;****************************************************************************** ;* MMX optimized DSP utils ;* Copyright (c) 2008 Loren Merritt ;* ;* This file is part of FFmpeg. ;* ;* FFmpeg is free software; you can redistribute it and/or ;* modify it under the terms of the GNU Lesser General Public ;* License as published by the Free Software Foundation; either ;* version 2.1 of the License, or (at your option) any later version. ;* ;* FFmpeg is distributed in the hope that it will be useful, ;* but WITHOUT ANY WARRANTY; without even the implied warranty of ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;* Lesser General Public License for more details. ;* ;* You should have received a copy of the GNU Lesser General Public ;* License along with FFmpeg; if not, write to the Free Software ;* 51, Inc., Foundation Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ;****************************************************************************** %include "x86inc.asm" SECTION_RODATA pb_f: times 16 db 15 pb_zzzzzzzz77777777: times 8 db -1 pb_7: times 8 db 7 pb_zzzz3333zzzzbbbb: db -1,-1,-1,-1,3,3,3,3,-1,-1,-1,-1,11,11,11,11 pb_zz11zz55zz99zzdd: db -1,-1,1,1,-1,-1,5,5,-1,-1,9,9,-1,-1,13,13 section .text align=16 %macro SCALARPRODUCT 1 ; int scalarproduct_int16(int16_t *v1, int16_t *v2, int order, int shift) cglobal scalarproduct_int16_%1, 3,3,4, v1, v2, order, shift shl orderq, 1 add v1q, orderq add v2q, orderq neg orderq movd m3, shiftm pxor m2, m2 .loop: movu m0, [v1q + orderq] movu m1, [v1q + orderq + mmsize] pmaddwd m0, [v2q + orderq] pmaddwd m1, [v2q + orderq + mmsize] paddd m2, m0 paddd m2, m1 add orderq, mmsize*2 jl .loop %if mmsize == 16 movhlps m0, m2 paddd m2, m0 psrad m2, m3 pshuflw m0, m2, 0x4e %else psrad m2, m3 pshufw m0, m2, 0x4e %endif paddd m2, m0 movd eax, m2 RET ; int scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, int order, int mul) cglobal scalarproduct_and_madd_int16_%1, 4,4,8, v1, v2, v3, order, mul shl orderq, 1 movd m7, mulm %if mmsize == 16 pshuflw m7, m7, 0 punpcklqdq m7, m7 %else pshufw m7, m7, 0 %endif pxor m6, m6 add v1q, orderq add v2q, orderq add v3q, orderq neg orderq .loop: movu m0, [v2q + orderq] movu m1, [v2q + orderq + mmsize] mova m4, [v1q + orderq] mova m5, [v1q + orderq + mmsize] movu m2, [v3q + orderq] movu m3, [v3q + orderq + mmsize] pmaddwd m0, m4 pmaddwd m1, m5 pmullw m2, m7 pmullw m3, m7 paddd m6, m0 paddd m6, m1 paddw m2, m4 paddw m3, m5 mova [v1q + orderq], m2 mova [v1q + orderq + mmsize], m3 add orderq, mmsize*2 jl .loop %if mmsize == 16 movhlps m0, m6 paddd m6, m0 pshuflw m0, m6, 0x4e %else pshufw m0, m6, 0x4e %endif paddd m6, m0 movd eax, m6 RET %endmacro INIT_MMX SCALARPRODUCT mmx2 INIT_XMM SCALARPRODUCT sse2 %macro SCALARPRODUCT_LOOP 1 align 16 .loop%1: sub orderq, mmsize*2 %if %1 mova m1, m4 mova m4, [v2q + orderq] mova m0, [v2q + orderq + mmsize] palignr m1, m0, %1 palignr