/* * Copyright (c) Lynne * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #define VK_NO_PROTOTYPES #define VK_ENABLE_BETA_EXTENSIONS #ifdef _WIN32 #include /* Included to prevent conflicts with CreateSemaphore */ #include #include "compat/w32dlfcn.h" #else #include #endif #include "thread.h" #include #include "config.h" #include "pixdesc.h" #include "avstring.h" #include "imgutils.h" #include "hwcontext.h" #include "avassert.h" #include "hwcontext_internal.h" #include "hwcontext_vulkan.h" #include "vulkan.h" #include "vulkan_loader.h" #if CONFIG_VAAPI #include "hwcontext_vaapi.h" #endif #if CONFIG_LIBDRM #if CONFIG_VAAPI #include #endif #include #include #include #include #include "hwcontext_drm.h" #endif #if CONFIG_CUDA #include "hwcontext_cuda_internal.h" #include "cuda_check.h" #define CHECK_CU(x) FF_CUDA_CHECK_DL(cuda_cu, cu, x) #endif typedef struct VulkanQueueCtx { VkFence fence; VkQueue queue; int was_synchronous; int qf; int qidx; /* Buffer dependencies */ AVBufferRef **buf_deps; int nb_buf_deps; unsigned int buf_deps_alloc_size; } VulkanQueueCtx; typedef struct VulkanDevicePriv { /* Vulkan library and loader functions */ void *libvulkan; FFVulkanContext vkctx; FFVkQueueFamilyCtx compute_qf; FFVkQueueFamilyCtx transfer_qf; /* Properties */ VkPhysicalDeviceProperties2 props; VkPhysicalDeviceMemoryProperties mprops; VkPhysicalDeviceExternalMemoryHostPropertiesEXT hprops; /* Features */ VkPhysicalDeviceVulkan11Features device_features_1_1; VkPhysicalDeviceVulkan12Features device_features_1_2; VkPhysicalDeviceVulkan13Features device_features_1_3; VkPhysicalDeviceDescriptorBufferFeaturesEXT desc_buf_features; VkPhysicalDeviceShaderAtomicFloatFeaturesEXT atomic_float_features; /* Queues */ pthread_mutex_t **qf_mutex; uint32_t nb_tot_qfs; uint32_t img_qfs[5]; uint32_t nb_img_qfs; /* Debug callback */ VkDebugUtilsMessengerEXT debug_ctx; /* Settings */ int use_linear_images; /* Option to allocate all image planes in a single allocation */ int contiguous_planes; /* Disable multiplane images */ int disable_multiplane; /* Nvidia */ int dev_is_nvidia; } VulkanDevicePriv; typedef struct VulkanFramesPriv { /* Image conversions */ FFVkExecPool compute_exec; /* Image transfers */ FFVkExecPool upload_exec; FFVkExecPool download_exec; /* Modifier info list to free at uninit */ VkImageDrmFormatModifierListCreateInfoEXT *modifier_info; } VulkanFramesPriv; typedef struct AVVkFrameInternal { pthread_mutex_t update_mutex; #if CONFIG_CUDA /* Importing external memory into cuda is really expensive so we keep the * memory imported all the time */ AVBufferRef *cuda_fc_ref; /* Need to keep it around for uninit */ CUexternalMemory ext_mem[AV_NUM_DATA_POINTERS]; CUmipmappedArray cu_mma[AV_NUM_DATA_POINTERS]; CUarray cu_array[AV_NUM_DATA_POINTERS]; CUexternalSemaphore cu_sem[AV_NUM_DATA_POINTERS]; #ifdef _WIN32 HANDLE ext_mem_handle[AV_NUM_DATA_POINTERS]; HANDLE ext_sem_handle[AV_NUM_DATA_POINTERS]; #endif #endif } AVVkFrameInternal; #define ASPECT_2PLANE (VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT) #define ASPECT_3PLANE (VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT) static const struct FFVkFormatEntry { VkFormat vkf; enum AVPixelFormat pixfmt; VkImageAspectFlags aspect; int vk_planes; int nb_images; int nb_images_fallback; const VkFormat fallback[5]; } vk_formats_list[] = { /* Gray formats */ { VK_FORMAT_R8_UNORM, AV_PIX_FMT_GRAY8, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8_UNORM } }, { VK_FORMAT_R16_UNORM, AV_PIX_FMT_GRAY16, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16_UNORM } }, { VK_FORMAT_R32_SFLOAT, AV_PIX_FMT_GRAYF32, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R32_SFLOAT } }, /* RGB formats */ { VK_FORMAT_R16G16B16A16_UNORM, AV_PIX_FMT_XV36, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16G16B16A16_UNORM } }, { VK_FORMAT_B8G8R8A8_UNORM, AV_PIX_FMT_BGRA, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_B8G8R8A8_UNORM } }, { VK_FORMAT_R8G8B8A8_UNORM, AV_PIX_FMT_RGBA, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8G8B8A8_UNORM } }, { VK_FORMAT_R8G8B8_UNORM, AV_PIX_FMT_RGB24, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8G8B8_UNORM } }, { VK_FORMAT_B8G8R8_UNORM, AV_PIX_FMT_BGR24, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_B8G8R8_UNORM } }, { VK_FORMAT_R16G16B16_UNORM, AV_PIX_FMT_RGB48, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16G16B16_UNORM } }, { VK_FORMAT_R16G16B16A16_UNORM, AV_PIX_FMT_RGBA64, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16G16B16A16_UNORM } }, { VK_FORMAT_R5G6B5_UNORM_PACK16, AV_PIX_FMT_RGB565, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R5G6B5_UNORM_PACK16 } }, { VK_FORMAT_B5G6R5_UNORM_PACK16, AV_PIX_FMT_BGR565, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_B5G6R5_UNORM_PACK16 } }, { VK_FORMAT_B8G8R8A8_UNORM, AV_PIX_FMT_BGR0, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_B8G8R8A8_UNORM } }, { VK_FORMAT_R8G8B8A8_UNORM, AV_PIX_FMT_RGB0, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8G8B8A8_UNORM } }, { VK_FORMAT_A2R10G10B10_UNORM_PACK32, AV_PIX_FMT_X2RGB10, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_A2R10G10B10_UNORM_PACK32 } }, /* Planar RGB */ { VK_FORMAT_R8_UNORM, AV_PIX_FMT_GBRAP, VK_IMAGE_ASPECT_COLOR_BIT, 1, 4, 4, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } }, { VK_FORMAT_R16_UNORM, AV_PIX_FMT_GBRAP16, VK_IMAGE_ASPECT_COLOR_BIT, 1, 4, 4, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { VK_FORMAT_R32_SFLOAT, AV_PIX_FMT_GBRPF32, VK_IMAGE_ASPECT_COLOR_BIT, 1, 3, 3, { VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT } }, { VK_FORMAT_R32_SFLOAT, AV_PIX_FMT_GBRAPF32, VK_IMAGE_ASPECT_COLOR_BIT, 1, 4, 4, { VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT } }, /* Two-plane 420 YUV at 8, 10, 12 and 16 bits */ { VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, AV_PIX_FMT_NV12, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8G8_UNORM } }, { VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16, AV_PIX_FMT_P010, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } }, { VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16, AV_PIX_FMT_P012, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } }, { VK_FORMAT_G16_B16R16_2PLANE_420_UNORM, AV_PIX_FMT_P016, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } }, /* Two-plane 422 YUV at 8, 10 and 16 bits */ { VK_FORMAT_G8_B8R8_2PLANE_422_UNORM, AV_PIX_FMT_NV16, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8G8_UNORM } }, { VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16, AV_PIX_FMT_P210, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } }, { VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16, AV_PIX_FMT_P212, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } }, { VK_FORMAT_G16_B16R16_2PLANE_422_UNORM, AV_PIX_FMT_P216, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } }, /* Two-plane 444 YUV at 8, 10 and 16 bits */ { VK_FORMAT_G8_B8R8_2PLANE_444_UNORM, AV_PIX_FMT_NV24, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8G8_UNORM } }, { VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16, AV_PIX_FMT_P410, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } }, { VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16, AV_PIX_FMT_P412, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } }, { VK_FORMAT_G16_B16R16_2PLANE_444_UNORM, AV_PIX_FMT_P416, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } }, /* Three-plane 420, 422, 444 at 8, 10, 12 and 16 bits */ { VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, AV_PIX_FMT_YUV420P, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } }, { VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM, AV_PIX_FMT_YUV420P10, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM, AV_PIX_FMT_YUV420P12, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM, AV_PIX_FMT_YUV420P16, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM, AV_PIX_FMT_YUV422P, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } }, { VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM, AV_PIX_FMT_YUV422P10, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM, AV_PIX_FMT_YUV422P12, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM, AV_PIX_FMT_YUV422P16, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM, AV_PIX_FMT_YUV444P, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } }, { VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM, AV_PIX_FMT_YUV444P10, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM, AV_PIX_FMT_YUV444P12, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, { VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM, AV_PIX_FMT_YUV444P16, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } }, /* Single plane 422 at 8, 10 and 12 bits */ { VK_FORMAT_G8B8G8R8_422_UNORM, AV_PIX_FMT_YUYV422, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8G8B8A8_UNORM } }, { VK_FORMAT_B8G8R8G8_422_UNORM, AV_PIX_FMT_UYVY422, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8G8B8A8_UNORM } }, { VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16, AV_PIX_FMT_Y210, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16G16B16A16_UNORM } }, { VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16, AV_PIX_FMT_Y212, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16G16B16A16_UNORM } }, }; static const int nb_vk_formats_list = FF_ARRAY_ELEMS(vk_formats_list); const VkFormat *av_vkfmt_from_pixfmt(enum AVPixelFormat p) { for (int i = 0; i < nb_vk_formats_list; i++) if (vk_formats_list[i].pixfmt == p) return vk_formats_list[i].fallback; return NULL; } static const struct FFVkFormatEntry *vk_find_format_entry(enum AVPixelFormat p) { for (int i = 0; i < nb_vk_formats_list; i++) if (vk_formats_list[i].pixfmt == p) return &vk_formats_list[i]; return NULL; } /* Malitia pura, Khronos */ #define FN_MAP_TO(dst_t, dst_name, src_t, src_name) \ static av_unused dst_t map_ ##src_name## _to_ ##dst_name(src_t src) \ { \ dst_t dst = 0x0; \ MAP_TO(VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT, \ VK_IMAGE_USAGE_SAMPLED_BIT); \ MAP_TO(VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT, \ VK_IMAGE_USAGE_TRANSFER_SRC_BIT); \ MAP_TO(VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT, \ VK_IMAGE_USAGE_TRANSFER_DST_BIT); \ MAP_TO(VK_FORMAT_FEATURE_2_STORAGE_IMAGE_BIT, \ VK_IMAGE_USAGE_STORAGE_BIT); \ MAP_TO(VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BIT, \ VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT); \ MAP_TO(VK_FORMAT_FEATURE_2_VIDEO_DECODE_OUTPUT_BIT_KHR, \ VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR); \ MAP_TO(VK_FORMAT_FEATURE_2_VIDEO_DECODE_DPB_BIT_KHR, \ VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR); \ MAP_TO(VK_FORMAT_FEATURE_2_VIDEO_ENCODE_DPB_BIT_KHR, \ VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR); \ MAP_TO(VK_FORMAT_FEATURE_2_VIDEO_ENCODE_INPUT_BIT_KHR, \ VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR); \ return dst; \ } #define MAP_TO(flag1, flag2) if (src & flag2) dst |= flag1; FN_MAP_TO(VkFormatFeatureFlagBits2, feats, VkImageUsageFlags, usage) #undef MAP_TO #define MAP_TO(flag1, flag2) if (src & flag1) dst |= flag2; FN_MAP_TO(VkImageUsageFlags, usage, VkFormatFeatureFlagBits2, feats) #undef MAP_TO #undef FN_MAP_TO static int vkfmt_from_pixfmt2(AVHWDeviceContext *dev_ctx, enum AVPixelFormat p, VkImageTiling tiling, VkFormat fmts[AV_NUM_DATA_POINTERS], int *nb_images, VkImageAspectFlags *aspect, VkImageUsageFlags *supported_usage, int disable_multiplane) { AVVulkanDeviceContext *hwctx = dev_ctx->hwctx; VulkanDevicePriv *priv = dev_ctx->internal->priv; FFVulkanFunctions *vk = &priv->vkctx.vkfn; const VkFormatFeatureFlagBits2 basic_flags = VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT | VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT; for (int i = 0; i < nb_vk_formats_list; i++) { if (vk_formats_list[i].pixfmt == p) { VkFormatProperties2 prop = { .sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2, }; VkFormatFeatureFlagBits2 feats_primary, feats_secondary; int basics_primary = 0, basics_secondary = 0; vk->GetPhysicalDeviceFormatProperties2(hwctx->phys_dev, vk_formats_list[i].vkf, &prop); feats_primary = tiling == VK_IMAGE_TILING_LINEAR ? prop.formatProperties.linearTilingFeatures : prop.formatProperties.optimalTilingFeatures; basics_primary = (feats_primary & basic_flags) == basic_flags; if (vk_formats_list[i].vkf != vk_formats_list[i].fallback[0]) { vk->GetPhysicalDeviceFormatProperties2(hwctx->phys_dev, vk_formats_list[i].fallback[0], &prop); feats_secondary = tiling == VK_IMAGE_TILING_LINEAR ? prop.formatProperties.linearTilingFeatures : prop.formatProperties.optimalTilingFeatures; basics_secondary = (feats_secondary & basic_flags) == basic_flags; } else { basics_secondary = basics_primary; } if (basics_primary && !(disable_multiplane && vk_formats_list[i].vk_planes > 1)) { if (fmts) fmts[0] = vk_formats_list[i].vkf; if (nb_images) *nb_images = 1; if (aspect) *aspect = vk_formats_list[i].aspect; if (supported_usage) *supported_usage = map_feats_to_usage(feats_primary); return 0; } else if (basics_secondary) { if (fmts) { for (int j = 0; j < vk_formats_list[i].nb_images_fallback; j++) fmts[j] = vk_formats_list[i].fallback[j]; } if (nb_images) *nb_images = vk_formats_list[i].nb_images_fallback; if (aspect) *aspect = vk_formats_list[i].aspect; if (supported_usage) *supported_usage = map_feats_to_usage(feats_secondary); return 0; } else { return AVERROR(ENOTSUP); } } } return AVERROR(EINVAL); } static int load_libvulkan(AVHWDeviceContext *ctx) { AVVulkanDeviceContext *hwctx = ctx->hwctx; VulkanDevicePriv *p = ctx->internal->priv; static const char *lib_names[] = { #if defined(_WIN32) "vulkan-1.dll", #elif defined(__APPLE__) "libvulkan.dylib", "libvulkan.1.dylib", "libMoltenVK.dylib", #else "libvulkan.so.1", "libvulkan.so", #endif }; for (int i = 0; i < FF_ARRAY_ELEMS(lib_names); i++) { p->libvulkan = dlopen(lib_names[i], RTLD_NOW | RTLD_LOCAL); if (p->libvulkan) break; } if (!p->libvulkan) { av_log(ctx, AV_LOG_ERROR, "Unable to open the libvulkan library!