/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef AVUTIL_TX_PRIV_H #define AVUTIL_TX_PRIV_H #include "tx.h" #include "thread.h" #include "mem_internal.h" #include "attributes.h" #ifdef TX_FLOAT #define TX_TAB(x) x ## _float #define TX_NAME(x) x ## _float_c #define TX_NAME_STR(x) NULL_IF_CONFIG_SMALL(x "_float_c") #define TX_TYPE(x) AV_TX_FLOAT_ ## x #define TX_FN_NAME(fn, suffix) ff_tx_ ## fn ## _float_ ## suffix #define TX_FN_NAME_STR(fn, suffix) NULL_IF_CONFIG_SMALL(#fn "_float_" #suffix) #define MULT(x, m) ((x) * (m)) #define SCALE_TYPE float typedef float TXSample; typedef AVComplexFloat TXComplex; #elif defined(TX_DOUBLE) #define TX_TAB(x) x ## _double #define TX_NAME(x) x ## _double_c #define TX_NAME_STR(x) NULL_IF_CONFIG_SMALL(x "_double_c") #define TX_TYPE(x) AV_TX_DOUBLE_ ## x #define TX_FN_NAME(fn, suffix) ff_tx_ ## fn ## _double_ ## suffix #define TX_FN_NAME_STR(fn, suffix) NULL_IF_CONFIG_SMALL(#fn "_double_" #suffix) #define MULT(x, m) ((x) * (m)) #define SCALE_TYPE double typedef double TXSample; typedef AVComplexDouble TXComplex; #elif defined(TX_INT32) #define TX_TAB(x) x ## _int32 #define TX_NAME(x) x ## _int32_c #define TX_NAME_STR(x) NULL_IF_CONFIG_SMALL(x "_int32_c") #define TX_TYPE(x) AV_TX_INT32_ ## x #define TX_FN_NAME(fn, suffix) ff_tx_ ## fn ## _int32_ ## suffix #define TX_FN_NAME_STR(fn, suffix) NULL_IF_CONFIG_SMALL(#fn "_int32_" #suffix) #define MULT(x, m) (((((int64_t)(x)) * (int64_t)(m)) + 0x40000000) >> 31) #define SCALE_TYPE float typedef int32_t TXSample; typedef AVComplexInt32 TXComplex; #else typedef void TXComplex; #endif #define TX_DECL_FN(fn, suffix) \ void TX_FN_NAME(fn, suffix)(AVTXContext *s, void *o, void *i, ptrdiff_t st); #define TX_DEF(fn, tx_type, len_min, len_max, f1, f2, \ p, init_fn, suffix, cf, cd_flags, cf2) \ &(const FFTXCodelet){ \ .name = TX_FN_NAME_STR(fn, suffix), \ .function = TX_FN_NAME(fn, suffix), \ .type = TX_TYPE(tx_type), \ .flags = FF_TX_ALIGNED | FF_TX_OUT_OF_PLACE | cd_flags, \ .factors = { (f1), (f2) }, \ .nb_factors = !!(f1) + !!(f2), \ .min_len = len_min, \ .max_len = len_max, \ .init = init_fn, \ .cpu_flags = cf2 | AV_CPU_FLAG_ ## cf, \ .prio = p, \ } #if defined(TX_FLOAT) || defined(TX_DOUBLE) #define CMUL(dre, dim, are, aim, bre, bim) \ do { \ (dre) = (are) * (bre) - (aim) * (bim); \ (dim) = (are) * (bim) + (aim) * (bre); \ } while (0) #define SMUL(dre, dim, are, aim, bre, bim) \ do { \ (dre) = (are) * (bre) - (aim) * (bim); \ (dim) = (are) * (bim) - (aim) * (bre); \ } while (0) #define UNSCALE(x) (x) #define RESCALE(x) (x) #define FOLD(a, b) ((a) + (b)) #elif defined(TX_INT32) /* Properly rounds the result */ #define CMUL(dre, dim, are, aim, bre, bim) \ do { \ int64_t accu; \ (accu) = (int64_t)(bre) * (are); \ (accu) -= (int64_t)(bim) * (aim); \ (dre) = (int)(((accu) + 0x40000000) >> 31); \ (accu) = (int64_t)(bim) * (are); \ (accu) += (int64_t)(bre) * (aim); \ (dim) = (int)(((accu) + 0x40000000) >> 31); \ } while (0) #define SMUL(dre, dim, are, aim, bre, bim) \ do { \ int64_t accu; \ (accu) = (int64_t)(bre) * (are); \ (accu) -= (int64_t)(bim) * (aim); \ (dre) = (int)(((accu) + 0x40000000) >> 31); \ (accu) = (int64_t)(bim) * (are); \ (accu) -= (int64_t)(bre) * (aim); \ (dim) = (int)(((accu) + 0x40000000) >> 31); \ } while (0) #define UNSCALE(x) ((double)(x)/2147483648.0) #define RESCALE(x) (av_clip64(llrintf((x) * 2147483648.0), INT32_MIN, INT32_MAX)) #define FOLD(x, y) ((int32_t)((x) + (unsigned)(y) + 