/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ static int FUNC(obu_header)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawOBUHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; int err; HEADER("OBU header"); fc(1, obu_forbidden_bit, 0, 0); fc(4, obu_type, 0, AV1_OBU_PADDING); flag(obu_extension_flag); flag(obu_has_size_field); fc(1, obu_reserved_1bit, 0, 0); if (current->obu_extension_flag) { fb(3, temporal_id); fb(2, spatial_id); fc(3, extension_header_reserved_3bits, 0, 0); } else { infer(temporal_id, 0); infer(spatial_id, 0); } priv->temporal_id = current->temporal_id; priv->spatial_id = current->spatial_id; return 0; } static int FUNC(trailing_bits)(CodedBitstreamContext *ctx, RWContext *rw, int nb_bits) { int err; av_assert0(nb_bits > 0); fixed(1, trailing_one_bit, 1); --nb_bits; while (nb_bits > 0) { fixed(1, trailing_zero_bit, 0); --nb_bits; } return 0; } static int FUNC(byte_alignment)(CodedBitstreamContext *ctx, RWContext *rw) { int err; while (byte_alignment(rw) != 0) fixed(1, zero_bit, 0); return 0; } static int FUNC(color_config)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawColorConfig *current, int seq_profile) { CodedBitstreamAV1Context *priv = ctx->priv_data; int err; flag(high_bitdepth); if (seq_profile == FF_PROFILE_AV1_PROFESSIONAL && current->high_bitdepth) { flag(twelve_bit); priv->bit_depth = current->twelve_bit ? 12 : 10; } else { priv->bit_depth = current->high_bitdepth ? 10 : 8; } if (seq_profile == FF_PROFILE_AV1_HIGH) infer(mono_chrome, 0); else flag(mono_chrome); priv->num_planes = current->mono_chrome ? 1 : 3; flag(color_description_present_flag); if (current->color_description_present_flag) { fb(8, color_primaries); fb(8, transfer_characteristics); fb(8, matrix_coefficients); } else { infer(color_primaries, AVCOL_PRI_UNSPECIFIED); infer(transfer_characteristics, AVCOL_TRC_UNSPECIFIED); infer(matrix_coefficients, AVCOL_SPC_UNSPECIFIED); } if (current->mono_chrome) { flag(color_range); infer(subsampling_x, 1); infer(subsampling_y, 1); infer(chroma_sample_position, AV1_CSP_UNKNOWN); infer(separate_uv_delta_q, 0); } else if (current->color_primaries == AVCOL_PRI_BT709 && current->transfer_characteristics == AVCOL_TRC_IEC61966_2_1 && current->matrix_coefficients == AVCOL_SPC_RGB) { infer(color_range, 1); infer(subsampling_x, 0); infer(subsampling_y, 0); flag(separate_uv_delta_q); } else { flag(color_range); if (seq_profile == FF_PROFILE_AV1_MAIN) { infer(subsampling_x, 1); infer(subsampling_y, 1); } else if (seq_profile == FF_PROFILE_AV1_HIGH) { infer(subsampling_x, 0); infer(subsampling_y, 0); } else { if (priv->bit_depth == 12) { fb(1, subsampling_x); if (current->subsampling_x) fb(1, subsampling_y); else infer(subsampling_y, 0); } else { infer(subsampling_x, 1); infer(subsampling_y, 0); } } if (current->subsampling_x && current->subsampling_y) { fc(2, chroma_sample_position, AV1_CSP_UNKNOWN, AV1_CSP_COLOCATED); } flag(separate_uv_delta_q); } return 0; } static int FUNC(timing_info)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawTimingInfo *current) { int err; fc(32, num_units_in_display_tick, 1, MAX_UINT_BITS(32)); fc(32, time_scale, 1, MAX_UINT_BITS(32)); flag(equal_picture_interval); if (current->equal_picture_interval) uvlc(num_ticks_per_picture_minus_1, 0, MAX_UINT_BITS(32) - 1); return 0; } static int FUNC(decoder_model_info)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawDecoderModelInfo *current) { int err; fb(5, buffer_delay_length_minus_1); fb(32, num_units_in_decoding_tick); fb(5, buffer_removal_time_length_minus_1); fb(5, frame_presentation_time_length_minus_1); return 0; } static int FUNC(sequence_header_obu)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawSequenceHeader *current) { int i, err; HEADER("Sequence Header"); fc(3, seq_profile, FF_PROFILE_AV1_MAIN, FF_PROFILE_AV1_PROFESSIONAL); flag(still_picture); flag(reduced_still_picture_header); if (current->reduced_still_picture_header) { infer(timing_info_present_flag, 0); infer(decoder_model_info_present_flag, 0); infer(initial_display_delay_present_flag, 0); infer(operating_points_cnt_minus_1, 0); infer(operating_point_idc[0], 0); fb(5, seq_level_idx[0]); infer(seq_tier[0], 0); infer(decoder_model_present_for_this_op[0], 0); infer(initial_display_delay_present_for_this_op[0], 0); } else { flag(timing_info_present_flag); if (current->timing_info_present_flag) { CHECK(FUNC(timing_info)(ctx, rw, ¤t->timing_info)); flag(decoder_model_info_present_flag); if (current->decoder_model_info_present_flag) { CHECK(FUNC(decoder_model_info) (ctx, rw, ¤t->decoder_model_info)); } } else { infer(decoder_model_info_present_flag, 0); } flag(initial_display_delay_present_flag); fb(5, operating_points_cnt_minus_1); for (i = 0; i <= current->operating_points_cnt_minus_1; i++) { fbs(12, operating_point_idc[i], 1, i); fbs(5, seq_level_idx[i], 1, i); if (current->seq_level_idx[i] > 7) flags(seq_tier[i], 1, i); else infer(seq_tier[i], 0); if (current->decoder_model_info_present_flag) { flags(decoder_model_present_for_this_op[i], 1, i); if (current->decoder_model_present_for_this_op[i]) { int n = current->decoder_model_info.buffer_delay_length_minus_1 + 1; fbs(n, decoder_buffer_delay[i], 1, i); fbs(n, encoder_buffer_delay[i], 1, i); flags(low_delay_mode_flag[i], 1, i); } } else { infer(decoder_model_present_for_this_op[i], 0); } if (current->initial_display_delay_present_flag) { flags(initial_display_delay_present_for_this_op[i], 1, i); if (current->initial_display_delay_present_for_this_op[i]) fbs(4, initial_display_delay_minus_1[i], 1, i); } } } fb(4, frame_width_bits_minus_1); fb(4, frame_height_bits_minus_1); fb(current->frame_width_bits_minus_1 + 1, max_frame_width_minus_1); fb(current->frame_height_bits_minus_1 + 1, max_frame_height_minus_1); if (current->reduced_still_picture_header) infer(frame_id_numbers_present_flag, 0); else flag(frame_id_numbers_present_flag); if (current->frame_id_numbers_present_flag) { fb(4, delta_frame_id_length_minus_2); fb(3, additional_frame_id_length_minus_1); } flag(use_128x128_superblock); flag(enable_filter_intra); flag(enable_intra_edge_filter); if (current->reduced_still_picture_header) { infer(enable_interintra_compound, 0); infer(enable_masked_compound, 0); infer(enable_warped_motion, 0); infer(enable_dual_filter, 0); infer(enable_order_hint, 