m0, m4, %1 mova m3, m5 mova m5, [v3q + orderq] mova m2, [v3q + orderq + mmsize] palignr m3, m2, %1 palignr m2, m5, %1 %else mova m0, [v2q + orderq] mova m1, [v2q + orderq + mmsize] mova m2, [v3q + orderq] mova m3, [v3q + orderq + mmsize] %endif %define t0 [v1q + orderq] %define t1 [v1q + orderq + mmsize] %ifdef ARCH_X86_64 mova m8, t0 mova m9, t1 %define t0 m8 %define t1 m9 %endif pmaddwd m0, t0 pmaddwd m1, t1 pmullw m2, m7 pmullw m3, m7 paddw m2, t0 paddw m3, t1 paddd m6, m0 paddd m6, m1 mova [v1q + orderq], m2 mova [v1q + orderq + mmsize], m3 jg .loop%1 %if %1 jmp .end %endif %endmacro ; int scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, int order, int mul) cglobal scalarproduct_and_madd_int16_ssse3, 4,5,10, v1, v2, v3, order, mul shl orderq, 1 movd m7, mulm pshuflw m7, m7, 0 punpcklqdq m7, m7 pxor m6, m6 mov r4d, v2d and r4d, 15 and v2q, ~15 and v3q, ~15 mova m4, [v2q + orderq] mova m5, [v3q + orderq] ; linear is faster than branch tree or jump table, because the branches taken are cyclic (i.e. predictable) cmp r4d, 0 je .loop0 cmp r4d, 2 je .loop2 cmp r4d, 4 je .loop4 cmp r4d, 6 je .loop6 cmp r4d, 8 je .loop8 cmp r4d, 10 je .loop10 cmp r4d, 12 je .loop12 SCALARPRODUCT_LOOP 14 SCALARPRODUCT_LOOP 12 SCALARPRODUCT_LOOP 10 SCALARPRODUCT_LOOP 8 SCALARPRODUCT_LOOP 6 SCALARPRODUCT_LOOP 4 SCALARPRODUCT_LOOP 2 SCALARPRODUCT_LOOP 0 .end: movhlps m0, m6 paddd m6, m0 pshuflw m0, m6, 0x4e paddd m6, m0 movd eax, m6 RET ; void add_hfyu_median_prediction_mmx2(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top) cglobal add_hfyu_median_prediction_mmx2, 6,6,0, dst, top, diff, w, left, left_top movq mm0, [topq] movq mm2, mm0 movd mm4, [left_topq] psllq mm2, 8 movq mm1, mm0 por mm4, mm2 movd mm3, [leftq] psubb mm0, mm4 ; t-tl add dstq, wq add topq, wq add diffq, wq neg wq jmp .skip .loop: movq mm4, [topq+wq] movq mm0, mm4 psllq mm4, 8 por mm4, mm1 movq mm1, mm0 ; t psubb mm0, mm4 ; t-tl .skip: movq mm2, [diffq+wq] %assign i 0 %rep 8 movq mm4, mm0 paddb mm4, mm3 ; t-tl+l movq mm5, mm3 pmaxub mm3, mm1 pminub mm5, mm1 pminub mm3, mm4 pmaxub mm3, mm5 ; median paddb mm3, mm2 ; +residual %if i==0 movq mm7, mm3 psllq mm7, 56 %else movq mm6, mm3 psrlq mm7, 8 psllq mm6, 56 por mm7, mm6 %endif %if i<7 psrlq mm0, 8 psrlq mm1, 8 psrlq mm2, 8 %endif %assign i i+1 %endrep movq [dstq+wq], mm7 add wq, 8 jl .loop movzx r2d, byte [dstq-1] mov [leftq], r2d movzx r2d, byte [topq-1] mov [left_topq], r2d RET %macro ADD_HFYU_LEFT_LOOP 1 ; %1 = is_aligned add srcq, wq add dstq, wq neg wq %%.loop: mova m1, [srcq+wq] mova m2, m1 psllw m1, 8 paddb m1, m2 mova m2, m1 pshufb m1, m3 paddb m1, m2 pshufb m0, m5 mova m2, m1 pshufb m1, m4 paddb m1, m2 %if mmsize == 16 mova m2, m1 pshufb m1, m6 paddb m1, m2 %endif paddb m0, m1 %if %1 mova [dstq+wq], m0 %else movq [dstq+wq], m0 movhps [dstq+wq+8], m0 %endif add wq, mmsize jl %%.loop mov eax, mmsize-1 sub eax, wd movd m1, eax