/* * RTMP Diffie-Hellmann utilities * Copyright (c) 2009 Andrej Stepanchuk * Copyright (c) 2009-2010 Howard Chu * Copyright (c) 2012 Samuel Pitoiset * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * RTMP Diffie-Hellmann utilities */ #include "config.h" #include "rtmpdh.h" #include "libavutil/random_seed.h" #define P1024 \ "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \ "FFFFFFFFFFFFFFFF" #define Q1024 \ "7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68" \ "948127044533E63A0105DF531D89CD9128A5043CC71A026E" \ "F7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122" \ "F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6" \ "F71C35FDAD44CFD2D74F9208BE258FF324943328F67329C0" \ "FFFFFFFFFFFFFFFF" #if CONFIG_NETTLE || CONFIG_GCRYPT #if CONFIG_NETTLE #define bn_new(bn) \ do { \ bn = av_malloc(sizeof(*bn)); \ if (bn) \ mpz_init2(bn, 1); \ } while (0) #define bn_free(bn) \ do { \ mpz_clear(bn); \ av_free(bn); \ } while (0) #define bn_set_word(bn, w) mpz_set_ui(bn, w) #define bn_cmp(a, b) mpz_cmp(a, b) #define bn_copy(to, from) mpz_set(to, from) #define bn_sub_word(bn, w) mpz_sub_ui(bn, bn, w) #define bn_cmp_1(bn) mpz_cmp_ui(bn, 1) #define bn_num_bytes(bn) (mpz_sizeinbase(bn, 2) + 7) / 8 #define bn_bn2bin(bn, buf, len) nettle_mpz_get_str_256(len, buf, bn) #define bn_bin2bn(bn, buf, len) \ do { \ bn_new(bn); \ if (bn) \ nettle_mpz_set_str_256_u(bn, len, buf); \ } while (0) #define bn_hex2bn(bn, buf, ret) \ do { \ bn_new(bn); \ if (bn) \ ret = (mpz_set_str(bn, buf, 16) == 0); \ else \ ret = 1; \ } while (0) #define bn_modexp(bn, y, q, p) mpz_powm(bn, y, q, p) #define bn_random(bn, num_bits) \ do { \ gmp_randstate_t rs; \ gmp_randinit_mt(rs); \ gmp_randseed_ui(rs, av_get_random_seed()); \ mpz_urandomb(bn, rs, num_bits); \ gmp_randclear(rs); \ } while (0) #elif CONFIG_GCRYPT #define bn_new(bn) bn = gcry_mpi_new(1) #define bn_free(bn) gcry_mpi_release(bn) #define bn_set_word(bn, w) gcry_mpi_set_ui(bn, w) #define bn_cmp(a, b) gcry_mpi_cmp(a, b) #define bn_copy(to, from) gcry_mpi_set(to, from) #define bn_sub_word(bn, w) gcry_mpi_sub_ui(bn, bn, w) #define bn_cmp_1(bn) gcry_mpi_cmp_ui(bn, 1) #define bn_num_bytes(bn) (gcry_mpi_get_nbits(bn) + 7) / 8 #define bn_bn2bin(bn, buf, len) gcry_mpi_print(GCRYMPI_FMT_USG, buf, len, NULL, bn) #define bn_bin2bn(bn, buf, len) gcry_mpi_scan(&bn, GCRYMPI_FMT_USG, buf, len, NULL) #define bn_hex2bn(bn, buf, ret) ret = (gcry_mpi_scan(&bn, GCRYMPI_FMT_HEX, buf, 0, 0) == 0) #define bn_modexp(bn, y, q, p) gcry_mpi_powm(bn, y, q, p) #define bn_random(bn, num_bits) gcry_mpi_randomize(bn, num_bits, GCRY_WEAK_RANDOM) #endif #define MAX_BYTES 18000 #define dh_new() av_malloc(sizeof(FF_DH)) static FFBigNum dh_generate_key(FF_DH *dh) { int num_bytes; num_bytes = bn_num_bytes(dh->p) - 1; if (num_bytes <= 0 || num_bytes > MAX_BYTES) return NULL; bn_new(dh->priv_key); if (!dh->priv_key) return NULL; bn_random(dh->priv_key, 8 * num_bytes); bn_new(dh->pub_key); if (!dh->pub_key) { bn_free(dh->priv_key); return NULL; } bn_modexp(dh->pub_key, dh->g, dh->priv_key, dh->p); return