/* * Copyright (C) 2001-2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * the C code (not assembly, mmx, ...) of this file can be used * under the LGPL license too */ /* supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09 {BGR,RGB}{1,4,8,15,16} support dithering unscaled special converters (YV12=I420=IYUV, Y800=Y8) YV12 -> {BGR,RGB}{1,4,8,15,16,24,32} x -> x YUV9 -> YV12 YUV9/YV12 -> Y800 Y800 -> YUV9/YV12 BGR24 -> BGR32 & RGB24 -> RGB32 BGR32 -> BGR24 & RGB32 -> RGB24 BGR15 -> BGR16 */ /* tested special converters (most are tested actually, but I did not write it down ...) YV12 -> BGR16 YV12 -> YV12 BGR15 -> BGR16 BGR16 -> BGR16 YVU9 -> YV12 untested special converters YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK) YV12/I420 -> YV12/I420 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format BGR24 -> BGR32 & RGB24 -> RGB32 BGR32 -> BGR24 & RGB32 -> RGB24 BGR24 -> YV12 */ #define _SVID_SOURCE //needed for MAP_ANONYMOUS #include #include #include #include #include "config.h" #include #if HAVE_SYS_MMAN_H #include #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS) #define MAP_ANONYMOUS MAP_ANON #endif #endif #if HAVE_VIRTUALALLOC #define WIN32_LEAN_AND_MEAN #include #endif #include "swscale.h" #include "swscale_internal.h" #include "rgb2rgb.h" #include "libavutil/intreadwrite.h" #include "libavutil/x86_cpu.h" #include "libavutil/avutil.h" #include "libavutil/bswap.h" #include "libavutil/pixdesc.h" unsigned swscale_version(void) { return LIBSWSCALE_VERSION_INT; } const char *swscale_configuration(void) { return FFMPEG_CONFIGURATION; } const char *swscale_license(void) { #define LICENSE_PREFIX "libswscale license: " return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1; } #undef MOVNTQ #undef PAVGB //#undef HAVE_MMX2 //#define HAVE_AMD3DNOW //#undef HAVE_MMX //#undef ARCH_X86 #define DITHER1XBPP #define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit #define RET 0xC3 //near return opcode for x86 #ifdef M_PI #define PI M_PI #else #define PI 3.14159265358979323846 #endif #define isSupportedIn(x) ( \ (x)==PIX_FMT_YUV420P \ || (x)==PIX_FMT_YUVA420P \ || (x)==PIX_FMT_YUYV422 \ || (x)==PIX_FMT_UYVY422 \ || (x)==PIX_FMT_RGB48BE \ || (x)==PIX_FMT_RGB48LE \ || (x)==PIX_FMT_RGB32 \ || (x)==PIX_FMT_RGB32_1 \ || (x)==PIX_FMT_BGR24 \ || (x)==PIX_FMT_BGR565 \ || (x)==PIX_FMT_BGR555 \ || (x)==PIX_FMT_BGR32 \ || (x)==PIX_FMT_BGR32_1 \ || (x)==PIX_FMT_RGB24 \ || (x)==PIX_FMT_RGB565 \ || (x)==PIX_FMT_RGB555 \ || (x)==PIX_FMT_GRAY8 \ || (x)==PIX_FMT_YUV410P \ || (x)==PIX_FMT_YUV440P \ || (x)==PIX_FMT_NV12 \ || (x)==PIX_FMT_NV21 \ || (x)==PIX_FMT_GRAY16BE \ || (x)==PIX_FMT_GRAY16LE \ || (x)==PIX_FMT_YUV444P \ || (x)==PIX_FMT_YUV422P \ || (x)==PIX_FMT_YUV411P \ || (x)==PIX_FMT_PAL8 \ || (x)==PIX_FMT_BGR8 \ || (x)==PIX_FMT_RGB8 \ || (x)==PIX_FMT_BGR4_BYTE \ || (x)==PIX_FMT_RGB4_BYTE \ || (x)==PIX_FMT_YUV440P \ || (x)==PIX_FMT_MONOWHITE \ || (x)==PIX_FMT_MONOBLACK \ || (x)==PIX_FMT_YUV420P16LE \ || (x)==PIX_FMT_YUV422P16LE \ || (x)==PIX_FMT_YUV444P16LE \ || (x)==PIX_FMT_YUV420P16BE \ || (x)==PIX_FMT_YUV422P16BE \ || (x)==PIX_FMT_YUV444P16BE \ ) int sws_isSupportedInput(enum PixelFormat pix_fmt) { return isSupportedIn(pix_fmt); } #define isSupportedOut(x) ( \ (x)==PIX_FMT_YUV420P \ || (x)==PIX_FMT_YUVA420P \ || (x)==PIX_FMT_YUYV422 \ || (x)==PIX_FMT_UYVY422 \ || (x)==PIX_FMT_YUV444P \ || (x)==PIX_FMT_YUV422P \ || (x)==PIX_FMT_YUV411P \ || isRGB(x) \ || isBGR(x) \ || (x)==PIX_FMT_NV12 \ || (x)==PIX_FMT_NV21 \ || (x)==PIX_FMT_GRAY16BE \ || (x)==PIX_FMT_GRAY16LE \ || (x)==PIX_FMT_GRAY8 \ || (x)==PIX_FMT_YUV410P \ || (x)==PIX_FMT_YUV440P \ || (x)==PIX_FMT_YUV420P16LE \ || (x)==PIX_FMT_YUV422P16LE \ || (x)==PIX_FMT_YUV444P16LE \ || (x)==PIX_FMT_YUV420P16BE \ || (x)==PIX_FMT_YUV422P16BE \ || (x)==PIX_FMT_YUV444P16BE \ ) int sws_isSupportedOutput(enum PixelFormat pix_fmt) { return isSupportedOut(pix_fmt); } #define isPacked(x) ( \ (x)==PIX_FMT_PAL8 \ || (x)==PIX_FMT_YUYV422 \ || (x)==PIX_FMT_UYVY422 \ || isRGB(x) \ || isBGR(x) \ ) #define usePal(x) (av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL) #define RGB2YUV_SHIFT 15 #define BY ( (int)(0.114*219/255*(1<BGR scaler */ #if ARCH_X86 && CONFIG_GPL DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL; DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL; DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL; DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL; DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL; DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL; DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL; DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL; const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = { 0x0103010301030103LL, 0x0200020002000200LL,}; const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = { 0x0602060206020602LL, 0x0004000400040004LL,}; DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL; DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL; DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL; DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL; DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL; DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL; DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL; DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL; DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL; #ifdef FAST_BGR2YV12 DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL; DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL; DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL; #else DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL; DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL; DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL; #endif /* FAST_BGR2YV12 */ DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL; DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL; DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL; DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL; DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL; DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL; DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL; DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL; DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = { {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL}, {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL}, }; DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL; #endif /* ARCH_X86 && CONFIG_GPL */ // clipping helper table for C implementations: static unsigned char clip_table[768]; static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b); DECLARE_ALIGNED(8, static const uint8_t, dither_2x2_4[2][8])={ { 1, 3, 1, 3, 1, 3, 1, 3, }, { 2, 0, 2, 0, 2, 0, 2, 0, }, }; DECLARE_ALIGNED(8, static const uint8_t, dither_2x2_8[2][8])={ { 6, 2, 6, 2, 6, 2, 6, 2, }, { 0, 4, 0, 4, 0, 4, 0, 4, }, }; DECLARE_ALIGNED(8, const uint8_t, dither_8x8_32[8][8])={ { 17, 9, 23, 15, 16, 8, 22, 14, }, { 5, 29, 3, 27, 4, 28, 2, 26, }, { 21, 13, 19, 11, 20, 12, 18, 10, }, { 0, 24, 6, 30, 1, 25, 7, 31, }, { 16, 8, 22, 14, 17, 9, 23, 15, }, { 4, 28, 2, 26, 5, 29, 3, 27, }, { 20, 12, 18, 10, 21, 13, 19, 11, }, { 1, 25, 7, 31, 0, 24, 6, 30, }, }; DECLARE_ALIGNED(8, const uint8_t, dither_8x8_73[8][8])={ { 0, 55, 14, 68, 3, 58, 17, 72, }, { 37, 18, 50, 32, 40, 22, 54, 35, }, { 9, 64, 5, 59, 13, 67, 8, 63, }, { 46, 27, 41, 23, 49, 31, 44, 26, }, { 2, 57, 16, 71, 1, 56, 15, 70, }, { 39, 21, 52, 34, 38, 19, 51, 33, }, { 11, 66, 7, 62, 10, 65, 6, 60, }, { 48, 30, 43, 25, 47, 29, 42, 24, }, }; #if 1 DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={ {117, 62, 158, 103, 113, 58, 155, 100, }, { 34, 199, 21, 186, 31, 196, 17, 182, }, {144, 89, 131, 76, 141, 86, 127, 72, }, { 0, 165, 41, 206, 10, 175, 52, 217, }, {110, 55, 151, 96, 120, 65, 162, 107, }, { 28, 193, 14, 179, 38, 203, 24, 189, }, {138, 83, 124, 69, 148, 93, 134, 79, }, { 7, 172, 48, 213, 3, 168, 45, 210, }, }; #elif 1 // tries to correct a gamma of 1.5 DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={ { 0, 143, 18, 200, 2, 156, 25, 215, }, { 78, 28, 125, 64, 89, 36, 138, 74, }, { 10, 180, 3, 161, 16, 195, 8, 175, }, {109, 51, 93, 38, 121, 60, 105, 47, }, { 1, 152, 23, 210, 0, 147, 20, 205, }, { 85, 33, 134, 71, 81, 30, 130, 67, }, { 14, 190, 6, 171, 12, 185, 5, 166, }, {117, 57, 101, 44, 113, 54, 97, 41, }, }; #elif 1 // tries to correct a gamma of 2.0 DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={ { 0, 124, 8, 193, 0, 140, 12, 213, }, { 55, 14, 104, 42, 66, 19, 119, 52, }, { 3, 168, 1, 145, 6, 187, 3, 162, }, { 86, 31, 70, 21, 99, 39, 82, 28, }, { 0, 134, 11, 206, 0, 129, 9, 200, }, { 62, 17, 114, 48, 58, 16, 109, 45, }, { 5, 181, 2, 157, 4, 175, 1, 151, }, { 95, 36, 78, 26, 90, 34, 74, 24, }, }; #else // tries to correct a gamma of 2.5 DECLARE_ALIGNED(8, const uint8_t, dither_8x8_220[8][8])={ { 0, 107, 3, 187, 0, 125, 6, 212, }, { 39, 7, 86, 28, 49, 11, 102, 36, }, { 1, 158, 0, 131, 3, 180, 1, 151, }, { 68, 19, 52, 12, 81, 25, 64, 17, }, { 0, 119, 5, 203, 0, 113, 4, 195, }, { 45, 9, 96, 33, 42, 8, 91, 30, }, { 2, 172, 1, 144, 2, 165, 0, 137, }, { 77, 23, 60, 15, 72, 21, 56, 14, }, }; #endif const char *sws_format_name(enum PixelFormat format) { if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name) return av_pix_fmt_descriptors[format].name; else return "Unknown format"; } static av_always_inline void yuv2yuvX16inC_template(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize, const int16_t **alpSrc, uint16_t *dest, uint16_t *uDest, uint16_t *vDest, uint16_t *aDest, int dstW, int chrDstW, int big_endian) { //FIXME Optimize (just quickly written not optimized..) int i; for (i = 0; i < dstW; i++) { int val = 1 << 10; int j; for (j = 0; j < lumFilterSize; j++) val += lumSrc[j][i] * lumFilter[j]; if (big_endian) { AV_WB16(&dest[i], av_clip_uint16(val >> 11)); } else { AV_WL16(&dest[i], av_clip_uint16(val >> 11)); } } if (uDest) { for (i = 0; i < chrDstW; i++) { int u = 1 << 10; int v = 1 << 10; int j; for (j = 0; j < chrFilterSize; j++) { u += chrSrc[j][i ] * chrFilter[j]; v += chrSrc[j][i + VOFW] * chrFilter[j]; } if (big_endian) { AV_WB16(&uDest[i], av_clip_uint16(u >> 11)); AV_WB16(&vDest[i], av_clip_uint16(v >> 11)); } else { AV_WL16(&uDest[i], av_clip_uint16(u >> 11)); AV_WL16(&vDest[i], av_clip_uint16(v >> 11)); } } } if (CONFIG_SWSCALE_ALPHA && aDest) { for (i = 0; i < dstW; i++) { int val = 1 << 10; int j; for (j = 0; j < lumFilterSize; j++) val += alpSrc[j][i] * lumFilter[j]; if (big_endian) { AV_WB16(&aDest[i], av_clip_uint16(val >> 11)); } else { AV_WL16(&aDest[i], av_clip_uint16(val >> 11)); } } } } static inline void yuv2yuvX16inC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize, const int16_t **alpSrc, uint16_t *dest, uint16_t *uDest, uint16_t *vDest, uint16_t *aDest, int dstW, int chrDstW, enum PixelFormat dstFormat) { if (isBE(dstFormat)) { yuv2yuvX16inC_template(lumFilter, lumSrc, lumFilterSize, chrFilter, chrSrc, chrFilterSize, alpSrc, dest, uDest, vDest, aDest, dstW, chrDstW, 1); } else { yuv2yuvX16inC_template(lumFilter, lumSrc, lumFilterSize, chrFilter, chrSrc, chrFilterSize, alpSrc, dest, uDest, vDest, aDest, dstW, chrDstW, 0); } } static inline void yuv2yuvXinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, uint8_t *aDest, int dstW, int chrDstW) { //FIXME Optimize (just quickly written not optimized..) int i; for (i=0; i>19); } if (uDest) for (i=0; i>19); vDest[i]= av_clip_uint8(v>>19); } if (CONFIG_SWSCALE_ALPHA && aDest) for (i=0; i>19); } } static inline void yuv2nv12XinC(const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize, uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat) { //FIXME Optimize (just quickly written not optimized..) int i; for (i=0; i>19); } if (!uDest) return; if (dstFormat == PIX_FMT_NV12) for (i=0; i>19); uDest[2*i+1]= av_clip_uint8(v>>19); } else for (i=0; i>19); uDest[2*i+1]= av_clip_uint8(u>>19); } } #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha) \ for (i=0; i<(dstW>>1); i++) {\ int j;\ int Y1 = 1<<18;\ int Y2 = 1<<18;\ int U = 1<<18;\ int V = 1<<18;\ int av_unused A1, A2;\ type av_unused *r, *b, *g;\ const int i2= 2*i;\ \ for (j=0; j>=19;\ Y2>>=19;\ U >>=19;\ V >>=19;\ if (alpha) {\ A1 = 1<<18;\ A2 = 1<<18;\ for (j=0; j>=19;\ A2>>=19;\ }\ #define YSCALE_YUV_2_PACKEDX_C(type,alpha) \ YSCALE_YUV_2_PACKEDX_NOCLIP_C(type,alpha)\ if ((Y1|Y2|U|V)&256) {\ if (Y1>255) Y1=255; \ else if (Y1<0)Y1=0; \ if (Y2>255) Y2=255; \ else if (Y2<0)Y2=0; \ if (U>255) U=255; \ else if (U<0) U=0; \ if (V>255) V=255; \ else if (V<0) V=0; \ }\ if (alpha && ((A1|A2)&256)) {\ A1=av_clip_uint8(A1);\ A2=av_clip_uint8(A2);\ } #define YSCALE_YUV_2_PACKEDX_FULL_C(rnd,alpha) \ for (i=0; i>=10;\ U >>=10;\ V >>=10;\ if (alpha) {\ A = rnd;\ for (j=0; j>=19;\ if (A&256)\ A = av_clip_uint8(A);\ }\ #define YSCALE_YUV_2_RGBX_FULL_C(rnd,alpha) \ YSCALE_YUV_2_PACKEDX_FULL_C(rnd>>3,alpha)\ Y-= c->yuv2rgb_y_offset;\ Y*= c->yuv2rgb_y_coeff;\ Y+= rnd;\ R= Y + V*c->yuv2rgb_v2r_coeff;\ G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\ B= Y + U*c->yuv2rgb_u2b_coeff;\ if ((R|G|B)&(0xC0000000)) {\ if (R>=(256<<22)) R=(256<<22)-1; \ else if (R<0)R=0; \ if (G>=(256<<22)) G=(256<<22)-1; \ else if (G<0)G=0; \ if (B>=(256<<22)) B=(256<<22)-1; \ else if (B<0)B=0; \ }\ #define YSCALE_YUV_2_GRAY16_C \ for (i=0; i<(dstW>>1); i++) {\ int j;\ int Y1 = 1<<18;\ int Y2 = 1<<18;\ int U = 1<<18;\ int V = 1<<18;\ \ const int i2= 2*i;\ \ for (j=0; j>=11;\ Y2>>=11;\ if ((Y1|Y2|U|V)&65536) {\ if (Y1>65535) Y1=65535; \ else if (Y1<0)Y1=0; \ if (Y2>65535) Y2=65535; \ else if (Y2<0)Y2=0; \ } #define YSCALE_YUV_2_RGBX_C(type,alpha) \ YSCALE_YUV_2_PACKEDX_C(type,alpha) /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\ r = (type *)c->table_rV[V]; \ g = (type *)(c->table_gU[U] + c->table_gV[V]); \ b = (type *)c->table_bU[U]; \ #define YSCALE_YUV_2_PACKED2_C(type,alpha) \ for (i=0; i<(dstW>>1); i++) { \ const int i2= 2*i; \ int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \ int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \ int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \ int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \ type av_unused *r, *b, *g; \ int av_unused A1, A2; \ if (alpha) {\ A1= (abuf0[i2 ]*yalpha1+abuf1[i2 ]*yalpha)>>19; \ A2= (abuf0[i2+1]*yalpha1+abuf1[i2+1]*yalpha)>>19; \ }\ #define YSCALE_YUV_2_GRAY16_2_C \ for (i=0; i<(dstW>>1); i++) { \ const int i2= 2*i; \ int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \ int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \ #define YSCALE_YUV_2_RGB2_C(type,alpha) \ YSCALE_YUV_2_PACKED2_C(type,alpha)\ r = (type *)c->table_rV[V];\ g = (type *)(c->table_gU[U] + c->table_gV[V]);\ b = (type *)c->table_bU[U];\ #define YSCALE_YUV_2_PACKED1_C(type,alpha) \ for (i=0; i<(dstW>>1); i++) {\ const int i2= 2*i;\ int Y1= buf0[i2 ]>>7;\ int Y2= buf0[i2+1]>>7;\ int U= (uvbuf1[i ])>>7;\ int V= (uvbuf1[i+VOFW])>>7;\ type av_unused *r, *b, *g;\ int av_unused A1, A2;\ if (alpha) {\ A1= abuf0[i2 ]>>7;\ A2= abuf0[i2+1]>>7;\ }\ #define YSCALE_YUV_2_GRAY16_1_C \ for (i=0; i<(dstW>>1); i++) {\ const int i2= 2*i;\ int Y1= buf0[i2 ]<<1;\ int Y2= buf0[i2+1]<<1;\ #define YSCALE_YUV_2_RGB1_C(type,alpha) \ YSCALE_YUV_2_PACKED1_C(type,alpha)\ r = (type *)c->table_rV[V];\ g = (type *)(c->table_gU[U] + c->table_gV[V]);\ b = (type *)c->table_bU[U];\ #define YSCALE_YUV_2_PACKED1B_C(type,alpha) \ for (i=0; i<(dstW>>1); i++) {\ const int i2= 2*i;\ int Y1= buf0[i2 ]>>7;\ int Y2= buf0[i2+1]>>7;\ int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\ int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\ type av_unused *r, *b, *g;\ int av_unused A1, A2;\ if (alpha) {\ A1= abuf0[i2 ]>>7;\ A2= abuf0[i2+1]>>7;\ }\ #define YSCALE_YUV_2_RGB1B_C(type,alpha) \ YSCALE_YUV_2_PACKED1B_C(type,alpha)\ r = (type *)c->table_rV[V];\ g = (type *)(c->table_gU[U] + c->table_gV[V]);\ b = (type *)c->table_bU[U];\ #define YSCALE_YUV_2_MONO2_C \ const uint8_t * const d128=dither_8x8_220[y&7];\ uint8_t *g= c->table_gU[128] + c->table_gV[128];\ for (i=0; i>19) + d128[0]];\ acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\ acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\ acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\ acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\ acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\ acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\ acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\ ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\ dest++;\ }\ #define YSCALE_YUV_2_MONOX_C \ const uint8_t * const d128=dither_8x8_220[y&7];\ uint8_t *g= c->table_gU[128] + c->table_gV[128];\ int acc=0;\ for (i=0; i>=19;\ Y2>>=19;\ if ((Y1|Y2)&256) {\ if (Y1>255) Y1=255;\ else if (Y1<0)Y1=0;\ if (Y2>255) Y2=255;\ else if (Y2<0)Y2=0;\ }\ acc+= acc + g[Y1+d128[(i+0)&7]];\ acc+= acc + g[Y2+d128[(i+1)&7]];\ if ((i&7)==6) {\ ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\ dest++;\ }\ } #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\ switch(c->dstFormat) {\ case PIX_FMT_RGB48BE:\ case PIX_FMT_RGB48LE:\ func(uint8_t,0)\ ((uint8_t*)dest)[ 0]= r[Y1];\ ((uint8_t*)dest)[ 1]= r[Y1];\ ((uint8_t*)dest)[ 2]= g[Y1];\ ((uint8_t*)dest)[ 3]= g[Y1];\ ((uint8_t*)dest)[ 4]= b[Y1];\ ((uint8_t*)dest)[ 5]= b[Y1];\ ((uint8_t*)dest)[ 6]= r[Y2];\ ((uint8_t*)dest)[ 7]= r[Y2];\ ((uint8_t*)dest)[ 8]= g[Y2];\ ((uint8_t*)dest)[ 9]= g[Y2];\ ((uint8_t*)dest)[10]= b[Y2];\ ((uint8_t*)dest)[11]= b[Y2];\ dest+=12;\ }\ break;\ case PIX_FMT_RGBA:\ case PIX_FMT_BGRA:\ if (CONFIG_SMALL) {\ int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\ func(uint32_t,needAlpha)\ ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? (A1<<24) : 0);\ ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? (A2<<24) : 0);\ }\ } else {\ if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {\ func(uint32_t,1)\ ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (A1<<24);\ ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (A2<<24);\ }\ } else {\ func(uint32_t,0)\ ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\ ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\ }\ }\ }\ break;\ case PIX_FMT_ARGB:\ case PIX_FMT_ABGR:\ if (CONFIG_SMALL) {\ int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf;\ func(uint32_t,needAlpha)\ ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + (needAlpha ? A1 : 0);\ ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + (needAlpha ? A2 : 0);\ }\ } else {\ if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {\ func(uint32_t,1)\ ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1] + A1;\ ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2] + A2;\ }\ } else {\ func(uint32_t,0)\ ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\ ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\ }\ }\ } \ break;\ case PIX_FMT_RGB24:\ func(uint8_t,0)\ ((uint8_t*)dest)[0]= r[Y1];\ ((uint8_t*)dest)[1]= g[Y1];\ ((uint8_t*)dest)[2]= b[Y1];\ ((uint8_t*)dest)[3]= r[Y2];\ ((uint8_t*)dest)[4]= g[Y2];\ ((uint8_t*)dest)[5]= b[Y2];\ dest+=6;\ }\ break;\ case PIX_FMT_BGR24:\ func(uint8_t,0)\ ((uint8_t*)dest)[0]= b[Y1];\ ((uint8_t*)dest)[1]= g[Y1];\ ((uint8_t*)dest)[2]= r[Y1];\ ((uint8_t*)dest)[3]= b[Y2];\ ((uint8_t*)dest)[4]= g[Y2];\ ((uint8_t*)dest)[5]= r[Y2];\ dest+=6;\ }\ break;\ case PIX_FMT_RGB565:\ case PIX_FMT_BGR565:\ {\ const int dr1= dither_2x2_8[y&1 ][0];\ const int dg1= dither_2x2_4[y&1 ][0];\ const int db1= dither_2x2_8[(y&1)^1][0];\ const int dr2= dither_2x2_8[y&1 ][1];\ const int dg2= dither_2x2_4[y&1 ][1];\ const int db2= dither_2x2_8[(y&1)^1][1];\ func(uint16_t,0)\ ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\ ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\ }\ }\ break;\ case PIX_FMT_RGB555:\ case PIX_FMT_BGR555:\ {\ const int dr1= dither_2x2_8[y&1 ][0];\ const int dg1= dither_2x2_8[y&1 ][1];\ const int db1= dither_2x2_8[(y&1)^1][0];\ const int dr2= dither_2x2_8[y&1 ][1];\ const int dg2= dither_2x2_8[y&1 ][0];\ const int db2= dither_2x2_8[(y&1)^1][1];\ func(uint16_t,0)\ ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\ ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\ }\ }\ break;\ case PIX_FMT_RGB8:\ case PIX_FMT_BGR8:\ {\ const uint8_t * const d64= dither_8x8_73[y&7];\ const uint8_t * const d32= dither_8x8_32[y&7];\ func(uint8_t,0)\ ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\ ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\ }\ }\ break;\ case PIX_FMT_RGB4:\ case PIX_FMT_BGR4:\ {\ const uint8_t * const d64= dither_8x8_73 [y&7];\ const uint8_t * const d128=dither_8x8_220[y&7];\ func(uint8_t,0)\ ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\ + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\ }\ }\ break;\ case PIX_FMT_RGB4_BYTE:\ case PIX_FMT_BGR4_BYTE:\ {\ const uint8_t * const d64= dither_8x8_73 [y&7];\ const uint8_t * const d128=dither_8x8_220[y&7];\ func(uint8_t,0)\ ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\ ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\ }\ }\ break;\ case PIX_FMT_MONOBLACK:\ case PIX_FMT_MONOWHITE:\ {\ func_monoblack\ }\ break;\ case PIX_FMT_YUYV422:\ func2\ ((uint8_t*)dest)[2*i2+0]= Y1;\ ((uint8_t*)dest)[2*i2+1]= U;\ ((uint8_t*)dest)[2*i2+2]= Y2;\ ((uint8_t*)dest)[2*i2+3]= V;\ } \ break;\ case PIX_FMT_UYVY422:\ func2\ ((uint8_t*)dest)[2*i2+0]= U;\ ((uint8_t*)dest)[2*i2+1]= Y1;\ ((uint8_t*)dest)[2*i2+2]= V;\ ((uint8_t*)dest)[2*i2+3]= Y2;\ } \ break;\ case PIX_FMT_GRAY16BE:\ func_g16\ ((uint8_t*)dest)[2*i2+0]= Y1>>8;\ ((uint8_t*)dest)[2*i2+1]= Y1;\ ((uint8_t*)dest)[2*i2+2]= Y2>>8;\ ((uint8_t*)dest)[2*i2+3]= Y2;\ } \ break;\ case PIX_FMT_GRAY16LE:\ func_g16\ ((uint8_t*)dest)[2*i2+0]= Y1;\ ((uint8_t*)dest)[2*i2+1]= Y1>>8;\ ((uint8_t*)dest)[2*i2+2]= Y2;\ ((uint8_t*)dest)[2*i2+3]= Y2>>8;\ } \ break;\ }\ static inline void yuv2packedXinC(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, int dstW, int y) { int i; YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void,0), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C) } static inline void yuv2rgbXinC_full(SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, int dstW, int y) { int i; int step= fmt_depth(c->dstFormat)/8; int aidx= 3; switch(c->dstFormat) { case PIX_FMT_ARGB: dest++; aidx= 0; case PIX_FMT_RGB24: aidx--; case PIX_FMT_RGBA: if (CONFIG_SMALL) { int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf; YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha) dest[aidx]= needAlpha ? A : 255; dest[0]= R>>22; dest[1]= G>>22; dest[2]= B>>22; dest+= step; } } else { if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) { YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1) dest[aidx]= A; dest[0]= R>>22; dest[1]= G>>22; dest[2]= B>>22; dest+= step; } } else { YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0) dest[aidx]= 255; dest[0]= R>>22; dest[1]= G>>22; dest[2]= B>>22; dest+= step; } } } break; case PIX_FMT_ABGR: dest++; aidx= 0; case PIX_FMT_BGR24: aidx--; case PIX_FMT_BGRA: if (CONFIG_SMALL) { int needAlpha = CONFIG_SWSCALE_ALPHA && c->alpPixBuf; YSCALE_YUV_2_RGBX_FULL_C(1<<21, needAlpha) dest[aidx]= needAlpha ? A : 255; dest[0]= B>>22; dest[1]= G>>22; dest[2]= R>>22; dest+= step; } } else { if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) { YSCALE_YUV_2_RGBX_FULL_C(1<<21, 1) dest[aidx]= A; dest[0]= B>>22; dest[1]= G>>22; dest[2]= R>>22; dest+= step; } } else { YSCALE_YUV_2_RGBX_FULL_C(1<<21, 0) dest[aidx]= 255; dest[0]= B>>22; dest[1]= G>>22; dest[2]= R>>22; dest+= step; } } } break; default: assert(0); } } static void fillPlane(uint8_t* plane, int stride, int width, int height, int y, uint8_t val) { int i; uint8_t *ptr = plane + stride*y; for (i=0; i> RGB2YUV_SHIFT; } } static inline void rgb48ToUV(uint8_t *dstU, uint8_t *dstV, const uint8_t *src1, const uint8_t *src2, int width, uint32_t *unused) { int i; assert(src1==src2); for (i = 0; i < width; i++) { int r = src1[6*i + 0]; int g = src1[6*i + 2]; int b = src1[6*i + 4]; dstU[i] = (RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT; dstV[i] = (RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1))) >> RGB2YUV_SHIFT; } } static inline void rgb48ToUV_half(uint8_t *dstU, uint8_t *dstV, const uint8_t *src1, const uint8_t *src2, int width, uint32_t *unused) { int i; assert(src1==src2); for (i = 0; i < width; i++) { int r= src1[12*i + 0] + src1[12*i + 6]; int g= src1[12*i + 2] + src1[12*i + 8]; int b= src1[12*i + 4] + src1[12*i + 10]; dstU[i]= (RU*r + GU*g + BU*b + (257<> (RGB2YUV_SHIFT+1); dstV[i]= (RV*r + GV*g + BV*b + (257<> (RGB2YUV_SHIFT+1); } } #define BGR2Y(type, name, shr, shg, shb, maskr, maskg, maskb, RY, GY, BY, S)\ static inline void name(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused)\ {\ int i;\ for (i=0; i>shb)&maskb;\ int g= (((const type*)src)[i]>>shg)&maskg;\ int r= (((const type*)src)[i]>>shr)&maskr;\ \ dst[i]= (((RY)*r + (GY)*g + (BY)*b + (33<<((S)-1)))>>(S));\ }\ } BGR2Y(uint32_t, bgr32ToY,16, 0, 0, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8) BGR2Y(uint32_t, rgb32ToY, 0, 0,16, 0x00FF, 0xFF00, 0x00FF, RY<< 8, GY , BY<< 8, RGB2YUV_SHIFT+8) BGR2Y(uint16_t, bgr16ToY, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RY<<11, GY<<5, BY , RGB2YUV_SHIFT+8) BGR2Y(uint16_t, bgr15ToY, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RY<<10, GY<<5, BY , RGB2YUV_SHIFT+7) BGR2Y(uint16_t, rgb16ToY, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RY , GY<<5, BY<<11, RGB2YUV_SHIFT+8) BGR2Y(uint16_t, rgb15ToY, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RY , GY<<5, BY<<10, RGB2YUV_SHIFT+7) static inline void abgrToA(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused) { int i; for (i=0; i>shb;\ int g= (((const type*)src)[i]&maskg)>>shg;\ int r= (((const type*)src)[i]&maskr)>>shr;\ \ dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<((S)-1)))>>(S);\ dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<((S)-1)))>>(S);\ }\ }\ static inline void name ## _half(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, const uint8_t *dummy, long width, uint32_t *unused)\ {\ int i;\ for (i=0; i>shb;\ int r= ((pix0+pix1-g)&(maskr|(2*maskr)))>>shr;\ g&= maskg|(2*maskg);\ \ g>>=shg;\ \ dstU[i]= ((RU)*r + (GU)*g + (BU)*b + (257<<(S)))>>((S)+1);\ dstV[i]= ((RV)*r + (GV)*g + (BV)*b + (257<<(S)))>>((S)+1);\ }\ } BGR2UV(uint32_t, bgr32ToUV,16, 0, 0, 0xFF000000, 0xFF0000, 0xFF00, 0x00FF, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8) BGR2UV(uint32_t, rgb32ToUV, 0, 0,16, 0xFF000000, 0x00FF, 0xFF00, 0xFF0000, RU<< 8, GU , BU<< 8, RV<< 8, GV , BV<< 8, RGB2YUV_SHIFT+8) BGR2UV(uint16_t, bgr16ToUV, 0, 0, 0, 0, 0x001F, 0x07E0, 0xF800, RU<<11, GU<<5, BU , RV<<11, GV<<5, BV , RGB2YUV_SHIFT+8) BGR2UV(uint16_t, bgr15ToUV, 0, 0, 0, 0, 0x001F, 0x03E0, 0x7C00, RU<<10, GU<<5, BU , RV<<10, GV<<5, BV , RGB2YUV_SHIFT+7) BGR2UV(uint16_t, rgb16ToUV, 0, 0, 0, 0, 0xF800, 0x07E0, 0x001F, RU , GU<<5, BU<<11, RV , GV<<5, BV<<11, RGB2YUV_SHIFT+8) BGR2UV(uint16_t, rgb15ToUV, 0, 0, 0, 0, 0x7C00, 0x03E0, 0x001F, RU , GU<<5, BU<<10, RV , GV<<5, BV<<10, RGB2YUV_SHIFT+7) static inline void palToY(uint8_t *dst, const uint8_t *src, long width, uint32_t *pal) { int i; for (i=0; i>8; dstV[i]= p>>16; } } static inline void monowhite2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused) { int i, j; for (i=0; i>(7-j))&1)*255; } } static inline void monoblack2Y(uint8_t *dst, const uint8_t *src, long width, uint32_t *unused) { int i, j; for (i=0; i>(7-j))&1)*255; } } //Note: we have C, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one //Plain C versions #if ((!HAVE_MMX || !CONFIG_GPL) && !HAVE_ALTIVEC) || CONFIG_RUNTIME_CPUDETECT #define COMPILE_C #endif #if ARCH_PPC #if HAVE_ALTIVEC || CONFIG_RUNTIME_CPUDETECT #define COMPILE_ALTIVEC #endif #endif //ARCH_PPC #if ARCH_X86 #if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL #define COMPILE_MMX #endif #if (HAVE_MMX2 || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL #define COMPILE_MMX2 #endif #if ((HAVE_AMD3DNOW && !HAVE_MMX2) || CONFIG_RUNTIME_CPUDETECT) && CONFIG_GPL #define COMPILE_3DNOW #endif #endif //ARCH_X86 #define COMPILE_TEMPLATE_MMX 0 #define COMPILE_TEMPLATE_MMX2 0 #define COMPILE_TEMPLATE_AMD3DNOW 0 #define COMPILE_TEMPLATE_ALTIVEC 0 #ifdef COMPILE_C #define RENAME(a) a ## _C #include "swscale_template.c" #endif #ifdef COMPILE_ALTIVEC #undef RENAME #undef COMPILE_TEMPLATE_ALTIVEC #define COMPILE_TEMPLATE_ALTIVEC 1 #define RENAME(a) a ## _altivec #include "swscale_template.c" #endif #if ARCH_X86 //MMX versions #ifdef COMPILE_MMX #undef RENAME #undef COMPILE_TEMPLATE_MMX #undef COMPILE_TEMPLATE_MMX2 #undef COMPILE_TEMPLATE_AMD3DNOW #define COMPILE_TEMPLATE_MMX 1 #define COMPILE_TEMPLATE_MMX2 0 #define COMPILE_TEMPLATE_AMD3DNOW 0 #define RENAME(a) a ## _MMX #include "swscale_template.c" #endif //MMX2 versions #ifdef COMPILE_MMX2 #undef RENAME #undef COMPILE_TEMPLATE_MMX #undef COMPILE_TEMPLATE_MMX2 #undef COMPILE_TEMPLATE_AMD3DNOW #define COMPILE_TEMPLATE_MMX 1 #define COMPILE_TEMPLATE_MMX2 1 #define COMPILE_TEMPLATE_AMD3DNOW 0 #define RENAME(a) a ## _MMX2 #include "swscale_template.c" #endif //3DNOW versions #ifdef COMPILE_3DNOW #undef RENAME #undef COMPILE_TEMPLATE_MMX #undef COMPILE_TEMPLATE_MMX2 #undef COMPILE_TEMPLATE_AMD3DNOW #define COMPILE_TEMPLATE_MMX 1 #define COMPILE_TEMPLATE_MMX2 0 #define COMPILE_TEMPLATE_AMD3DNOW 1 #define RENAME(a) a ## _3DNow #include "swscale_template.c" #endif #endif //ARCH_X86 static double getSplineCoeff(double a, double b, double c, double d, double