x4_impl(32, int32_t) dct8x8_impl(16, int16_t) dct8x8_impl(32, int32_t) static void dct4x4(int16_t *coef, int bit_depth) { if (bit_depth == 8) dct4x4_16(coef); else dct4x4_32((int32_t *) coef); } static void dct8x8(int16_t *coef, int bit_depth) { if (bit_depth == 8) { dct8x8_16(coef); } else { dct8x8_32((int32_t *) coef); } } static void check_idct(void) { static const int depths[5] = { 8, 9, 10, 12, 14 }; LOCAL_ALIGNED_16(uint8_t, src, [8 * 8 * 2]); LOCAL_ALIGNED_16(uint8_t, dst, [8 * 8 * 2]); LOCAL_ALIGNED_16(uint8_t, dst0, [8 * 8 * 2]); LOCAL_ALIGNED_16(uint8_t, dst1_base, [8 * 8 * 2 + 32]); LOCAL_ALIGNED_16(int16_t, coef, [8 * 8 * 2]); LOCAL_ALIGNED_16(int16_t, subcoef0, [8 * 8 * 2]); LOCAL_ALIGNED_16(int16_t, subcoef1, [8 * 8 * 2]); H264DSPContext h; int bit_depth, sz, align, dc, i; declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *dst, int16_t *block, int stride); for (i = 0; i < FF_ARRAY_ELEMS(depths); i++) { bit_depth = depths[i]; ff_h264dsp_init(&h, bit_depth, 1); for (sz = 4; sz <= 8; sz += 4) { randomize_buffers(i); if (sz == 4) dct4x4(coef, bit_depth); else dct8x8(coef, bit_depth); for (dc = 0; dc <= 1; dc++) { void (*idct)(uint8_t *, int16_t *, int) = NULL; switch ((sz << 1) | dc) { case (4 << 1) | 0: idct = h.h264_idct_add; break; case (4 << 1) | 1: idct = h.h264_idct_dc_add; break; case (8 << 1) | 0: idct = h.h264_idct8_add; break; case (8 << 1) | 1: idct = h.h264_idct8_dc_add; break; } if (check_func(idct, "h264_idct%d_add%s_%dbpp", sz, dc ? "_dc" : "", bit_depth)) { for (align = 0; align < 16; align += sz * SIZEOF_PIXEL) { uint8_t *dst1 = dst1_base + align; if (dc) { memset(subcoef0, 0, sz * sz * SIZEOF_COEF); memcpy(subcoef0, coef, SIZEOF_COEF); } else { memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF); } memcpy(dst0, dst, sz * PIXEL_STRIDE); memcpy(dst1, dst, sz * PIXEL_STRIDE); memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF); call_ref(dst0, subcoef0, PIXEL_STRIDE); call_new(dst1, subcoef1, PIXEL_STRIDE); if (memcmp(dst0, dst1, sz * PIXEL_STRIDE) || memcmp(subcoef0, subcoef1, sz * sz * SIZEOF_COEF)) fail(); bench_new(dst1, subcoef1, sz * SIZEOF_PIXEL); } } } } } } static void check_idct_multiple(void) { LOCAL_ALIGNED_16(uint8_t, dst_full, [16 * 16 * 2]); LOCAL_ALIGNED_16(int16_t, coef_full, [16 * 16 * 2]); LOCAL_ALIGNED_16(uint8_t, dst0, [16 * 16 * 2]); LOCAL_ALIGNED_16(uint8_t, dst1, [16 * 16 * 2]); LOCAL_ALIGNED_16(int16_t, coef0, [16 * 16 * 2]); LOCAL_ALIGNED_16(int16_t, coef1, [16 * 16 * 2]); LOCAL_ALIGNED_16(uint8_t, nnzc, [15 * 8]); H264DSPContext h; int bit_depth, i, y, func; declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *dst, const int *block_offset, int16_t *block, int stride, const uint8_t nnzc[15*8]); for (bit_depth = 8; bit_depth <= 10; bit_depth++) { ff_h264dsp_init(&h, bit_depth, 1); for (func = 0; func < 3; func++) { void (*idct)(uint8_t *, const int *, int16_t *, int, const uint8_t[]) = NULL; const char *name; int sz = 4, intra = 0; int block_offset[16] = { 0 }; switch (func) { case 0: idct = h.h264_idct_add16; name = "h264_idct_add16"; break; case 1: idct = h.h264_idct_add16intra; name = "h264_idct_add16intra"; intra = 1; break; case 2: idct = h.h264_idct8_add4; name = "h264_idct8_add4"; sz = 8; break; } memset(nnzc, 0, 15 * 8); memset(coef_full, 0, 16 * 16 * SIZEOF_COEF); for (i = 0; i < 16 * 16; i += sz * sz) { uint8_t src[8 * 8 * 2]; uint8_t dst[8 * 8 * 2]; int16_t coef[8 * 8 * 2]; int index = i / sz; int block_y = (index / 16) * sz; int block_x = index % 16; int offset = (block_y * 16 + block_x) * SIZEOF_PIXEL; int nnz = rnd() % 3; randomize_buffers(bit_depth - 8); if (sz == 4) dct4x4(coef, bit_depth); else dct8x8(coef, bit_depth); for (y = 0; y < sz; y++) memcpy(&dst_full[offset + y * 16 * SIZEOF_PIXEL], &dst[PIXEL_STRIDE * y], sz * SIZEOF_PIXEL); if (nnz > 1) nnz = sz * sz; memcpy(&coef_full[i * SIZEOF_COEF/sizeof(coef[0])], coef, nnz * SIZEOF_COEF); if (intra && nnz == 1) nnz = 0; nnzc[scan8[i / 16]] = nnz; block_offset[i / 16] = offset; } if (check_func(idct, "%s_%dbpp", name, bit_depth)) { memcpy(coef0, coef_full, 16 * 16 * SIZEOF_COEF); memcpy(coef1, coef_full, 16 * 16 * SIZEOF_COEF); memcpy(dst0, dst_full, 16 * 16 * SIZEOF_PIXEL); memcpy(dst1, dst_full, 16 * 16 * SIZEOF_PIXEL); call_ref(dst0, block_offset, coef0, 16 * SIZEOF_PIXEL, nnzc); call_new(dst1, block_offset, coef1, 16 * SIZEOF_PIXEL, nnzc); if (memcmp(dst0, dst1, 16 * 16 * SIZEOF_PIXEL) || memcmp(coef0, coef1, 16 * 16 * SIZEOF_COEF)) fail(); bench_new(dst1, block_offset, coef1, 16 * SIZEOF_PIXEL, nnzc); } } } } static void check_loop_filter(void) { LOCAL_ALIGNED_16(uint8_t, dst, [32 * 16 * 2]); LOCAL_ALIGNED_16(uint8_t, dst0, [32 * 16 * 2]); LOCAL_ALIGNED_16(uint8_t, dst1, [32 * 16 * 2]); H264DSPContext h; int bit_depth; int alphas[36], betas[36]; int8_t tc0[36][4]; declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *pix, ptrdiff_t stride, int alpha, int beta, int8_t *tc0); for (bit_depth = 8; bit_depth <= 10; bit_depth++) { int i, j, a, c; uint32_t mask = pixel_mask_lf[bit_depth - 8]; ff_h264dsp_init(&h, bit_depth, 1); for (i = 35, a = 255, c = 250; i >= 0; i--) { alphas[i] = a << (bit_depth - 8); betas[i] = (i + 1) / 2 << (bit_depth - 8); tc0[i][0] = tc0[i][3] = (c + 6) / 10; tc0[i][1] = (c + 7) / 15; tc0[i][2] = (c + 9) / 20; a = a*9/10; c = c*9/10; } #define CHECK_LOOP_FILTER(name, align, idc) \ do { \ if (check_func(h.name, #name #idc "_%dbpp", bit_depth)) { \ for (j = 0; j < 36; j++) { \ intptr_t off = 8 * 32 + (j & 15) * 4 * !align; \ for (i = 0; i < 1024; i+=4) { \ AV_WN32A(dst + i, rnd() & mask); \ } \ memcpy(dst0, dst, 32 * 16 * 2); \ memcpy(dst1, dst, 32 * 16 * 2); \ \ call_ref(dst0 + off, 32, alphas[j], betas[j], tc0[j]); \ call_new(dst1 + off, 