\n"); return AVERROR_UNKNOWN; } hwctx->get_proc_addr = (PFN_vkGetInstanceProcAddr)dlsym(p->libvulkan, "vkGetInstanceProcAddr"); return 0; } typedef struct VulkanOptExtension { const char *name; FFVulkanExtensions flag; } VulkanOptExtension; static const VulkanOptExtension optional_instance_exts[] = { /* Pointless, here avoid zero-sized structs */ { VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME, FF_VK_EXT_NO_FLAG }, }; static const VulkanOptExtension optional_device_exts[] = { /* Misc or required by other extensions */ { VK_KHR_PORTABILITY_SUBSET_EXTENSION_NAME, FF_VK_EXT_NO_FLAG }, { VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME, FF_VK_EXT_NO_FLAG }, { VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, FF_VK_EXT_NO_FLAG }, { VK_EXT_DESCRIPTOR_BUFFER_EXTENSION_NAME, FF_VK_EXT_DESCRIPTOR_BUFFER, }, { VK_EXT_PHYSICAL_DEVICE_DRM_EXTENSION_NAME, FF_VK_EXT_DEVICE_DRM }, { VK_EXT_SHADER_ATOMIC_FLOAT_EXTENSION_NAME, FF_VK_EXT_ATOMIC_FLOAT }, /* Imports/exports */ { VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_FD_MEMORY }, { VK_EXT_EXTERNAL_MEMORY_DMA_BUF_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_DMABUF_MEMORY }, { VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, FF_VK_EXT_DRM_MODIFIER_FLAGS }, { VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_FD_SEM }, { VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_HOST_MEMORY }, #ifdef _WIN32 { VK_KHR_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_WIN32_MEMORY }, { VK_KHR_EXTERNAL_SEMAPHORE_WIN32_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_WIN32_SEM }, #endif /* Video encoding/decoding */ { VK_KHR_VIDEO_QUEUE_EXTENSION_NAME, FF_VK_EXT_VIDEO_QUEUE }, { VK_KHR_VIDEO_DECODE_QUEUE_EXTENSION_NAME, FF_VK_EXT_VIDEO_DECODE_QUEUE }, { VK_KHR_VIDEO_DECODE_H264_EXTENSION_NAME, FF_VK_EXT_VIDEO_DECODE_H264 }, { VK_KHR_VIDEO_DECODE_H265_EXTENSION_NAME, FF_VK_EXT_VIDEO_DECODE_H265 }, { "VK_MESA_video_decode_av1", FF_VK_EXT_VIDEO_DECODE_AV1 }, }; static VkBool32 VKAPI_CALL vk_dbg_callback(VkDebugUtilsMessageSeverityFlagBitsEXT severity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT *data, void *priv) { int l; AVHWDeviceContext *ctx = priv; switch (severity) { case VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT: l = AV_LOG_VERBOSE; break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT: l = AV_LOG_INFO; break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT: l = AV_LOG_WARNING; break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT: l = AV_LOG_ERROR; break; default: l = AV_LOG_DEBUG; break; } av_log(ctx, l, "%s\n", data->pMessage); for (int i = 0; i < data->cmdBufLabelCount; i++) av_log(ctx, l, "\t%i: %s\n", i, data->pCmdBufLabels[i].pLabelName); return 0; } #define ADD_VAL_TO_LIST(list, count, val) \ do { \ list = av_realloc_array(list, sizeof(*list), ++count); \ if (!list) { \ err = AVERROR(ENOMEM); \ goto fail; \ } \ list[count - 1] = av_strdup(val); \ if (!list[count - 1]) { \ err = AVERROR(ENOMEM); \ goto fail; \ } \ } while(0) #define RELEASE_PROPS(props, count) \ if (props) { \ for (int i = 0; i < count; i++) \ av_free((void *)((props)[i])); \ av_free((void *)props); \ } static int check_extensions(AVHWDeviceContext *ctx, int dev, AVDictionary *opts, const char * const **dst, uint32_t *num, int debug) { const char *tstr; const char **extension_names = NULL; VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; AVVulkanDeviceContext *hwctx = ctx->hwctx; int err = 0, found, extensions_found = 0; const char *mod; int optional_exts_num; uint32_t sup_ext_count; char *user_exts_str = NULL; AVDictionaryEntry *user_exts; VkExtensionProperties *sup_ext; const VulkanOptExtension *optional_exts; if (!dev) { mod = "instance"; optional_exts = optional_instance_exts; optional_exts_num = FF_ARRAY_ELEMS(optional_instance_exts); user_exts = av_dict_get(opts, "instance_extensions", NULL, 0); if (user_exts) { user_exts_str = av_strdup(user_exts->value); if (!user_exts_str) { err = AVERROR(ENOMEM); goto fail; } } vk->EnumerateInstanceExtensionProperties(NULL, &sup_ext_count, NULL); sup_ext = av_malloc_array(sup_ext_count, sizeof(VkExtensionProperties)); if (!sup_ext) return AVERROR(ENOMEM); vk->EnumerateInstanceExtensionProperties(NULL, &sup_ext_count, sup_ext); } else { mod = "device"; optional_exts = optional_device_exts; optional_exts_num = FF_ARRAY_ELEMS(optional_device_exts); user_exts = av_dict_get(opts, "device_extensions", NULL, 0); if (user_exts) { user_exts_str = av_strdup(user_exts->value); if (!user_exts_str) { err = AVERROR(ENOMEM); goto fail; } } vk->EnumerateDeviceExtensionProperties(hwctx->phys_dev, NULL, &sup_ext_count, NULL); sup_ext = av_malloc_array(sup_ext_count, sizeof(VkExtensionProperties)); if (!sup_ext) return AVERROR(ENOMEM); vk->EnumerateDeviceExtensionProperties(hwctx->phys_dev, NULL, &sup_ext_count, sup_ext); } for (int i = 0; i < optional_exts_num; i++) { tstr = optional_exts[i].name; found = 0; for (int j = 0; j < sup_ext_count; j++) { if (!strcmp(tstr, sup_ext[j].extensionName)) { found = 1; break; } } if (!found) continue; av_log(ctx, AV_LOG_VERBOSE, "Using %s extension %s\n", mod, tstr); p->vkctx.extensions |= optional_exts[i].flag; ADD_VAL_TO_LIST(extension_names, extensions_found, tstr); } if (debug && !dev) { tstr = VK_EXT_DEBUG_UTILS_EXTENSION_NAME; found = 0; for (int j = 0; j < sup_ext_count; j++) { if (!strcmp(tstr, sup_ext[j].extensionName)) { found = 1; break; } } if (found) { av_log(ctx, AV_LOG_VERBOSE, "Using %s extension %s\n", mod, tstr); ADD_VAL_TO_LIST(extension_names, extensions_found, tstr); p->vkctx.extensions |= FF_VK_EXT_DEBUG_UTILS; } else { av_log(ctx, AV_LOG_ERROR, "Debug extension \"%s\" not found!\n", tstr); err = AVERROR(EINVAL); goto fail; } } if (user_exts_str) { char *save, *token = av_strtok(user_exts_str, "+", &save); while (token) { found = 0; for (int j = 0; j < sup_ext_count; j++) { if (!strcmp(token, sup_ext[j].extensionName)) { found = 1; break; } } if (found) { av_log(ctx, AV_LOG_VERBOSE, "Using %s extension \"%s\"\n", mod, token); ADD_VAL_TO_LIST(extension_names, extensions_found, token); } else { av_log(ctx, AV_LOG_WARNING, "%s extension \"%s\" not found, excluding.\n", mod, token); } token = av_strtok(NULL, "+", &save); } } *dst = extension_names; *num = extensions_found; av_free(user_exts_str); av_free(sup_ext); return 0; fail: RELEASE_PROPS(extension_names, extensions_found); av_free(user_exts_str); av_free(sup_ext); return err; } static int check_validation_layers(AVHWDeviceContext *ctx, AVDictionary *opts, const char * const **dst, uint32_t *num, int *debug_mode) { static const char default_layer[] = { "VK_LAYER_KHRONOS_validation" }; int found = 0, err = 0; VulkanDevicePriv *priv = ctx->internal->priv; FFVulkanFunctions *vk = &priv->vkctx.vkfn; uint32_t sup_layer_count; VkLayerProperties *sup_layers; AVDictionaryEntry *user_layers; char *user_layers_str = NULL; char *save, *token; const char **enabled_layers = NULL; uint32_t enabled_layers_count = 0; AVDictionaryEntry *debug_opt = av_dict_get(opts, "debug", NULL, 0); int debug = debug_opt && strtol(debug_opt->value, NULL, 10); /* If `debug=0`, enable no layers at all. */ if (debug_opt && !debug) return 0; vk->EnumerateInstanceLayerProperties(&sup_layer_count, NULL); sup_layers = av_malloc_array(sup_layer_count, sizeof(VkLayerProperties)); if (!sup_layers) return AVERROR(ENOMEM); vk->EnumerateInstanceLayerProperties(&sup_layer_count, sup_layers); av_log(ctx, AV_LOG_VERBOSE, "Supported validation layers:\n"); for (int i = 0; i < sup_layer_count; i++) av_log(ctx, AV_LOG_VERBOSE, "\t%s\n", sup_layers[i].layerName); /* If `debug=1` is specified, enable the standard validation layer extension */ if (debug) { *debug_mode = debug; for (int i = 0; i < sup_layer_count; i++) { if (!strcmp(default_layer, sup_layers[i].layerName)) { found = 1; av_log(ctx, AV_LOG_VERBOSE, "Default validation layer %s is enabled\n", default_layer); ADD_VAL_TO_LIST(enabled_layers, enabled_layers_count, default_layer); break; } } } user_layers = av_dict_get(opts, "validation_layers", NULL, 0); if (!user_layers) goto end; user_layers_str = av_strdup(user_layers->value); if (!user_layers_str) { err = AVERROR(ENOMEM); goto fail; } token = av_strtok(user_layers_str, "+", &save); while (token) { found = 0; if (!strcmp(default_layer, token)) { if (debug) { /* if the `debug=1`, default_layer is enabled, skip here */ token = av_strtok(NULL, "+", &save); continue; } else { /* if the `debug=0`, enable debug mode to load its callback properly */ *debug_mode = debug; } } for (int j = 0; j < sup_layer_count; j++) { if (!strcmp(token, sup_layers[j].layerName)) { found = 1; break; } } if (found) { av_log(ctx, AV_LOG_VERBOSE, "Requested Validation Layer: %s\n", token); ADD_VAL_TO_LIST(enabled_layers, enabled_layers_count, token); } else { av_log(ctx, AV_LOG_ERROR, "Validation Layer \"%s\" not support.\n", token); err = AVERROR(EINVAL); goto fail; } token = av_strtok(NULL, "+", &save); } av_free(user_layers_str); end: av_free(sup_layers); *dst = enabled_layers; *num = enabled_layers_count; return 0; fail: RELEASE_PROPS(enabled_layers, enabled_layers_count); av_free(sup_layers); av_free(user_layers_str); return err; } /* Creates a VkInstance */ static int create_instance(AVHWDeviceContext *ctx, AVDictionary *opts) { int err = 0, debug_mode = 0; VkResult ret; VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; AVVulkanDeviceContext *hwctx = ctx->hwctx; VkApplicationInfo application_info = { .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO, .pApplicationName = "ffmpeg", .applicationVersion = VK_MAKE_VERSION(LIBAVUTIL_VERSION_MAJOR, LIBAVUTIL_VERSION_MINOR, LIBAVUTIL_VERSION_MICRO), .pEngineName = "libavutil", .apiVersion = VK_API_VERSION_1_3, .engineVersion = VK_MAKE_VERSION(LIBAVUTIL_VERSION_MAJOR, LIBAVUTIL_VERSION_MINOR, LIBAVUTIL_VERSION_MICRO), }; VkValidationFeaturesEXT validation_features = { .sType = VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT, }; VkInstanceCreateInfo inst_props = { .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, .pApplicationInfo = &application_info, }; if (!hwctx->get_proc_addr) { err = load_libvulkan(ctx); if (err < 0) return err; } err = ff_vk_load_functions(ctx, vk, p->vkctx.extensions, 0, 0); if (err < 0) { av_log(ctx, AV_LOG_ERROR, "Unable to load instance enumeration functions!\n"); return err; } err = check_validation_layers(ctx, opts, &inst_props.ppEnabledLayerNames, &inst_props.enabledLayerCount, &debug_mode); if (err) goto fail; /* Check for present/missing extensions */ err = check_extensions(ctx, 0, opts, &inst_props.ppEnabledExtensionNames, &inst_props.enabledExtensionCount, debug_mode); hwctx->enabled_inst_extensions = inst_props.ppEnabledExtensionNames; hwctx->nb_enabled_inst_extensions = inst_props.enabledExtensionCount; if (err < 0) goto fail; if (debug_mode) { VkValidationFeatureEnableEXT feat_list[] = { VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT, VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_RESERVE_BINDING_SLOT_EXT, VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT, }; validation_features.pEnabledValidationFeatures = feat_list; validation_features.enabledValidationFeatureCount = FF_ARRAY_ELEMS(feat_list); inst_props.pNext = &validation_features; } /* Try to create the instance */ ret = vk->CreateInstance(&inst_props, hwctx->alloc, &hwctx->inst); /* Check for errors */ if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Instance creation failure: %s\n", ff_vk_ret2str(ret)); err = AVERROR_EXTERNAL; goto fail; } err = ff_vk_load_functions(ctx, vk, p->vkctx.extensions, 1, 0); if (err < 0) { av_log(ctx, AV_LOG_ERROR, "Unable to load instance functions!\n"); goto fail; } if (debug_mode) { VkDebugUtilsMessengerCreateInfoEXT dbg = { .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT, .messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT, .messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT, .pfnUserCallback = vk_dbg_callback, .pUserData = ctx, }; vk->CreateDebugUtilsMessengerEXT(hwctx->inst, &dbg, hwctx->alloc, &p->debug_ctx); } err = 0; fail: RELEASE_PROPS(inst_props.ppEnabledLayerNames, inst_props.enabledLayerCount); return err; } typedef struct VulkanDeviceSelection { uint8_t uuid[VK_UUID_SIZE]; /* Will use this first unless !has_uuid */ int has_uuid; uint32_t drm_major; /* Will use this second unless !has_drm */ uint32_t drm_minor; /* Will use this second unless !has_drm */ uint32_t has_drm; /* has drm node info */ const char *name; /* Will use this third unless NULL */ uint32_t pci_device; /* Will use this fourth unless 0x0 */ uint32_t vendor_id; /* Last resort to find something deterministic */ int index; /* Finally fall back to index */ } VulkanDeviceSelection; static const char *vk_dev_type(enum VkPhysicalDeviceType type) { switch (type) { case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: return "integrated"; case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: return "discrete"; case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: return "virtual"; case VK_PHYSICAL_DEVICE_TYPE_CPU: return "software"; default: return "unknown"; } } /* Finds a device */ static int find_device(AVHWDeviceContext *ctx, VulkanDeviceSelection *select) { int err = 0, choice = -1; uint32_t num; VkResult ret; VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; VkPhysicalDevice *devices = NULL; VkPhysicalDeviceIDProperties *idp = NULL; VkPhysicalDeviceProperties2 *prop = NULL; VkPhysicalDeviceDrmPropertiesEXT *drm_prop = NULL; AVVulkanDeviceContext *hwctx = ctx->hwctx; ret = vk->EnumeratePhysicalDevices(hwctx->inst, &num, NULL); if (ret != VK_SUCCESS || !num) { av_log(ctx, AV_LOG_ERROR, "No devices found: %s!