dist) { // printf("%f %f %f %f %f\n", a,b,c,d,dist); if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a; else return getSplineCoeff( 0.0, b+ 2.0*c + 3.0*d, c + 3.0*d, -b- 3.0*c - 6.0*d, dist-1.0); } static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2]) { int i; int filterSize; int filter2Size; int minFilterSize; int64_t *filter=NULL; int64_t *filter2=NULL; const int64_t fone= 1LL<<54; int ret= -1; #if ARCH_X86 if (flags & SWS_CPU_CAPS_MMX) __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions) #endif // NOTE: the +1 is for the MMX scaler which reads over the end FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail); if (FFABS(xInc - 0x10000) <10) { // unscaled int i; filterSize= 1; FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail); for (i=0; i>16; (*filterPos)[i]= xx; filter[i]= fone; xDstInSrc+= xInc; } } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale int i; int xDstInSrc; filterSize= 2; FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail); xDstInSrc= xInc/2 - 0x8000; for (i=0; i>16; int j; (*filterPos)[i]= xx; //bilinear upscale / linear interpolate / area averaging for (j=0; j>16); if (coeff<0) coeff=0; filter[i*filterSize + j]= coeff; xx++; } xDstInSrc+= xInc; } } else { int xDstInSrc; int sizeFactor; if (flags&SWS_BICUBIC) sizeFactor= 4; else if (flags&SWS_X) sizeFactor= 8; else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;) else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6; else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;) else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;) else if (flags&SWS_BILINEAR) sizeFactor= 2; else { sizeFactor= 0; //GCC warning killer assert(0); } if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW; if (filterSize > srcW-2) filterSize=srcW-2; FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail); xDstInSrc= xInc - 0x10000; for (i=0; i 1<<16) d= d*dstW/srcW; floatd= d * (1.0/(1<<30)); if (flags & SWS_BICUBIC) { int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24); int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24); int64_t dd = ( d*d)>>30; int64_t ddd= (dd*d)>>30; if (d < 1LL<<30) coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30); else if (d < 1LL<<31) coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30); else coeff=0.0; coeff *= fone>>(30+24); } /* else if (flags & SWS_X) { double p= param ? param*0.01 : 0.3; coeff = d ? sin(d*PI)/(d*PI) : 1.0; coeff*= pow(2.0, - p*d*d); }*/ else if (flags & SWS_X) { double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0; double c; if (floatd<1.0) c = cos(floatd*PI); else c=-1.0; if (c<0.0) c= -pow(-c, A); else c= pow( c, A); coeff= (c*0.5 + 0.5)*fone; } else if (flags & SWS_AREA) { int64_t d2= d - (1<<29); if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16)); else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16)); else coeff=0.0; coeff *= fone>>(30+16); } else if (flags & SWS_GAUSS) { double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; coeff = (pow(2.0, - p*floatd*floatd))*fone; } else if (flags & SWS_SINC) { coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone; } else if (flags & SWS_LANCZOS) { double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone; if (floatd>p) coeff=0; } else if (flags & SWS_BILINEAR) { coeff= (1<<30) - d; if (coeff<0) coeff=0; coeff *= fone >> 30; } else if (flags & SWS_SPLINE) { double p=-2.196152422706632; coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone; } else { coeff= 0.0; //GCC warning killer assert(0); } filter[i*filterSize + j]= coeff; xx++; } xDstInSrc+= 2*xInc; } } /* apply src & dst Filter to filter -> filter2 av_free(filter); */ assert(filterSize>0); filter2Size= filterSize; if (srcFilter) filter2Size+= srcFilter->length - 1; if (dstFilter) filter2Size+= dstFilter->length - 1; assert(filter2Size>0); FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail); for (i=0; ilength; k++) { for (j=0; jcoeff[k]*filter[i*filterSize + j]; } } else { for (j=0; j=0; i--) { int min= filter2Size; int j; int64_t cutOff=0.0; /* get rid off near zero elements on the left by shifting left */ for (j=0; j SWS_MAX_REDUCE_CUTOFF*fone) break; /* preserve monotonicity because the core can't handle the filter otherwise */ if (i= (*filterPos)[i+1]) break; // move filter coefficients left for (k=1; k0; j--) { cutOff += FFABS(filter2[i*filter2Size + j]); if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break; min--; } if (min>minFilterSize) minFilterSize= min; } if (flags & SWS_CPU_CAPS_ALTIVEC) { // we can handle the special case 4, // so we don't want to go to the full 8 if (minFilterSize < 5) filterAlign = 4; // We really don't want to waste our time // doing useless computation, so fall back on // the scalar C code for very small filters. // Vectorizing is worth it only if you have a // decent-sized vector. if (minFilterSize < 3) filterAlign = 1; } if (flags & SWS_CPU_CAPS_MMX) { // special case for unscaled vertical filtering if (minFilterSize == 1 && filterAlign == 2) filterAlign= 1; } assert(minFilterSize > 0); filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1)); assert(filterSize > 0); filter= av_malloc(filterSize*dstW*sizeof(*filter)); if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) goto fail; *outFilterSize= filterSize; if (flags&SWS_PRINT_INFO) av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize); /* try to reduce the filter-size (step2 reduce it) */ for (i=0; i=filter2Size) filter[i*filterSize + j]= 0; else filter[i*filterSize + j]= filter2[i*filter2Size + j]; if((flags & SWS_BITEXACT) && j>=minFilterSize) filter[i*filterSize + j]= 0; } } //FIXME try to align filterPos if possible //fix borders for (i=0; i srcW) { int shift= (*filterPos)[i] + filterSize - srcW; // move filter coefficients right to compensate for filterPos for (j=filterSize-2; j>=0; j--) { int right= FFMIN(j + shift, filterSize-1); filter[i*filterSize +right] += filter[i*filterSize +j]; filter[i*filterSize +j]=0; } (*filterPos)[i]= srcW - filterSize; } } // Note the +1 is for the MMX scaler which reads over the end /* align at 16 for AltiVec (needed by hScale_altivec_real) */ FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail); /* normalize & store in outFilter */ for (i=0; i>16; if ((i&3) == 0) { int a=0; int b=((xpos+xInc)>>16) - xx; int c=((xpos+xInc*2)>>16) - xx; int d=((xpos+xInc*3)>>16) - xx; int inc = (d+1<4); uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA; x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A; x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A; x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA; int maxShift= 3-(d+inc); int shift=0; if (filterCode) { filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9; filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9; filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9; filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9; filterPos[i/2]= xx; memcpy(filterCode + fragmentPos, fragment, fragmentLength); filterCode[fragmentPos + imm8OfPShufW1]= (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6); filterCode[fragmentPos + imm8OfPShufW2]= a | (b<<2) | (c<<4) | (d<<6); if (i+4-inc>=dstW) shift=maxShift; //avoid overread else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align if (shift && i>=shift) { filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift; filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift; filterPos[i/2]-=shift; } } fragmentPos+= fragmentLength; if (filterCode) filterCode[fragmentPos]= RET; } xpos+=xInc; } if (filterCode) filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part return fragmentPos + 1; } #endif /* COMPILE_MMX2 */ static void globalInit(void) { // generating tables: int i; for (i=0; i<768; i++) { int c= av_clip_uint8(i-256); clip_table[i]=c; } } static SwsFunc getSwsFunc(SwsContext *c) { #if CONFIG_RUNTIME_CPUDETECT int flags = c->flags; #if ARCH_X86 && CONFIG_GPL // ordered per speed fastest first if (flags & SWS_CPU_CAPS_MMX2) { sws_init_swScale_MMX2(c); return swScale_MMX2; } else if (flags & SWS_CPU_CAPS_3DNOW) { sws_init_swScale_3DNow(c); return swScale_3DNow; } else if (flags & SWS_CPU_CAPS_MMX) { sws_init_swScale_MMX(c); return swScale_MMX; } else { sws_init_swScale_C(c); return swScale_C; } #else #if ARCH_PPC if (flags & SWS_CPU_CAPS_ALTIVEC) { sws_init_swScale_altivec(c); return swScale_altivec; } else { sws_init_swScale_C(c); return swScale_C; } #endif sws_init_swScale_C(c); return swScale_C; #endif /* ARCH_X86 && CONFIG_GPL */ #else //CONFIG_RUNTIME_CPUDETECT #if COMPILE_TEMPLATE_MMX2 sws_init_swScale_MMX2(c); return swScale_MMX2; #elif COMPILE_TEMPLATE_AMD3DNOW sws_init_swScale_3DNow(c); return swScale_3DNow; #elif COMPILE_TEMPLATE_MMX sws_init_swScale_MMX(c); return swScale_MMX; #elif COMPILE_TEMPLATE_ALTIVEC sws_init_swScale_altivec(c); return swScale_altivec; #else sws_init_swScale_C(c); return swScale_C; #endif #endif //!CONFIG_RUNTIME_CPUDETECT } static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]) { uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY; /* Copy Y plane */ if (dstStride[0]==srcStride[0] && srcStride[0] > 0) memcpy(dst, src[0], srcSliceH*dstStride[0]); else { int i; const uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst; for (i=0; isrcW); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } dst = dstParam[1] + dstStride[1]*srcSliceY/2; if (c->dstFormat == PIX_FMT_NV12) interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]); else interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]); return srcSliceH; } static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]) { uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY; yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]); return