32) >> 6) #endif /* TX_INT32 */ #define BF(x, y, a, b) \ do { \ x = (a) - (b); \ y = (a) + (b); \ } while (0) #define CMUL3(c, a, b) CMUL((c).re, (c).im, (a).re, (a).im, (b).re, (b).im) /* Codelet flags, used to pick codelets. Must be a superset of enum AVTXFlags, * but if it runs out of bits, it can be made separate. */ #define FF_TX_OUT_OF_PLACE (1ULL << 63) /* Can be OR'd with AV_TX_INPLACE */ #define FF_TX_ALIGNED (1ULL << 62) /* Cannot be OR'd with AV_TX_UNALIGNED */ #define FF_TX_PRESHUFFLE (1ULL << 61) /* Codelet expects permuted coeffs */ #define FF_TX_INVERSE_ONLY (1ULL << 60) /* For non-orthogonal inverse-only transforms */ #define FF_TX_FORWARD_ONLY (1ULL << 59) /* For non-orthogonal forward-only transforms */ #define FF_TX_ASM_CALL (1ULL << 58) /* For asm->asm functions only */ typedef enum FFTXCodeletPriority { FF_TX_PRIO_BASE = 0, /* Baseline priority */ /* For SIMD, set base prio to the register size in bits and increment in * steps of 64 depending on faster/slower features, like FMA. */ FF_TX_PRIO_MIN = -131072, /* For naive implementations */ FF_TX_PRIO_MAX = 32768, /* For custom implementations/ASICs */ } FFTXCodeletPriority; typedef enum FFTXMapDirection { /* No map. Make a map up. */ FF_TX_MAP_NONE = 0, /* Lookup table must be applied via dst[i] = src[lut[i]]; */ FF_TX_MAP_GATHER, /* Lookup table must be applied via dst[lut[i]] = src[i]; */ FF_TX_MAP_SCATTER, } FFTXMapDirection; /* Codelet options */ typedef struct FFTXCodeletOptions { /* Request a specific lookup table direction. Codelets MUST put the * direction in AVTXContext. If the codelet does not respect this, a * conversion will be performed. */ FFTXMapDirection map_dir; } FFTXCodeletOptions; /* Maximum number of factors a codelet may have. Arbitrary. */ #define TX_MAX_FACTORS 16 /* Maximum amount of subtransform functions, subtransforms and factors. Arbitrary. */ #define TX_MAX_SUB 4 /* Maximum number of returned results for ff_tx_decompose_length. Arbitrary. */ #define TX_MAX_DECOMPOSITIONS 512 typedef struct FFTXCodelet { const char *name; /* Codelet name, for debugging */ av_tx_fn function; /* Codelet function, != NULL */ enum AVTXType type; /* Type of codelet transform */ #define TX_TYPE_ANY INT32_MAX /* Special type to allow all types */ uint64_t flags; /* A combination of AVTXFlags and codelet * flags that describe its properties. */ int factors[TX_MAX_FACTORS]; /* Length factors. MUST be coprime. */ #define TX_FACTOR_ANY -1 /* When used alone, signals that the codelet * supports all factors. Otherwise, if other * factors are present, it signals that whatever * remains will be supported, as long as the * other factors are a component of the length */ int nb_factors; /* Minimum number of factors that have to * be a modulo of the length. Must not be 0. */ int min_len; /* Minimum length of transform, must be >= 1 */ int max_len; /* Maximum length of transform */ #define TX_LEN_UNLIMITED -1 /* Special length value to permit all lengths */ int (*init)(AVTXContext *s, /* Optional callback for current context initialization. */ const struct FFTXCodelet *cd, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale); int (*uninit)(AVTXContext *s); /* Optional callback for uninitialization. */ int cpu_flags; /* CPU flags. If any negative flags like * SLOW are present, will avoid picking. * 0x0 to signal it's a C codelet */ #define FF_TX_CPU_FLAGS_ALL 0x0 /* Special CPU flag