/* * Copyright (c) 2003 The FFmpeg Project. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * How to use this decoder: * SVQ3 data is transported within Apple Quicktime files. Quicktime files * have stsd atoms to describe media trak properties. A stsd atom for a * video trak contains 1 or more ImageDescription atoms. These atoms begin * with the 4-byte length of the atom followed by the codec fourcc. Some * decoders need information in this atom to operate correctly. Such * is the case with SVQ3. In order to get the best use out of this decoder, * the calling app must make the SVQ3 ImageDescription atom available * via the AVCodecContext's extradata[_size] field: * * AVCodecContext.extradata = pointer to ImageDescription, first characters * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length * AVCodecContext.extradata_size = size of ImageDescription atom memory * buffer (which will be the same as the ImageDescription atom size field * from the QT file, minus 4 bytes since the length is missing) * * You will know you have these parameters passed correctly when the decoder * correctly decodes this file: * ftp://ftp.mplayerhq.hu/MPlayer/samples/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov * */ /** * @file svq3.c * svq3 decoder. */ #define FULLPEL_MODE 1 #define HALFPEL_MODE 2 #define THIRDPEL_MODE 3 /* dual scan (from some older h264 draft) o-->o-->o o | /| o o o / o | / | |/ | o o o o / o-->o-->o-->o */ static const uint8_t svq3_scan[16]={ 0+0*4, 1+0*4, 2+0*4, 2+1*4, 2+2*4, 3+0*4, 3+1*4, 3+2*4, 0+1*4, 0+2*4, 1+1*4, 1+2*4, 0+3*4, 1+3*4, 2+3*4, 3+3*4, }; static const uint8_t svq3_pred_0[25][2] = { { 0, 0 }, { 1, 0 }, { 0, 1 }, { 0, 2 }, { 1, 1 }, { 2, 0 }, { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 }, { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 }, { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 }, { 2, 4 }, { 3, 3 }, { 4, 2 }, { 4, 3 }, { 3, 4 }, { 4, 4 } }; static const int8_t svq3_pred_1[6][6][5] = { { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } }, { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 }, { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } }, { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 }, { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } }, { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 }, { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } }, { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 }, { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } }, { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 }, { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } }, }; static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = { { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 }, { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } }, { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 }, { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } } }; static const uint32_t svq3_dequant_coeff[32] = { 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718, 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873, 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683, 61694, 68745, 77615, 89113,100253,109366,126635,141533 }; static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp){ const int qmul= svq3_dequant_coeff[qp]; #define stride 16 int i; int temp[16]; static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride}; static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride}; for(i=0; i<4; i++){ const int offset= y_offset[i]; const int z0= 13*(block[offset+stride*0] + block[offset+stride*4]); const int z1= 13*(block[offset+stride*0] - block[offset+stride*4]); const int z2= 