0); infer(enable_jnt_comp, 0); infer(enable_ref_frame_mvs, 0); infer(seq_force_screen_content_tools, AV1_SELECT_SCREEN_CONTENT_TOOLS); infer(seq_force_integer_mv, AV1_SELECT_INTEGER_MV); } else { flag(enable_interintra_compound); flag(enable_masked_compound); flag(enable_warped_motion); flag(enable_dual_filter); flag(enable_order_hint); if (current->enable_order_hint) { flag(enable_jnt_comp); flag(enable_ref_frame_mvs); } else { infer(enable_jnt_comp, 0); infer(enable_ref_frame_mvs, 0); } flag(seq_choose_screen_content_tools); if (current->seq_choose_screen_content_tools) infer(seq_force_screen_content_tools, AV1_SELECT_SCREEN_CONTENT_TOOLS); else fb(1, seq_force_screen_content_tools); if (current->seq_force_screen_content_tools > 0) { flag(seq_choose_integer_mv); if (current->seq_choose_integer_mv) infer(seq_force_integer_mv, AV1_SELECT_INTEGER_MV); else fb(1, seq_force_integer_mv); } else { infer(seq_force_integer_mv, AV1_SELECT_INTEGER_MV); } if (current->enable_order_hint) fb(3, order_hint_bits_minus_1); } flag(enable_superres); flag(enable_cdef); flag(enable_restoration); CHECK(FUNC(color_config)(ctx, rw, ¤t->color_config, current->seq_profile)); flag(film_grain_params_present); return 0; } static int FUNC(temporal_delimiter_obu)(CodedBitstreamContext *ctx, RWContext *rw) { CodedBitstreamAV1Context *priv = ctx->priv_data; HEADER("Temporal Delimiter"); priv->seen_frame_header = 0; return 0; } static int FUNC(set_frame_refs)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; const AV1RawSequenceHeader *seq = priv->sequence_header; static const uint8_t ref_frame_list[AV1_NUM_REF_FRAMES - 2] = { AV1_REF_FRAME_LAST2, AV1_REF_FRAME_LAST3, AV1_REF_FRAME_BWDREF, AV1_REF_FRAME_ALTREF2, AV1_REF_FRAME_ALTREF }; int8_t ref_frame_idx[AV1_REFS_PER_FRAME], used_frame[AV1_NUM_REF_FRAMES]; int8_t shifted_order_hints[AV1_NUM_REF_FRAMES]; int cur_frame_hint, latest_order_hint, earliest_order_hint, ref; int i, j; for (i = 0; i < AV1_REFS_PER_FRAME; i++) ref_frame_idx[i] = -1; ref_frame_idx[AV1_REF_FRAME_LAST - AV1_REF_FRAME_LAST] = current->last_frame_idx; ref_frame_idx[AV1_REF_FRAME_GOLDEN - AV1_REF_FRAME_LAST] = current->golden_frame_idx; for (i = 0; i < AV1_NUM_REF_FRAMES; i++) used_frame[i] = 0; used_frame[current->last_frame_idx] = 1; used_frame[current->golden_frame_idx] = 1; cur_frame_hint = 1 << (seq->order_hint_bits_minus_1); for (i = 0; i < AV1_NUM_REF_FRAMES; i++) shifted_order_hints[i] = cur_frame_hint + cbs_av1_get_relative_dist(seq, priv->ref[i].order_hint, priv->order_hint); latest_order_hint = shifted_order_hints[current->last_frame_idx]; earliest_order_hint = shifted_order_hints[current->golden_frame_idx]; ref = -1; for (i = 0; i < AV1_NUM_REF_FRAMES; i++) { int hint = shifted_order_hints[i]; if (!used_frame[i] && hint >= cur_frame_hint && (ref < 0 || hint >= latest_order_hint)) { ref = i; latest_order_hint = hint; } } if (ref >= 0) { ref_frame_idx[AV1_REF_FRAME_ALTREF - AV1_REF_FRAME_LAST] = ref; used_frame[ref] = 1; } ref = -1; for (i = 0; i < AV1_NUM_REF_FRAMES; i++) { int hint = shifted_order_hints[i]; if (!used_frame[i] && hint >= cur_frame_hint && (ref < 0 || hint < earliest_order_hint)) { ref = i; earliest_order_hint = hint; } } if (ref >= 0) { ref_frame_idx[AV1_REF_FRAME_BWDREF - AV1_REF_FRAME_LAST] = ref; used_frame[ref] = 1; } ref = -1; for (i = 0; i < AV1_NUM_REF_FRAMES; i++) { int hint = shifted_order_hints[i]; if (!used_frame[i] && hint >= cur_frame_hint && (ref < 0 || hint < earliest_order_hint)) { ref = i; earliest_order_hint = hint; } } if (ref >= 0) { ref_frame_idx[AV1_REF_FRAME_ALTREF2 - AV1_REF_FRAME_LAST] = ref; used_frame[ref] = 1; } for (i = 0; i < AV1_REFS_PER_FRAME - 2; i++) { int ref_frame = ref_frame_list[i]; if (ref_frame_idx[ref_frame - AV1_REF_FRAME_LAST] < 0 ) { ref = -1; for (j = 0; j < AV1_NUM_REF_FRAMES; j++) { int hint = shifted_order_hints[j]; if (!used_frame[j] && hint < cur_frame_hint && (ref < 0 || hint >= latest_order_hint)) { ref = j; latest_order_hint = hint; } } if (ref >= 0) { ref_frame_idx[ref_frame - AV1_REF_FRAME_LAST] = ref; used_frame[ref] = 1; } } } ref = -1; for (i = 0; i < AV1_NUM_REF_FRAMES; i++) { int hint = shifted_order_hints[i]; if (ref < 0 || hint < earliest_order_hint) { ref = i; earliest_order_hint = hint; } } for (i = 0; i < AV1_REFS_PER_FRAME; i++) { if (ref_frame_idx[i] < 0) ref_frame_idx[i] = ref; infer(ref_frame_idx[i], ref_frame_idx[i]); } return 0; } static int FUNC(superres_params)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; const AV1RawSequenceHeader *seq = priv->sequence_header; int denom, err; if (seq->enable_superres) flag(use_superres); else infer(use_superres, 0); if (current->use_superres) { fb(3, coded_denom); denom = current->coded_denom + AV1_SUPERRES_DENOM_MIN; } else { denom = AV1_SUPERRES_NUM; } priv->upscaled_width = priv->frame_width; priv->frame_width = (priv->upscaled_width * AV1_SUPERRES_NUM + denom / 2) / denom; return 0; } static int FUNC(frame_size)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; const AV1RawSequenceHeader *seq = priv->sequence_header; int err; if (current->frame_size_override_flag) { fb(seq->frame_width_bits_minus_1 + 1, frame_width_minus_1); fb(seq->frame_height_bits_minus_1 + 1, frame_height_minus_1); } else { infer(frame_width_minus_1, seq->max_frame_width_minus_1); infer(frame_height_minus_1, seq->max_frame_height_minus_1); } priv->frame_width = current->frame_width_minus_1 + 1; priv->frame_height = current->frame_height_minus_1 + 1; CHECK(FUNC(superres_params)(ctx, rw, current)); return 0; } static int FUNC(render_size)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; int err; flag(render_and_frame_size_different); if (current->render_and_frame_size_different) { fb(16, render_width_minus_1); fb(16, render_height_minus_1); } else { infer(render_width_minus_1, current->frame_width_minus_1); infer(render_height_minus_1, current->frame_height_minus_1); } priv->render_width = current->render_width_minus_1 + 1; priv->render_height = current->render_height_minus_1 + 1; return 0; } static int FUNC(frame_size_with_refs)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; int i, err; for (i = 0; i < AV1_REFS_PER_FRAME; i++) { flags(found_ref[i], 1, i); if (current->found_ref[i]) { AV1ReferenceFrameState *ref = &priv->ref[current->ref_frame_idx[i]]; if (!ref->valid) { av_log(ctx->log_ctx, AV_LOG_ERROR, "Missing reference frame needed for frame size " "(ref = %d, ref_frame_idx = %d).