dh->pub_key; } static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn, uint32_t secret_key_len, uint8_t *secret_key) { FFBigNum k; bn_new(k); if (!k) return -1; bn_modexp(k, pub_key_bn, dh->priv_key, dh->p); bn_bn2bin(k, secret_key, secret_key_len); bn_free(k); /* return the length of the shared secret key like DH_compute_key */ return secret_key_len; } void ff_dh_free(FF_DH *dh) { if (!dh) return; bn_free(dh->p); bn_free(dh->g); bn_free(dh->pub_key); bn_free(dh->priv_key); av_free(dh); } #elif CONFIG_OPENSSL #define bn_new(bn) bn = BN_new() #define bn_free(bn) BN_free(bn) #define bn_set_word(bn, w) BN_set_word(bn, w) #define bn_cmp(a, b) BN_cmp(a, b) #define bn_copy(to, from) BN_copy(to, from) #define bn_sub_word(bn, w) BN_sub_word(bn, w) #define bn_cmp_1(bn) BN_cmp(bn, BN_value_one()) #define bn_num_bytes(bn) BN_num_bytes(bn) #define bn_bn2bin(bn, buf, len) BN_bn2bin(bn, buf) #define bn_bin2bn(bn, buf, len) bn = BN_bin2bn(buf, len, 0) #define bn_hex2bn(bn, buf, ret) ret = BN_hex2bn(&bn, buf) #define bn_modexp(bn, y, q, p) \ do { \ BN_CTX *ctx = BN_CTX_new(); \ if (!ctx) \ return AVERROR(ENOMEM); \ if (!BN_mod_exp(bn, y, q, p, ctx)) { \ BN_CTX_free(ctx); \ return AVERROR(EINVAL); \ } \ BN_CTX_free(ctx); \ } while (0) #define dh_new() DH_new() #define dh_generate_key(dh) DH_generate_key(dh) static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn, uint32_t secret_key_len, uint8_t *secret_key) { if (secret_key_len < DH_size(dh)) return AVERROR(EINVAL); return DH_compute_key(secret_key, pub_key_bn, dh); } void ff_dh_free(FF_DH *dh) { if (!dh) return; DH_free(dh); } #endif static int dh_is_valid_public_key(FFBigNum y, FFBigNum p, FFBigNum q) { FFBigNum bn = NULL; int ret = AVERROR(EINVAL); bn_new(bn); if (!bn) return AVERROR(ENOMEM); /* y must lie in [2, p - 1] */ bn_set_word(bn, 1); if (!bn_cmp(y, bn)) goto fail; /* bn = p - 2 */ bn_copy(bn, p); bn_sub_word(bn, 1); if (!bn_cmp(y, bn)) goto fail; /* Verify with Sophie-Germain prime * * This is a nice test to make sure the public key position is calculated * correctly. This test will fail in about 50% of the cases if applied to * random data. */ /* y must fulfill y^q mod p = 1 */ bn_modexp(bn, y, q, p); if (bn_cmp_1(bn)) goto fail; ret = 0; fail: bn_free(bn); return ret; } av_cold FF_DH *ff_dh_init(int key_len) { FF_DH *dh; int ret; if (!(dh = dh_new())) return NULL; bn_new(dh->g); if (!dh->g) goto fail; bn_hex2bn(dh->p, P1024, ret); if (!ret) goto fail; bn_set_word(dh->g, 2); dh->length = key_len; return dh; fail: ff_dh_free(dh); return NULL; } int ff_dh_generate_public_key(FF_DH *dh) { int ret = 0; while (!ret) { FFBigNum q1 = NULL; if (!dh_generate_key(dh)) return AVERROR(EINVAL); bn_hex2bn(q1, Q1024, ret); if (!ret) return AVERROR(ENOMEM); ret = dh_is_valid_public_key(dh->pub_key, dh->p, q1); bn_free(q1); if (!ret) { /* the public key is valid */ break; } } return ret; } int ff_dh_write_public_key(FF_DH *dh, uint8_t *pub_key, int pub_key_len) { int len; /* compute the length of the public key */ len = bn_num_bytes(dh->pub_key); if (len <= 0 || len > pub_key_len) return