\n", ff_vk_ret2str(ret)); return AVERROR(ENODEV); } devices = av_malloc_array(num, sizeof(VkPhysicalDevice)); if (!devices) return AVERROR(ENOMEM); ret = vk->EnumeratePhysicalDevices(hwctx->inst, &num, devices); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed enumerating devices: %s\n", ff_vk_ret2str(ret)); err = AVERROR(ENODEV); goto end; } prop = av_calloc(num, sizeof(*prop)); if (!prop) { err = AVERROR(ENOMEM); goto end; } idp = av_calloc(num, sizeof(*idp)); if (!idp) { err = AVERROR(ENOMEM); goto end; } if (p->vkctx.extensions & FF_VK_EXT_DEVICE_DRM) { drm_prop = av_calloc(num, sizeof(*drm_prop)); if (!drm_prop) { err = AVERROR(ENOMEM); goto end; } } av_log(ctx, AV_LOG_VERBOSE, "GPU listing:\n"); for (int i = 0; i < num; i++) { if (p->vkctx.extensions & FF_VK_EXT_DEVICE_DRM) { drm_prop[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT; idp[i].pNext = &drm_prop[i]; } idp[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES; prop[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; prop[i].pNext = &idp[i]; vk->GetPhysicalDeviceProperties2(devices[i], &prop[i]); av_log(ctx, AV_LOG_VERBOSE, " %d: %s (%s) (0x%x)\n", i, prop[i].properties.deviceName, vk_dev_type(prop[i].properties.deviceType), prop[i].properties.deviceID); } if (select->has_uuid) { for (int i = 0; i < num; i++) { if (!strncmp(idp[i].deviceUUID, select->uuid, VK_UUID_SIZE)) { choice = i; goto end; } } av_log(ctx, AV_LOG_ERROR, "Unable to find device by given UUID!\n"); err = AVERROR(ENODEV); goto end; } else if ((p->vkctx.extensions & FF_VK_EXT_DEVICE_DRM) && select->has_drm) { for (int i = 0; i < num; i++) { if ((select->drm_major == drm_prop[i].primaryMajor && select->drm_minor == drm_prop[i].primaryMinor) || (select->drm_major == drm_prop[i].renderMajor && select->drm_minor == drm_prop[i].renderMinor)) { choice = i; goto end; } } av_log(ctx, AV_LOG_ERROR, "Unable to find device by given DRM node numbers %i:%i!\n", select->drm_major, select->drm_minor); err = AVERROR(ENODEV); goto end; } else if (select->name) { av_log(ctx, AV_LOG_VERBOSE, "Requested device: %s\n", select->name); for (int i = 0; i < num; i++) { if (strstr(prop[i].properties.deviceName, select->name)) { choice = i; goto end; } } av_log(ctx, AV_LOG_ERROR, "Unable to find device \"%s\"!\n", select->name); err = AVERROR(ENODEV); goto end; } else if (select->pci_device) { av_log(ctx, AV_LOG_VERBOSE, "Requested device: 0x%x\n", select->pci_device); for (int i = 0; i < num; i++) { if (select->pci_device == prop[i].properties.deviceID) { choice = i; goto end; } } av_log(ctx, AV_LOG_ERROR, "Unable to find device with PCI ID 0x%x!\n", select->pci_device); err = AVERROR(EINVAL); goto end; } else if (select->vendor_id) { av_log(ctx, AV_LOG_VERBOSE, "Requested vendor: 0x%x\n", select->vendor_id); for (int i = 0; i < num; i++) { if (select->vendor_id == prop[i].properties.vendorID) { choice = i; goto end; } } av_log(ctx, AV_LOG_ERROR, "Unable to find device with Vendor ID 0x%x!\n", select->vendor_id); err = AVERROR(ENODEV); goto end; } else { if (select->index < num) { choice = select->index; goto end; } av_log(ctx, AV_LOG_ERROR, "Unable to find device with index %i!\n", select->index); err = AVERROR(ENODEV); goto end; } end: if (choice > -1) { av_log(ctx, AV_LOG_VERBOSE, "Device %d selected: %s (%s) (0x%x)\n", choice, prop[choice].properties.deviceName, vk_dev_type(prop[choice].properties.deviceType), prop[choice].properties.deviceID); hwctx->phys_dev = devices[choice]; } av_free(devices); av_free(prop); av_free(idp); av_free(drm_prop); return err; } /* Picks the least used qf with the fewest unneeded flags, or -1 if none found */ static inline int pick_queue_family(VkQueueFamilyProperties *qf, uint32_t num_qf, VkQueueFlagBits flags) { int index = -1; uint32_t min_score = UINT32_MAX; for (int i = 0; i < num_qf; i++) { const VkQueueFlagBits qflags = qf[i].queueFlags; if (qflags & flags) { uint32_t score = av_popcount(qflags) + qf[i].timestampValidBits; if (score < min_score) { index = i; min_score = score; } } } if (index > -1) qf[index].timestampValidBits++; return index; } static int setup_queue_families(AVHWDeviceContext *ctx, VkDeviceCreateInfo *cd) { uint32_t num; float *weights; VkQueueFamilyProperties *qf = NULL; VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; AVVulkanDeviceContext *hwctx = ctx->hwctx; int graph_index, comp_index, tx_index, enc_index, dec_index; /* First get the number of queue families */ vk->GetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &num, NULL); if (!num) { av_log(ctx, AV_LOG_ERROR, "Failed to get queues!\n"); return AVERROR_EXTERNAL; } /* Then allocate memory */ qf = av_malloc_array(num, sizeof(VkQueueFamilyProperties)); if (!qf) return AVERROR(ENOMEM); /* Finally retrieve the queue families */ vk->GetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &num, qf); av_log(ctx, AV_LOG_VERBOSE, "Queue families:\n"); for (int i = 0; i < num; i++) { av_log(ctx, AV_LOG_VERBOSE, " %i:%s%s%s%s%s%s%s (queues: %i)\n", i, ((qf[i].queueFlags) & VK_QUEUE_GRAPHICS_BIT) ? " graphics" : "", ((qf[i].queueFlags) & VK_QUEUE_COMPUTE_BIT) ? " compute" : "", ((qf[i].queueFlags) & VK_QUEUE_TRANSFER_BIT) ? " transfer" : "", ((qf[i].queueFlags) & VK_QUEUE_VIDEO_ENCODE_BIT_KHR) ? " encode" : "", ((qf[i].queueFlags) & VK_QUEUE_VIDEO_DECODE_BIT_KHR) ? " decode" : "", ((qf[i].queueFlags) & VK_QUEUE_SPARSE_BINDING_BIT) ? " sparse" : "", ((qf[i].queueFlags) & VK_QUEUE_PROTECTED_BIT) ? " protected" : "", qf[i].queueCount); /* We use this field to keep a score of how many times we've used that * queue family in order to make better choices. */ qf[i].timestampValidBits = 0; } /* Pick each queue family to use */ graph_index = pick_queue_family(qf, num, VK_QUEUE_GRAPHICS_BIT); comp_index = pick_queue_family(qf, num, VK_QUEUE_COMPUTE_BIT); tx_index = pick_queue_family(qf, num, VK_QUEUE_TRANSFER_BIT); enc_index = pick_queue_family(qf, num, VK_QUEUE_VIDEO_ENCODE_BIT_KHR); dec_index = pick_queue_family(qf, num, VK_QUEUE_VIDEO_DECODE_BIT_KHR); /* Signalling the transfer capabilities on a queue family is optional */ if (tx_index < 0) { tx_index = pick_queue_family(qf, num, VK_QUEUE_COMPUTE_BIT); if (tx_index < 0) tx_index = pick_queue_family(qf, num, VK_QUEUE_GRAPHICS_BIT); } hwctx->queue_family_index = -1; hwctx->queue_family_comp_index = -1; hwctx->queue_family_tx_index = -1; hwctx->queue_family_encode_index = -1; hwctx->queue_family_decode_index = -1; #define SETUP_QUEUE(qf_idx) \ if (qf_idx > -1) { \ int fidx = qf_idx; \ int qc = qf[fidx].queueCount; \ VkDeviceQueueCreateInfo *pc; \ \ if (fidx == graph_index) { \ hwctx->queue_family_index = fidx; \ hwctx->nb_graphics_queues = qc; \ graph_index = -1; \ } \ if (fidx == comp_index) { \ hwctx->queue_family_comp_index = fidx; \ hwctx->nb_comp_queues = qc; \ comp_index = -1; \ } \ if (fidx == tx_index) { \ hwctx->queue_family_tx_index = fidx; \ hwctx->nb_tx_queues = qc; \ tx_index = -1; \ } \ if (fidx == enc_index) { \ hwctx->queue_family_encode_index = fidx; \ hwctx->nb_encode_queues = qc; \ enc_index = -1; \ } \ if (fidx == dec_index) { \ hwctx->queue_family_decode_index = fidx; \ hwctx->nb_decode_queues = qc; \ dec_index = -1; \ } \ \ pc = av_realloc((void *)cd->pQueueCreateInfos, \ sizeof(*pc) * (cd->queueCreateInfoCount + 1)); \ if (!pc) { \ av_free(qf); \ return AVERROR(ENOMEM); \ } \ cd->pQueueCreateInfos = pc; \ pc = &pc[cd->queueCreateInfoCount]; \ \ weights = av_malloc(qc * sizeof(float)); \ if (!weights) { \ av_free(qf); \ return AVERROR(ENOMEM); \ } \ \ memset(pc, 0, sizeof(*pc)); \ pc->sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; \ pc->queueFamilyIndex = fidx; \ pc->queueCount = qc; \ pc->pQueuePriorities = weights; \ \ for (int i = 0; i < qc; i++) \ weights[i] = 1.0f / qc; \ \ cd->queueCreateInfoCount++; \ } SETUP_QUEUE(graph_index) SETUP_QUEUE(comp_index) SETUP_QUEUE(tx_index) SETUP_QUEUE(enc_index) SETUP_QUEUE(dec_index) #undef SETUP_QUEUE av_free(qf); return 0; } static void vulkan_device_free(AVHWDeviceContext *ctx) { VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; AVVulkanDeviceContext *hwctx = ctx->hwctx; if (hwctx->act_dev) vk->DestroyDevice(hwctx->act_dev, hwctx->alloc); if (p->debug_ctx) vk->DestroyDebugUtilsMessengerEXT(hwctx->inst, p->debug_ctx, hwctx->alloc); if (hwctx->inst) vk->DestroyInstance(hwctx->inst, hwctx->alloc); if (p->libvulkan) dlclose(p->libvulkan); for (uint32_t i = 0; i < p->nb_tot_qfs; i++) { pthread_mutex_destroy(p->qf_mutex[i]); av_freep(&p->qf_mutex[i]); } av_freep(&p->qf_mutex); RELEASE_PROPS(hwctx->enabled_inst_extensions, hwctx->nb_enabled_inst_extensions); RELEASE_PROPS(hwctx->enabled_dev_extensions, hwctx->nb_enabled_dev_extensions); } static int vulkan_device_create_internal(AVHWDeviceContext *ctx, VulkanDeviceSelection *dev_select, AVDictionary *opts, int flags) { int err = 0; VkResult ret; AVDictionaryEntry *opt_d; VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; AVVulkanDeviceContext *hwctx = ctx->hwctx; /* * VkPhysicalDeviceVulkan12Features has a timelineSemaphore field, but * MoltenVK doesn't implement VkPhysicalDeviceVulkan12Features yet, so we * use VkPhysicalDeviceTimelineSemaphoreFeatures directly. */ VkPhysicalDeviceTimelineSemaphoreFeatures timeline_features = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES, }; VkPhysicalDeviceShaderAtomicFloatFeaturesEXT atomic_float_features = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT, .pNext = &timeline_features, }; VkPhysicalDeviceDescriptorBufferFeaturesEXT desc_buf_features = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_FEATURES_EXT, .pNext = &atomic_float_features, }; VkPhysicalDeviceVulkan13Features dev_features_1_3 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES, .pNext = &desc_buf_features, }; VkPhysicalDeviceVulkan12Features dev_features_1_2 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES, .pNext = &dev_features_1_3, }; VkPhysicalDeviceVulkan11Features dev_features_1_1 = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES, .pNext = &dev_features_1_2, }; VkPhysicalDeviceFeatures2 dev_features = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2, .pNext = &dev_features_1_1, }; VkDeviceCreateInfo dev_info = { .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, }; hwctx->device_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; hwctx->device_features.pNext = &p->device_features_1_1; p->device_features_1_1.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES; p->device_features_1_1.pNext = &p->device_features_1_2; p->device_features_1_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES; p->device_features_1_2.pNext = &p->device_features_1_3; p->device_features_1_3.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES; p->device_features_1_3.pNext = &p->desc_buf_features; p->desc_buf_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_FEATURES_EXT; p->desc_buf_features.pNext = &p->atomic_float_features; p->atomic_float_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT; p->atomic_float_features.pNext = NULL; ctx->free = vulkan_device_free; /* Create an instance if not given one */ if ((err = create_instance(ctx, opts))) goto end; /* Find a device (if not given one) */ if ((err = find_device(ctx, dev_select))) goto end; vk->GetPhysicalDeviceFeatures2(hwctx->phys_dev, &dev_features); /* Try to keep in sync with libplacebo */ #define COPY_FEATURE(DST, NAME) (DST).features.NAME = dev_features.features.NAME; COPY_FEATURE(hwctx->device_features, shaderImageGatherExtended) COPY_FEATURE(hwctx->device_features, shaderStorageImageReadWithoutFormat) COPY_FEATURE(hwctx->device_features, shaderStorageImageWriteWithoutFormat) COPY_FEATURE(hwctx->device_features, fragmentStoresAndAtomics) COPY_FEATURE(hwctx->device_features, vertexPipelineStoresAndAtomics) COPY_FEATURE(hwctx->device_features, shaderInt64) COPY_FEATURE(hwctx->device_features, shaderInt16) COPY_FEATURE(hwctx->device_features, shaderFloat64) #undef COPY_FEATURE /* We require timeline semaphores */ if (!timeline_features.timelineSemaphore) { av_log(ctx, AV_LOG_ERROR, "Device does not support timeline semaphores!