srcSliceH; } static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]) { uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY; yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]); return srcSliceH; } static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]) { uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY; yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]); return srcSliceH; } static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]) { uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY; yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]); return srcSliceH; } static int YUYV2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]) { uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY; uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2; uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2; yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]); if (dstParam[3]) fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255); return srcSliceH; } static int YUYV2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]) { uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY; uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY; uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY; yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]); return srcSliceH; } static int UYVY2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]) { uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY; uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2; uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2; uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]); if (dstParam[3]) fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255); return srcSliceH; } static int UYVY2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dstParam[], int dstStride[]) { uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY; uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY; uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY; uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]); return srcSliceH; } static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]) { const enum PixelFormat srcFormat= c->srcFormat; const enum PixelFormat dstFormat= c->dstFormat; void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels, const uint8_t *palette)=NULL; int i; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; uint8_t *srcPtr= src[0]; if (!usePal(srcFormat)) av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); switch(dstFormat) { case PIX_FMT_RGB32 : conv = palette8topacked32; break; case PIX_FMT_BGR32 : conv = palette8topacked32; break; case PIX_FMT_BGR32_1: conv = palette8topacked32; break; case PIX_FMT_RGB32_1: conv = palette8topacked32; break; case PIX_FMT_RGB24 : conv = palette8topacked24; break; case PIX_FMT_BGR24 : conv = palette8topacked24; break; default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); break; } for (i=0; isrcW, (uint8_t *) c->pal_rgb); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } return srcSliceH; } /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */ static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]) { const enum PixelFormat srcFormat= c->srcFormat; const enum PixelFormat dstFormat= c->dstFormat; const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3; const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3; const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */ const int dstId= fmt_depth(dstFormat) >> 2; void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL; /* BGR -> BGR */ if ( (isBGR(srcFormat) && isBGR(dstFormat)) || (isRGB(srcFormat) && isRGB(dstFormat))) { switch(srcId | (dstId<<4)) { case 0x34: conv= rgb16to15; break; case 0x36: conv= rgb24to15; break; case 0x38: conv= rgb32to15; break; case 0x43: conv= rgb15to16; break; case 0x46: conv= rgb24to16; break; case 0x48: conv= rgb32to16; break; case 0x63: conv= rgb15to24; break; case 0x64: conv= rgb16to24; break; case 0x68: conv= rgb32to24; break; case 0x83: conv= rgb15to32; break; case 0x84: conv= rgb16to32; break; case 0x86: conv= rgb24to32; break; default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); break; } } else if ( (isBGR(srcFormat) && isRGB(dstFormat)) || (isRGB(srcFormat) && isBGR(dstFormat))) { switch(srcId | (dstId<<4)) { case 0x33: conv= rgb15tobgr15; break; case 0x34: conv= rgb16tobgr15; break; case 0x36: conv= rgb24tobgr15; break; case 0x38: conv= rgb32tobgr15; break; case 0x43: conv= rgb15tobgr16; break; case 0x44: conv= rgb16tobgr16; break; case 0x46: conv= rgb24tobgr16; break; case 0x48: conv= rgb32tobgr16; break; case 0x63: conv= rgb15tobgr24; break; case 0x64: conv= rgb16tobgr24; break; case 0x66: conv= rgb24tobgr24; break; case 0x68: conv= rgb32tobgr24; break; case 0x83: conv= rgb15tobgr32; break; case 0x84: conv= rgb16tobgr32; break; case 0x86: conv= rgb24tobgr32; break; case 0x88: conv= rgb32tobgr32; break; default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); break; } } else { av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); } if(conv) { uint8_t *srcPtr= src[0]; if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1) srcPtr += ALT32_CORR; if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0) conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]); else { int i; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for (i=0; isrcW*srcBpp); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } } return srcSliceH; } static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]) { rgb24toyv12( src[0], dst[0]+ srcSliceY *dstStride[0], dst[1]+(srcSliceY>>1)*dstStride[1], dst[2]+(srcSliceY>>1)*dstStride[2], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]); if (dst[3]) fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255); return srcSliceH; } static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]) { int i; /* copy Y */ if (srcStride[0]==dstStride[0] && srcStride[0] > 0) memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH); else { uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; for (i=0; isrcW); srcPtr+= srcStride[0]; dstPtr+= dstStride[0]; } } if (c->dstFormat==PIX_FMT_YUV420P || c->dstFormat==PIX_FMT_YUVA420P) { planar2x(src[1], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW, srcSliceH >> 2, srcStride[1], dstStride[1]); planar2x(src[2], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW, srcSliceH >> 2, srcStride[2], dstStride[2]); } else { planar2x(src[1], dst[2] + dstStride[2]*(srcSliceY >> 1), c->chrSrcW, srcSliceH >> 2, srcStride[1], dstStride[2]); planar2x(src[2], dst[1] + dstStride[1]*(srcSliceY >> 1), c->chrSrcW, srcSliceH >> 2, srcStride[2], dstStride[1]); } if (dst[3]) fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255); return srcSliceH; } /* unscaled copy like stuff (assumes nearly identical formats) */ static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]) { if (dstStride[0]==srcStride[0] && srcStride[0] > 0) memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]); else { int i; uint8_t *srcPtr= src[0]; uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY; int length=0; /* universal length finder */ while(length+c->srcW <= FFABS(dstStride[0]) && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW; assert(length!=0); for (i=0; isrcW : -((-c->srcW )>>c->chrDstHSubSample); int y= (plane==0 || plane==3) ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample); int height= (plane==0 || plane==3) ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample); uint8_t *srcPtr= src[plane]; uint8_t *dstPtr= dst[plane] + dstStride[plane]*y; if (!dst[plane]) continue; // ignore palette for GRAY8 if (plane == 1 && !dst[2]) continue; if (!src[plane] || (plane == 1 && !src[2])) { if(is16BPS(c->dstFormat)) length*=2; fillPlane(dst[plane], dstStride[plane], length, height, y, (plane==3) ? 255 : 128); } else { if(is16BPS(c->srcFormat) && !is16BPS(c->dstFormat)) { if (!isBE(c->srcFormat)) srcPtr++; for (i=0; isrcFormat) && is16BPS(c->dstFormat)) { for (i=0; isrcFormat) && is16BPS(c->dstFormat) && isBE(c->srcFormat) != isBE(c->dstFormat)) { for (i=0; i 0) memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]); else { if(is16BPS(c->srcFormat) && is16BPS(c->dstFormat)) length*=2; for (i=0; i>16; if (r<-0x7FFF) return 0x8000; else if (r> 0x7FFF) return 0x7FFF; else return r; } int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation) { int64_t crv = inv_table[0]; int64_t cbu = inv_table[1]; int64_t cgu = -inv_table[2]; int64_t cgv = -inv_table[3]; int64_t cy = 1<<16; int64_t oy = 0; memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4); memcpy(c->dstColorspaceTable, table, sizeof(int)*4); c->brightness= brightness; c->contrast = contrast; c->saturation= saturation; c->srcRange = srcRange; c->dstRange = dstRange; if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1; c->uOffset= 0x0400040004000400LL; c->vOffset= 0x0400040004000400LL; if (!srcRange) { cy= (cy*255) / 219; oy= 16<<16; } else { crv= (crv*224) / 255; cbu= (cbu*224) / 255; cgu= (cgu*224) / 255; cgv= (cgv*224) / 255; } cy = (cy *contrast )>>16; crv= (crv*contrast * saturation)>>32; cbu= (cbu*contrast * saturation)>>32; cgu= (cgu*contrast * saturation)>>32; cgv= (cgv*contrast * saturation)>>32; oy -= 256*brightness; c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL; c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL; c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL; c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL; c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL; c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL; c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13); c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9); c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13); c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13); c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13); c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13); ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation); //FIXME factorize #ifdef COMPILE_ALTIVEC if (c->flags & SWS_CPU_CAPS_ALTIVEC) ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation); #endif return 0; } int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation) { if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1; *inv_table = c->srcColorspaceTable; *table = c->dstColorspaceTable; *srcRange = c->srcRange; *dstRange = c->dstRange; *brightness= c->brightness; *contrast = c->contrast; *saturation= c->saturation; return 0; } static int handle_jpeg(enum PixelFormat *format) { switch (*format) { case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1; case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1; case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1; case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1; default: return 0; } } SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param) { SwsContext *c; int i; int usesVFilter, usesHFilter; int unscaled, needsDither; int srcRange, dstRange; SwsFilter dummyFilter= {NULL, NULL, NULL, NULL}; #if ARCH_X86 if (flags & SWS_CPU_CAPS_MMX) __asm__ volatile("emms\n\t"::: "memory"); #endif #if !CONFIG_RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN); #if COMPILE_TEMPLATE_MMX2 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2; #elif COMPILE_TEMPLATE_AMD3DNOW flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW; #elif COMPILE_TEMPLATE_MMX flags |= SWS_CPU_CAPS_MMX; #elif COMPILE_TEMPLATE_ALTIVEC flags |= SWS_CPU_CAPS_ALTIVEC; #elif ARCH_BFIN flags |= SWS_CPU_CAPS_BFIN; #endif #endif /* CONFIG_RUNTIME_CPUDETECT */ if (clip_table[512] != 255) globalInit(); if (!rgb15to16) sws_rgb2rgb_init(flags); unscaled = (srcW == dstW && srcH == dstH); needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) && (fmt_depth(dstFormat))<24 && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat)))); srcRange = handle_jpeg(&srcFormat); dstRange = handle_jpeg(&dstFormat); if (!isSupportedIn(srcFormat)) { av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat)); return NULL; } if (!isSupportedOut(dstFormat)) { av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat)); return NULL; } i= flags & ( SWS_POINT |SWS_AREA |SWS_BILINEAR |SWS_FAST_BILINEAR |SWS_BICUBIC |SWS_X |SWS_GAUSS |SWS_LANCZOS |SWS_SINC |SWS_SPLINE |SWS_BICUBLIN); if(!i || (i & (i-1))) { av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n"); return NULL; } /* sanity check */ if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", srcW, srcH, dstW, dstH); return NULL; } if(srcW > VOFW || dstW > VOFW) { av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n"); return NULL; } if (!dstFilter) dstFilter= &dummyFilter; if (!srcFilter) srcFilter= &dummyFilter; FF_ALLOCZ_OR_GOTO(NULL, c, sizeof(SwsContext), fail); c->av_class = &sws_context_class; c->srcW= srcW; c->srcH= srcH; c->dstW= dstW; c->dstH= dstH; c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW; c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH; c->flags= flags; c->dstFormat= dstFormat; c->srcFormat= srcFormat; c->vRounder= 4* 0x0001000100010001ULL; usesHFilter= usesVFilter= 0; if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1; if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1; if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1; if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1; if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1; if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1; if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1; if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1; getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat); getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat); // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1; // drop some chroma lines if the user wants it c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT; c->chrSrcVSubSample+= c->vChrDrop; // drop every other pixel for chroma calculation unless user wants full chroma if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP) && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT)))) c->chrSrcHSubSample=1; if (param) { c->param[0] = param[0]; c->param[1] = param[1]; } else { c->param[0] = c->param[1] = SWS_PARAM_DEFAULT; } // Note the -((-x)>>y) is so that we always round toward +inf. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample); c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample); c->chrDstW= -((-dstW) >> c->chrDstHSubSample); c->chrDstH= -((-dstH) >> c->chrDstVSubSample); sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16); /* unscaled special cases */ if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat))) { /* yv12_to_nv12 */ if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21)) { c->swScale= PlanarToNV12Wrapper; } /* yuv2bgr */ if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat)) && !(flags & SWS_ACCURATE_RND) && !(dstH&1)) { c->swScale= ff_yuv2rgb_get_func_ptr(c); } if (srcFormat==PIX_FMT_YUV410P && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_BITEXACT)) { c->swScale= yvu9toyv12Wrapper; } /* bgr24toYV12 */ if (srcFormat==PIX_FMT_BGR24 && (dstFormat==PIX_FMT_YUV420P || dstFormat==PIX_FMT_YUVA420P) && !(flags & SWS_ACCURATE_RND)) c->swScale= bgr24toyv12Wrapper; /* RGB/BGR -> RGB/BGR (no dither needed forms) */ if ( (isBGR(srcFormat) || isRGB(srcFormat)) && (isBGR(dstFormat) || isRGB(dstFormat)) && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8 && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8 && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4 && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4 && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_RGB32_1 && dstFormat != PIX_FMT_BGR32_1 && srcFormat != PIX_FMT_RGB48LE && dstFormat != PIX_FMT_RGB48LE && srcFormat != PIX_FMT_RGB48BE && dstFormat != PIX_FMT_RGB48BE && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)))) c->swScale= rgb2rgbWrapper; if ((usePal(srcFormat) && ( dstFormat == PIX_FMT_RGB32 || dstFormat == PIX_FMT_RGB32_1 || dstFormat == PIX_FMT_RGB24 || dstFormat == PIX_FMT_BGR32 || dstFormat == PIX_FMT_BGR32_1 || dstFormat == PIX_FMT_BGR24))) c->swScale= pal2rgbWrapper; if (srcFormat == PIX_FMT_YUV422P) { if (dstFormat == PIX_FMT_YUYV422) c->swScale= YUV422PToYuy2Wrapper; else if (dstFormat == PIX_FMT_UYVY422) c->swScale= YUV422PToUyvyWrapper; } /* LQ converters if -sws 0 or -sws 4*/ if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)) { /* yv12_to_yuy2 */ if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) { if (dstFormat == PIX_FMT_YUYV422) c->swScale= PlanarToYuy2Wrapper; else if (dstFormat == PIX_FMT_UYVY422) c->swScale= PlanarToUyvyWrapper; } } if(srcFormat == PIX_FMT_YUYV422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P)) c->swScale= YUYV2YUV420Wrapper; if(srcFormat == PIX_FMT_UYVY422 && (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P)) c->swScale= UYVY2YUV420Wrapper; if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P) c->swScale= YUYV2YUV422Wrapper; if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P) c->swScale= UYVY2YUV422Wrapper; #ifdef COMPILE_ALTIVEC if ((c->flags & SWS_CPU_CAPS_ALTIVEC) && !(c->flags & SWS_BITEXACT) && srcFormat == PIX_FMT_YUV420P) { // unscaled YV12 -> packed YUV, we want speed if (dstFormat == PIX_FMT_YUYV422) c->swScale= yv12toyuy2_unscaled_altivec; else if (dstFormat == PIX_FMT_UYVY422) c->swScale= yv12touyvy_unscaled_altivec; } #endif /* simple copy */ if ( srcFormat == dstFormat || (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P) || (srcFormat == PIX_FMT_YUV420P && dstFormat == PIX_FMT_YUVA420P) || (isPlanarYUV(srcFormat) && isGray(dstFormat)) || (isPlanarYUV(dstFormat) && isGray(srcFormat)) || (isGray(dstFormat) && isGray(srcFormat)) || (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat) && c->chrDstHSubSample == c->chrSrcHSubSample && c->chrDstVSubSample == c->chrSrcVSubSample && dstFormat != PIX_FMT_NV12 && dstFormat != PIX_FMT_NV21 && srcFormat != PIX_FMT_NV12 && srcFormat != PIX_FMT_NV21)) { if (isPacked(c->srcFormat)) c->swScale= packedCopy; else /* Planar YUV or gray */ c->swScale= planarCopy; } #if ARCH_BFIN if (flags & SWS_CPU_CAPS_BFIN) ff_bfin_get_unscaled_swscale (c); #endif if (c->swScale) { if (flags&SWS_PRINT_INFO) av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); return c; } } if (flags & SWS_CPU_CAPS_MMX2) { c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0; if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) { if (flags&SWS_PRINT_INFO) av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n"); } if (usesHFilter) c->canMMX2BeUsed=0; } else c->canMMX2BeUsed=0; c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW; c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH; // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst // but only for the FAST_BILINEAR mode otherwise do correct scaling // n-2 is the last chrominance sample available // this is not perfect, but no one should notice the difference, the more correct variant // would be like the vertical one, but that would require some special code for the // first and last pixel if (flags&SWS_FAST_BILINEAR) { if (c->canMMX2BeUsed) { c->lumXInc+= 20; c->chrXInc+= 20; } //we don't use the x86 asm scaler if MMX is available else if (flags & SWS_CPU_CAPS_MMX) { c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20; c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20; } } /* precalculate horizontal scaler filter coefficients */ { const int filterAlign= (flags & SWS_CPU_CAPS_MMX) ? 