pshufb m0, m1 movd eax, m0 RET %endmacro ; int add_hfyu_left_prediction(uint8_t *dst, const uint8_t *src, int w, int left) INIT_MMX cglobal add_hfyu_left_prediction_ssse3, 3,3,7, dst, src, w, left .skip_prologue: mova m5, [pb_7] mova m4, [pb_zzzz3333zzzzbbbb] mova m3, [pb_zz11zz55zz99zzdd] movd m0, leftm psllq m0, 56 ADD_HFYU_LEFT_LOOP 1 INIT_XMM cglobal add_hfyu_left_prediction_sse4, 3,3,7, dst, src, w, left mova m5, [pb_f] mova m6, [pb_zzzzzzzz77777777] mova m4, [pb_zzzz3333zzzzbbbb] mova m3, [pb_zz11zz55zz99zzdd] movd m0, leftm pslldq m0, 15 test srcq, 15 jnz add_hfyu_left_prediction_ssse3.skip_prologue test dstq, 15 jnz .unaligned ADD_HFYU_LEFT_LOOP 1 .unaligned: ADD_HFYU_LEFT_LOOP 0 ; float scalarproduct_float_sse(const float *v1, const float *v2, int len) cglobal scalarproduct_float_sse, 3,3,2, v1, v2, offset neg offsetq shl offsetq, 2 sub v1q, offsetq sub v2q, offsetq xorps xmm0, xmm0 .loop: movaps xmm1, [v1q+offsetq] mulps xmm1, [v2q+offsetq] addps xmm0, xmm1 add offsetq, 16 js .loop movhlps xmm1, xmm0 addps xmm0, xmm1 movss xmm1, xmm0 shufps xmm0, xmm0, 1 addss xmm0, xmm1 %ifndef ARCH_X86_64 movd r0m, xmm0 fld dword r0m %endif RET ; extern void ff_emu_edge_core(uint8_t *buf, const uint8_t *src, x86_reg linesize, ; x86_reg start_y, x86_reg end_y, x86_reg block_h, ; x86_reg start_x, x86_reg end_x, x86_reg block_w); ; ; The actual function itself is below. It basically wraps a very simple ; w = end_x - start_x ; if (w) { ; if (w > 22) { ; jump to the slow loop functions ; } else { ; jump to the fast loop functions ; } ; } ; ; ... and then the same for left/right extend also. See below for loop ; function implementations. Fast are fixed-width, slow is variable-width %macro EMU_EDGE_FUNC 1 %ifdef ARCH_X86_64 %define w_reg r10 cglobal emu_edge_core_%1, 6, 7, 1 mov r11, r5 ; save block_h %else %define w_reg r6 cglobal emu_edge_core_%1, 2, 7, 0 mov r4, r4m ; end_y mov r5, r5m ; block_h %endif ; start with vertical extend (top/bottom) and body pixel copy mov w_reg, r7m sub w_reg, r6m ; w = start_x - end_x sub r5, r4 %ifdef ARCH_X86_64 sub r4, r3 %else sub r4, dword r3m %endif cmp w_reg, 22 jg .slow_v_extend_loop %ifdef ARCH_X86_32 mov r2, r2m ; linesize %endif sal w_reg, 7 ; w * 128 %ifdef PIC lea rax, [.emuedge_v_extend_1 - (.emuedge_v_extend_2 - .emuedge_v_extend_1)] add w_reg, rax %else lea w_reg, [.emuedge_v_extend_1 - (.emuedge_v_extend_2 - .emuedge_v_extend_1)+w_reg] %endif call w_reg ; fast top extend, body copy and bottom extend .v_extend_end: ; horizontal extend (left/right) mov w_reg, r6m ; start_x sub r0, w_reg %ifdef ARCH_X86_64 mov r3, r0 ; backup of buf+block_h*linesize mov r5, r11 %else mov r0m, r0 ; backup of buf+block_h*linesize mov r5, r5m %endif test w_reg, w_reg jz .right_extend cmp w_reg, 22 jg .slow_left_extend_loop mov r1, w_reg dec w_reg ; FIXME we can do a if size == 1 here if that makes any speed difference, test