AVERROR(EINVAL); /* convert the public key value into big-endian form */ memset(pub_key, 0, pub_key_len); bn_bn2bin(dh->pub_key, pub_key + pub_key_len - len, len); return 0; } int ff_dh_compute_shared_secret_key(FF_DH *dh, const uint8_t *pub_key, int pub_key_len, uint8_t *secret_key, int secret_key_len) { FFBigNum q1 = NULL, pub_key_bn = NULL; int ret; /* convert the big-endian form of the public key into a bignum */ bn_bin2bn(pub_key_bn, pub_key, pub_key_len); if (!pub_key_bn) return AVERROR(ENOMEM); /* convert the string containing a hexadecimal number into a bignum */ bn_hex2bn(q1, Q1024, ret); if (!ret) { ret = AVERROR(ENOMEM); goto fail; } /* when the public key is valid we have to compute the shared secret key */ if ((ret = dh_is_valid_public_key(pub_key_bn, dh->p, q1)) < 0) { goto fail; } else if ((ret = dh_compute_key(dh, pub_key_bn, secret_key_len, secret_key)) < 0) { ret = AVERROR(EINVAL); goto fail; } fail: bn_free(pub_key_bn); bn_free(q1); return ret; } #ifdef TEST static int test_random_shared_secret(void) { FF_DH *peer1 = NULL, *peer2 = NULL; int ret; uint8_t pubkey1[128], pubkey2[128]; uint8_t sharedkey1[128], sharedkey2[128]; peer1 = ff_dh_init(1024); peer2 = ff_dh_init(1024); if (!peer1 || !peer2) { ret = AVERROR(ENOMEM); goto fail; } if ((ret = ff_dh_generate_public_key(peer1)) < 0) goto fail; if ((ret = ff_dh_generate_public_key(peer2)) < 0) goto fail; if ((ret = ff_dh_write_public_key(peer1, pubkey1, sizeof(pubkey1))) < 0) goto fail; if ((ret = ff_dh_write_public_key(peer2, pubkey2, sizeof(pubkey2))) < 0) goto fail; if ((ret = ff_dh_compute_shared_secret_key(peer1, pubkey2, sizeof(pubkey2), sharedkey1, sizeof(sharedkey1))) < 0) goto fail; if ((ret = ff_dh_compute_shared_secret_key(peer2, pubkey1, sizeof(pubkey1), sharedkey2, sizeof(sharedkey2))) < 0) goto fail; if (memcmp(sharedkey1, sharedkey2, sizeof(sharedkey1))) { printf("Mismatched generated shared key\n"); ret = AVERROR_INVALIDDATA; } else { printf("Generated shared key ok\n"); } fail: ff_dh_free(peer1); ff_dh_free(peer2); return ret; } static const char *private_key = "976C18FCADC255B456564F74F3EEDA59D28AF6B744D743F2357BFD2404797EF896EF1A" "7C1CBEAAA3AB60AF3192D189CFF3F991C9CBBFD78119FCA2181384B94011943B6D6F28" "9E1B708E2D1A0C7771169293F03DA27E561F15F16F0AC9BC858C77A80FA98FD088A232" "19D08BE6F165DE0B02034B18705829FAD0ACB26A5B75EF"; static const char *public_key = "F272ECF8362257C5D2C3CC2229CF9C0A03225BC109B1DBC76A68C394F256ACA3EF5F64" "FC270C26382BF315C19E97A76104A716FC998A651E8610A3AE6CF65D8FAE5D3F32EEA0" "0B32CB9609B494116A825D7142D17B88E3D20EDD98743DE29CF37A23A9F6A58B960591" "3157D5965FCB46DDA73A1F08DD897BAE88DFE6FC937CBA"; static const uint8_t public_key_bin[] = { 0xf2, 0x72, 0xec, 0xf8, 0x36, 0x22, 0x57, 0xc5, 0xd2, 0xc3, 0xcc, 0x22, 0x29, 0xcf, 0x9c, 0x0a, 0x03, 0x22, 0x5b, 0xc1, 0x09, 0xb1, 0xdb, 0xc7, 0x6a, 0x68, 0xc3, 0x94, 0xf2, 0x56, 0xac, 0xa3, 0xef, 0x5f, 0x64, 0xfc, 0x27, 0x0c, 0x26, 0x38, 0x2b, 0xf3, 0x15, 0xc1, 0x9e, 0x97, 0xa7, 0x61, 0x04, 0xa7, 0x16, 0xfc, 0x99, 0x8a, 0x65, 0x1e, 0x86, 0x10, 0xa3, 0xae, 0x6c, 0xf6, 0x5d, 0x8f, 