4 : (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 : 1; if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc, srcW , dstW, filterAlign, 1<<14, (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, srcFilter->lumH, dstFilter->lumH, c->param) < 0) goto fail; if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc, c->chrSrcW, c->chrDstW, filterAlign, 1<<14, (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, srcFilter->chrH, dstFilter->chrH, c->param) < 0) goto fail; #if defined(COMPILE_MMX2) // can't downscale !!! if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) { c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8); c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4); #ifdef MAP_ANONYMOUS c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); #elif HAVE_VIRTUALALLOC c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE); c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE); #else c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize); c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize); #endif FF_ALLOCZ_OR_GOTO(c, c->lumMmx2Filter , (dstW /8+8)*sizeof(int16_t), fail); FF_ALLOCZ_OR_GOTO(c, c->chrMmx2Filter , (c->chrDstW /4+8)*sizeof(int16_t), fail); FF_ALLOCZ_OR_GOTO(c, c->lumMmx2FilterPos, (dstW /2/8+8)*sizeof(int32_t), fail); FF_ALLOCZ_OR_GOTO(c, c->chrMmx2FilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail); initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->lumMmx2Filter, c->lumMmx2FilterPos, 8); initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4); #ifdef MAP_ANONYMOUS mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ); mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ); #endif } #endif /* defined(COMPILE_MMX2) */ } // initialize horizontal stuff /* precalculate vertical scaler filter coefficients */ { const int filterAlign= (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 : (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 : 1; if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc, srcH , dstH, filterAlign, (1<<12), (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, srcFilter->lumV, dstFilter->lumV, c->param) < 0) goto fail; if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc, c->chrSrcH, c->chrDstH, filterAlign, (1<<12), (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, srcFilter->chrV, dstFilter->chrV, c->param) < 0) goto fail; #ifdef COMPILE_ALTIVEC FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail); FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail); for (i=0;ivLumFilterSize*c->dstH;i++) { int j; short *p = (short *)&c->vYCoeffsBank[i]; for (j=0;j<8;j++) p[j] = c->vLumFilter[i]; } for (i=0;ivChrFilterSize*c->chrDstH;i++) { int j; short *p = (short *)&c->vCCoeffsBank[i]; for (j=0;j<8;j++) p[j] = c->vChrFilter[i]; } #endif } // calculate buffer sizes so that they won't run out while handling these damn slices c->vLumBufSize= c->vLumFilterSize; c->vChrBufSize= c->vChrFilterSize; for (i=0; ichrDstH / dstH; int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1, ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<chrSrcVSubSample)); nextSlice>>= c->chrSrcVSubSample; nextSlice<<= c->chrSrcVSubSample; if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice) c->vLumBufSize= nextSlice - c->vLumFilterPos[i]; if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample)) c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI]; } // allocate pixbufs (we use dynamic allocation because otherwise we would need to // allocate several megabytes to handle all possible cases) FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail); FF_ALLOC_OR_GOTO(c, c->chrPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail); if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail); //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000) /* align at 16 bytes for AltiVec */ for (i=0; ivLumBufSize; i++) { FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], VOF+1, fail); c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize]; } for (i=0; ivChrBufSize; i++) { FF_ALLOC_OR_GOTO(c, c->chrPixBuf[i+c->vChrBufSize], (VOF+1)*2, fail); c->chrPixBuf[i] = c->chrPixBuf[i+c->vChrBufSize]; } if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) for (i=0; ivLumBufSize; i++) { FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], VOF+1, fail); c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize]; } //try to avoid drawing green stuff between the right end and the stride end for (i=0; ivChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2); assert(2*VOFW == VOF); assert(c->chrDstH <= dstH); if (flags&SWS_PRINT_INFO) { #ifdef DITHER1XBPP const char *dither= " dithered"; #else const char *dither= ""; #endif if (flags&SWS_FAST_BILINEAR) av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, "); else if (flags&SWS_BILINEAR) av_log(c, AV_LOG_INFO, "BILINEAR scaler, "); else if (flags&SWS_BICUBIC) av_log(c, AV_LOG_INFO, "BICUBIC scaler, "); else if (flags&SWS_X) av_log(c, AV_LOG_INFO, "Experimental scaler, "); else if (flags&SWS_POINT) av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, "); else if (flags&SWS_AREA) av_log(c, AV_LOG_INFO, "Area Averageing scaler, "); else if (flags&SWS_BICUBLIN) av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, "); else if (flags&SWS_GAUSS) av_log(c, AV_LOG_INFO, "Gaussian scaler, "); else if (flags&SWS_SINC) av_log(c, AV_LOG_INFO, "Sinc scaler, "); else if (flags&SWS_LANCZOS) av_log(c, AV_LOG_INFO, "Lanczos scaler, "); else if (flags&SWS_SPLINE) av_log(c, AV_LOG_INFO, "Bicubic spline scaler, "); else av_log(c, AV_LOG_INFO, "ehh flags invalid?! "); if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565) av_log(c, AV_LOG_INFO, "from %s to%s %s ", sws_format_name(srcFormat), dither, sws_format_name(dstFormat)); else av_log(c, AV_LOG_INFO, "from %s to %s ", sws_format_name(srcFormat), sws_format_name(dstFormat)); if (flags & SWS_CPU_CAPS_MMX2) av_log(c, AV_LOG_INFO, "using MMX2\n"); else if (flags & SWS_CPU_CAPS_3DNOW) av_log(c, AV_LOG_INFO, "using 3DNOW\n"); else if (flags & SWS_CPU_CAPS_MMX) av_log(c, AV_LOG_INFO, "using MMX\n"); else if (flags & SWS_CPU_CAPS_ALTIVEC) av_log(c, AV_LOG_INFO, "using AltiVec\n"); else av_log(c, AV_LOG_INFO, "using C\n"); } if (flags & SWS_PRINT_INFO) { if (flags & SWS_CPU_CAPS_MMX) { if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR)) av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n"); else { if (c->hLumFilterSize==4) av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n"); else if (c->hLumFilterSize==8) av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n"); else av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n"); if (c->hChrFilterSize==4) av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n"); else if (c->hChrFilterSize==8) av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n"); else av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n"); } } else { #if ARCH_X86 av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n"); #else if (flags & SWS_FAST_BILINEAR) av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n"); else av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n"); #endif } if (isPlanarYUV(dstFormat)) { if (c->vLumFilterSize==1) av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); else av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); } else { if (c->vLumFilterSize==1 && c->vChrFilterSize==2) av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n" " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); else if (c->vLumFilterSize==2 && c->vChrFilterSize==2) av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); else av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); } if (dstFormat==PIX_FMT_BGR24) av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n", (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C")); else if (dstFormat==PIX_FMT_RGB32) av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); else if (dstFormat==PIX_FMT_BGR565) av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); else if (dstFormat==PIX_FMT_BGR555) av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"); av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH); } if (flags & SWS_PRINT_INFO) { av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc); av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc); } c->swScale= getSwsFunc(c); return c; fail: sws_freeContext(c); return NULL; } static void reset_ptr(uint8_t* src[], int format) { if(!isALPHA(format)) src[3]=NULL; if(!isPlanarYUV(format)) { src[3]=src[2]=NULL; if( format != PIX_FMT_PAL8 && format != PIX_FMT_RGB8 && format != PIX_FMT_BGR8 && format != PIX_FMT_RGB4_BYTE && format != PIX_FMT_BGR4_BYTE ) src[1]= NULL; } } /** * swscale wrapper, so we don't need to export the SwsContext. * Assumes planar YUV to be in YUV order instead of YVU. */ int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]) { int i; uint8_t* src2[4]= {src[0], src[1], src[2], src[3]}; uint8_t* dst2[4]= {dst[0], dst[1], dst[2], dst[3]}; // do not mess up sliceDir if we have a "trailing" 0-size slice if (srcSliceH == 0) return 0; if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) { av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n"); return 0; } if (c->sliceDir == 0) { if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1; } if (usePal(c->srcFormat)) { for (i=0; i<256; i++) { int p, r, g, b,y,u,v; if(c->srcFormat == PIX_FMT_PAL8) { p=((uint32_t*)(src[1]))[i]; r= (p>>16)&0xFF; g= (p>> 8)&0xFF; b= p &0xFF; } else if(c->srcFormat == PIX_FMT_RGB8) { r= (i>>5 )*36; g= ((i>>2)&7)*36; b= (i&3 )*85; } else if(c->srcFormat == PIX_FMT_BGR8) { b= (i>>6 )*85; g= ((i>>3)&7)*36; r= (i&7 )*36; } else if(c->srcFormat == PIX_FMT_RGB4_BYTE) { r= (i>>3 )*255; g= ((i>>1)&3)*85; b= (i&1 )*255; } else { assert(c->srcFormat == PIX_FMT_BGR4_BYTE); b= (i>>3 )*255; g= ((i>>1)&3)*85; r= (i&1 )*255; } y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT); u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT); v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT); c->pal_yuv[i]= y + (u<<8) + (v<<16); switch(c->dstFormat) { case PIX_FMT_BGR32: #if !HAVE_BIGENDIAN case PIX_FMT_RGB24: #endif c->pal_rgb[i]= r + (g<<8) + (b<<16); break; case PIX_FMT_BGR32_1: #if HAVE_BIGENDIAN case PIX_FMT_BGR24: #endif c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8; break; case PIX_FMT_RGB32_1: #if HAVE_BIGENDIAN case PIX_FMT_RGB24: #endif c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8; break; case PIX_FMT_RGB32: #if !HAVE_BIGENDIAN case PIX_FMT_BGR24: #endif default: c->pal_rgb[i]= b + (g<<8) + (r<<16); } } } // copy strides, so they can safely be modified if (c->sliceDir == 1) { // slices go from top to bottom int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2], srcStride[3]}; int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2], dstStride[3]}; reset_ptr(src2, c->srcFormat); reset_ptr(dst2, c->dstFormat); /* reset slice direction at end of frame */ if (srcSliceY + srcSliceH == c->srcH) c->sliceDir = 0; return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2, dstStride2); } else { // slices go from bottom to top => we flip the image internally int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2], -srcStride[3]}; int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2], -dstStride[3]}; src2[0] += (srcSliceH-1)*srcStride[0]; if (!usePal(c->srcFormat)) src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1]; src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]; src2[3] += (srcSliceH-1)*srcStride[3]; dst2[0] += ( c->dstH -1)*dstStride[0]; dst2[1] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1]; dst2[2] += ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]; dst2[3] += ( c->dstH -1)*dstStride[3]; reset_ptr(src2, c->srcFormat); reset_ptr(dst2, c->dstFormat); /* reset slice direction at end of frame */ if (!srcSliceY) c->sliceDir = 0; return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2); } } #if LIBSWSCALE_VERSION_MAJOR < 1 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[]) { return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride); } #endif SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose) { SwsFilter *filter= av_malloc(sizeof(SwsFilter)); if (!filter) return NULL; if (lumaGBlur!=0.0) { filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0); filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0); } else { filter->lumH= sws_getIdentityVec(); filter->lumV= sws_getIdentityVec(); } if (chromaGBlur!=0.0) { filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0); filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0); } else { filter->chrH= sws_getIdentityVec(); filter->chrV= sws_getIdentityVec(); } if (chromaSharpen!=0.0) { SwsVector *id= sws_getIdentityVec(); sws_scaleVec(filter->chrH, -chromaSharpen); sws_scaleVec(filter->chrV, -chromaSharpen); sws_addVec(filter->chrH, id); sws_addVec(filter->chrV, id); sws_freeVec(id); } if (lumaSharpen!=0.0) { SwsVector *id= sws_getIdentityVec(); sws_scaleVec(filter->lumH, -lumaSharpen); sws_scaleVec(filter->lumV, -lumaSharpen); sws_addVec(filter->lumH, id); sws_addVec(filter->lumV, id); sws_freeVec(id); } if (chromaHShift != 0.0) sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5)); if (chromaVShift != 0.0) sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5)); sws_normalizeVec(filter->chrH, 1.0); sws_normalizeVec(filter->chrV, 1.0); sws_normalizeVec(filter->lumH, 1.0); sws_normalizeVec(filter->lumV, 1.0); if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG); if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG); return filter; } SwsVector *sws_allocVec(int length) { SwsVector *vec = av_malloc(sizeof(SwsVector)); if (!vec) return NULL; vec->length = length; vec->coeff = av_malloc(sizeof(double) * length); if (!vec->coeff) av_freep(&vec); return vec; } SwsVector *sws_getGaussianVec(double variance, double quality) { const int length= (int)(variance*quality + 0.5) | 1; int i; double middle= (length-1)*0.5; SwsVector *vec= sws_allocVec(length); if (!vec) return NULL; for (i=0; icoeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI); } sws_normalizeVec(vec, 1.0); return vec; } SwsVector *sws_getConstVec(double c, int length) { int i; SwsVector *vec= sws_allocVec(length); if (!vec) return NULL; for (i=0; icoeff[i]= c; return vec; } SwsVector *sws_getIdentityVec(void) { return sws_getConstVec(1.0, 1); } double sws_dcVec(SwsVector *a) { int i; double sum=0; for (i=0; ilength; i++) sum+= a->coeff[i]; return sum; } void sws_scaleVec(SwsVector *a, double scalar) { int i; for (i=0; ilength; i++) a->coeff[i]*= scalar; } void sws_normalizeVec(SwsVector *a, double height) { sws_scaleVec(a, height/sws_dcVec(a)); } static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b) { int length= a->length + b->length - 1; int i, j; SwsVector *vec= sws_getConstVec(0.0, length); if (!vec) return NULL; for (i=0; ilength; i++) { for (j=0; jlength; j++) { vec->coeff[i+j]+= a->coeff[i]*b->coeff[j]; } } return vec; } static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b) { int length= FFMAX(a->length, b->length); int i; SwsVector *vec= sws_getConstVec(0.0, length); if (!vec) return NULL; for (i=0; ilength; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; for (i=0; ilength; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i]; return vec; } static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b) { int length= FFMAX(a->length, b->length); int i; SwsVector *vec= sws_getConstVec(0.0, length); if (!vec) return NULL; for (i=0; ilength; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; for (i=0; ilength; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i]; return vec; } /* shift left / or right if "shift" is negative */ static SwsVector *sws_getShiftedVec(SwsVector *a, int shift) { int length= a->length + FFABS(shift)*2; int i; SwsVector *vec= sws_getConstVec(0.0, length); if (!vec) return NULL; for (i=0; ilength; i++) { vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i]; } return vec; } void sws_shiftVec(SwsVector *a, int shift) { SwsVector *shifted= sws_getShiftedVec(a, shift); av_free(a->coeff); a->coeff= shifted->coeff; a->length= shifted->length; av_free(shifted); } void sws_addVec(SwsVector *a, SwsVector *b) { SwsVector *sum= sws_sumVec(a, b); av_free(a->coeff); a->coeff= sum->coeff; a->length= sum->length; av_free(sum); } void sws_subVec(SwsVector *a, SwsVector *b) { SwsVector *diff= sws_diffVec(a, b); av_free(a->coeff); a->coeff= diff->coeff; a->length= diff->length; av_free(diff); } void sws_convVec(SwsVector *a, SwsVector *b) { SwsVector *conv= sws_getConvVec(a, b); av_free(a->coeff); a->coeff= conv->coeff; a->length= conv->length; av_free(conv); } SwsVector *sws_cloneVec(SwsVector *a) { int i; SwsVector *vec= sws_allocVec(a->length); if (!vec) return NULL; for (i=0; ilength; i++) vec->coeff[i]= a->coeff[i]; return vec; } void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level) { int i; double max=0; double min=0; double range; for (i=0; ilength; i++) if (a->coeff[i]>max) max= a->coeff[i]; for (i=0; ilength; i++) if (a->coeff[i]coeff[i]; range= max - min; for (i=0; ilength; i++) { int x= (int)((a->coeff[i]-min)*60.0/range +0.5); av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]); for (;x>0; x--) av_log(log_ctx, log_level, " "); av_log(log_ctx, log_level, "|\n"); } } #if LIBSWSCALE_VERSION_MAJOR < 1 void sws_printVec(SwsVector *a) { sws_printVec2(a, NULL, AV_LOG_DEBUG); } #endif void sws_freeVec(SwsVector *a) { if (!a) return; av_freep(&a->coeff); a->length=0; av_free(a); } void sws_freeFilter(SwsFilter *filter) { if (!filter) return; if (filter->lumH) sws_freeVec(filter->lumH); if (filter->lumV) sws_freeVec(filter->lumV); if (filter->chrH) sws_freeVec(filter->chrH); if (filter->chrV) sws_freeVec(filter->chrV); av_free(filter); } void sws_freeContext(SwsContext *c) { int i; if (!c) return; if (c->lumPixBuf) { for (i=0; ivLumBufSize; i++) av_freep(&c->lumPixBuf[i]); av_freep(&c->lumPixBuf); } if (c->chrPixBuf) { for (i=0; ivChrBufSize; i++) av_freep(&c->chrPixBuf[i]); av_freep(&c->chrPixBuf); } if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) { for (i=0; ivLumBufSize; i++) av_freep(&c->alpPixBuf[i]); av_freep(&c->alpPixBuf); } av_freep(&c->vLumFilter); av_freep(&c->vChrFilter); av_freep(&c->hLumFilter); av_freep(&c->hChrFilter); #ifdef COMPILE_ALTIVEC av_freep(&c->vYCoeffsBank); av_freep(&c->vCCoeffsBank); #endif av_freep(&c->vLumFilterPos); av_freep(&c->vChrFilterPos); av_freep(&c->hLumFilterPos); av_freep(&c->hChrFilterPos); #if ARCH_X86 && CONFIG_GPL #ifdef MAP_ANONYMOUS if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize); if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize); #elif HAVE_VIRTUALALLOC if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, MEM_RELEASE); if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, MEM_RELEASE); #else av_free(c->lumMmx2FilterCode); av_free(c->chrMmx2FilterCode); #endif c->lumMmx2FilterCode=NULL; c->chrMmx2FilterCode=NULL; #endif /* ARCH_X86 && CONFIG_GPL */ av_freep(&c->lumMmx2Filter); av_freep(&c->chrMmx2Filter); av_freep(&c->lumMmx2FilterPos); av_freep(&c->chrMmx2FilterPos); av_freep(&c->yuvTable); av_free(c); } struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param) { static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT}; if (!param) param = default_param; if (context) { if (context->srcW != srcW || context->srcH != srcH || context->srcFormat != srcFormat || context->dstW != dstW || context->dstH != dstH || context->dstFormat != dstFormat || context->flags != flags || context->param[0] != param[0] || context->param[1] != param[1]) { sws_freeContext(context); context = NULL; } } if (!context) { return sws_getContext(srcW, srcH, srcFormat, dstW, dstH, dstFormat, flags, srcFilter, dstFilter, param); } return context; }