7* block[offset+stride*1] - 17*block[offset+stride*5]; const int z3= 17* block[offset+stride*1] + 7*block[offset+stride*5]; temp[4*i+0]= z0+z3; temp[4*i+1]= z1+z2; temp[4*i+2]= z1-z2; temp[4*i+3]= z0-z3; } for(i=0; i<4; i++){ const int offset= x_offset[i]; const int z0= 13*(temp[4*0+i] + temp[4*2+i]); const int z1= 13*(temp[4*0+i] - temp[4*2+i]); const int z2= 7* temp[4*1+i] - 17*temp[4*3+i]; const int z3= 17* temp[4*1+i] + 7*temp[4*3+i]; block[stride*0 +offset]= ((z0 + z3)*qmul + 0x80000)>>20; block[stride*2 +offset]= ((z1 + z2)*qmul + 0x80000)>>20; block[stride*8 +offset]= ((z1 - z2)*qmul + 0x80000)>>20; block[stride*10+offset]= ((z0 - z3)*qmul + 0x80000)>>20; } } #undef stride static void svq3_add_idct_c (uint8_t *dst, DCTELEM *block, int stride, int qp, int dc){ const int qmul= svq3_dequant_coeff[qp]; int i; uint8_t *cm = cropTbl + MAX_NEG_CROP; if (dc) { dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2)); block[0] = 0; } for (i=0; i < 4; i++) { const int z0= 13*(block[0 + 4*i] + block[2 + 4*i]); const int z1= 13*(block[0 + 4*i] - block[2 + 4*i]); const int z2= 7* block[1 + 4*i] - 17*block[3 + 4*i]; const int z3= 17* block[1 + 4*i] + 7*block[3 + 4*i]; block[0 + 4*i]= z0 + z3; block[1 + 4*i]= z1 + z2; block[2 + 4*i]= z1 - z2; block[3 + 4*i]= z0 - z3; } for (i=0; i < 4; i++) { const int z0= 13*(block[i + 4*0] + block[i + 4*2]); const int z1= 13*(block[i + 4*0] - block[i + 4*2]); const int z2= 7* block[i + 4*1] - 17*block[i + 4*3]; const int z3= 17* block[i + 4*1] + 7*block[i + 4*3]; const int rr= (dc + 0x80000); dst[i + stride*0]= cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ]; dst[i + stride*1]= cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ]; dst[i + stride*2]= cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ]; dst[i + stride*3]= cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ]; } } static void pred4x4_down_left_svq3_c(uint8_t *src, uint8_t *topright, int stride){ LOAD_TOP_EDGE LOAD_LEFT_EDGE const __attribute__((unused)) int unu0= t0; const __attribute__((unused)) int unu1= l0; src[0+0*stride]=(l1 + t1)>>1; src[1+0*stride]= src[0+1*stride]=(l2 + t2)>>1; src[2+0*stride]= src[1+1*stride]= src[0+2*stride]= src[3+0*stride]= src[2+1*stride]= src[1+2*stride]= src[0+3*stride]= src[3+1*stride]= src[2+2*stride]= src[1+3*stride]= src[3+2*stride]= src[2+3*stride]= src[3+3*stride]=(l3 + t3)>>1; }; static void pred16x16_plane_svq3_c(uint8_t *src, int stride){ pred16x16_plane_compat_c(src, stride, 1); } static inline int svq3_decode_block (GetBitContext *gb, DCTELEM *block, int index, const int type) { static const uint8_t *const scan_patterns[4] = { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan }; int run, level, sign, vlc, limit; const int intra = (3 * type) >> 2; const uint8_t *const scan = scan_patterns[type]; for (limit=(16 >> intra); index < 16; index=limit, limit+=8) { for (; (vlc = svq3_get_ue_golomb (gb)) != 0; index++) { if (vlc == INVALID_VLC) return -1; sign = (vlc & 0x1) - 1; vlc = (vlc + 1) >> 1; if (type == 3) { if (vlc < 3) { run = 0; level = vlc; } else if (vlc < 4) { run = 1; level = 1; } else { run = (vlc & 0x3); level = ((vlc + 9) >> 2) - run; } } else { if (vlc < 16) { run = svq3_dct_tables[intra][vlc].run; level = svq3_dct_tables[intra][vlc].level; } else if (intra) { run = (vlc & 0x7); level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1))); } else { run = (vlc & 0xF); level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0))); } } if ((index += run) >= limit) return -1; block[scan[index]] = (level ^ sign) - sign; } if (type != 2) { break; } } return 0; } static inline void svq3_mc_dir_part (MpegEncContext *s, int x, int y, int width, int height, int