me sar w_reg, 1 sal w_reg, 6 ; r0=buf+block_h*linesize,r10(64)/r6(32)=start_x offset for funcs ; r6(rax)/r3(ebx)=val,r2=linesize,r1=start_x,r5=block_h %ifdef PIC lea rax, [.emuedge_extend_left_2] add w_reg, rax %else lea w_reg, [.emuedge_extend_left_2+w_reg] %endif call w_reg ; now r3(64)/r0(32)=buf,r2=linesize,r11/r5=block_h,r6/r3=val, r10/r6=end_x, r1=block_w .right_extend: %ifdef ARCH_X86_32 mov r0, r0m mov r5, r5m %endif mov w_reg, r7m ; end_x mov r1, r8m ; block_w mov r4, r1 sub r1, w_reg jz .h_extend_end ; if (end_x == block_w) goto h_extend_end cmp r1, 22 jg .slow_right_extend_loop dec r1 ; FIXME we can do a if size == 1 here if that makes any speed difference, test me sar r1, 1 sal r1, 6 %ifdef PIC lea rax, [.emuedge_extend_right_2] add r1, rax %else lea r1, [.emuedge_extend_right_2+r1] %endif call r1 .h_extend_end: RET %ifdef ARCH_X86_64 %define vall al %define valh ah %define valw ax %define valw2 r10w %define valw3 r3w %define vald eax %else %define vall bl %define valh bh %define valw bx %define valw2 r6w %define valw3 valw2 %define vald ebx %define stack_offset 0x14 %endif %endmacro ; macro to read/write a horizontal number of pixels (%2) to/from registers ; on x86-64, - fills xmm0-15 for consecutive sets of 16 pixels ; - if (%2 & 15 == 8) fills the last 8 bytes into rax ; - else if (%2 & 8) fills 8 bytes into mm0 ; - if (%2 & 7 == 4) fills the last 4 bytes into rax ; - else if (%2 & 4) fills 4 bytes into mm0-1 ; - if (%2 & 3 == 3) fills 2 bytes into r10/r3, and 1 into eax ; (note that we're using r3 for body/bottom because it's a shorter ; opcode, and then the loop fits in 128 bytes) ; - else fills remaining bytes into rax ; on x86-32, - fills mm0-7 for consecutive sets of 8 pixels ; - if (%2 & 7 == 4) fills 4 bytes into ebx ; - else if (%2 & 4) fills 4 bytes into mm0-7 ; - if (%2 & 3 == 3) fills 2 bytes into r6, and 1 into ebx ; - else fills remaining bytes into ebx ; writing data out is in the same way %macro READ_NUM_BYTES 3 %assign %%src_off 0 ; offset in source buffer %assign %%smidx 0 ; mmx register idx %assign %%sxidx 0 ; xmm register idx %ifnidn %3, mmx %rep %2/16 movdqu xmm %+ %%sxidx, [r1+%%src_off] %assign %%src_off %%src_off+16 %assign %%sxidx %%sxidx+1 %endrep ; %2/16 %endif ; !mmx %ifdef ARCH_X86_64 %if (%2-%%src_off) == 8 mov rax, [r1+%%src_off] %assign %%src_off %%src_off+8 %endif ; (%2-%%src_off) == 8 %endif ; x86-64 %rep (%2-%%src_off)/8 movq mm %+ %%smidx, [r1+%%src_off] %assign %%src_off %%src_off+8 %assign %%smidx %%smidx+1 %endrep ; (%2-%%dst_off)/8 %if (%2-%%src_off) == 4 mov vald, [r1+%%src_off] %elif (%2-%%src_off) & 4 movd mm %+ %%smidx, [r1+%%src_off] %assign %%src_off %%src_off+4 %endif ; (%2-%%src_off) ==/& 4 %if (%2-%%src_off) == 1 mov vall, [r1+%%src_off] %elif (%2-%%src_off) == 2 mov valw, [r1+%%src_off] %elif (%2-%%src_off) == 3 %ifidn %1, top mov valw2, [r1+%%src_off] %else ; %1 != top mov valw3, [r1+%%src_off] %endif ; %1 ==/!