\n", i, current->ref_frame_idx[i]); return AVERROR_INVALIDDATA; } infer(frame_width_minus_1, ref->upscaled_width - 1); infer(frame_height_minus_1, ref->frame_height - 1); infer(render_width_minus_1, ref->render_width - 1); infer(render_height_minus_1, ref->render_height - 1); priv->upscaled_width = ref->upscaled_width; priv->frame_width = priv->upscaled_width; priv->frame_height = ref->frame_height; priv->render_width = ref->render_width; priv->render_height = ref->render_height; break; } } if (i >= AV1_REFS_PER_FRAME) { CHECK(FUNC(frame_size)(ctx, rw, current)); CHECK(FUNC(render_size)(ctx, rw, current)); } else { CHECK(FUNC(superres_params)(ctx, rw, current)); } return 0; } static int FUNC(interpolation_filter)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { int err; flag(is_filter_switchable); if (current->is_filter_switchable) infer(interpolation_filter, AV1_INTERPOLATION_FILTER_SWITCHABLE); else fb(2, interpolation_filter); return 0; } static int FUNC(tile_info)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; const AV1RawSequenceHeader *seq = priv->sequence_header; int mi_cols, mi_rows, sb_cols, sb_rows, sb_shift, sb_size; int max_tile_width_sb, max_tile_height_sb, max_tile_area_sb; int min_log2_tile_cols, max_log2_tile_cols, max_log2_tile_rows; int min_log2_tiles, min_log2_tile_rows; int i, err; mi_cols = 2 * ((priv->frame_width + 7) >> 3); mi_rows = 2 * ((priv->frame_height + 7) >> 3); sb_cols = seq->use_128x128_superblock ? ((mi_cols + 31) >> 5) : ((mi_cols + 15) >> 4); sb_rows = seq->use_128x128_superblock ? ((mi_rows + 31) >> 5) : ((mi_rows + 15) >> 4); sb_shift = seq->use_128x128_superblock ? 5 : 4; sb_size = sb_shift + 2; max_tile_width_sb = AV1_MAX_TILE_WIDTH >> sb_size; max_tile_area_sb = AV1_MAX_TILE_AREA >> (2 * sb_size); min_log2_tile_cols = cbs_av1_tile_log2(max_tile_width_sb, sb_cols); max_log2_tile_cols = cbs_av1_tile_log2(1, FFMIN(sb_cols, AV1_MAX_TILE_COLS)); max_log2_tile_rows = cbs_av1_tile_log2(1, FFMIN(sb_rows, AV1_MAX_TILE_ROWS)); min_log2_tiles = FFMAX(min_log2_tile_cols, cbs_av1_tile_log2(max_tile_area_sb, sb_rows * sb_cols)); flag(uniform_tile_spacing_flag); if (current->uniform_tile_spacing_flag) { int tile_width_sb, tile_height_sb; increment(tile_cols_log2, min_log2_tile_cols, max_log2_tile_cols); tile_width_sb = (sb_cols + (1 << current->tile_cols_log2) - 1) >> current->tile_cols_log2; current->tile_cols = (sb_cols + tile_width_sb - 1) / tile_width_sb; min_log2_tile_rows = FFMAX(min_log2_tiles - current->tile_cols_log2, 0); increment(tile_rows_log2, min_log2_tile_rows, max_log2_tile_rows); tile_height_sb = (sb_rows + (1 << current->tile_rows_log2) - 1) >> current->tile_rows_log2; current->tile_rows = (sb_rows + tile_height_sb - 1) / tile_height_sb; for (i = 0; i < current->tile_cols - 1; i++) infer(width_in_sbs_minus_1[i], tile_width_sb - 1); infer(width_in_sbs_minus_1[i], sb_cols - (current->tile_cols - 1) * tile_width_sb - 1); for (i = 0; i < current->tile_rows - 1; i++) infer(height_in_sbs_minus_1[i], tile_height_sb - 1); infer(height_in_sbs_minus_1[i], sb_rows - (current->tile_rows - 1) * tile_height_sb - 1); } else { int widest_tile_sb, start_sb, size_sb, max_width, max_height; widest_tile_sb = 0; start_sb = 0; for (i = 0; start_sb < sb_cols && i < AV1_MAX_TILE_COLS; i++) { max_width = FFMIN(sb_cols - start_sb, max_tile_width_sb); ns(max_width, width_in_sbs_minus_1[i], 1, i); size_sb = current->width_in_sbs_minus_1[i] + 1; widest_tile_sb = FFMAX(size_sb, widest_tile_sb); start_sb += size_sb; } current->tile_cols_log2 = cbs_av1_tile_log2(1, i); current->tile_cols = i; if (min_log2_tiles > 0) max_tile_area_sb = (sb_rows * sb_cols) >> (min_log2_tiles + 1); else max_tile_area_sb = sb_rows * sb_cols; max_tile_height_sb = FFMAX(max_tile_area_sb / widest_tile_sb, 1); start_sb = 0; for (i = 0; start_sb < sb_rows && i < AV1_MAX_TILE_ROWS; i++) { max_height = FFMIN(sb_rows - start_sb, max_tile_height_sb); ns(max_height, height_in_sbs_minus_1[i], 1, i); size_sb = current->height_in_sbs_minus_1[i] + 1; start_sb += size_sb; } current->tile_rows_log2 = cbs_av1_tile_log2(1, i); current->tile_rows = i; } if (current->tile_cols_log2 > 0 || current->tile_rows_log2 > 0) { fb(current->tile_cols_log2 + current->tile_rows_log2, context_update_tile_id); fb(2, tile_size_bytes_minus1); } else { infer(context_update_tile_id, 0); } priv->tile_cols = current->tile_cols; priv->tile_rows = current->tile_rows; return 0; } static int FUNC(quantization_params)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; const AV1RawSequenceHeader *seq = priv->sequence_header; int err; fb(8, base_q_idx); delta_q(delta_q_y_dc); if (priv->num_planes > 1) { if (seq->color_config.separate_uv_delta_q) flag(diff_uv_delta); else infer(diff_uv_delta, 0); delta_q(delta_q_u_dc); delta_q(delta_q_u_ac); if (current->diff_uv_delta) { delta_q(delta_q_v_dc); delta_q(delta_q_v_ac); } else { infer(delta_q_v_dc, current->delta_q_u_dc); infer(delta_q_v_ac, current->delta_q_u_ac); } } else { infer(delta_q_u_dc, 0); infer(delta_q_u_ac, 0); infer(delta_q_v_dc, 0); infer(delta_q_v_ac, 0); } flag(using_qmatrix); if (current->using_qmatrix) { fb(4, qm_y); fb(4, qm_u); if (seq->color_config.separate_uv_delta_q) fb(4, qm_v); else infer(qm_v, current->qm_u); } return 0; } static int FUNC(segmentation_params)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; static const uint8_t bits[AV1_SEG_LVL_MAX] = { 8, 6, 6, 6, 6, 3, 0, 0 }; static const uint8_t sign[AV1_SEG_LVL_MAX] = { 1, 1, 1, 1, 1, 0, 0, 0 }; static const uint8_t default_feature_enabled[AV1_SEG_LVL_MAX] = { 0 }; static const int16_t default_feature_value[AV1_SEG_LVL_MAX] = { 0 }; int i, j, err; flag(segmentation_enabled); if (current->segmentation_enabled) { if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) { infer(segmentation_update_map, 1); infer(segmentation_temporal_update, 0); infer(segmentation_update_data, 1); } else { flag(segmentation_update_map); if (current->segmentation_update_map) flag(segmentation_temporal_update); else infer(segmentation_temporal_update, 0); flag(segmentation_update_data); } for (i = 0; i < AV1_MAX_SEGMENTS; i++) { const uint8_t *ref_feature_enabled; const int16_t *ref_feature_value; if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) { ref_feature_enabled = default_feature_enabled; ref_feature_value = default_feature_value; } else { ref_feature_enabled = priv->ref[current->ref_frame_idx[current->primary_ref_frame]].feature_enabled[i]; ref_feature_value = priv->ref[current->ref_frame_idx[current->primary_ref_frame]].feature_value[i]; } for (j = 0; j < AV1_SEG_LVL_MAX; j++) { if (current->segmentation_update_data) { flags(feature_enabled[i][j], 2, i, j); if (current->feature_enabled[i][j] && bits[j] > 0) { if (sign[j]) sus(1 + bits[j], feature_value[i][j], 2, i, j); else fbs(bits[j], feature_value[i][j], 2, i, j); } else { infer(feature_value[i][j], 0); } } else { infer(feature_enabled[i][j], ref_feature_enabled[j]); infer(feature_value[i][j], ref_feature_value[j]); } } } } else { for (i = 0; i < AV1_MAX_SEGMENTS; i++) { for (j = 0; j < AV1_SEG_LVL_MAX; j++) { infer(feature_enabled[i][j], 0); infer(feature_value[i][j], 0); } } } return 0; } static int FUNC(delta_q_params)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { int err; if (current->base_q_idx > 0) flag(delta_q_present); else infer(delta_q_present, 0); if (current->delta_q_present) fb(2, delta_q_res); return 0; } static int FUNC(delta_lf_params)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { int err; if (current->delta_q_present) { if (!current->allow_intrabc) flag(delta_lf_present); else infer(delta_lf_present, 0); if (current->delta_lf_present) { fb(2, delta_lf_res); flag(delta_lf_multi); } else { infer(delta_lf_res, 0); infer(delta_lf_multi, 0); } } else { infer(delta_lf_present, 0); infer(delta_lf_res, 0); infer(delta_lf_multi, 0); } return 0; } static int FUNC(loop_filter_params)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; static const int8_t default_loop_filter_ref_deltas[AV1_TOTAL_REFS_PER_FRAME] = { 1, 0, 0, 0, -1, 0, -1, -1 }; static const int8_t default_loop_filter_mode_deltas[2] = { 0, 0 }; int i, err; if (priv->coded_lossless || current->allow_intrabc) { infer(loop_filter_level[0], 0); infer(loop_filter_level[1], 0); infer(loop_filter_ref_deltas[AV1_REF_FRAME_INTRA], 1); infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST], 0); infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST2], 0); infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST3], 0); infer(loop_filter_ref_deltas[AV1_REF_FRAME_BWDREF], 0); infer(loop_filter_ref_deltas[AV1_REF_FRAME_GOLDEN], -1); infer(loop_filter_ref_deltas[AV1_REF_FRAME_ALTREF], -1); infer(loop_filter_ref_deltas[AV1_REF_FRAME_ALTREF2], -1); for (i = 0; i < 2; i++) infer(loop_filter_mode_deltas[i], 0); return 0; } fb(6, loop_filter_level[0]); fb(6, loop_filter_level[1]); if (priv->num_planes > 1) { if (current->loop_filter_level[0] || current->loop_filter_level[1]) { fb(6, loop_filter_level[2]); fb(6, loop_filter_level[3]); } } fb(3, loop_filter_sharpness); flag(loop_filter_delta_enabled); if (current->loop_filter_delta_enabled) { const int8_t *ref_loop_filter_ref_deltas, *ref_loop_filter_mode_deltas; if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) { ref_loop_filter_ref_deltas = default_loop_filter_ref_deltas; ref_loop_filter_mode_deltas = default_loop_filter_mode_deltas; } else { ref_loop_filter_ref_deltas = priv->ref[current->ref_frame_idx[current->primary_ref_frame]].loop_filter_ref_deltas; ref_loop_filter_mode_deltas = priv->ref[current->ref_frame_idx[current->primary_ref_frame]].loop_filter_mode_deltas; } flag(loop_filter_delta_update); for (i = 0; i < AV1_TOTAL_REFS_PER_FRAME; i++) { if (current->loop_filter_delta_update) flags(update_ref_delta[i], 1, i); else infer(update_ref_delta[i], 0); if (current->update_ref_delta[i]) sus(1 + 6, loop_filter_ref_deltas[i], 1, i); else infer(loop_filter_ref_deltas[i], ref_loop_filter_ref_deltas[i]); } for (i = 0; i < 2; i++) { if (current->loop_filter_delta_update) flags(update_mode_delta[i], 1, i); else infer(update_mode_delta[i], 0); if (current->update_mode_delta[i]) sus(1 + 6, loop_filter_mode_deltas[i], 1, i); else infer(loop_filter_mode_deltas[i], ref_loop_filter_mode_deltas[i]); } } else { for (i = 0; i < AV1_TOTAL_REFS_PER_FRAME; i++) infer(loop_filter_ref_deltas[i], default_loop_filter_ref_deltas[i]); for (i = 0; i < 2; i++) infer(loop_filter_mode_deltas[i], default_loop_filter_mode_deltas[i]); } return 0; } static int FUNC(cdef_params)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; const AV1RawSequenceHeader *seq = priv->sequence_header; int i, err; if (priv->coded_lossless || current->allow_intrabc || !seq->enable_cdef) { infer(cdef_damping_minus_3, 0); infer(cdef_bits, 0); infer(cdef_y_pri_strength[0], 0); infer(cdef_y_sec_strength[0], 0); infer(cdef_uv_pri_strength[0], 0); infer(cdef_uv_sec_strength[0], 0); return 0; } fb(2, cdef_damping_minus_3); fb(2, cdef_bits); for (i = 0; i < (1 << current->cdef_bits); i++) { fbs(4, cdef_y_pri_strength[i], 1, i); fbs(2, cdef_y_sec_strength[i], 1, i); if (priv->num_planes > 1) { fbs(4, cdef_uv_pri_strength[i], 1, i); fbs(2, cdef_uv_sec_strength[i], 1, i); } } return 0; } static int FUNC(lr_params)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; const AV1RawSequenceHeader *seq = priv->sequence_header; int uses_lr, uses_chroma_lr; int i, err; if (priv->all_lossless || current->allow_intrabc || !seq->enable_restoration) { return 0; } uses_lr = uses_chroma_lr = 0; for (i = 0; i < priv->num_planes; i++) { fbs(2, lr_type[i], 1, i); if (current->lr_type[i] != AV1_RESTORE_NONE) { uses_lr = 1; if (i > 0) uses_chroma_lr = 1; } } if (uses_lr) { if (seq->use_128x128_superblock) increment(lr_unit_shift, 1, 2); else increment(lr_unit_shift, 0, 2); if(seq->color_config.subsampling_x && seq->color_config.subsampling_y && uses_chroma_lr) { fb(1, lr_uv_shift); } else { infer(lr_uv_shift, 0); } } return 0; } static int FUNC(read_tx_mode)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; int err; if (priv->coded_lossless) infer(tx_mode, 0); else increment(tx_mode, 1, 2); return 0; } static int FUNC(frame_reference_mode)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { int err; if (current->frame_type == AV1_FRAME_INTRA_ONLY || current->frame_type == AV1_FRAME_KEY) infer(reference_select, 0); else flag(reference_select); return 0; } static int FUNC(skip_mode_params)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; const AV1RawSequenceHeader *seq = priv->sequence_header; int skip_mode_allowed; int