mx, int my, int dxy, int thirdpel) { uint8_t *src, *dest; int i, emu = 0; int blocksize= 2 - (width>>3); //16->0, 8->1, 4->2 mx += x; my += y; if (mx < 0 || mx >= (s->h_edge_pos - width - 1) || my < 0 || my >= (s->v_edge_pos - height - 1)) { if ((s->flags & CODEC_FLAG_EMU_EDGE)) { emu = 1; } mx = clip (mx, -16, (s->h_edge_pos - width + 15)); my = clip (my, -16, (s->v_edge_pos - height + 15)); } /* form component predictions */ dest = s->current_picture.data[0] + x + y*s->linesize; src = s->last_picture.data[0] + mx + my*s->linesize; if (emu) { ff_emulated_edge_mc (s, src, s->linesize, (width + 1), (height + 1), mx, my, s->h_edge_pos, s->v_edge_pos); src = s->edge_emu_buffer; } if(thirdpel) s->dsp.put_tpel_pixels_tab[dxy](dest, src, s->linesize, width, height); else s->dsp.put_pixels_tab[blocksize][dxy](dest, src, s->linesize, height); if (!(s->flags & CODEC_FLAG_GRAY)) { mx = (mx + (mx < (int) x)) >> 1; my = (my + (my < (int) y)) >> 1; width = (width >> 1); height = (height >> 1); blocksize++; for (i=1; i < 3; i++) { dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize; src = s->last_picture.data[i] + mx + my*s->uvlinesize; if (emu) { ff_emulated_edge_mc (s, src, s->uvlinesize, (width + 1), (height + 1), mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1)); src = s->edge_emu_buffer; } if(thirdpel) s->dsp.put_tpel_pixels_tab[dxy](dest, src, s->uvlinesize, width, height); else s->dsp.put_pixels_tab[blocksize][dxy](dest, src, s->uvlinesize, height); } } } static int svq3_decode_mb (H264Context *h, unsigned int mb_type) { int cbp, dir, mode, mx, my, dx, dy, x, y, part_width, part_height; int i, j, k, l, m; uint32_t vlc; int8_t *top, *left; MpegEncContext *const s = (MpegEncContext *) h; const int mb_xy = s->mb_x + s->mb_y*s->mb_stride; const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF; h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF; h->topright_samples_available = 0xFFFF; if (mb_type == 0) { /* SKIP */ svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0); cbp = 0; mb_type = MB_TYPE_SKIP; } else if (mb_type < 8) { /* INTER */ if (h->thirdpel_flag && h->halfpel_flag == !get_bits (&s->gb, 1)) { mode = THIRDPEL_MODE; } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits (&s->gb, 1)) { mode = HALFPEL_MODE; } else { mode = FULLPEL_MODE; } /* fill caches */ /* note ref_cache[0] should contain here: ???????? ???11111 N??11111 N??11111 N??11111 N */ if (s->mb_x > 0) { for (i=0; i < 4; i++) { *(uint32_t *) h->mv_cache[0][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[0][b_xy - 1 + i*h->b_stride]; } } else { for (i=0; i < 4; i++) { *(uint32_t *) h->mv_cache[0][scan8[0] - 1 + i*8] = 0; } } if (s->mb_y > 0) { memcpy (h->mv_cache[0][scan8[0] - 1*8], s->current_picture.motion_val[0][b_xy - h->b_stride], 4*2*sizeof(int16_t)); memset (&h->ref_cache[0][scan8[0] - 1*8], 1, 4); if (s->mb_x < (s->mb_width - 1)) { *(uint32_t *) h->mv_cache[0][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[0][b_xy - h->b_stride + 4]; h->ref_cache[0][scan8[0] + 4 - 1*8] = 1; }else h->ref_cache[0][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE; if (s->mb_x > 0) { *(uint32_t *) h->mv_cache[0][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[0][b_xy - h->b_stride - 1]; h->ref_cache[0][scan8[0] - 1 - 1*8] = 1; }else h->ref_cache[0][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE; }else memset (&h->ref_cache[0][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8); /* decode motion vector(s) and form prediction(s) */ part_width = ((mb_type & 5) == 5) ? 