\n"); err = AVERROR(ENOSYS); goto end; } p->device_features_1_1.samplerYcbcrConversion = dev_features_1_1.samplerYcbcrConversion; p->device_features_1_1.storagePushConstant16 = dev_features_1_1.storagePushConstant16; p->device_features_1_2.timelineSemaphore = 1; p->device_features_1_2.bufferDeviceAddress = dev_features_1_2.bufferDeviceAddress; p->device_features_1_2.hostQueryReset = dev_features_1_2.hostQueryReset; p->device_features_1_2.storagePushConstant8 = dev_features_1_2.storagePushConstant8; p->device_features_1_2.shaderInt8 = dev_features_1_2.shaderInt8; p->device_features_1_2.storageBuffer8BitAccess = dev_features_1_2.storageBuffer8BitAccess; p->device_features_1_2.uniformAndStorageBuffer8BitAccess = dev_features_1_2.uniformAndStorageBuffer8BitAccess; p->device_features_1_2.shaderFloat16 = dev_features_1_2.shaderFloat16; p->device_features_1_2.shaderSharedInt64Atomics = dev_features_1_2.shaderSharedInt64Atomics; p->device_features_1_2.vulkanMemoryModel = dev_features_1_2.vulkanMemoryModel; p->device_features_1_2.vulkanMemoryModelDeviceScope = dev_features_1_2.vulkanMemoryModelDeviceScope; p->device_features_1_2.hostQueryReset = dev_features_1_2.hostQueryReset; p->device_features_1_3.dynamicRendering = dev_features_1_3.dynamicRendering; p->device_features_1_3.maintenance4 = dev_features_1_3.maintenance4; p->device_features_1_3.synchronization2 = dev_features_1_3.synchronization2; p->device_features_1_3.computeFullSubgroups = dev_features_1_3.computeFullSubgroups; p->device_features_1_3.shaderZeroInitializeWorkgroupMemory = dev_features_1_3.shaderZeroInitializeWorkgroupMemory; p->device_features_1_3.dynamicRendering = dev_features_1_3.dynamicRendering; p->desc_buf_features.descriptorBuffer = desc_buf_features.descriptorBuffer; p->desc_buf_features.descriptorBufferPushDescriptors = desc_buf_features.descriptorBufferPushDescriptors; p->atomic_float_features.shaderBufferFloat32Atomics = atomic_float_features.shaderBufferFloat32Atomics; p->atomic_float_features.shaderBufferFloat32AtomicAdd = atomic_float_features.shaderBufferFloat32AtomicAdd; dev_info.pNext = &hwctx->device_features; /* Setup queue family */ if ((err = setup_queue_families(ctx, &dev_info))) goto end; if ((err = check_extensions(ctx, 1, opts, &dev_info.ppEnabledExtensionNames, &dev_info.enabledExtensionCount, 0))) { for (int i = 0; i < dev_info.queueCreateInfoCount; i++) av_free((void *)dev_info.pQueueCreateInfos[i].pQueuePriorities); av_free((void *)dev_info.pQueueCreateInfos); goto end; } ret = vk->CreateDevice(hwctx->phys_dev, &dev_info, hwctx->alloc, &hwctx->act_dev); for (int i = 0; i < dev_info.queueCreateInfoCount; i++) av_free((void *)dev_info.pQueueCreateInfos[i].pQueuePriorities); av_free((void *)dev_info.pQueueCreateInfos); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Device creation failure: %s\n", ff_vk_ret2str(ret)); for (int i = 0; i < dev_info.enabledExtensionCount; i++) av_free((void *)dev_info.ppEnabledExtensionNames[i]); av_free((void *)dev_info.ppEnabledExtensionNames); err = AVERROR_EXTERNAL; goto end; } /* Tiled images setting, use them by default */ opt_d = av_dict_get(opts, "linear_images", NULL, 0); if (opt_d) p->use_linear_images = strtol(opt_d->value, NULL, 10); opt_d = av_dict_get(opts, "disable_multiplane", NULL, 0); if (opt_d) p->disable_multiplane = strtol(opt_d->value, NULL, 10); hwctx->enabled_dev_extensions = dev_info.ppEnabledExtensionNames; hwctx->nb_enabled_dev_extensions = dev_info.enabledExtensionCount; end: return err; } static void lock_queue(AVHWDeviceContext *ctx, uint32_t queue_family, uint32_t index) { VulkanDevicePriv *p = ctx->internal->priv; pthread_mutex_lock(&p->qf_mutex[queue_family][index]); } static void unlock_queue(AVHWDeviceContext *ctx, uint32_t queue_family, uint32_t index) { VulkanDevicePriv *p = ctx->internal->priv; pthread_mutex_unlock(&p->qf_mutex[queue_family][index]); } static int vulkan_device_init(AVHWDeviceContext *ctx) { int err; uint32_t qf_num; AVVulkanDeviceContext *hwctx = ctx->hwctx; VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; VkQueueFamilyProperties *qf; int graph_index, comp_index, tx_index, enc_index, dec_index; /* Set device extension flags */ for (int i = 0; i < hwctx->nb_enabled_dev_extensions; i++) { for (int j = 0; j < FF_ARRAY_ELEMS(optional_device_exts); j++) { if (!strcmp(hwctx->enabled_dev_extensions[i], optional_device_exts[j].name)) { p->vkctx.extensions |= optional_device_exts[j].flag; break; } } } err = ff_vk_load_functions(ctx, vk, p->vkctx.extensions, 1, 1); if (err < 0) { av_log(ctx, AV_LOG_ERROR, "Unable to load functions!\n"); return err; } p->props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; p->props.pNext = &p->hprops; p->hprops.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT; vk->GetPhysicalDeviceProperties2(hwctx->phys_dev, &p->props); av_log(ctx, AV_LOG_VERBOSE, "Using device: %s\n", p->props.properties.deviceName); av_log(ctx, AV_LOG_VERBOSE, "Alignments:\n"); av_log(ctx, AV_LOG_VERBOSE, " optimalBufferCopyRowPitchAlignment: %"PRIu64"\n", p->props.properties.limits.optimalBufferCopyRowPitchAlignment); av_log(ctx, AV_LOG_VERBOSE, " minMemoryMapAlignment: %"SIZE_SPECIFIER"\n", p->props.properties.limits.minMemoryMapAlignment); av_log(ctx, AV_LOG_VERBOSE, " nonCoherentAtomSize: %"PRIu64"\n", p->props.properties.limits.nonCoherentAtomSize); if (p->vkctx.extensions & FF_VK_EXT_EXTERNAL_HOST_MEMORY) av_log(ctx, AV_LOG_VERBOSE, " minImportedHostPointerAlignment: %"PRIu64"\n", p->hprops.minImportedHostPointerAlignment); p->dev_is_nvidia = (p->props.properties.vendorID == 0x10de); vk->GetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &qf_num, NULL); if (!qf_num) { av_log(ctx, AV_LOG_ERROR, "Failed to get queues!\n"); return AVERROR_EXTERNAL; } qf = av_malloc_array(qf_num, sizeof(VkQueueFamilyProperties)); if (!qf) return AVERROR(ENOMEM); vk->GetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &qf_num, qf); p->qf_mutex = av_calloc(qf_num, sizeof(*p->qf_mutex)); if (!p->qf_mutex) return AVERROR(ENOMEM); p->nb_tot_qfs = qf_num; for (uint32_t i = 0; i < qf_num; i++) { p->qf_mutex[i] = av_calloc(qf[i].queueCount, sizeof(**p->qf_mutex)); if (!p->qf_mutex[i]) return AVERROR(ENOMEM); for (uint32_t j = 0; j < qf[i].queueCount; j++) { err = pthread_mutex_init(&p->qf_mutex[i][j], NULL); if (err != 0) { av_log(ctx, AV_LOG_ERROR, "pthread_mutex_init failed : %s\n", av_err2str(err)); return AVERROR(err); } } } graph_index = hwctx->queue_family_index; comp_index = hwctx->queue_family_comp_index; tx_index = hwctx->queue_family_tx_index; enc_index = hwctx->queue_family_encode_index; dec_index = hwctx->queue_family_decode_index; #define CHECK_QUEUE(type, required, fidx, ctx_qf, qc) \ do { \ if (ctx_qf < 0 && required) { \ av_log(ctx, AV_LOG_ERROR, "%s queue family is required, but marked as missing" \ " in the context!\n", type); \ return AVERROR(EINVAL); \ } else if (fidx < 0 || ctx_qf < 0) { \ break; \ } else if (ctx_qf >= qf_num) { \ av_log(ctx, AV_LOG_ERROR, "Invalid %s family index %i (device has %i families)!\n", \ type, ctx_qf, qf_num); \ return AVERROR(EINVAL); \ } \ \ av_log(ctx, AV_LOG_VERBOSE, "Using queue family %i (queues: %i)" \ " for%s%s%s%s%s\n", \ ctx_qf, qc, \ ctx_qf == graph_index ? " graphics" : "", \ ctx_qf == comp_index ? " compute" : "", \ ctx_qf == tx_index ? " transfers" : "", \ ctx_qf == enc_index ? " encode" : "", \ ctx_qf == dec_index ? " decode" : ""); \ graph_index = (ctx_qf == graph_index) ? -1 : graph_index; \ comp_index = (ctx_qf == comp_index) ? -1 : comp_index; \ tx_index = (ctx_qf == tx_index) ? -1 : tx_index; \ enc_index = (ctx_qf == enc_index) ? -1 : enc_index; \ dec_index = (ctx_qf == dec_index) ? -1 : dec_index; \ p->img_qfs[p->nb_img_qfs++] = ctx_qf; \ } while (0) CHECK_QUEUE("graphics", 0, graph_index, hwctx->queue_family_index, hwctx->nb_graphics_queues); CHECK_QUEUE("upload", 1, tx_index, hwctx->queue_family_tx_index, hwctx->nb_tx_queues); CHECK_QUEUE("compute", 1, comp_index, hwctx->queue_family_comp_index, hwctx->nb_comp_queues); CHECK_QUEUE("encode", 0, enc_index, hwctx->queue_family_encode_index, hwctx->nb_encode_queues); CHECK_QUEUE("decode", 0, dec_index, hwctx->queue_family_decode_index, hwctx->nb_decode_queues); #undef CHECK_QUEUE if (!hwctx->lock_queue) hwctx->lock_queue = lock_queue; if (!hwctx->unlock_queue) hwctx->unlock_queue = unlock_queue; /* Get device capabilities */ vk->GetPhysicalDeviceMemoryProperties(hwctx->phys_dev, &p->mprops); p->vkctx.device = ctx; p->vkctx.hwctx = hwctx; ff_vk_load_props(&p->vkctx); ff_vk_qf_init(&p->vkctx, &p->compute_qf, VK_QUEUE_COMPUTE_BIT); ff_vk_qf_init(&p->vkctx, &p->transfer_qf, VK_QUEUE_TRANSFER_BIT); return 0; } static int vulkan_device_create(AVHWDeviceContext *ctx, const char *device, AVDictionary *opts, int flags) { VulkanDeviceSelection dev_select = { 0 }; if (device && device[0]) { char *end = NULL; dev_select.index = strtol(device, &end, 10); if (end == device) { dev_select.index = 0; dev_select.name = device; } } return vulkan_device_create_internal(ctx, &dev_select, opts, flags); } static int vulkan_device_derive(AVHWDeviceContext *ctx, AVHWDeviceContext *src_ctx, AVDictionary *opts, int flags) { av_unused VulkanDeviceSelection dev_select = { 0 }; /* If there's only one device on the system, then even if its not covered * by the following checks (e.g. non-PCIe ARM GPU), having an empty * dev_select will mean it'll get picked. */ switch(src_ctx->type) { #if CONFIG_VAAPI case AV_HWDEVICE_TYPE_VAAPI: { AVVAAPIDeviceContext *src_hwctx = src_ctx->hwctx; const char *vendor = vaQueryVendorString(src_hwctx->display); if (!vendor) { av_log(ctx, AV_LOG_ERROR, "Unable to get device info from VAAPI!\n"); return AVERROR_EXTERNAL; } if (strstr(vendor, "AMD")) dev_select.vendor_id = 0x1002; return vulkan_device_create_internal(ctx, &dev_select, opts, flags); } #endif #if CONFIG_LIBDRM case AV_HWDEVICE_TYPE_DRM: { int err; struct stat drm_node_info; drmDevice *drm_dev_info; AVDRMDeviceContext *src_hwctx = src_ctx->hwctx; err = fstat(src_hwctx->fd, &drm_node_info); if (err) { av_log(ctx, AV_LOG_ERROR, "Unable to get node info from DRM fd: %s!\n", av_err2str(AVERROR(errno))); return AVERROR_EXTERNAL; } dev_select.drm_major = major(drm_node_info.st_dev); dev_select.drm_minor = minor(drm_node_info.st_dev); dev_select.has_drm = 1; err = drmGetDevice(src_hwctx->fd, &drm_dev_info); if (err) { av_log(ctx, AV_LOG_ERROR, "Unable to get device info from DRM fd: %s!\n", av_err2str(AVERROR(errno))); return AVERROR_EXTERNAL; } if (drm_dev_info->bustype == DRM_BUS_PCI) dev_select.pci_device = drm_dev_info->deviceinfo.pci->device_id; drmFreeDevice(&drm_dev_info); return vulkan_device_create_internal(ctx, &dev_select, opts, flags); } #endif #if CONFIG_CUDA case AV_HWDEVICE_TYPE_CUDA: { AVHWDeviceContext *cuda_cu = src_ctx; AVCUDADeviceContext *src_hwctx = src_ctx->hwctx; AVCUDADeviceContextInternal *cu_internal = src_hwctx->internal; CudaFunctions *cu = cu_internal->cuda_dl; int ret = CHECK_CU(cu->cuDeviceGetUuid((CUuuid *)&dev_select.uuid, cu_internal->cuda_device)); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "Unable to get UUID from CUDA!\n"); return AVERROR_EXTERNAL; } dev_select.has_uuid = 1; return vulkan_device_create_internal(ctx, &dev_select, opts, flags); } #endif default: return AVERROR(ENOSYS); } } static int vulkan_frames_get_constraints(AVHWDeviceContext *ctx, const void *hwconfig, AVHWFramesConstraints *constraints) { int count = 0; VulkanDevicePriv *p = ctx->internal->priv; for (enum AVPixelFormat i = 0; i < nb_vk_formats_list; i++) { count += vkfmt_from_pixfmt2(ctx, vk_formats_list[i].pixfmt, p->use_linear_images ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL, NULL, NULL, NULL, NULL, 0) >= 0; } #if CONFIG_CUDA if (p->dev_is_nvidia) count++; #endif constraints->valid_sw_formats = av_malloc_array(count + 1, sizeof(enum AVPixelFormat)); if (!constraints->valid_sw_formats) return AVERROR(ENOMEM); count = 0; for (enum AVPixelFormat i = 0; i < nb_vk_formats_list; i++) { if (vkfmt_from_pixfmt2(ctx, vk_formats_list[i].pixfmt, p->use_linear_images ? VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL, NULL, NULL, NULL, NULL, 0) >= 0) { constraints->valid_sw_formats[count++] = vk_formats_list[i].pixfmt; } } #if CONFIG_CUDA if (p->dev_is_nvidia) constraints->valid_sw_formats[count++] = AV_PIX_FMT_CUDA; #endif constraints->valid_sw_formats[count++] = AV_PIX_FMT_NONE; constraints->min_width = 1; constraints->min_height = 1; constraints->max_width = p->props.properties.limits.maxImageDimension2D; constraints->max_height = p->props.properties.limits.maxImageDimension2D; constraints->valid_hw_formats = av_malloc_array(2, sizeof(enum AVPixelFormat)); if (!constraints->valid_hw_formats) return AVERROR(ENOMEM); constraints->valid_hw_formats[0] = AV_PIX_FMT_VULKAN; constraints->valid_hw_formats[1] = AV_PIX_FMT_NONE; return 0; } static int alloc_mem(AVHWDeviceContext *ctx, VkMemoryRequirements *req, VkMemoryPropertyFlagBits req_flags, const void *alloc_extension, VkMemoryPropertyFlagBits *mem_flags, VkDeviceMemory *mem) { VkResult ret; int index = -1; VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; AVVulkanDeviceContext *dev_hwctx = ctx->hwctx; VkMemoryAllocateInfo alloc_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .pNext = alloc_extension, .allocationSize = req->size, }; /* The vulkan spec requires memory types to be sorted in the "optimal" * order, so the first matching type we find will be the best/fastest one */ for (int i = 0; i < p->mprops.memoryTypeCount; i++) { const VkMemoryType *type = &p->mprops.memoryTypes[i]; /* The memory type must be supported by the requirements (bitfield) */ if (!