err; if (current->frame_type == AV1_FRAME_KEY || current->frame_type == AV1_FRAME_INTRA_ONLY || !current->reference_select || !seq->enable_order_hint) { skip_mode_allowed = 0; } else { int forward_idx, backward_idx; int forward_hint, backward_hint; int ref_hint, dist, i; forward_idx = -1; backward_idx = -1; for (i = 0; i < AV1_REFS_PER_FRAME; i++) { ref_hint = priv->ref[current->ref_frame_idx[i]].order_hint; dist = cbs_av1_get_relative_dist(seq, ref_hint, priv->order_hint); if (dist < 0) { if (forward_idx < 0 || cbs_av1_get_relative_dist(seq, ref_hint, forward_hint) > 0) { forward_idx = i; forward_hint = ref_hint; } } else if (dist > 0) { if (backward_idx < 0 || cbs_av1_get_relative_dist(seq, ref_hint, backward_hint) < 0) { backward_idx = i; backward_hint = ref_hint; } } } if (forward_idx < 0) { skip_mode_allowed = 0; } else if (backward_idx >= 0) { skip_mode_allowed = 1; // Frames for skip mode are forward_idx and backward_idx. } else { int second_forward_idx; int second_forward_hint; second_forward_idx = -1; for (i = 0; i < AV1_REFS_PER_FRAME; i++) { ref_hint = priv->ref[current->ref_frame_idx[i]].order_hint; if (cbs_av1_get_relative_dist(seq, ref_hint, forward_hint) < 0) { if (second_forward_idx < 0 || cbs_av1_get_relative_dist(seq, ref_hint, second_forward_hint) > 0) { second_forward_idx = i; second_forward_hint = ref_hint; } } } if (second_forward_idx < 0) { skip_mode_allowed = 0; } else { skip_mode_allowed = 1; // Frames for skip mode are forward_idx and second_forward_idx. } } } if (skip_mode_allowed) flag(skip_mode_present); else infer(skip_mode_present, 0); return 0; } static int FUNC(global_motion_param)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current, int type, int ref, int idx) { uint32_t abs_bits, prec_bits, num_syms; int err; if (idx < 2) { if (type == AV1_WARP_MODEL_TRANSLATION) { abs_bits = AV1_GM_ABS_TRANS_ONLY_BITS - !current->allow_high_precision_mv; prec_bits = AV1_GM_TRANS_ONLY_PREC_BITS - !current->allow_high_precision_mv; } else { abs_bits = AV1_GM_ABS_TRANS_BITS; prec_bits = AV1_GM_TRANS_PREC_BITS; } } else { abs_bits = AV1_GM_ABS_ALPHA_BITS; prec_bits = AV1_GM_ALPHA_PREC_BITS; } num_syms = 2 * (1 << abs_bits) + 1; subexp(gm_params[ref][idx], num_syms, 2, ref, idx); // Actual gm_params value is not reconstructed here. (void)prec_bits; return 0; } static int FUNC(global_motion_params)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { int ref, type; int err; if (current->frame_type == AV1_FRAME_KEY || current->frame_type == AV1_FRAME_INTRA_ONLY) return 0; for (ref = AV1_REF_FRAME_LAST; ref <= AV1_REF_FRAME_ALTREF; ref++) { flags(is_global[ref], 1, ref); if (current->is_global[ref]) { flags(is_rot_zoom[ref], 1, ref); if (current->is_rot_zoom[ref]) { type = AV1_WARP_MODEL_ROTZOOM; } else { flags(is_translation[ref], 1, ref); type = current->is_translation[ref] ? AV1_WARP_MODEL_TRANSLATION : AV1_WARP_MODEL_AFFINE; } } else { type = AV1_WARP_MODEL_IDENTITY; } if (type >= AV1_WARP_MODEL_ROTZOOM) { CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 2)); CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 3)); if (type == AV1_WARP_MODEL_AFFINE) { CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 4)); CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 5)); } else { // gm_params[ref][4] = -gm_params[ref][3] // gm_params[ref][5] = gm_params[ref][2] } } if (type >= AV1_WARP_MODEL_TRANSLATION) { CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 0)); CHECK(FUNC(global_motion_param)(ctx, rw, current, type, ref, 1)); } } return 0; } static int FUNC(film_grain_params)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; const AV1RawSequenceHeader *seq = priv->sequence_header; int num_pos_luma, num_pos_chroma; int i, err; if (!seq->film_grain_params_present || (!current->show_frame && !current->showable_frame)) return 0; flag(apply_grain); if (!current->apply_grain) return 0; fb(16, grain_seed); if (current->frame_type == AV1_FRAME_INTER) flag(update_grain); else infer(update_grain, 1); if (!current->update_grain) { fb(3, film_grain_params_ref_idx); return 0; } fc(4, num_y_points, 0, 14); for (i = 0; i < current->num_y_points; i++) { fcs(8, point_y_value[i], i ? current->point_y_value[i - 1] + 1 : 0, MAX_UINT_BITS(8) - (current->num_y_points - i - 1), 1, i); fbs(8, point_y_scaling[i], 1, i); } if (seq->color_config.mono_chrome) infer(chroma_scaling_from_luma, 0); else flag(chroma_scaling_from_luma); if (seq->color_config.mono_chrome || current->chroma_scaling_from_luma || (seq->color_config.subsampling_x == 1 && seq->color_config.subsampling_y == 1 && current->num_y_points == 0)) { infer(num_cb_points, 0); infer(num_cr_points, 0); } else { fc(4, num_cb_points, 0, 10); for (i = 0; i < current->num_cb_points; i++) { fcs(8, point_cb_value[i], i ? current->point_cb_value[i - 1] + 1 : 0, MAX_UINT_BITS(8) - (current->num_cb_points - i - 1), 1, i); fbs(8, point_cb_scaling[i], 1, i); } fc(4, num_cr_points, 0, 10); for (i = 0; i < current->num_cr_points; i++) { fcs(8, point_cr_value[i], i ? current->point_cr_value[i - 1] + 1 : 0, MAX_UINT_BITS(8) - (current->num_cr_points - i - 1), 1, i); fbs(8, point_cr_scaling[i], 1, i); } } fb(2, grain_scaling_minus_8); fb(2, ar_coeff_lag); num_pos_luma = 2 * current->ar_coeff_lag * (current->ar_coeff_lag + 1); if (current->num_y_points) { num_pos_chroma = num_pos_luma + 1; for (i = 0; i < num_pos_luma; i++) fbs(8, ar_coeffs_y_plus_128[i], 1, i); } else { num_pos_chroma = num_pos_luma; } if (current->chroma_scaling_from_luma || current->num_cb_points) { for (i = 0; i < num_pos_chroma; i++) fbs(8, ar_coeffs_cb_plus_128[i], 1, i); } if (current->chroma_scaling_from_luma || current->num_cr_points) { for (i = 0; i < num_pos_chroma; i++) fbs(8, ar_coeffs_cr_plus_128[i], 1, i); } fb(2, ar_coeff_shift_minus_6); fb(2, grain_scale_shift); if (current->num_cb_points) { fb(8, cb_mult); fb(8, cb_luma_mult); fb(9, cb_offset); } if (current->num_cr_points) { fb(8, cr_mult); fb(8, cr_luma_mult); fb(9, cr_offset); } flag(overlap_flag); flag(clip_to_restricted_range); return 0; } static int FUNC(uncompressed_header)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; const AV1RawSequenceHeader *seq; int id_len, diff_len, all_frames, frame_is_intra, order_hint_bits; int i, err; if (!priv->sequence_header) { av_log(ctx->log_ctx, AV_LOG_ERROR, "No sequence header available: " "unable to decode frame header.