4 : 8 << (mb_type & 1); part_height = 16 >> ((unsigned) mb_type / 3); for (i=0; i < 16; i+=part_height) { for (j=0; j < 16; j+=part_width) { int dxy; x = 16*s->mb_x + j; y = 16*s->mb_y + i; k = ((j>>2)&1) + ((i>>1)&2) + ((j>>1)&4) + (i&8); pred_motion (h, k, (part_width >> 2), 0, 1, &mx, &my); /* clip motion vector prediction to frame border */ mx = clip (mx, -6*x, 6*(s->h_edge_pos - part_width - x)); my = clip (my, -6*y, 6*(s->v_edge_pos - part_height - y)); /* get motion vector differential */ dy = svq3_get_se_golomb (&s->gb); dx = svq3_get_se_golomb (&s->gb); if (dx == INVALID_VLC || dy == INVALID_VLC) { return -1; } /* compute motion vector */ if (mode == THIRDPEL_MODE) { int fx, fy; mx = ((mx + 1)>>1) + dx; my = ((my + 1)>>1) + dy; fx= ((unsigned)(mx + 0x3000))/3 - 0x1000; fy= ((unsigned)(my + 0x3000))/3 - 0x1000; dxy= (mx - 3*fx) + 4*(my - 3*fy); svq3_mc_dir_part (s, x, y, part_width, part_height, fx, fy, dxy, 1); mx += mx; my += my; } else if (mode == HALFPEL_MODE) { mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000; my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000; dxy= (mx&1) + 2*(my&1); svq3_mc_dir_part (s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0); mx *= 3; my *= 3; } else { assert(mode == FULLPEL_MODE); mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000; my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000; svq3_mc_dir_part (s, x, y, part_width, part_height, mx, my, 0, 0); mx *= 6; my *= 6; } /* update mv_cache */ fill_rectangle(h->mv_cache[0][scan8[k]], part_width>>2, part_height>>2, 8, pack16to32(mx,my), 4); } } for (i=0; i < 4; i++) { memcpy (s->current_picture.motion_val[0][b_xy + i*h->b_stride], h->mv_cache[0][scan8[0] + 8*i], 4*2*sizeof(int16_t)); } if ((vlc = svq3_get_ue_golomb (&s->gb)) >= 48) return -1; cbp = golomb_to_inter_cbp[vlc]; mb_type = MB_TYPE_16x16; } else if (mb_type == 8) { /* INTRA4x4 */ memset (h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t)); if (s->mb_x > 0) { for (i=0; i < 4; i++) { h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[mb_xy - 1][i]; } } if (s->mb_y > 0) { h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][4]; h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][5]; h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][6]; h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][3]; } /* decode prediction codes for luma blocks */ for (i=0; i < 16; i+=2) { vlc = svq3_get_ue_golomb (&s->gb); if (vlc >= 25) return -1; left = &h->intra4x4_pred_mode_cache[scan8[i] - 1]; top = &h->intra4x4_pred_mode_cache[scan8[i] - 8]; left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]]; left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]]; if (left[1] == -1 || left[2] == -1) return -1; } write_back_intra_pred_mode (h); check_intra4x4_pred_mode (h); if ((vlc = svq3_get_ue_golomb (&s->gb)) >= 48) return -1; cbp = golomb_to_intra4x4_cbp[vlc]; mb_type = MB_TYPE_INTRA4x4; } else { /* INTRA16x16 */ dir = i_mb_type_info[mb_type - 8].pred_mode; dir = (dir >> 1) ^ 3*(dir & 1) ^ 1; if ((h->intra16x16_pred_mode = check_intra_pred_mode (h, dir)) == -1) return -1; cbp = i_mb_type_info[mb_type - 8].cbp; mb_type = MB_TYPE_INTRA16x16; } if (!IS_INTER(mb_type) && s->pict_type != I_TYPE) { for (i=0; i < 4; i++) { memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t)); } } if (!IS_INTRA4x4(mb_type)) { memset (h->intra4x4_pred_mode[mb_xy], DC_PRED, 8); } if (!IS_SKIP(mb_type)) { memset (h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t)); s->dsp.clear_blocks(h->mb); } if (IS_INTRA16x16(mb_type) || (s->pict_type != I_TYPE && s->adaptive_quant && cbp)) { s->qscale += svq3_get_se_golomb (&s->gb); if (s->qscale > 31) return -1; } if (IS_INTRA16x16(mb_type)) { if (svq3_decode_block (&s->gb, h->mb, 0, 0)) return -1; } if (!IS_SKIP(mb_type) && cbp) { l = IS_INTRA16x16(mb_type) ? 