(req->memoryTypeBits & (1 << i))) continue; /* The memory type flags must include our properties */ if ((type->propertyFlags & req_flags) != req_flags) continue; /* The memory type must be large enough */ if (req->size > p->mprops.memoryHeaps[type->heapIndex].size) continue; /* Found a suitable memory type */ index = i; break; } if (index < 0) { av_log(ctx, AV_LOG_ERROR, "No memory type found for flags 0x%x\n", req_flags); return AVERROR(EINVAL); } alloc_info.memoryTypeIndex = index; ret = vk->AllocateMemory(dev_hwctx->act_dev, &alloc_info, dev_hwctx->alloc, mem); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory: %s\n", ff_vk_ret2str(ret)); return AVERROR(ENOMEM); } *mem_flags |= p->mprops.memoryTypes[index].propertyFlags; return 0; } static void vulkan_free_internal(AVVkFrame *f) { av_unused AVVkFrameInternal *internal = f->internal; #if CONFIG_CUDA if (internal->cuda_fc_ref) { AVHWFramesContext *cuda_fc = (AVHWFramesContext *)internal->cuda_fc_ref->data; int planes = av_pix_fmt_count_planes(cuda_fc->sw_format); AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx; AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx; AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal; CudaFunctions *cu = cu_internal->cuda_dl; for (int i = 0; i < planes; i++) { if (internal->cu_sem[i]) CHECK_CU(cu->cuDestroyExternalSemaphore(internal->cu_sem[i])); if (internal->cu_mma[i]) CHECK_CU(cu->cuMipmappedArrayDestroy(internal->cu_mma[i])); if (internal->ext_mem[i]) CHECK_CU(cu->cuDestroyExternalMemory(internal->ext_mem[i])); #ifdef _WIN32 if (internal->ext_sem_handle[i]) CloseHandle(internal->ext_sem_handle[i]); if (internal->ext_mem_handle[i]) CloseHandle(internal->ext_mem_handle[i]); #endif } av_buffer_unref(&internal->cuda_fc_ref); } #endif pthread_mutex_destroy(&internal->update_mutex); av_freep(&f->internal); } static void vulkan_frame_free(void *opaque, uint8_t *data) { AVVkFrame *f = (AVVkFrame *)data; AVHWFramesContext *hwfc = opaque; AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; int nb_images = ff_vk_count_images(f); VkSemaphoreWaitInfo sem_wait = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO, .pSemaphores = f->sem, .pValues = f->sem_value, .semaphoreCount = nb_images, }; vk->WaitSemaphores(hwctx->act_dev, &sem_wait, UINT64_MAX); vulkan_free_internal(f); for (int i = 0; i < nb_images; i++) { vk->DestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc); vk->FreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc); vk->DestroySemaphore(hwctx->act_dev, f->sem[i], hwctx->alloc); } av_free(f); } static int alloc_bind_mem(AVHWFramesContext *hwfc, AVVkFrame *f, void *alloc_pnext, size_t alloc_pnext_stride) { int img_cnt = 0, err; VkResult ret; AVHWDeviceContext *ctx = hwfc->device_ctx; VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; VkBindImageMemoryInfo bind_info[AV_NUM_DATA_POINTERS] = { { 0 } }; AVVulkanDeviceContext *hwctx = ctx->hwctx; while (f->img[img_cnt]) { int use_ded_mem; VkImageMemoryRequirementsInfo2 req_desc = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2, .image = f->img[img_cnt], }; VkMemoryDedicatedAllocateInfo ded_alloc = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO, .pNext = (void *)(((uint8_t *)alloc_pnext) + img_cnt*alloc_pnext_stride), }; VkMemoryDedicatedRequirements ded_req = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS, }; VkMemoryRequirements2 req = { .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2, .pNext = &ded_req, }; vk->GetImageMemoryRequirements2(hwctx->act_dev, &req_desc, &req); if (f->tiling == VK_IMAGE_TILING_LINEAR) req.memoryRequirements.size = FFALIGN(req.memoryRequirements.size, p->props.properties.limits.minMemoryMapAlignment); /* In case the implementation prefers/requires dedicated allocation */ use_ded_mem = ded_req.prefersDedicatedAllocation | ded_req.requiresDedicatedAllocation; if (use_ded_mem) ded_alloc.image = f->img[img_cnt]; /* Allocate memory */ if ((err = alloc_mem(ctx, &req.memoryRequirements, f->tiling == VK_IMAGE_TILING_LINEAR ? VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, use_ded_mem ? &ded_alloc : (void *)ded_alloc.pNext, &f->flags, &f->mem[img_cnt]))) return err; f->size[img_cnt] = req.memoryRequirements.size; bind_info[img_cnt].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO; bind_info[img_cnt].image = f->img[img_cnt]; bind_info[img_cnt].memory = f->mem[img_cnt]; img_cnt++; } /* Bind the allocated memory to the images */ ret = vk->BindImageMemory2(hwctx->act_dev, img_cnt, bind_info); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to bind memory: %s\n", ff_vk_ret2str(ret)); return AVERROR_EXTERNAL; } return 0; } enum PrepMode { PREP_MODE_WRITE, PREP_MODE_EXTERNAL_EXPORT, PREP_MODE_EXTERNAL_IMPORT, PREP_MODE_DECODING_DST, PREP_MODE_DECODING_DPB, }; static int prepare_frame(AVHWFramesContext *hwfc, FFVkExecPool *ectx, AVVkFrame *frame, enum PrepMode pmode) { int err; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; VkImageMemoryBarrier2 img_bar[AV_NUM_DATA_POINTERS]; int nb_img_bar = 0; uint32_t dst_qf = VK_QUEUE_FAMILY_IGNORED; VkImageLayout new_layout; VkAccessFlags2 new_access; VkPipelineStageFlagBits2 src_stage = VK_PIPELINE_STAGE_2_NONE; /* This is dirty - but it works. The vulkan.c dependency system doesn't * free non-refcounted frames, and non-refcounted hardware frames cannot * happen anywhere outside of here. */ AVBufferRef tmp_ref = { .data = (uint8_t *)hwfc, }; AVFrame tmp_frame = { .data[0] = (uint8_t *)frame, .hw_frames_ctx = &tmp_ref, }; VkCommandBuffer cmd_buf; FFVkExecContext *exec = ff_vk_exec_get(ectx); cmd_buf = exec->buf; ff_vk_exec_start(&p->vkctx, exec); err = ff_vk_exec_add_dep_frame(&p->vkctx, exec, &tmp_frame, VK_PIPELINE_STAGE_2_NONE, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT); if (err < 0) return err; switch (pmode) { case PREP_MODE_WRITE: new_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; new_access = VK_ACCESS_TRANSFER_WRITE_BIT; break; case PREP_MODE_EXTERNAL_IMPORT: new_layout = VK_IMAGE_LAYOUT_GENERAL; new_access = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT; break; case PREP_MODE_EXTERNAL_EXPORT: new_layout = VK_IMAGE_LAYOUT_GENERAL; new_access = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT; dst_qf = VK_QUEUE_FAMILY_EXTERNAL_KHR; src_stage = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT; break; case PREP_MODE_DECODING_DST: new_layout = VK_IMAGE_LAYOUT_VIDEO_DECODE_DST_KHR; new_access = VK_ACCESS_TRANSFER_WRITE_BIT; break; case PREP_MODE_DECODING_DPB: new_layout = VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR; new_access = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; break; } ff_vk_frame_barrier(&p->vkctx, exec, &tmp_frame, img_bar, &nb_img_bar, src_stage, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, new_access, new_layout, dst_qf); vk->CmdPipelineBarrier2(cmd_buf, &(VkDependencyInfo) { .sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO, .pImageMemoryBarriers = img_bar, .imageMemoryBarrierCount = nb_img_bar, }); err = ff_vk_exec_submit(&p->vkctx, exec); if (err < 0) return err; /* We can do this because there are no real dependencies */ ff_vk_exec_discard_deps(&p->vkctx, exec); return 0; } static inline void get_plane_wh(uint32_t *w, uint32_t *h, enum AVPixelFormat format, int frame_w, int frame_h, int plane) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format); /* Currently always true unless gray + alpha support is added */ if (!plane || (plane == 3) || desc->flags & AV_PIX_FMT_FLAG_RGB || !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) { *w = frame_w; *h = frame_h; return; } *w = AV_CEIL_RSHIFT(frame_w, desc->log2_chroma_w); *h = AV_CEIL_RSHIFT(frame_h, desc->log2_chroma_h); } static int create_frame(AVHWFramesContext *hwfc, AVVkFrame **frame, VkImageTiling tiling, VkImageUsageFlagBits usage, VkImageCreateFlags flags, int nb_layers, void *create_pnext) { int err; VkResult ret; AVVulkanFramesContext *hwfc_vk = hwfc->hwctx; AVHWDeviceContext *ctx = hwfc->device_ctx; VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; AVVulkanDeviceContext *hwctx = ctx->hwctx; VkExportSemaphoreCreateInfo ext_sem_info = { .sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO, #ifdef _WIN32 .handleTypes = IsWindows8OrGreater() ? VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT : VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT, #else .handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT, #endif }; VkSemaphoreTypeCreateInfo sem_type_info = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO, #ifdef _WIN32 .pNext = p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_SEM ? &ext_sem_info : NULL, #else .pNext = p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_SEM ? &ext_sem_info : NULL, #endif .semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE, .initialValue = 0, }; VkSemaphoreCreateInfo sem_spawn = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .pNext = &sem_type_info, }; AVVkFrame *f = av_vk_frame_alloc(); if (!f) { av_log(ctx, AV_LOG_ERROR, "Unable to allocate memory for AVVkFrame!\n"); return AVERROR(ENOMEM); } // TODO: check witdh and height for alignment in case of multiplanar (must be mod-2 if subsampled) /* Create the images */ for (int i = 0; (hwfc_vk->format[i] != VK_FORMAT_UNDEFINED); i++) { VkImageCreateInfo create_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .pNext = create_pnext, .imageType = VK_IMAGE_TYPE_2D, .format = hwfc_vk->format[i], .extent.depth = 1, .mipLevels = 1, .arrayLayers = nb_layers, .flags = flags, .tiling = tiling, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .usage = usage, .samples = VK_SAMPLE_COUNT_1_BIT, .pQueueFamilyIndices = p->img_qfs, .queueFamilyIndexCount = p->nb_img_qfs, .sharingMode = p->nb_img_qfs > 1 ? VK_SHARING_MODE_CONCURRENT : VK_SHARING_MODE_EXCLUSIVE, }; get_plane_wh(&create_info.extent.width, &create_info.extent.height, hwfc->sw_format, hwfc->width, hwfc->height, i); ret = vk->CreateImage(hwctx->act_dev, &create_info, hwctx->alloc, &f->img[i]); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Image creation failure: %s\n", ff_vk_ret2str(ret)); err = AVERROR(EINVAL); goto fail; } /* Create semaphore */ ret = vk->CreateSemaphore(hwctx->act_dev, &sem_spawn, hwctx->alloc, &f->sem[i]); if (ret != VK_SUCCESS) { av_log(hwctx, AV_LOG_ERROR, "Failed to create semaphore: %s\n", ff_vk_ret2str(ret)); return AVERROR_EXTERNAL; } f->queue_family[i] = p->nb_img_qfs > 1 ? VK_QUEUE_FAMILY_IGNORED : p->img_qfs[0]; f->layout[i] = create_info.initialLayout; f->access[i] = 0x0; f->sem_value[i] = 0; } f->flags = 0x0; f->tiling = tiling; *frame = f; return 0; fail: vulkan_frame_free(hwfc, (uint8_t *)f); return err; } /* Checks if an export flag is enabled, and if it is ORs it with *iexp */ static void try_export_flags(AVHWFramesContext *hwfc, VkExternalMemoryHandleTypeFlags *comp_handle_types, VkExternalMemoryHandleTypeFlagBits *iexp, VkExternalMemoryHandleTypeFlagBits exp) { VkResult ret; AVVulkanFramesContext *hwctx = hwfc->hwctx; AVVulkanDeviceContext *dev_hwctx = hwfc->device_ctx->hwctx; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; const VkImageDrmFormatModifierListCreateInfoEXT *drm_mod_info = ff_vk_find_struct(hwctx->create_pnext, VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT); int has_mods = hwctx->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT && drm_mod_info; int nb_mods; VkExternalImageFormatProperties eprops = { .sType = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR, }; VkImageFormatProperties2 props = { .sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2, .pNext = &eprops, }; VkPhysicalDeviceImageDrmFormatModifierInfoEXT phy_dev_mod_info = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_DRM_FORMAT_MODIFIER_INFO_EXT, .pNext = NULL, .pQueueFamilyIndices = p->img_qfs, .queueFamilyIndexCount = p->nb_img_qfs, .sharingMode = p->nb_img_qfs > 1 ? VK_SHARING_MODE_CONCURRENT : VK_SHARING_MODE_EXCLUSIVE, }; VkPhysicalDeviceExternalImageFormatInfo enext = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO, .handleType = exp, .pNext = has_mods ? &phy_dev_mod_info : NULL, }; VkPhysicalDeviceImageFormatInfo2 pinfo = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, .pNext = !exp ? NULL : &enext, .format = av_vkfmt_from_pixfmt(hwfc->sw_format)[0], .type = VK_IMAGE_TYPE_2D, .tiling = hwctx->tiling, .usage = hwctx->usage, .flags = VK_IMAGE_CREATE_ALIAS_BIT, }; nb_mods = has_mods ? drm_mod_info->drmFormatModifierCount : 1; for (int i = 0; i < nb_mods; i++) { if (has_mods) phy_dev_mod_info.drmFormatModifier = drm_mod_info->pDrmFormatModifiers[i]; ret = vk->GetPhysicalDeviceImageFormatProperties2(dev_hwctx->phys_dev, &pinfo, &props); if (ret == VK_SUCCESS) { *iexp |= exp; *comp_handle_types |= eprops.externalMemoryProperties.compatibleHandleTypes; } } } static AVBufferRef *vulkan_pool_alloc(void *opaque, size_t size) { int err; AVVkFrame *f; AVBufferRef *avbuf = NULL; AVHWFramesContext *hwfc = opaque; AVVulkanFramesContext *hwctx = hwfc->hwctx; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; VulkanFramesPriv *fp = hwfc->internal->priv; VkExternalMemoryHandleTypeFlags e = 0x0; VkExportMemoryAllocateInfo eminfo[AV_NUM_DATA_POINTERS]; VkExternalMemoryImageCreateInfo eiinfo = { .sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO, .pNext = hwctx->create_pnext, }; #ifdef _WIN32 if (p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_MEMORY) try_export_flags(hwfc, &eiinfo.handleTypes, &e, IsWindows8OrGreater() ? VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT : VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT); #else if (p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_MEMORY) try_export_flags(hwfc, &eiinfo.handleTypes, &e, VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT); #endif for (int i = 0; i < av_pix_fmt_count_planes(hwfc->sw_format); i++) { eminfo[i].sType = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO; eminfo[i].pNext = hwctx->alloc_pnext[i]; eminfo[i].handleTypes = e; } err = create_frame(hwfc, &f, hwctx->tiling, hwctx->usage, hwctx->img_flags, hwctx->nb_layers, eiinfo.handleTypes ? &eiinfo : NULL); if (err) return NULL; err = alloc_bind_mem(hwfc, f, eminfo, sizeof(*eminfo)); if (err) goto fail; if ( (hwctx->usage & VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR) && !