\n"); return AVERROR_INVALIDDATA; } seq = priv->sequence_header; id_len = seq->additional_frame_id_length_minus_1 + seq->delta_frame_id_length_minus_2 + 3; all_frames = (1 << AV1_NUM_REF_FRAMES) - 1; if (seq->reduced_still_picture_header) { infer(show_existing_frame, 0); infer(frame_type, AV1_FRAME_KEY); infer(show_frame, 1); infer(showable_frame, 0); frame_is_intra = 1; } else { flag(show_existing_frame); if (current->show_existing_frame) { AV1ReferenceFrameState *ref; fb(3, frame_to_show_map_idx); ref = &priv->ref[current->frame_to_show_map_idx]; if (!ref->valid) { av_log(ctx->log_ctx, AV_LOG_ERROR, "Missing reference frame needed for " "show_existing_frame (frame_to_show_map_idx = %d).\n", current->frame_to_show_map_idx); return AVERROR_INVALIDDATA; } if (seq->decoder_model_info_present_flag && !seq->timing_info.equal_picture_interval) { fb(seq->decoder_model_info.frame_presentation_time_length_minus_1 + 1, frame_presentation_time); } if (seq->frame_id_numbers_present_flag) fb(id_len, display_frame_id); infer(frame_type, ref->frame_type); if (current->frame_type == AV1_FRAME_KEY) { infer(refresh_frame_flags, all_frames); // Section 7.21 infer(current_frame_id, ref->frame_id); priv->upscaled_width = ref->upscaled_width; priv->frame_width = ref->frame_width; priv->frame_height = ref->frame_height; priv->render_width = ref->render_width; priv->render_height = ref->render_height; priv->bit_depth = ref->bit_depth; priv->order_hint = ref->order_hint; } else infer(refresh_frame_flags, 0); infer(frame_width_minus_1, ref->upscaled_width - 1); infer(frame_height_minus_1, ref->frame_height - 1); infer(render_width_minus_1, ref->render_width - 1); infer(render_height_minus_1, ref->render_height - 1); // Section 7.20 goto update_refs; } fb(2, frame_type); frame_is_intra = (current->frame_type == AV1_FRAME_INTRA_ONLY || current->frame_type == AV1_FRAME_KEY); flag(show_frame); if (current->show_frame && seq->decoder_model_info_present_flag && !seq->timing_info.equal_picture_interval) { fb(seq->decoder_model_info.frame_presentation_time_length_minus_1 + 1, frame_presentation_time); } if (current->show_frame) infer(showable_frame, current->frame_type != AV1_FRAME_KEY); else flag(showable_frame); if (current->frame_type == AV1_FRAME_SWITCH || (current->frame_type == AV1_FRAME_KEY && current->show_frame)) infer(error_resilient_mode, 1); else flag(error_resilient_mode); } if (current->frame_type == AV1_FRAME_KEY && current->show_frame) { for (i = 0; i < AV1_NUM_REF_FRAMES; i++) { priv->ref[i].valid = 0; priv->ref[i].order_hint = 0; } } flag(disable_cdf_update); if (seq->seq_force_screen_content_tools == AV1_SELECT_SCREEN_CONTENT_TOOLS) { flag(allow_screen_content_tools); } else { infer(allow_screen_content_tools, seq->seq_force_screen_content_tools); } if (current->allow_screen_content_tools) { if (seq->seq_force_integer_mv == AV1_SELECT_INTEGER_MV) flag(force_integer_mv); else infer(force_integer_mv, seq->seq_force_integer_mv); } else { infer(force_integer_mv, 0); } if (seq->frame_id_numbers_present_flag) { fb(id_len, current_frame_id); diff_len = seq->delta_frame_id_length_minus_2 + 2; for (i = 0; i < AV1_NUM_REF_FRAMES; i++) { if (current->current_frame_id > (1 << diff_len)) { if (priv->ref[i].frame_id > current->current_frame_id || priv->ref[i].frame_id < (current->current_frame_id - (1 << diff_len))) priv->ref[i].valid = 0; } else { if (priv->ref[i].frame_id > current->current_frame_id && priv->ref[i].frame_id < ((1 << id_len) + current->current_frame_id - (1 << diff_len))) priv->ref[i].valid = 0; } } } else { infer(current_frame_id, 0); } if (current->frame_type == AV1_FRAME_SWITCH) infer(frame_size_override_flag, 1); else if(seq->reduced_still_picture_header) infer(frame_size_override_flag, 0); else flag(frame_size_override_flag); order_hint_bits = seq->enable_order_hint ? seq->order_hint_bits_minus_1 + 1 : 0; if (order_hint_bits > 0) fb(order_hint_bits, order_hint); else infer(order_hint, 0); priv->order_hint = current->order_hint; if (frame_is_intra || current->error_resilient_mode) infer(primary_ref_frame, AV1_PRIMARY_REF_NONE); else fb(3, primary_ref_frame); if (seq->decoder_model_info_present_flag) { flag(buffer_removal_time_present_flag); if (current->buffer_removal_time_present_flag) { for (i = 0; i <= seq->operating_points_cnt_minus_1; i++) { if (seq->decoder_model_present_for_this_op[i]) { int op_pt_idc = seq->operating_point_idc[i]; int in_temporal_layer = (op_pt_idc >> priv->temporal_id ) & 1; int in_spatial_layer = (op_pt_idc >> (priv->spatial_id + 8)) & 1; if (seq->operating_point_idc[i] == 0 || (in_temporal_layer && in_spatial_layer)) { fbs(seq->decoder_model_info.buffer_removal_time_length_minus_1 + 1, buffer_removal_time[i], 1, i); } } } } } if (current->frame_type == AV1_FRAME_SWITCH || (current->frame_type == AV1_FRAME_KEY && current->show_frame)) infer(refresh_frame_flags, all_frames); else fb(8, refresh_frame_flags); if (!frame_is_intra || current->refresh_frame_flags != all_frames) { if (current->error_resilient_mode && seq->enable_order_hint) { for (i = 0; i < AV1_NUM_REF_FRAMES; i++) { fbs(order_hint_bits, ref_order_hint[i], 1, i); if (current->ref_order_hint[i] != priv->ref[i].order_hint) priv->ref[i].valid = 0; } } } if (current->frame_type == AV1_FRAME_KEY || current->frame_type == AV1_FRAME_INTRA_ONLY) { CHECK(FUNC(frame_size)(ctx, rw, current)); CHECK(FUNC(render_size)(ctx, rw, current)); if (current->allow_screen_content_tools && priv->upscaled_width == priv->frame_width) flag(allow_intrabc); else infer(allow_intrabc, 0); } else { if (!seq->enable_order_hint) { infer(frame_refs_short_signaling, 0); } else { flag(frame_refs_short_signaling); if (current->frame_refs_short_signaling) { fb(3, last_frame_idx); fb(3, golden_frame_idx); CHECK(FUNC(set_frame_refs)(ctx, rw, current)); } } for (i = 0; i < AV1_REFS_PER_FRAME; i++) { if (!current->frame_refs_short_signaling) fbs(3, ref_frame_idx[i], 1, i); if (seq->frame_id_numbers_present_flag) { fbs(seq->delta_frame_id_length_minus_2 + 2, delta_frame_id_minus1[i], 1, i); } } if (current->frame_size_override_flag && !current->error_resilient_mode) { CHECK(FUNC(frame_size_with_refs)(ctx, rw, current)); } else { CHECK(FUNC(frame_size)(ctx, rw, current)); CHECK(FUNC(render_size)(ctx, rw, current)); } if (current->force_integer_mv) infer(allow_high_precision_mv, 0); else flag(allow_high_precision_mv); CHECK(FUNC(interpolation_filter)(ctx, rw, current)); flag(is_motion_mode_switchable); if (current->error_resilient_mode || !seq->enable_ref_frame_mvs) infer(use_ref_frame_mvs, 0); else flag(use_ref_frame_mvs); infer(allow_intrabc, 0); } if (!frame_is_intra) { // Derive reference frame sign biases. } if (seq->reduced_still_picture_header || current->disable_cdf_update) infer(disable_frame_end_update_cdf, 1); else flag(disable_frame_end_update_cdf); if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) { // Init non-coeff CDFs. // Setup past independence. } else { // Load CDF tables from previous frame. // Load params from previous frame. } if (current->use_ref_frame_mvs) { // Perform motion field estimation process. } CHECK(FUNC(tile_info)(ctx, rw, current)); CHECK(FUNC(quantization_params)(ctx, rw, current)); CHECK(FUNC(segmentation_params)(ctx, rw, current)); CHECK(FUNC(delta_q_params)(ctx, rw, current)); CHECK(FUNC(delta_lf_params)(ctx, rw, current)); // Init coeff CDFs / load previous segments. priv->coded_lossless = 1; for (i = 0; i < AV1_MAX_SEGMENTS; i++) { int qindex; if (current->feature_enabled[i][AV1_SEG_LVL_ALT_Q]) { qindex = (current->base_q_idx + current->feature_value[i][AV1_SEG_LVL_ALT_Q]); } else { qindex = current->base_q_idx; } qindex = av_clip_uintp2(qindex, 8); if (qindex || current->delta_q_y_dc || current->delta_q_u_ac || current->delta_q_u_dc || current->delta_q_v_ac || current->delta_q_v_dc) { priv->coded_lossless = 0; } } priv->all_lossless = priv->coded_lossless && priv->frame_width == priv->upscaled_width; CHECK(FUNC(loop_filter_params)(ctx, rw, current)); CHECK(FUNC(cdef_params)(ctx, rw, current)); CHECK(FUNC(lr_params)(ctx, rw, current)); CHECK(FUNC(read_tx_mode)(ctx, rw, current)); CHECK(FUNC(frame_reference_mode)(ctx, rw, current)); CHECK(FUNC(skip_mode_params)(ctx, rw, current)); if (frame_is_intra || current->error_resilient_mode || !seq->enable_warped_motion) infer(allow_warped_motion, 0); else flag(allow_warped_motion); flag(reduced_tx_set); CHECK(FUNC(global_motion_params)(ctx, rw, current)); CHECK(FUNC(film_grain_params)(ctx, rw, current)); av_log(ctx->log_ctx, AV_LOG_DEBUG, "Frame %d: size %dx%d " "upscaled %d render %dx%d subsample %dx%d " "bitdepth %d tiles %dx%d.\n", priv->order_hint, priv->frame_width, priv->frame_height, priv->upscaled_width, priv->render_width, priv->render_height, seq->color_config.subsampling_x + 1, seq->color_config.subsampling_y + 1, priv->bit_depth, priv->tile_rows, priv->tile_cols); update_refs: for (i = 0; i < AV1_NUM_REF_FRAMES; i++) { if (current->refresh_frame_flags & (1 << i)) { priv->ref[i] = (AV1ReferenceFrameState) { .valid = 1, .frame_id = current->current_frame_id, .upscaled_width = priv->upscaled_width, .frame_width = priv->frame_width, .frame_height = priv->frame_height, .render_width = priv->render_width, .render_height = priv->render_height, .frame_type = current->frame_type, .subsampling_x = seq->color_config.subsampling_x, .subsampling_y = seq->color_config.subsampling_y, .bit_depth = priv->bit_depth, .order_hint = priv->order_hint, }; memcpy(priv->ref[i].loop_filter_ref_deltas, current->loop_filter_ref_deltas, sizeof(current->loop_filter_ref_deltas)); memcpy(priv->ref[i].loop_filter_mode_deltas, current->loop_filter_mode_deltas, sizeof(current->loop_filter_mode_deltas)); memcpy(priv->ref[i].feature_enabled, current->feature_enabled, sizeof(current->feature_enabled)); memcpy(priv->ref[i].feature_value, current->feature_value, sizeof(current->feature_value)); } } return 0; } static int FUNC(frame_header_obu)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrameHeader *current, int redundant, AVBufferRef *rw_buffer_ref) { CodedBitstreamAV1Context *priv = ctx->priv_data; int start_pos, fh_bits, fh_bytes, err; uint8_t *fh_start; if (priv->seen_frame_header) { if (!redundant) { av_log(ctx->log_ctx, AV_LOG_ERROR, "Invalid repeated " "frame header OBU.\n"); return AVERROR_INVALIDDATA; } else { GetBitContext fh; size_t i, b; uint32_t val; HEADER("Redundant Frame Header"); av_assert0(priv->frame_header_ref && priv->frame_header); init_get_bits(&fh, priv->frame_header, priv->frame_header_size); for (i = 0; i < priv->frame_header_size; i += 8) { b = FFMIN(priv->frame_header_size - i, 8); val = get_bits(&fh, b); xf(b, frame_header_copy[i], val, val, val, 1, i / 8); } } } else { if (redundant) HEADER("Redundant Frame Header (used as Frame Header)"); else HEADER("Frame Header"); #ifdef READ start_pos = get_bits_count(rw); #else start_pos = put_bits_count(rw); #endif CHECK(FUNC(uncompressed_header)(ctx, rw, current)); if (current->show_existing_frame) { priv->seen_frame_header = 0; } else { priv->seen_frame_header = 1; av_buffer_unref(&priv->frame_header_ref); #ifdef READ fh_bits = get_bits_count(rw) - start_pos; fh_start = (uint8_t*)rw->buffer + start_pos / 8; #else // Need to flush the bitwriter so that we can copy its output, // but use a copy so we don't affect the caller's structure. { PutBitContext tmp = *rw; flush_put_bits(&tmp); } fh_bits = put_bits_count(rw) - start_pos; fh_start = rw->buf + start_pos / 8; #endif fh_bytes = (fh_bits + 7) / 8; priv->frame_header_size = fh_bits; if (rw_buffer_ref) { priv->frame_header_ref = av_buffer_ref(rw_buffer_ref); if (!priv->frame_header_ref) return AVERROR(ENOMEM); priv->frame_header = fh_start; } else { priv->frame_header_ref = av_buffer_alloc(fh_bytes + AV_INPUT_BUFFER_PADDING_SIZE); if (!priv->frame_header_ref) return AVERROR(ENOMEM); priv->frame_header = priv->frame_header_ref->data; memcpy(priv->frame_header, fh_start, fh_bytes); } } } return 0; } static int FUNC(tile_group_obu)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawTileGroup *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; int num_tiles, tile_bits; int err; HEADER("Tile Group"); num_tiles = priv->tile_cols * priv->tile_rows; if (num_tiles > 1) flag(tile_start_and_end_present_flag); else infer(tile_start_and_end_present_flag, 0); if (num_tiles == 1 || !current->tile_start_and_end_present_flag) { infer(tg_start, 0); infer(tg_end, num_tiles - 1); } else { tile_bits = cbs_av1_tile_log2(1, priv->tile_cols) + cbs_av1_tile_log2(1, priv->tile_rows); fb(tile_bits, tg_start); fb(tile_bits, tg_end); } CHECK(FUNC(byte_alignment)(ctx, rw)); // Reset