1 : 0; m = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1); for (i=0; i < 4; i++) { if ((cbp & (1 << i))) { for (j=0; j < 4; j++) { k = l ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j); h->non_zero_count_cache[ scan8[k] ] = 1; if (svq3_decode_block (&s->gb, &h->mb[16*k], l, m)) return -1; } } } if ((cbp & 0x30)) { for (i=0; i < 2; ++i) { if (svq3_decode_block (&s->gb, &h->mb[16*(16 + 4*i)], 0, 3)) return -1; } if ((cbp & 0x20)) { for (i=0; i < 8; i++) { h->non_zero_count_cache[ scan8[16+i] ] = 1; if (svq3_decode_block (&s->gb, &h->mb[16*(16 + i)], 1, 1)) return -1; } } } } s->current_picture.mb_type[mb_xy] = mb_type; if (IS_INTRA(mb_type)) { h->chroma_pred_mode = check_intra_pred_mode (h, DC_PRED8x8); } return 0; } static int svq3_decode_frame (AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { MpegEncContext *const s = avctx->priv_data; H264Context *const h = avctx->priv_data; int i; s->flags = avctx->flags; if (!s->context_initialized) { s->width = avctx->width; s->height = avctx->height; h->pred4x4[DIAG_DOWN_LEFT_PRED] = pred4x4_down_left_svq3_c; h->pred16x16[PLANE_PRED8x8] = pred16x16_plane_svq3_c; h->halfpel_flag = 1; h->thirdpel_flag = 1; h->chroma_qp = 4; if (MPV_common_init (s) < 0) return -1; h->b_stride = 4*s->mb_width; alloc_tables (h); } s->low_delay= 1; if (avctx->extradata && avctx->extradata_size >= 0x63 && !memcmp (avctx->extradata, "SVQ3", 4)) { uint8_t *stsd = (uint8_t *) avctx->extradata + 0x62; if ((*stsd >> 5) != 7 || avctx->extradata_size >= 0x66) { if ((*stsd >> 5) == 7) { stsd += 3; /* skip width, height (12 bits each) */ } h->halfpel_flag = (*stsd >> 4) & 1; h->thirdpel_flag = (*stsd >> 3) & 1; } } if ((buf[0] & 0x9F) != 1) { /* TODO: what? */ fprintf (stderr, "unsupported header (%02X)\n", buf[0]); return -1; } else { int length = (buf[0] >> 5) & 3; int offset = 0; for (i=0; i < length; i++) { offset = (offset << 8) | buf[i + 1]; } if (buf_size < (offset + length + 1) || length == 0) return -1; memcpy (&buf[2], &buf[offset + 2], (length - 1)); } init_get_bits (&s->gb, &buf[2], 8*(buf_size - 2)); if ((i = svq3_get_ue_golomb (&s->gb)) == INVALID_VLC || i >= 3) return -1; s->pict_type = golomb_to_pict_type[i]; /* unknown fields */ get_bits (&s->gb, 1); get_bits (&s->gb, 8); s->qscale = get_bits (&s->gb, 5); s->adaptive_quant = get_bits (&s->gb, 1); /* unknown fields */ get_bits (&s->gb, 1); get_bits (&s->gb, 1); get_bits (&s->gb, 2); while (get_bits (&s->gb, 1)) { get_bits (&s->gb, 8); } if(avctx->debug&FF_DEBUG_PICT_INFO){ printf("%c hpel:%d, tpel:%d aqp:%d qp:%d\n", av_get_pict_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag, s->adaptive_quant, s->qscale ); } /* B-frames are not supported */ if (s->pict_type == B_TYPE/* && avctx->hurry_up*/) return buf_size; frame_start (h); for(i=0; i<4; i++){ int j; for(j=-1; j<4; j++) h->ref_cache[0][scan8[0] + 8*i + j]= 1; h->ref_cache[0][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE; } for (s->mb_y=0; s->mb_y < s->mb_height; s->mb_y++) { for (s->mb_x=0; s->mb_x < s->mb_width; s->mb_x++) { int mb_type = svq3_get_ue_golomb (&s->gb); if (s->pict_type == I_TYPE) { mb_type += 8; } if (mb_type > 32 || svq3_decode_mb (h, mb_type)) { fprintf (stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); return -1; } if (mb_type != 0) { hl_decode_mb (h); } } ff_draw_horiz_band(s, 16*s->mb_y, 16); } *(AVFrame *) data = *(AVFrame *) &s->current_picture; *data_size = sizeof(AVFrame); MPV_frame_end(s); return buf_size; } AVCodec svq3_decoder = { "svq3", CODEC_TYPE_VIDEO, CODEC_ID_SVQ3, sizeof(H264Context), decode_init, NULL, decode_end, svq3_decode_frame, CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1, };