(hwctx->usage & VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR)) err = prepare_frame(hwfc, &fp->compute_exec, f, PREP_MODE_DECODING_DPB); else if (hwctx->usage & VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR) err = prepare_frame(hwfc, &fp->compute_exec, f, PREP_MODE_DECODING_DST); else err = prepare_frame(hwfc, &fp->compute_exec, f, PREP_MODE_WRITE); if (err) goto fail; avbuf = av_buffer_create((uint8_t *)f, sizeof(AVVkFrame), vulkan_frame_free, hwfc, 0); if (!avbuf) goto fail; return avbuf; fail: vulkan_frame_free(hwfc, (uint8_t *)f); return NULL; } static void lock_frame(AVHWFramesContext *fc, AVVkFrame *vkf) { pthread_mutex_lock(&vkf->internal->update_mutex); } static void unlock_frame(AVHWFramesContext *fc, AVVkFrame *vkf) { pthread_mutex_unlock(&vkf->internal->update_mutex); } static void vulkan_frames_uninit(AVHWFramesContext *hwfc) { VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; VulkanFramesPriv *fp = hwfc->internal->priv; if (fp->modifier_info) { if (fp->modifier_info->pDrmFormatModifiers) av_freep(&fp->modifier_info->pDrmFormatModifiers); av_freep(&fp->modifier_info); } ff_vk_exec_pool_free(&p->vkctx, &fp->compute_exec); ff_vk_exec_pool_free(&p->vkctx, &fp->upload_exec); ff_vk_exec_pool_free(&p->vkctx, &fp->download_exec); } static int vulkan_frames_init(AVHWFramesContext *hwfc) { int err; AVVkFrame *f; AVVulkanFramesContext *hwctx = hwfc->hwctx; VulkanFramesPriv *fp = hwfc->internal->priv; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; VkImageUsageFlagBits supported_usage; const struct FFVkFormatEntry *fmt; int disable_multiplane = p->disable_multiplane || (hwctx->flags & AV_VK_FRAME_FLAG_DISABLE_MULTIPLANE); /* Defaults */ if (!hwctx->nb_layers) hwctx->nb_layers = 1; /* VK_IMAGE_TILING_OPTIMAL == 0, can't check for it really */ if (p->use_linear_images && (hwctx->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)) hwctx->tiling = VK_IMAGE_TILING_LINEAR; fmt = vk_find_format_entry(hwfc->sw_format); if (!fmt) { av_log(hwfc, AV_LOG_ERROR, "Unsupported pixel format: %s!\n", av_get_pix_fmt_name(hwfc->sw_format)); return AVERROR(EINVAL); } if (hwctx->format[0] != VK_FORMAT_UNDEFINED) { if (hwctx->format[0] != fmt->vkf) { for (int i = 0; i < fmt->nb_images_fallback; i++) { if (hwctx->format[i] != fmt->fallback[i]) { av_log(hwfc, AV_LOG_ERROR, "Incompatible Vulkan format given " "for the current sw_format %s!\n", av_get_pix_fmt_name(hwfc->sw_format)); return AVERROR(EINVAL); } } } /* Check if the sw_format itself is supported */ err = vkfmt_from_pixfmt2(hwfc->device_ctx, hwfc->sw_format, hwctx->tiling, NULL, NULL, NULL, &supported_usage, 0); if (err < 0) { av_log(hwfc, AV_LOG_ERROR, "Unsupported sw format: %s!\n", av_get_pix_fmt_name(hwfc->sw_format)); return AVERROR(EINVAL); } } else { err = vkfmt_from_pixfmt2(hwfc->device_ctx, hwfc->sw_format, hwctx->tiling, hwctx->format, NULL, NULL, &supported_usage, disable_multiplane); if (err < 0) return err; } /* Image usage flags */ if (!hwctx->usage) { hwctx->usage = supported_usage & (VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR); } /* Image creation flags. * Only fill them in automatically if the image is not going to be used as * a DPB-only image, and we have SAMPLED/STORAGE bits set. */ if (!hwctx->img_flags) { int is_lone_dpb = (hwctx->usage & VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR) && !(hwctx->usage & VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR); int sampleable = hwctx->usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT); if (sampleable && !is_lone_dpb) { hwctx->img_flags = VK_IMAGE_CREATE_ALIAS_BIT; if ((fmt->vk_planes > 1) && (hwctx->format[0] == fmt->vkf)) hwctx->img_flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT | VK_IMAGE_CREATE_EXTENDED_USAGE_BIT; } } if (!hwctx->lock_frame) hwctx->lock_frame = lock_frame; if (!hwctx->unlock_frame) hwctx->unlock_frame = unlock_frame; err = ff_vk_exec_pool_init(&p->vkctx, &p->compute_qf, &fp->compute_exec, p->compute_qf.nb_queues*4, 0, 0, 0, NULL); if (err) return err; err = ff_vk_exec_pool_init(&p->vkctx, &p->transfer_qf, &fp->upload_exec, p->transfer_qf.nb_queues*4, 0, 0, 0, NULL); if (err) return err; err = ff_vk_exec_pool_init(&p->vkctx, &p->transfer_qf, &fp->download_exec, p->transfer_qf.nb_queues*4, 0, 0, 0, NULL); if (err) return err; /* Test to see if allocation will fail */ err = create_frame(hwfc, &f, hwctx->tiling, hwctx->usage, hwctx->img_flags, hwctx->nb_layers, hwctx->create_pnext); if (err) return err; vulkan_frame_free(hwfc, (uint8_t *)f); /* If user did not specify a pool, hwfc->pool will be set to the internal one * in hwcontext.c just after this gets called */ if (!hwfc->pool) { hwfc->internal->pool_internal = av_buffer_pool_init2(sizeof(AVVkFrame), hwfc, vulkan_pool_alloc, NULL); if (!hwfc->internal->pool_internal) return AVERROR(ENOMEM); } return 0; } static int vulkan_get_buffer(AVHWFramesContext *hwfc, AVFrame *frame) { frame->buf[0] = av_buffer_pool_get(hwfc->pool); if (!frame->buf[0]) return AVERROR(ENOMEM); frame->data[0] = frame->buf[0]->data; frame->format = AV_PIX_FMT_VULKAN; frame->width = hwfc->width; frame->height = hwfc->height; return 0; } static int vulkan_transfer_get_formats(AVHWFramesContext *hwfc, enum AVHWFrameTransferDirection dir, enum AVPixelFormat **formats) { enum AVPixelFormat *fmts = av_malloc_array(2, sizeof(*fmts)); if (!fmts) return AVERROR(ENOMEM); fmts[0] = hwfc->sw_format; fmts[1] = AV_PIX_FMT_NONE; *formats = fmts; return 0; } #if CONFIG_LIBDRM static void vulkan_unmap_from_drm(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap) { AVVkFrame *f = hwmap->priv; AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; const int nb_images = ff_vk_count_images(f); VkSemaphoreWaitInfo wait_info = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO, .flags = 0x0, .pSemaphores = f->sem, .pValues = f->sem_value, .semaphoreCount = nb_images, }; vk->WaitSemaphores(hwctx->act_dev, &wait_info, UINT64_MAX); vulkan_free_internal(f); for (int i = 0; i < nb_images; i++) { vk->DestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc); vk->FreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc); vk->DestroySemaphore(hwctx->act_dev, f->sem[i], hwctx->alloc); } av_free(f); } static const struct { uint32_t drm_fourcc; VkFormat vk_format; } vulkan_drm_format_map[] = { { DRM_FORMAT_R8, VK_FORMAT_R8_UNORM }, { DRM_FORMAT_R16, VK_FORMAT_R16_UNORM }, { DRM_FORMAT_GR88, VK_FORMAT_R8G8_UNORM }, { DRM_FORMAT_RG88, VK_FORMAT_R8G8_UNORM }, { DRM_FORMAT_GR1616, VK_FORMAT_R16G16_UNORM }, { DRM_FORMAT_RG1616, VK_FORMAT_R16G16_UNORM }, { DRM_FORMAT_ARGB8888, VK_FORMAT_B8G8R8A8_UNORM }, { DRM_FORMAT_XRGB8888, VK_FORMAT_B8G8R8A8_UNORM }, { DRM_FORMAT_ABGR8888, VK_FORMAT_R8G8B8A8_UNORM }, { DRM_FORMAT_XBGR8888, VK_FORMAT_R8G8B8A8_UNORM }, // All these DRM_FORMATs were added in the same libdrm commit. #ifdef DRM_FORMAT_XYUV8888 { DRM_FORMAT_XYUV8888, VK_FORMAT_R8G8B8A8_UNORM }, { DRM_FORMAT_XVYU12_16161616, VK_FORMAT_R16G16B16A16_UNORM} , // As we had to map XV36 to a 16bit Vulkan format, reverse mapping will // end up yielding Y416 as the DRM format, so we need to recognise it. { DRM_FORMAT_Y416, VK_FORMAT_R16G16B16A16_UNORM }, #endif }; static inline VkFormat drm_to_vulkan_fmt(uint32_t drm_fourcc) { for (int i = 0; i < FF_ARRAY_ELEMS(vulkan_drm_format_map); i++) if (vulkan_drm_format_map[i].drm_fourcc == drm_fourcc) return vulkan_drm_format_map[i].vk_format; return VK_FORMAT_UNDEFINED; } static int vulkan_map_from_drm_frame_desc(AVHWFramesContext *hwfc, AVVkFrame **frame, const AVFrame *src) { int err = 0; VkResult ret; AVVkFrame *f; int bind_counts = 0; AVHWDeviceContext *ctx = hwfc->device_ctx; AVVulkanDeviceContext *hwctx = ctx->hwctx; VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; VulkanFramesPriv *fp = hwfc->internal->priv; const AVDRMFrameDescriptor *desc = (AVDRMFrameDescriptor *)src->data[0]; VkBindImageMemoryInfo bind_info[AV_DRM_MAX_PLANES]; VkBindImagePlaneMemoryInfo plane_info[AV_DRM_MAX_PLANES]; for (int i = 0; i < desc->nb_layers; i++) { if (drm_to_vulkan_fmt(desc->layers[i].format) == VK_FORMAT_UNDEFINED) { av_log(ctx, AV_LOG_ERROR, "Unsupported DMABUF layer format %#08x!\n", desc->layers[i].format); return AVERROR(EINVAL); } } if (!(f = av_vk_frame_alloc())) { av_log(ctx, AV_LOG_ERROR, "Unable to allocate memory for AVVkFrame!\n"); err = AVERROR(ENOMEM); goto fail; } f->tiling = VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT; for (int i = 0; i < desc->nb_layers; i++) { const int planes = desc->layers[i].nb_planes; /* Semaphore */ VkSemaphoreTypeCreateInfo sem_type_info = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO, .semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE, .initialValue = 0, }; VkSemaphoreCreateInfo sem_spawn = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .pNext = &sem_type_info, }; /* Image creation */ VkSubresourceLayout ext_img_layouts[AV_DRM_MAX_PLANES]; VkImageDrmFormatModifierExplicitCreateInfoEXT ext_img_mod_spec = { .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT, .drmFormatModifier = desc->objects[0].format_modifier, .drmFormatModifierPlaneCount = planes, .pPlaneLayouts = (const VkSubresourceLayout *)&ext_img_layouts, }; VkExternalMemoryImageCreateInfo ext_img_spec = { .sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO, .pNext = &ext_img_mod_spec, .handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, }; VkImageCreateInfo create_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .pNext = &ext_img_spec, .imageType = VK_IMAGE_TYPE_2D, .format = drm_to_vulkan_fmt(desc->layers[i].format), .extent.depth = 1, .mipLevels = 1, .arrayLayers = 1, .flags = 0x0, .tiling = VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, /* specs say so */ .usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, .samples = VK_SAMPLE_COUNT_1_BIT, .pQueueFamilyIndices = p->img_qfs, .queueFamilyIndexCount = p->nb_img_qfs, .sharingMode = p->nb_img_qfs > 1 ? VK_SHARING_MODE_CONCURRENT : VK_SHARING_MODE_EXCLUSIVE, }; /* Image format verification */ VkExternalImageFormatProperties ext_props = { .sType = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR, }; VkImageFormatProperties2 props_ret = { .sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2, .pNext = &ext_props, }; VkPhysicalDeviceImageDrmFormatModifierInfoEXT props_drm_mod = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_DRM_FORMAT_MODIFIER_INFO_EXT, .drmFormatModifier = ext_img_mod_spec.drmFormatModifier, .pQueueFamilyIndices = create_info.pQueueFamilyIndices, .queueFamilyIndexCount = create_info.queueFamilyIndexCount, .sharingMode = create_info.sharingMode, }; VkPhysicalDeviceExternalImageFormatInfo props_ext = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO, .pNext = &props_drm_mod, .handleType = ext_img_spec.handleTypes, }; VkPhysicalDeviceImageFormatInfo2 fmt_props = { .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2, .pNext = &props_ext, .format = create_info.format, .type = create_info.imageType, .tiling = create_info.tiling, .usage = create_info.usage, .flags = create_info.flags, }; /* Check if importing is possible for this combination of parameters */ ret = vk->GetPhysicalDeviceImageFormatProperties2(hwctx->phys_dev, &fmt_props, &props_ret); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Cannot map DRM frame to Vulkan: %s\n", ff_vk_ret2str(ret)); err = AVERROR_EXTERNAL; goto fail; } /* Set the image width/height */ get_plane_wh(&create_info.extent.width, &create_info.extent.height, hwfc->sw_format, src->width, src->height, i); /* Set the subresource layout based on the layer properties */ for (int j = 0; j < planes; j++) { ext_img_layouts[j].offset = desc->layers[i].planes[j].offset; ext_img_layouts[j].rowPitch = desc->layers[i].planes[j].pitch; ext_img_layouts[j].size = 0; /* The specs say so for all 3 */ ext_img_layouts[j].arrayPitch = 0; ext_img_layouts[j].depthPitch = 0; } /* Create image */ ret = vk->CreateImage(hwctx->act_dev, &create_info, hwctx->alloc, &f->img[i]); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Image creation failure: %s\n", ff_vk_ret2str(ret)); err = AVERROR(EINVAL); goto fail; } ret = vk->CreateSemaphore(hwctx->act_dev, &sem_spawn, hwctx->alloc, &f->sem[i]); if (ret != VK_SUCCESS) { av_log(hwctx, AV_LOG_ERROR, "Failed to create semaphore: %s\n", ff_vk_ret2str(ret)); return AVERROR_EXTERNAL; } /* We'd import a semaphore onto the one we created using * vkImportSemaphoreFdKHR but unfortunately neither DRM nor VAAPI * offer us anything we could import and sync with, so instead * just signal the semaphore we created. */ f->queue_family[i] = p->nb_img_qfs > 1 ? VK_QUEUE_FAMILY_IGNORED : p->img_qfs[0]; f->layout[i] = create_info.initialLayout; f->access[i] = 0x0; f->sem_value[i] = 0; } for (int i = 0; i < desc->nb_layers; i++) { /* Memory requirements */ VkImageMemoryRequirementsInfo2 req_desc = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2, .image = f->img[i], }; VkMemoryDedicatedRequirements ded_req = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS, }; VkMemoryRequirements2 req2 = { .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2, .pNext = &ded_req, }; /* Allocation/importing */ VkMemoryFdPropertiesKHR fdmp = { .sType = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR, }; /* This assumes that a layer will never be constructed from multiple * objects. If that was to happen in the real world, this code would * need to import each plane separately. */ VkImportMemoryFdInfoKHR idesc = { .sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR, .fd = dup(desc->objects[desc->layers[i].planes[0].object_index].fd), .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, }; VkMemoryDedicatedAllocateInfo ded_alloc = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO, .pNext = &idesc, .image = req_desc.image, }; /* Get object properties */ ret = vk->GetMemoryFdPropertiesKHR(hwctx->act_dev, VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, idesc.fd, &fdmp); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Failed to get FD properties: %s\n", ff_vk_ret2str(ret)); err = AVERROR_EXTERNAL; close(idesc.fd); goto fail; } vk->GetImageMemoryRequirements2(hwctx->act_dev, &req_desc, &req2); /* Only a single bit must be set, not a range, and it must match */ req2.memoryRequirements.memoryTypeBits = fdmp.memoryTypeBits; err = alloc_mem(ctx, &req2.memoryRequirements, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, (ded_req.prefersDedicatedAllocation || ded_req.requiresDedicatedAllocation) ? &ded_alloc : ded_alloc.pNext, &f->flags, &f->mem[i]); if (err) { close(idesc.fd); return err; } f->size[i] = req2.memoryRequirements.size; } for (int i = 0; i < desc->nb_layers; i++) { const int planes = desc->layers[i].nb_planes; for (int j = 0; j < planes; j++) { VkImageAspectFlagBits aspect = j == 0 ? VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT : j == 1 ? VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT : VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT; plane_info[bind_counts].