0xae, 0x5d, 0x3f, 0x32, 0xee, 0xa0, 0x0b, 0x32, 0xcb, 0x96, 0x09, 0xb4, 0x94, 0x11, 0x6a, 0x82, 0x5d, 0x71, 0x42, 0xd1, 0x7b, 0x88, 0xe3, 0xd2, 0x0e, 0xdd, 0x98, 0x74, 0x3d, 0xe2, 0x9c, 0xf3, 0x7a, 0x23, 0xa9, 0xf6, 0xa5, 0x8b, 0x96, 0x05, 0x91, 0x31, 0x57, 0xd5, 0x96, 0x5f, 0xcb, 0x46, 0xdd, 0xa7, 0x3a, 0x1f, 0x08, 0xdd, 0x89, 0x7b, 0xae, 0x88, 0xdf, 0xe6, 0xfc, 0x93, 0x7c, 0xba }; static const uint8_t peer_public_key[] = { 0x58, 0x66, 0x05, 0x49, 0x94, 0x23, 0x2b, 0x66, 0x52, 0x13, 0xff, 0x46, 0xf2, 0xb3, 0x79, 0xa9, 0xee, 0xae, 0x1a, 0x13, 0xf0, 0x71, 0x52, 0xfb, 0x93, 0x4e, 0xee, 0x97, 0x05, 0x73, 0x50, 0x7d, 0xaf, 0x02, 0x07, 0x72, 0xac, 0xdc, 0xa3, 0x95, 0x78, 0xee, 0x9a, 0x19, 0x71, 0x7e, 0x99, 0x9f, 0x2a, 0xd4, 0xb3, 0xe2, 0x0c, 0x1d, 0x1a, 0x78, 0x4c, 0xde, 0xf1, 0xad, 0xb4, 0x60, 0xa8, 0x51, 0xac, 0x71, 0xec, 0x86, 0x70, 0xa2, 0x63, 0x36, 0x92, 0x7c, 0xe3, 0x87, 0xee, 0xe4, 0xf1, 0x62, 0x24, 0x74, 0xb4, 0x04, 0xfa, 0x5c, 0xdf, 0xba, 0xfa, 0xa3, 0xc2, 0xbb, 0x62, 0x27, 0xd0, 0xf4, 0xe4, 0x43, 0xda, 0x8a, 0x88, 0x69, 0x60, 0xe2, 0xdb, 0x75, 0x2a, 0x98, 0x9d, 0xb5, 0x50, 0xe3, 0x99, 0xda, 0xe0, 0xa6, 0x14, 0xc9, 0x80, 0x12, 0xf9, 0x3c, 0xac, 0x06, 0x02, 0x7a, 0xde, 0x74 }; static const uint8_t shared_secret[] = { 0xb2, 0xeb, 0xcb, 0x71, 0xf3, 0x61, 0xfb, 0x5b, 0x4e, 0x5c, 0x4c, 0xcf, 0x5c, 0x08, 0x5f, 0x96, 0x26, 0x77, 0x1d, 0x31, 0xf1, 0xe1, 0xf7, 0x4b, 0x92, 0xac, 0x82, 0x2a, 0x88, 0xc7, 0x83, 0xe1, 0xc7, 0xf3, 0xd3, 0x1a, 0x7d, 0xc8, 0x31, 0xe3, 0x97, 0xe4, 0xec, 0x31, 0x0e, 0x8f, 0x73, 0x1a, 0xe4, 0xf6, 0xd8, 0xc8, 0x94, 0xff, 0xa0, 0x03, 0x84, 0x03, 0x0f, 0xa5, 0x30, 0x5d, 0x67, 0xe0, 0x7a, 0x3b, 0x5f, 0xed, 0x4c, 0xf5, 0xbc, 0x18, 0xea, 0xd4, 0x77, 0xa9, 0x07, 0xb3, 0x54, 0x0b, 0x02, 0xd9, 0xc6, 0xb8, 0x66, 0x5e, 0xec, 0xa4, 0xcd, 0x47, 0xed, 0xc9, 0x38, 0xc6, 0x91, 0x08, 0xf3, 0x85, 0x9b, 0x69, 0x16, 0x78, 0x0d, 0xb7, 0x74, 0x51, 0xaa, 0x5b, 0x4d, 0x74, 0xe4, 0x29, 0x2e, 0x9e, 0x8e, 0xf7, 0xe5, 0x42, 0x83, 0xb0, 0x65, 0xb0, 0xce, 0xc6, 0xb2, 0x8f, 0x5b, 0xb0 }; static int test_ref_data(void) { FF_DH *dh; int ret = AVERROR(ENOMEM); uint8_t pubkey_test[128]; uint8_t sharedkey_test[128]; dh = ff_dh_init(1024); if (!dh) goto fail; bn_hex2bn(dh->priv_key, private_key, ret); if (!ret) goto fail; bn_hex2bn(dh->pub_key, public_key, ret); if (!ret) goto fail; if ((ret = ff_dh_write_public_key(dh, pubkey_test, sizeof(pubkey_test))) < 0) goto fail; if (memcmp(pubkey_test, public_key_bin, sizeof(pubkey_test))) { printf("Mismatched generated public key\n"); ret = AVERROR_INVALIDDATA; goto fail; } else { printf("Generated public key ok\n"); } if ((ret = ff_dh_compute_shared_secret_key(dh, peer_public_key, sizeof(peer_public_key), sharedkey_test, sizeof(sharedkey_test))) < 0) goto fail; if (memcmp(shared_secret, sharedkey_test, sizeof(sharedkey_test))) { printf("Mismatched generated shared key\n"); ret = AVERROR_INVALIDDATA; } else { printf("Generated shared key ok\n"); } fail: ff_dh_free(dh); return ret; } int main(void) { if (test_random_shared_secret() < 0) return 1; if (test_ref_data() < 0) return 1; return 0; } #endif