32, alphas[j], betas[j], tc0[j]); \ if (memcmp(dst0, dst1, 32 * 16 * SIZEOF_PIXEL)) { \ fprintf(stderr, #name #idc ": j:%d, alpha:%d beta:%d " \ "tc0:{%d,%d,%d,%d}\n", j, alphas[j], betas[j], \ tc0[j][0], tc0[j][1], tc0[j][2], tc0[j][3]); \ fail(); \ } \ bench_new(dst1, 32, alphas[j], betas[j], tc0[j]); \ } \ } \ } while (0) CHECK_LOOP_FILTER(h264_v_loop_filter_luma, 1,); CHECK_LOOP_FILTER(h264_h_loop_filter_luma, 0,); CHECK_LOOP_FILTER(h264_h_loop_filter_luma_mbaff, 0,); CHECK_LOOP_FILTER(h264_v_loop_filter_chroma, 1,); CHECK_LOOP_FILTER(h264_h_loop_filter_chroma, 0,); CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_mbaff, 0,); ff_h264dsp_init(&h, bit_depth, 2); CHECK_LOOP_FILTER(h264_h_loop_filter_chroma, 0, 422); CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_mbaff, 0, 422); #undef CHECK_LOOP_FILTER } } static void check_loop_filter_intra(void) { LOCAL_ALIGNED_16(uint8_t, dst, [32 * 16 * 2]); LOCAL_ALIGNED_16(uint8_t, dst0, [32 * 16 * 2]); LOCAL_ALIGNED_16(uint8_t, dst1, [32 * 16 * 2]); H264DSPContext h; int bit_depth; int alphas[36], betas[36]; declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *pix, ptrdiff_t stride, int alpha, int beta); for (bit_depth = 8; bit_depth <= 10; bit_depth++) { int i, j, a; uint32_t mask = pixel_mask_lf[bit_depth - 8]; ff_h264dsp_init(&h, bit_depth, 1); for (i = 35, a = 255; i >= 0; i--) { alphas[i] = a << (bit_depth - 8); betas[i] = (i + 1) / 2 << (bit_depth - 8); a = a*9/10; } #define CHECK_LOOP_FILTER(name, align, idc) \ do { \ if (check_func(h.name, #name #idc "_%dbpp", bit_depth)) { \ for (j = 0; j < 36; j++) { \ intptr_t off = 8 * 32 + (j & 15) * 4 * !align; \ for (i = 0; i < 1024; i+=4) { \ AV_WN32A(dst + i, rnd() & mask); \ } \ memcpy(dst0, dst, 32 * 16 * 2); \ memcpy(dst1, dst, 32 * 16 * 2); \ \ call_ref(dst0 + off, 32, alphas[j], betas[j]); \ call_new(dst1 + off, 32, alphas[j], betas[j]); \ if (memcmp(dst0, dst1, 32 * 16 * SIZEOF_PIXEL)) { \ fprintf(stderr, #name #idc ": j:%d, alpha:%d beta:%d\n", \ j, alphas[j], betas[j]); \ fail(); \ } \ bench_new(dst1, 32, alphas[j], betas[j]); \ } \ } \ } while (0) CHECK_LOOP_FILTER(h264_v_loop_filter_luma_intra, 1,); CHECK_LOOP_FILTER(h264_h_loop_filter_luma_intra, 0,); CHECK_LOOP_FILTER(h264_h_loop_filter_luma_mbaff_intra, 0,); CHECK_LOOP_FILTER(h264_v_loop_filter_chroma_intra, 1,); CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_intra, 0,); CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_mbaff_intra, 0,); ff_h264dsp_init(&h, bit_depth, 2); CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_intra, 0, 422); CHECK_LOOP_FILTER(h264_h_loop_filter_chroma_mbaff_intra, 0, 422); #undef CHECK_LOOP_FILTER } } void checkasm_check_h264dsp(void) { check_idct(); check_idct_multiple(); report("idct"); check_loop_filter(); report("loop_filter"); check_loop_filter_intra(); report("loop_filter_intra"); }