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO; plane_info[bind_counts].pNext = NULL; plane_info[bind_counts].planeAspect = aspect; bind_info[bind_counts].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO; bind_info[bind_counts].pNext = planes > 1 ? &plane_info[bind_counts] : NULL; bind_info[bind_counts].image = f->img[i]; bind_info[bind_counts].memory = f->mem[i]; /* Offset is already signalled via pPlaneLayouts above */ bind_info[bind_counts].memoryOffset = 0; bind_counts++; } } /* Bind the allocated memory to the images */ ret = vk->BindImageMemory2(hwctx->act_dev, bind_counts, bind_info); if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to bind memory: %s\n", ff_vk_ret2str(ret)); err = AVERROR_EXTERNAL; goto fail; } err = prepare_frame(hwfc, &fp->compute_exec, f, PREP_MODE_EXTERNAL_IMPORT); if (err) goto fail; *frame = f; return 0; fail: for (int i = 0; i < desc->nb_layers; i++) { vk->DestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc); vk->DestroySemaphore(hwctx->act_dev, f->sem[i], hwctx->alloc); } for (int i = 0; i < desc->nb_objects; i++) vk->FreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc); av_free(f); return err; } static int vulkan_map_from_drm(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src, int flags) { int err = 0; AVVkFrame *f; if ((err = vulkan_map_from_drm_frame_desc(hwfc, &f, src))) return err; /* The unmapping function will free this */ dst->data[0] = (uint8_t *)f; dst->width = src->width; dst->height = src->height; err = ff_hwframe_map_create(dst->hw_frames_ctx, dst, src, &vulkan_unmap_from_drm, f); if (err < 0) goto fail; av_log(hwfc, AV_LOG_DEBUG, "Mapped DRM object to Vulkan!\n"); return 0; fail: vulkan_frame_free(hwfc->device_ctx->hwctx, (uint8_t *)f); dst->data[0] = NULL; return err; } #if CONFIG_VAAPI static int vulkan_map_from_vaapi(AVHWFramesContext *dst_fc, AVFrame *dst, const AVFrame *src, int flags) { int err; AVFrame *tmp = av_frame_alloc(); AVHWFramesContext *vaapi_fc = (AVHWFramesContext*)src->hw_frames_ctx->data; AVVAAPIDeviceContext *vaapi_ctx = vaapi_fc->device_ctx->hwctx; VASurfaceID surface_id = (VASurfaceID)(uintptr_t)src->data[3]; if (!tmp) return AVERROR(ENOMEM); /* We have to sync since like the previous comment said, no semaphores */ vaSyncSurface(vaapi_ctx->display, surface_id); tmp->format = AV_PIX_FMT_DRM_PRIME; err = av_hwframe_map(tmp, src, flags); if (err < 0) goto fail; err = vulkan_map_from_drm(dst_fc, dst, tmp, flags); if (err < 0) goto fail; err = ff_hwframe_map_replace(dst, src); fail: av_frame_free(&tmp); return err; } #endif #endif #if CONFIG_CUDA static int vulkan_export_to_cuda(AVHWFramesContext *hwfc, AVBufferRef *cuda_hwfc, const AVFrame *frame) { int err; VkResult ret; AVVkFrame *dst_f; AVVkFrameInternal *dst_int; AVHWDeviceContext *ctx = hwfc->device_ctx; AVVulkanDeviceContext *hwctx = ctx->hwctx; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format); VulkanDevicePriv *p = ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; AVHWFramesContext *cuda_fc = (AVHWFramesContext*)cuda_hwfc->data; AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx; AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx; AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal; CudaFunctions *cu = cu_internal->cuda_dl; CUarray_format cufmt = desc->comp[0].depth > 8 ? CU_AD_FORMAT_UNSIGNED_INT16 : CU_AD_FORMAT_UNSIGNED_INT8; dst_f = (AVVkFrame *)frame->data[0]; dst_int = dst_f->internal; if (!dst_int->cuda_fc_ref) { dst_int->cuda_fc_ref = av_buffer_ref(cuda_hwfc); if (!dst_int->cuda_fc_ref) return AVERROR(ENOMEM); for (int i = 0; i < planes; i++) { CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC tex_desc = { .offset = 0, .arrayDesc = { .Depth = 0, .Format = cufmt, .NumChannels = 1 + ((planes == 2) && i), .Flags = 0, }, .numLevels = 1, }; int p_w, p_h; #ifdef _WIN32 CUDA_EXTERNAL_MEMORY_HANDLE_DESC ext_desc = { .type = IsWindows8OrGreater() ? CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32 : CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT, .size = dst_f->size[i], }; VkMemoryGetWin32HandleInfoKHR export_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR, .memory = dst_f->mem[i], .handleType = IsWindows8OrGreater() ? VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT : VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT, }; VkSemaphoreGetWin32HandleInfoKHR sem_export = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR, .semaphore = dst_f->sem[i], .handleType = IsWindows8OrGreater() ? VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT : VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT, }; CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC ext_sem_desc = { .type = 10 /* TODO: CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_WIN32 */, }; ret = vk->GetMemoryWin32HandleKHR(hwctx->act_dev, &export_info, &ext_desc.handle.win32.handle); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a Win32 Handle: %s!\n", ff_vk_ret2str(ret)); err = AVERROR_EXTERNAL; goto fail; } dst_int->ext_mem_handle[i] = ext_desc.handle.win32.handle; #else CUDA_EXTERNAL_MEMORY_HANDLE_DESC ext_desc = { .type = CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD, .size = dst_f->size[i], }; VkMemoryGetFdInfoKHR export_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR, .memory = dst_f->mem[i], .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR, }; VkSemaphoreGetFdInfoKHR sem_export = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR, .semaphore = dst_f->sem[i], .handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT, }; CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC ext_sem_desc = { .type = 9 /* TODO: CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_FD */, }; ret = vk->GetMemoryFdKHR(hwctx->act_dev, &export_info, &ext_desc.handle.fd); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a FD: %s!\n", ff_vk_ret2str(ret)); err = AVERROR_EXTERNAL; goto fail; } #endif ret = CHECK_CU(cu->cuImportExternalMemory(&dst_int->ext_mem[i], &ext_desc)); if (ret < 0) { #ifndef _WIN32 close(ext_desc.handle.fd); #endif err = AVERROR_EXTERNAL; goto fail; } get_plane_wh(&p_w, &p_h, hwfc->sw_format, hwfc->width, hwfc->height, i); tex_desc.arrayDesc.Width = p_w; tex_desc.arrayDesc.Height = p_h; ret = CHECK_CU(cu->cuExternalMemoryGetMappedMipmappedArray(&dst_int->cu_mma[i], dst_int->ext_mem[i], &tex_desc)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } ret = CHECK_CU(cu->cuMipmappedArrayGetLevel(&dst_int->cu_array[i], dst_int->cu_mma[i], 0)); if (ret < 0) { err = AVERROR_EXTERNAL; goto fail; } #ifdef _WIN32 ret = vk->GetSemaphoreWin32HandleKHR(hwctx->act_dev, &sem_export, &ext_sem_desc.handle.win32.handle); #else ret = vk->GetSemaphoreFdKHR(hwctx->act_dev, &sem_export, &ext_sem_desc.handle.fd); #endif if (ret != VK_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "Failed to export semaphore: %s\n", ff_vk_ret2str(ret)); err = AVERROR_EXTERNAL; goto fail; } #ifdef _WIN32 dst_int->ext_sem_handle[i] = ext_sem_desc.handle.win32.handle; #endif ret = CHECK_CU(cu->cuImportExternalSemaphore(&dst_int->cu_sem[i], &ext_sem_desc)); if (ret < 0) { #ifndef _WIN32 close(ext_sem_desc.handle.fd); #endif err = AVERROR_EXTERNAL; goto fail; } } } return 0; fail: vulkan_free_internal(dst_f); return err; } static int vulkan_transfer_data_from_cuda(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src) { int err; CUcontext dummy; AVVkFrame *dst_f; AVVkFrameInternal *dst_int; VulkanFramesPriv *fp = hwfc->internal->priv; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format); AVHWFramesContext *cuda_fc = (AVHWFramesContext*)src->hw_frames_ctx->data; AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx; AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx; AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal; CudaFunctions *cu = cu_internal->cuda_dl; CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS s_w_par[AV_NUM_DATA_POINTERS] = { 0 }; CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS s_s_par[AV_NUM_DATA_POINTERS] = { 0 }; dst_f = (AVVkFrame *)dst->data[0]; err = prepare_frame(hwfc, &fp->upload_exec, dst_f, PREP_MODE_EXTERNAL_EXPORT); if (err < 0) return err; err = CHECK_CU(cu->cuCtxPushCurrent(cuda_dev->cuda_ctx)); if (err < 0) return err; err = vulkan_export_to_cuda(hwfc, src->hw_frames_ctx, dst); if (err < 0) { CHECK_CU(cu->cuCtxPopCurrent(&dummy)); return err; } dst_int = dst_f->internal; for (int i = 0; i < planes; i++) { s_w_par[i].params.fence.value = dst_f->sem_value[i] + 0; s_s_par[i].params.fence.value = dst_f->sem_value[i] + 1; } err = CHECK_CU(cu->cuWaitExternalSemaphoresAsync(dst_int->cu_sem, s_w_par, planes, cuda_dev->stream)); if (err < 0) goto fail; for (int i = 0; i < planes; i++) { CUDA_MEMCPY2D cpy = { .srcMemoryType = CU_MEMORYTYPE_DEVICE, .srcDevice = (CUdeviceptr)src->data[i], .srcPitch = src->linesize[i], .srcY = 0, .dstMemoryType = CU_MEMORYTYPE_ARRAY, .dstArray = dst_int->cu_array[i], }; int p_w, p_h; get_plane_wh(&p_w, &p_h, hwfc->sw_format, hwfc->width, hwfc->height, i); cpy.WidthInBytes = p_w * desc->comp[i].step; cpy.Height = p_h; err = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, cuda_dev->stream)); if (err < 0) goto fail; } err = CHECK_CU(cu->cuSignalExternalSemaphoresAsync(dst_int->cu_sem, s_s_par, planes, cuda_dev->stream)); if (err < 0) goto fail; for (int i = 0; i < planes; i++) dst_f->sem_value[i]++; CHECK_CU(cu->cuCtxPopCurrent(&dummy)); av_log(hwfc, AV_LOG_VERBOSE, "Transfered CUDA image to Vulkan!\n"); return err = prepare_frame(hwfc, &fp->upload_exec, dst_f, PREP_MODE_EXTERNAL_IMPORT); fail: CHECK_CU(cu->cuCtxPopCurrent(&dummy)); vulkan_free_internal(dst_f); dst_f->internal = NULL; av_buffer_unref(&dst->buf[0]); return err; } #endif static int vulkan_map_to(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src, int flags) { av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; switch (src->format) { #if CONFIG_LIBDRM #if CONFIG_VAAPI case AV_PIX_FMT_VAAPI: if (p->vkctx.extensions & FF_VK_EXT_DRM_MODIFIER_FLAGS) return vulkan_map_from_vaapi(hwfc, dst, src, flags); else return AVERROR(ENOSYS); #endif case AV_PIX_FMT_DRM_PRIME: if (p->vkctx.extensions & FF_VK_EXT_DRM_MODIFIER_FLAGS) return vulkan_map_from_drm(hwfc, dst, src, flags); else return AVERROR(ENOSYS); #endif default: return AVERROR(ENOSYS); } } #if CONFIG_LIBDRM typedef struct VulkanDRMMapping { AVDRMFrameDescriptor drm_desc; AVVkFrame *source; } VulkanDRMMapping; static void vulkan_unmap_to_drm(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap) { AVDRMFrameDescriptor *drm_desc = hwmap->priv; for (int i = 0; i < drm_desc->nb_objects; i++) close(drm_desc->objects[i].fd); av_free(drm_desc); } static inline uint32_t vulkan_fmt_to_drm(VkFormat vkfmt) { for (int i = 0; i < FF_ARRAY_ELEMS(vulkan_drm_format_map); i++) if (vulkan_drm_format_map[i].vk_format == vkfmt) return vulkan_drm_format_map[i].drm_fourcc; return DRM_FORMAT_INVALID; } static int vulkan_map_to_drm(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src, int flags) { int err = 0; VkResult ret; AVVkFrame *f = (AVVkFrame *)src->data[0]; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; VulkanFramesPriv *fp = hwfc->internal->priv; AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx; AVVulkanFramesContext *hwfctx = hwfc->hwctx; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); VkImageDrmFormatModifierPropertiesEXT drm_mod = { .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT, }; VkSemaphoreWaitInfo wait_info = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO, .flags = 0x0, .semaphoreCount = planes, }; AVDRMFrameDescriptor *drm_desc = av_mallocz(sizeof(*drm_desc)); if (!drm_desc) return AVERROR(ENOMEM); err = prepare_frame(hwfc, &fp->compute_exec, f, PREP_MODE_EXTERNAL_EXPORT); if (err < 0) goto end; /* Wait for the operation to finish so we can cleanly export it. */ wait_info.pSemaphores = f->sem; wait_info.pValues = f->sem_value; vk->WaitSemaphores(hwctx->act_dev, &wait_info, UINT64_MAX); err = ff_hwframe_map_create(src->hw_frames_ctx, dst, src, &vulkan_unmap_to_drm, drm_desc); if (err < 0) goto end; ret = vk->GetImageDrmFormatModifierPropertiesEXT(hwctx->act_dev, f->img[0], &drm_mod); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Failed to retrieve DRM format modifier!\n"); err = AVERROR_EXTERNAL; goto end; } for (int i = 0; (i < planes) && (f->mem[i]); i++) { VkMemoryGetFdInfoKHR export_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR, .memory = f->mem[i], .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, }; ret = vk->GetMemoryFdKHR(hwctx->act_dev, &export_info, &drm_desc->objects[i].fd); if (ret != VK_SUCCESS) { av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a FD!\n"); err = AVERROR_EXTERNAL; goto end; } drm_desc->nb_objects++; drm_desc->objects[i].size = f->size[i]; drm_desc->objects[i].format_modifier = drm_mod.drmFormatModifier; } drm_desc->nb_layers = planes; for (int i = 0; i < drm_desc->nb_layers; i++) { VkSubresourceLayout layout; VkImageSubresource sub = { .aspectMask = VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT, }; VkFormat plane_vkfmt = av_vkfmt_from_pixfmt(hwfc->sw_format)[i]; drm_desc->layers[i].format = vulkan_fmt_to_drm(plane_vkfmt); drm_desc->layers[i].nb_planes = 1; if (drm_desc->layers[i].format == DRM_FORMAT_INVALID) { av_log(hwfc, AV_LOG_ERROR, "Cannot map to DRM layer, unsupported!