header for next frame. if (current->tg_end == num_tiles - 1) priv->seen_frame_header = 0; // Tile data follows. return 0; } static int FUNC(frame_obu)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawFrame *current, AVBufferRef *rw_buffer_ref) { int err; CHECK(FUNC(frame_header_obu)(ctx, rw, ¤t->header, 0, rw_buffer_ref)); CHECK(FUNC(byte_alignment)(ctx, rw)); CHECK(FUNC(tile_group_obu)(ctx, rw, ¤t->tile_group)); return 0; } static int FUNC(tile_list_obu)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawTileList *current) { int err; fb(8, output_frame_width_in_tiles_minus_1); fb(8, output_frame_height_in_tiles_minus_1); fb(16, tile_count_minus_1); // Tile data follows. return 0; } static int FUNC(metadata_hdr_cll)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawMetadataHDRCLL *current) { int err; fb(16, max_cll); fb(16, max_fall); return 0; } static int FUNC(metadata_hdr_mdcv)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawMetadataHDRMDCV *current) { int err, i; for (i = 0; i < 3; i++) { fbs(16, primary_chromaticity_x[i], 1, i); fbs(16, primary_chromaticity_y[i], 1, i); } fb(16, white_point_chromaticity_x); fb(16, white_point_chromaticity_y); fc(32, luminance_max, 1, MAX_UINT_BITS(32)); // luminance_min must be lower than luminance_max. Convert luminance_max from // 24.8 fixed point to 18.14 fixed point in order to compare them. fc(32, luminance_min, 0, FFMIN(((uint64_t)current->luminance_max << 6) - 1, MAX_UINT_BITS(32))); return 0; } static int FUNC(scalability_structure)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawMetadataScalability *current) { CodedBitstreamAV1Context *priv = ctx->priv_data; const AV1RawSequenceHeader *seq; int err, i, j; if (!priv->sequence_header) { av_log(ctx->log_ctx, AV_LOG_ERROR, "No sequence header available: " "unable to parse scalability metadata.\n"); return AVERROR_INVALIDDATA; } seq = priv->sequence_header; fb(2, spatial_layers_cnt_minus_1); flag(spatial_layer_dimensions_present_flag); flag(spatial_layer_description_present_flag); flag(temporal_group_description_present_flag); fc(3, scalability_structure_reserved_3bits, 0, 0); if (current->spatial_layer_dimensions_present_flag) { for (i = 0; i <= current->spatial_layers_cnt_minus_1; i++) { fcs(16, spatial_layer_max_width[i], 0, seq->max_frame_width_minus_1 + 1, 1, i); fcs(16, spatial_layer_max_height[i], 0, seq->max_frame_height_minus_1 + 1, 1, i); } } if (current->spatial_layer_description_present_flag) { for (i = 0; i <= current->spatial_layers_cnt_minus_1; i++) fbs(8, spatial_layer_ref_id[i], 1, i); } if (current->temporal_group_description_present_flag) { fb(8, temporal_group_size); for (i = 0; i < current->temporal_group_size; i++) { fbs(3, temporal_group_temporal_id[i], 1, i); flags(temporal_group_temporal_switching_up_point_flag[i], 1, i); flags(temporal_group_spatial_switching_up_point_flag[i], 1, i); fbs(3, temporal_group_ref_cnt[i], 1, i); for (j = 0; j < current->temporal_group_ref_cnt[i]; j++) { fbs(8, temporal_group_ref_pic_diff[i][j], 2, i, j); } } } return 0; } static int FUNC(metadata_scalability)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawMetadataScalability *current) { int err; fb(8, scalability_mode_idc); if (current->scalability_mode_idc == AV1_SCALABILITY_SS) CHECK(FUNC(scalability_structure)(ctx, rw, current)); return 0; } static int FUNC(metadata_itut_t35)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawMetadataITUTT35 *current) { int err; size_t i; fb(8, itu_t_t35_country_code); if (current->itu_t_t35_country_code == 0xff) fb(8, itu_t_t35_country_code_extension_byte); #ifdef READ // The payload runs up to the start of the trailing bits, but there might // be arbitrarily many trailing zeroes so we need to read through twice. current->payload_size = cbs_av1_get_payload_bytes_left(rw); current->payload_ref = av_buffer_alloc(current->payload_size); if (!current->payload_ref) return AVERROR(ENOMEM); current->payload = current->payload_ref->data; #endif for (i = 0; i < current->payload_size; i++) xf(8, itu_t_t35_payload_bytes[i], current->payload[i], 0x00, 0xff, 1, i); return 0; } static int FUNC(metadata_timecode)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawMetadataTimecode *current) { int err; fb(5, counting_type); flag(full_timestamp_flag); flag(discontinuity_flag); flag(cnt_dropped_flag); fb(9, n_frames); if (current->full_timestamp_flag) { fc(6, seconds_value, 0, 59); fc(6, minutes_value, 0, 59); fc(5, hours_value, 0, 23); } else { flag(seconds_flag); if (current->seconds_flag) { fc(6, seconds_value, 0, 59); flag(minutes_flag); if (current->minutes_flag) { fc(6, minutes_value, 0, 59); flag(hours_flag); if (current->hours_flag) fc(5, hours_value, 0, 23); } } } fb(5, time_offset_length); if (current->time_offset_length > 0) fb(current->time_offset_length, time_offset_value); else infer(time_offset_length, 0); return 0; } static int FUNC(metadata_obu)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawMetadata *current) { int err; leb128(metadata_type); switch (current->metadata_type) { case AV1_METADATA_TYPE_HDR_CLL: CHECK(FUNC(metadata_hdr_cll)(ctx, rw, ¤t->metadata.hdr_cll)); break; case AV1_METADATA_TYPE_HDR_MDCV: CHECK(FUNC(metadata_hdr_mdcv)(ctx, rw, ¤t->metadata.hdr_mdcv)); break; case AV1_METADATA_TYPE_SCALABILITY: CHECK(FUNC(metadata_scalability)(ctx, rw, ¤t->metadata.scalability)); break; case AV1_METADATA_TYPE_ITUT_T35: CHECK(FUNC(metadata_itut_t35)(ctx, rw, ¤t->metadata.itut_t35)); break; case AV1_METADATA_TYPE_TIMECODE: CHECK(FUNC(metadata_timecode)(ctx, rw, ¤t->metadata.timecode)); break; default: // Unknown metadata type. return AVERROR_PATCHWELCOME; } return 0; } static int FUNC(padding_obu)(CodedBitstreamContext *ctx, RWContext *rw, AV1RawPadding *current) { int i, err; HEADER("Padding"); #ifdef READ // The payload runs up to the start of the trailing bits, but there might // be arbitrarily many trailing zeroes so we need to read through twice. current->payload_size = cbs_av1_get_payload_bytes_left(rw); current->payload_ref = av_buffer_alloc(current->payload_size); if (!current->payload_ref) return AVERROR(ENOMEM); current->payload = current->payload_ref->data; #endif for (i = 0; i < current->payload_size; i++) xf(8, obu_padding_byte[i], current->payload[i], 0x00, 0xff, 1, i); return 0; }