= top mov vall, [r1+%%src_off+2] %endif ; (%2-%%src_off) == 1/2/3 %endmacro ; READ_NUM_BYTES %macro WRITE_NUM_BYTES 3 %assign %%dst_off 0 ; offset in destination buffer %assign %%dmidx 0 ; mmx register idx %assign %%dxidx 0 ; xmm register idx %ifnidn %3, mmx %rep %2/16 movdqu [r0+%%dst_off], xmm %+ %%dxidx %assign %%dst_off %%dst_off+16 %assign %%dxidx %%dxidx+1 %endrep ; %2/16 %endif %ifdef ARCH_X86_64 %if (%2-%%dst_off) == 8 mov [r0+%%dst_off], rax %assign %%dst_off %%dst_off+8 %endif ; (%2-%%dst_off) == 8 %endif ; x86-64 %rep (%2-%%dst_off)/8 movq [r0+%%dst_off], mm %+ %%dmidx %assign %%dst_off %%dst_off+8 %assign %%dmidx %%dmidx+1 %endrep ; (%2-%%dst_off)/8 %if (%2-%%dst_off) == 4 mov [r0+%%dst_off], vald %elif (%2-%%dst_off) & 4 movd [r0+%%dst_off], mm %+ %%dmidx %assign %%dst_off %%dst_off+4 %endif ; (%2-%%dst_off) ==/& 4 %if (%2-%%dst_off) == 1 mov [r0+%%dst_off], vall %elif (%2-%%dst_off) == 2 mov [r0+%%dst_off], valw %elif (%2-%%dst_off) == 3 %ifidn %1, top mov [r0+%%dst_off], valw2 %else ; %1 != top mov [r0+%%dst_off], valw3 %endif ; %1 ==/!= top mov [r0+%%dst_off+2], vall %endif ; (%2-%%dst_off) == 1/2/3 %endmacro ; WRITE_NUM_BYTES ; vertical top/bottom extend and body copy fast loops ; these are function pointers to set-width line copy functions, i.e. ; they read a fixed number of pixels into set registers, and write ; those out into the destination buffer ; r0=buf,r1=src,r2=linesize,r3(64)/r3m(32)=start_x,r4=end_y,r5=block_h ; r6(eax/64)/r3(ebx/32)=val_reg %macro VERTICAL_EXTEND 1 %assign %%n 1 %rep 22 ALIGN 128 .emuedge_v_extend_ %+ %%n: ; extend pixels above body %ifdef ARCH_X86_64 test r3 , r3 ; if (!start_y) jz .emuedge_copy_body_ %+ %%n %+ _loop ; goto body %else ; ARCH_X86_32 cmp dword r3m, 0 je .emuedge_copy_body_ %+ %%n %+ _loop %endif ; ARCH_X86_64/32 READ_NUM_BYTES top, %%n, %1 ; read bytes .emuedge_extend_top_ %+ %%n %+ _loop: ; do { WRITE_NUM_BYTES top, %%n, %1 ; write bytes add r0 , r2 ; dst += linesize %ifdef ARCH_X86_64 dec r3 %else ; ARCH_X86_32 dec dword r3m %endif ; ARCH_X86_64/32 jnz .emuedge_extend_top_ %+ %%n %+ _loop ; } while (--start_y) ; copy body pixels .emuedge_copy_body_ %+ %%n %+ _loop: ; do { READ_NUM_BYTES body, %%n, %1 ; read bytes WRITE_NUM_BYTES body, %%n, %1 ; write bytes add r0 , r2 ; dst += linesize add r1 , r2 ; src += linesize dec r4 jnz .emuedge_copy_body_ %+ %%n %+ _loop ; } while (--end_y) ; copy bottom pixels test r5 , r5 ; if (!block_h) jz .emuedge_v_extend_end_ %+ %%n ; goto end sub r1 , r2 ; src -= linesize READ_NUM_BYTES bottom, %%n, %1 ; read bytes .emuedge_extend_bottom_ %+ %%n %+ _loop: ; do { WRITE_NUM_BYTES bottom, %%n, %1 ; write bytes add r0 , r2 ; dst += linesize dec r5 jnz .emuedge_extend_bottom_ %+ %%n %+ _loop ; } while (--block_h) .emuedge_v_extend_end_ %+ %%n: %ifdef ARCH_X86_64 ret %else ; ARCH_X86_32 rep ret %endif ; ARCH_X86_64/32 %assign %%n %%n+1 %endrep %endmacro VERTICAL_EXTEND ; left/right (horizontal) fast extend functions ; these are essentially identical to the vertical extend ones above, ; just left/right separated because number of pixels to extend is ; obviously not the same on both sides. ; for reading, pixels are placed in eax (x86-64) or ebx (x86-64) in the ; lowest two bytes of the register (so val*0x0101), and are splatted ; into each byte of mm0 as well if n_pixels >= 8 %macro READ_V_PIXEL 3 mov vall, %2 mov valh, vall %if %1 >= 8 movd mm0, vald %ifidn %3, mmx punpcklwd mm0, mm0 punpckldq mm0, mm0 %else ; !mmx pshufw mm0, mm0, 0 %endif ; mmx %endif ; %1 >= 8 %endmacro %macro WRITE_V_PIXEL 2 %assign %%dst_off 0 %rep %1/8 movq [%2+%%dst_off], mm0 %assign %%dst_off %%dst_off+8 %endrep %if %1 & 4 %if %1 >= 8 movd [%2+%%dst_off], mm0 %else ; %1 < 8 mov [%2+%%dst_off] , valw mov [%2+%%dst_off+2], valw %endif ; %1 >=/< 8 %assign %%dst_off %%dst_off+4 %endif ; %1 & 4 %if %1&2 mov [%2+%%dst_off], valw %endif ; %1 & 2 %endmacro ; r0=buf+block_h*linesize, r1=start_x, r2=linesize, r5=block_h, r6/r3=val %macro LEFT_EXTEND 1 %assign %%n 2 %rep 11 ALIGN 64 .emuedge_extend_left_ %+ %%n: ; do { sub r0, r2 ; dst -= linesize READ_V_PIXEL %%n, [r0+r1], %1 ; read pixels WRITE_V_PIXEL %%n, r0 ; write pixels dec r5 jnz .emuedge_extend_left_ %+ %%n ; } while (--block_h) %ifdef ARCH_X86_64 ret %else ; ARCH_X86_32 rep ret %endif ; ARCH_X86_64/32 %assign %%n %%n+2 %endrep %endmacro ; LEFT_EXTEND ; r3/r0=buf+block_h*linesize, r2=linesize, r11/r5=block_h, r0/r6=end_x, r6/r3=val %macro RIGHT_EXTEND 1 %assign %%n 2 %rep 11 ALIGN 64 .emuedge_extend_right_ %+ %%n: ; do { %ifdef ARCH_X86_64 sub r3, r2 ; dst -= linesize READ_V_PIXEL %%n, [r3+w_reg-1], %1 ; read pixels WRITE_V_PIXEL %%n, r3+r4-%%n ; write pixels dec r11 %else ; ARCH_X86_32 sub r0, r2 ; dst -= linesize READ_V_PIXEL %%n, [r0+w_reg-1], %1 ; read pixels WRITE_V_PIXEL %%n, r0+r4-%%n ; write pixels dec r5 %endif ; ARCH_X86_64/32 jnz .emuedge_extend_right_ %+ %%n ; } while (--block_h) %ifdef ARCH_X86_64 ret %else ; ARCH_X86_32 rep ret %endif ; ARCH_X86_64/32 %assign %%n %%n+2 %endrep %ifdef ARCH_X86_32 %define stack_offset 0x10 %endif %endmacro ; RIGHT_EXTEND ; below follow the "slow" copy/extend functions, these act on a non-fixed ; width specified in a register, and run a loop to copy the full amount ; of bytes. They are optimized for copying of large amounts of pixels per ; line, so they unconditionally splat data into mm registers to copy 8 ; bytes per loop iteration. It could be considered to use xmm for x86-64 ; also, but I haven't optimized this as much (i.e. FIXME) %macro V_COPY_NPX 4-5 %if %0 == 4 test w_reg, %4 jz .%1_skip_%4_px %else ; %0 == 5 .%1_%4_px_loop: %endif %3 %2, [r1+cnt_reg] %3 [r0+cnt_reg], %2 add cnt_reg, %4 %if %0 == 5 sub w_reg, %4 test w_reg, %5 jnz .%1_%4_px_loop %endif .