\n"); err = AVERROR_PATCHWELCOME; goto end; } drm_desc->layers[i].planes[0].object_index = FFMIN(i, drm_desc->nb_objects - 1); if (f->tiling == VK_IMAGE_TILING_OPTIMAL) continue; vk->GetImageSubresourceLayout(hwctx->act_dev, f->img[i], &sub, &layout); drm_desc->layers[i].planes[0].offset = layout.offset; drm_desc->layers[i].planes[0].pitch = layout.rowPitch; if (hwfctx->flags & AV_VK_FRAME_FLAG_CONTIGUOUS_MEMORY) drm_desc->layers[i].planes[0].offset += f->offset[i]; } dst->width = src->width; dst->height = src->height; dst->data[0] = (uint8_t *)drm_desc; av_log(hwfc, AV_LOG_VERBOSE, "Mapped AVVkFrame to a DRM object!\n"); return 0; end: av_free(drm_desc); return err; } #if CONFIG_VAAPI static int vulkan_map_to_vaapi(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src, int flags) { int err; AVFrame *tmp = av_frame_alloc(); if (!tmp) return AVERROR(ENOMEM); tmp->format = AV_PIX_FMT_DRM_PRIME; err = vulkan_map_to_drm(hwfc, tmp, src, flags); if (err < 0) goto fail; err = av_hwframe_map(dst, tmp, flags); if (err < 0) goto fail; err = ff_hwframe_map_replace(dst, src); fail: av_frame_free(&tmp); return err; } #endif #endif static int vulkan_map_from(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src, int flags) { av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; switch (dst->format) { #if CONFIG_LIBDRM case AV_PIX_FMT_DRM_PRIME: if (p->vkctx.extensions & FF_VK_EXT_DRM_MODIFIER_FLAGS) return vulkan_map_to_drm(hwfc, dst, src, flags); else return AVERROR(ENOSYS); #if CONFIG_VAAPI case AV_PIX_FMT_VAAPI: if (p->vkctx.extensions & FF_VK_EXT_DRM_MODIFIER_FLAGS) return vulkan_map_to_vaapi(hwfc, dst, src, flags); else return AVERROR(ENOSYS); #endif #endif default: break; } return AVERROR(ENOSYS); } static size_t get_req_buffer_size(VulkanDevicePriv *p, int *stride, int height) { size_t size; *stride = FFALIGN(*stride, p->props.properties.limits.optimalBufferCopyRowPitchAlignment); size = height*(*stride); size = FFALIGN(size, p->props.properties.limits.minMemoryMapAlignment); return size; } static int transfer_image_buf(AVHWFramesContext *hwfc, AVFrame *f, AVBufferRef **bufs, size_t *buf_offsets, const int *buf_stride, int w, int h, enum AVPixelFormat pix_fmt, int to_buf) { int err; AVVkFrame *frame = (AVVkFrame *)f->data[0]; VulkanFramesPriv *fp = hwfc->internal->priv; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; VkImageMemoryBarrier2 img_bar[AV_NUM_DATA_POINTERS]; int nb_img_bar = 0; const int nb_images = ff_vk_count_images(frame); int pixfmt_planes = av_pix_fmt_count_planes(pix_fmt); const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt); VkCommandBuffer cmd_buf; FFVkExecContext *exec = ff_vk_exec_get(to_buf ? &fp->download_exec : &fp->upload_exec); cmd_buf = exec->buf; ff_vk_exec_start(&p->vkctx, exec); err = ff_vk_exec_add_dep_buf(&p->vkctx, exec, bufs, pixfmt_planes, 1); if (err < 0) return err; err = ff_vk_exec_add_dep_frame(&p->vkctx, exec, f, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_2_TRANSFER_BIT); if (err < 0) return err; ff_vk_frame_barrier(&p->vkctx, exec, f, img_bar, &nb_img_bar, VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_2_TRANSFER_BIT_KHR, to_buf ? VK_ACCESS_TRANSFER_READ_BIT : VK_ACCESS_TRANSFER_WRITE_BIT, to_buf ? VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL : VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_QUEUE_FAMILY_IGNORED); vk->CmdPipelineBarrier2(cmd_buf, &(VkDependencyInfo) { .sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO, .pImageMemoryBarriers = img_bar, .imageMemoryBarrierCount = nb_img_bar, }); /* Schedule a copy for each plane */ for (int i = 0; i < pixfmt_planes; i++) { int idx = FFMIN(i, nb_images - 1); VkImageAspectFlags plane_aspect[] = { VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, VK_IMAGE_ASPECT_PLANE_2_BIT, }; FFVkBuffer *vkbuf = (FFVkBuffer *)bufs[i]->data; VkBufferImageCopy buf_reg = { .bufferOffset = buf_offsets[i], .bufferRowLength = buf_stride[i] / desc->comp[i].step, .imageSubresource.layerCount = 1, .imageSubresource.aspectMask = plane_aspect[(pixfmt_planes != nb_images) + i*(pixfmt_planes != nb_images)], .imageOffset = { 0, 0, 0, }, }; uint32_t p_w, p_h; get_plane_wh(&p_w, &p_h, pix_fmt, w, h, i); buf_reg.bufferImageHeight = p_h; buf_reg.imageExtent = (VkExtent3D){ p_w, p_h, 1, }; if (to_buf) vk->CmdCopyImageToBuffer(cmd_buf, frame->img[idx], img_bar[0].newLayout, vkbuf->buf, 1, &buf_reg); else vk->CmdCopyBufferToImage(cmd_buf, vkbuf->buf, frame->img[idx], img_bar[0].newLayout, 1, &buf_reg); } err = ff_vk_exec_submit(&p->vkctx, exec); if (err < 0) return err; /* Wait for the operation to complete when downloading */ if (to_buf) ff_vk_exec_wait(&p->vkctx, exec); return 0; } static int vulkan_transfer_data(AVHWFramesContext *hwfc, const AVFrame *vkf, const AVFrame *swf, int from) { int err = 0; VkResult ret; AVHWDeviceContext *dev_ctx = hwfc->device_ctx; AVVulkanDeviceContext *hwctx = dev_ctx->hwctx; VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; FFVulkanFunctions *vk = &p->vkctx.vkfn; AVFrame tmp; FFVkBuffer *vkbufs[AV_NUM_DATA_POINTERS]; AVBufferRef *bufs[AV_NUM_DATA_POINTERS] = { 0 }; size_t buf_offsets[AV_NUM_DATA_POINTERS] = { 0 }; uint32_t p_w, p_h; const int planes = av_pix_fmt_count_planes(swf->format); int host_mapped[AV_NUM_DATA_POINTERS] = { 0 }; const int map_host = !!(p->vkctx.extensions & FF_VK_EXT_EXTERNAL_HOST_MEMORY); if ((swf->format != AV_PIX_FMT_NONE && !av_vkfmt_from_pixfmt(swf->format))) { av_log(hwfc, AV_LOG_ERROR, "Unsupported software frame pixel format!\n"); return AVERROR(EINVAL); } if (swf->width > hwfc->width || swf->height > hwfc->height) return AVERROR(EINVAL); /* Create buffers */ for (int i = 0; i < planes; i++) { size_t req_size; VkExternalMemoryBufferCreateInfo create_desc = { .sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO, .handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT, }; VkImportMemoryHostPointerInfoEXT import_desc = { .sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT, .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT, }; VkMemoryHostPointerPropertiesEXT p_props = { .sType = VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT, }; get_plane_wh(&p_w, &p_h, swf->format, swf->width, swf->height, i); tmp.linesize[i] = FFABS(swf->linesize[i]); /* Do not map images with a negative stride */ if (map_host && swf->linesize[i] > 0) { size_t offs; offs = (uintptr_t)swf->data[i] % p->hprops.minImportedHostPointerAlignment; import_desc.pHostPointer = swf->data[i] - offs; /* We have to compensate for the few extra bytes of padding we * completely ignore at the start */ req_size = FFALIGN(offs + tmp.linesize[i] * p_h, p->hprops.minImportedHostPointerAlignment); ret = vk->GetMemoryHostPointerPropertiesEXT(hwctx->act_dev, import_desc.handleType, import_desc.pHostPointer, &p_props); if (ret == VK_SUCCESS && p_props.memoryTypeBits) { host_mapped[i] = 1; buf_offsets[i] = offs; } } if (!host_mapped[i]) req_size = get_req_buffer_size(p, &tmp.linesize[i], p_h); err = ff_vk_create_avbuf(&p->vkctx, &bufs[i], req_size, host_mapped[i] ? &create_desc : NULL, host_mapped[i] ? &import_desc : NULL, from ? VK_BUFFER_USAGE_TRANSFER_DST_BIT : VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | (host_mapped[i] ? VK_MEMORY_PROPERTY_HOST_COHERENT_BIT : 0x0)); if (err < 0) goto end; vkbufs[i] = (FFVkBuffer *)bufs[i]->data; } if (!from) { /* Map, copy image TO buffer (which then goes to the VkImage), unmap */ if ((err = ff_vk_map_buffers(&p->vkctx, vkbufs, tmp.data, planes, 0))) goto end; for (int i = 0; i < planes; i++) { if (host_mapped[i]) continue; get_plane_wh(&p_w, &p_h, swf->format, swf->width, swf->height, i); av_image_copy_plane(tmp.data[i], tmp.linesize[i], (const uint8_t *)swf->data[i], swf->linesize[i], FFMIN(tmp.linesize[i], FFABS(swf->linesize[i])), p_h); } if ((err = ff_vk_unmap_buffers(&p->vkctx, vkbufs, planes, 1))) goto end; } /* Copy buffers into/from image */ err = transfer_image_buf(hwfc, (AVFrame *)vkf, bufs, buf_offsets, tmp.linesize, swf->width, swf->height, swf->format, from); if (from) { /* Map, copy buffer (which came FROM the VkImage) to the frame, unmap */ if ((err = ff_vk_map_buffers(&p->vkctx, vkbufs, tmp.data, planes, 0))) goto end; for (int i = 0; i < planes; i++) { if (host_mapped[i]) continue; get_plane_wh(&p_w, &p_h, swf->format, swf->width, swf->height, i); av_image_copy_plane_uc_from(swf->data[i], swf->linesize[i], (const uint8_t *)tmp.data[i], tmp.linesize[i], FFMIN(tmp.linesize[i], FFABS(swf->linesize[i])), p_h); } if ((err = ff_vk_unmap_buffers(&p->vkctx, vkbufs, planes, 1))) goto end; } end: for (int i = 0; i < planes; i++) av_buffer_unref(&bufs[i]); return err; } static int vulkan_transfer_data_to(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src) { av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; switch (src->format) { #if CONFIG_CUDA case AV_PIX_FMT_CUDA: #ifdef _WIN32 if ((p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_MEMORY) && (p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_SEM)) #else if ((p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_MEMORY) && (p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_SEM)) #endif return vulkan_transfer_data_from_cuda(hwfc, dst, src); #endif default: if (src->hw_frames_ctx) return AVERROR(ENOSYS); else return vulkan_transfer_data(hwfc, dst, src, 0); } } #if CONFIG_CUDA static int vulkan_transfer_data_to_cuda(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src) { int err; CUcontext dummy; AVVkFrame *dst_f; AVVkFrameInternal *dst_int; VulkanFramesPriv *fp = hwfc->internal->priv; const int planes = av_pix_fmt_count_planes(hwfc->sw_format); const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format); AVHWFramesContext *cuda_fc = (AVHWFramesContext*)dst->hw_frames_ctx->data; AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx; AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx; AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal; CudaFunctions *cu = cu_internal->cuda_dl; CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS s_w_par[AV_NUM_DATA_POINTERS] = { 0 }; CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS s_s_par[AV_NUM_DATA_POINTERS] = { 0 }; dst_f = (AVVkFrame *)src->data[0]; err = prepare_frame(hwfc, &fp->upload_exec, dst_f, PREP_MODE_EXTERNAL_EXPORT); if (err < 0) return err; err = CHECK_CU(cu->cuCtxPushCurrent(cuda_dev->cuda_ctx)); if (err < 0) return err; err = vulkan_export_to_cuda(hwfc, dst->hw_frames_ctx, src); if (err < 0) { CHECK_CU(cu->cuCtxPopCurrent(&dummy)); return err; } dst_int = dst_f->internal; for (int i = 0; i < planes; i++) { s_w_par[i].params.fence.value = dst_f->sem_value[i] + 0; s_s_par[i].params.fence.value = dst_f->sem_value[i] + 1; } err = CHECK_CU(cu->cuWaitExternalSemaphoresAsync(dst_int->cu_sem, s_w_par, planes, cuda_dev->stream)); if (err < 0) goto fail; for (int i = 0; i < planes; i++) { CUDA_MEMCPY2D cpy = { .dstMemoryType = CU_MEMORYTYPE_DEVICE, .dstDevice = (CUdeviceptr)dst->data[i], .dstPitch = dst->linesize[i], .dstY = 0, .srcMemoryType = CU_MEMORYTYPE_ARRAY, .srcArray = dst_int->cu_array[i], }; int w, h; get_plane_wh(&w, &h, hwfc->sw_format, hwfc->width, hwfc->height, i); cpy.WidthInBytes = w * desc->comp[i].step; cpy.Height = h; err = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, cuda_dev->stream)); if (err < 0) goto fail; } err = CHECK_CU(cu->cuSignalExternalSemaphoresAsync(dst_int->cu_sem, s_s_par, planes, cuda_dev->stream)); if (err < 0) goto fail; for (int i = 0; i < planes; i++) dst_f->sem_value[i]++; CHECK_CU(cu->cuCtxPopCurrent(&dummy)); av_log(hwfc, AV_LOG_VERBOSE, "Transfered Vulkan image to CUDA!\n"); return prepare_frame(hwfc, &fp->upload_exec, dst_f, PREP_MODE_EXTERNAL_IMPORT); fail: CHECK_CU(cu->cuCtxPopCurrent(&dummy)); vulkan_free_internal(dst_f); dst_f->internal = NULL; av_buffer_unref(&dst->buf[0]); return err; } #endif static int vulkan_transfer_data_from(AVHWFramesContext *hwfc, AVFrame *dst, const AVFrame *src) { av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv; switch (dst->format) { #if CONFIG_CUDA case AV_PIX_FMT_CUDA: #ifdef _WIN32 if ((p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_MEMORY) && (p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_SEM)) #else if ((p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_MEMORY) && (p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_SEM)) #endif return vulkan_transfer_data_to_cuda(hwfc, dst, src); #endif default: if (dst->hw_frames_ctx) return AVERROR(ENOSYS); else return vulkan_transfer_data(hwfc, src, dst, 1); } } static int vulkan_frames_derive_to(AVHWFramesContext *dst_fc, AVHWFramesContext *src_fc, int flags) { return vulkan_frames_init(dst_fc); } AVVkFrame *av_vk_frame_alloc(void) { int err; AVVkFrame *f = av_mallocz(sizeof(AVVkFrame)); if (!f) return NULL; f->internal = av_mallocz(sizeof(*f->internal)); if (!f->internal) { av_free(f); return NULL; } err = pthread_mutex_init(&f->internal->update_mutex, NULL); if (err != 0) { av_free(f->internal); av_free(f); return NULL; } return f; } const HWContextType ff_hwcontext_type_vulkan = { .type = AV_HWDEVICE_TYPE_VULKAN, .name = "Vulkan", .device_hwctx_size = sizeof(AVVulkanDeviceContext), .device_priv_size = sizeof(VulkanDevicePriv), .frames_hwctx_size = sizeof(AVVulkanFramesContext), .frames_priv_size = sizeof(VulkanFramesPriv), .device_init = &vulkan_device_init, .device_create = &vulkan_device_create, .device_derive = &vulkan_device_derive, .frames_get_constraints = &vulkan_frames_get_constraints, .frames_init = vulkan_frames_init, .frames_get_buffer = vulkan_get_buffer, .frames_uninit = vulkan_frames_uninit, .transfer_get_formats = vulkan_transfer_get_formats, .transfer_data_to = vulkan_transfer_data_to, .transfer_data_from = vulkan_transfer_data_from, .map_to = vulkan_map_to, .map_from = vulkan_map_from, .frames_derive_to = &vulkan_frames_derive_to, .pix_fmts = (const enum AVPixelFormat []) { AV_PIX_FMT_VULKAN, AV_PIX_FMT_NONE }, };