%1_skip_%4_px: %endmacro %macro V_COPY_ROW 3 %ifidn %1, bottom sub r1, linesize %endif .%1_copy_loop: xor cnt_reg, cnt_reg %ifidn %3, mmx %define linesize r2m V_COPY_NPX %1, mm0, movq, 8, 0xFFFFFFF8 %else ; !mmx V_COPY_NPX %1, xmm0, movdqu, 16, 0xFFFFFFF0 %ifdef ARCH_X86_64 %define linesize r2 V_COPY_NPX %1, rax , mov, 8 %else ; ARCH_X86_32 %define linesize r2m V_COPY_NPX %1, mm0, movq, 8 %endif ; ARCH_X86_64/32 %endif ; mmx V_COPY_NPX %1, vald, mov, 4 V_COPY_NPX %1, valw, mov, 2 V_COPY_NPX %1, vall, mov, 1 mov w_reg, cnt_reg %ifidn %1, body add r1, linesize %endif add r0, linesize dec %2 jnz .%1_copy_loop %endmacro %macro SLOW_V_EXTEND 1 .slow_v_extend_loop: ; r0=buf,r1=src,r2(64)/r2m(32)=linesize,r3(64)/r3m(32)=start_x,r4=end_y,r5=block_h ; r11(64)/r3(later-64)/r2(32)=cnt_reg,r6(64)/r3(32)=val_reg,r10(64)/r6(32)=w=end_x-start_x %ifdef ARCH_X86_64 push r11 ; save old value of block_h test r3, r3 %define cnt_reg r11 jz .do_body_copy ; if (!start_y) goto do_body_copy V_COPY_ROW top, r3, %1 %else cmp dword r3m, 0 %define cnt_reg r2 je .do_body_copy ; if (!start_y) goto do_body_copy V_COPY_ROW top, dword r3m, %1 %endif .do_body_copy: V_COPY_ROW body, r4, %1 %ifdef ARCH_X86_64 pop r11 ; restore old value of block_h %define cnt_reg r3 %endif test r5, r5 %ifdef ARCH_X86_64 jz .v_extend_end %else jz .skip_bottom_extend %endif V_COPY_ROW bottom, r5, %1 %ifdef ARCH_X86_32 .skip_bottom_extend: mov r2, r2m %endif jmp .v_extend_end %endmacro %macro SLOW_LEFT_EXTEND 1 .slow_left_extend_loop: ; r0=buf+block_h*linesize,r2=linesize,r6(64)/r3(32)=val,r5=block_h,r4=cntr,r10/r6=start_x mov r4, 8 sub r0, linesize READ_V_PIXEL 8, [r0+w_reg], %1 .left_extend_8px_loop: movq [r0+r4-8], mm0 add r4, 8 cmp r4, w_reg jle .left_extend_8px_loop sub r4, 8 cmp r4, w_reg jge .left_extend_loop_end .left_extend_2px_loop: mov [r0+r4], valw add r4, 2 cmp r4, w_reg jl .left_extend_2px_loop .left_extend_loop_end: dec r5 jnz .slow_left_extend_loop %ifdef ARCH_X86_32 mov r2, r2m %endif jmp .right_extend %endmacro %macro SLOW_RIGHT_EXTEND 1 .slow_right_extend_loop: ; r3(64)/r0(32)=buf+block_h*linesize,r2=linesize,r4=block_w,r11(64)/r5(32)=block_h, ; r10(64)/r6(32)=end_x,r6/r3=val,r1=cntr %ifdef ARCH_X86_64 %define buf_reg r3 %define bh_reg r11 %else %define buf_reg r0 %define bh_reg r5 %endif lea r1, [r4-8] sub buf_reg, linesize READ_V_PIXEL 8, [buf_reg+w_reg-1], %1 .right_extend_8px_loop: movq [buf_reg+r1], mm0 sub r1, 8 cmp r1, w_reg jge .right_extend_8px_loop add r1, 8 cmp r1, w_reg je .right_extend_loop_end .right_extend_2px_loop: sub r1, 2 mov [buf_reg+r1], valw cmp r1, w_reg jg .right_extend_2px_loop .right_extend_loop_end: dec bh_reg jnz .slow_right_extend_loop jmp .h_extend_end %endmacro %macro emu_edge 1 EMU_EDGE_FUNC %1 VERTICAL_EXTEND %1 LEFT_EXTEND %1 RIGHT_EXTEND %1 SLOW_V_EXTEND %1 SLOW_LEFT_EXTEND %1 SLOW_RIGHT_EXTEND %1 %endmacro emu_edge sse %ifdef ARCH_X86_32 emu_edge mmx %endif