for C */ int prio; /* < 0 = least, 0 = no pref, > 0 = prefer */ } FFTXCodelet; struct AVTXContext { /* Fields the root transform and subtransforms use or may use. * NOTE: This section is used by assembly, do not reorder or change */ int len; /* Length of the transform */ int inv; /* If transform is inverse */ int *map; /* Lookup table(s) */ TXComplex *exp; /* Any non-pre-baked multiplication factors needed */ TXComplex *tmp; /* Temporary buffer, if needed */ AVTXContext *sub; /* Subtransform context(s), if needed */ av_tx_fn fn[TX_MAX_SUB]; /* Function(s) for the subtransforms */ int nb_sub; /* Number of subtransforms. * The reason all of these are set here * rather than in each separate context * is to eliminate extra pointer * dereferences. */ /* Fields mainly useul/applicable for the root transform or initialization. * Fields below are not used by assembly code. */ const FFTXCodelet *cd[TX_MAX_SUB]; /* Subtransform codelets */ const FFTXCodelet *cd_self; /* Codelet for the current context */ enum AVTXType type; /* Type of transform */ uint64_t flags; /* A combination of AVTXFlags and * codelet flags used when creating */ FFTXMapDirection map_dir; /* Direction of AVTXContext->map */ float scale_f; double scale_d; void *opaque; /* Free to use by implementations */ }; /* This function embeds a Ruritanian PFA input map into an existing lookup table * to avoid double permutation. This allows for compound factors to be * synthesized as fast PFA FFTs and embedded into either other or standalone * transforms. * The output CRT map must still be pre-baked into the transform. */ #define TX_EMBED_INPUT_PFA_MAP(map, tot_len, d1, d2) \ do { \ int mtmp[(d1)*(d2)]; \ for (int k = 0; k < tot_len; k += (d1)*(d2)) { \ memcpy(mtmp, &map[k], (d1)*(d2)*sizeof(*mtmp)); \ for (int m = 0; m < (d2); m++) \ for (int n = 0; n < (d1); n++) \ map[k + m*(d1) + n] = mtmp[(m*(d1) + n*(d2)) % ((d1)*(d2))]; \ } \ } while (0) /* This function generates a Ruritanian PFA input map into s->map. */ int ff_tx_gen_pfa_input_map(AVTXContext *s, FFTXCodeletOptions *opts, int d1, int d2); /* Create a subtransform in the current context with the given parameters. * The flags parameter from FFTXCodelet.init() should be preserved as much * as that's possible. * MUST be called during the sub() callback of each codelet. */ int ff_tx_init_subtx(AVTXContext *s, enum AVTXType type, uint64_t flags, FFTXCodeletOptions *opts, int len, int inv, const void *scale); /* Clear the context by freeing all tables, maps and subtransforms. */ void ff_tx_clear_ctx(AVTXContext *s); /* Attempt to factorize a length into 2 integers such that * len / dst1 == dst2, where dst1 and dst2 are coprime. */ int ff_tx_decompose_length(int dst[TX_MAX_DECOMPOSITIONS], enum AVTXType type, int len, int inv); /* Generate a default map (0->len or 0, (len-1)->1 for inverse transforms) * for a context. */ int ff_tx_gen_default_map(AVTXContext *s, FFTXCodeletOptions *opts); /* * Generates the PFA permutation table into AVTXContext->pfatab. The end table * is appended to the start table. * The `inv` flag should only be enabled if the lookup tables of subtransforms * won't get flattened. */ int ff_tx_gen_compound_mapping(AVTXContext *s, FFTXCodeletOptions *opts, int inv, int n, int m); /* * Generates a standard-ish (slightly modified) Split-Radix revtab into * AVTXContext->map. Invert lookup changes how the mapping needs to be applied. * If it's set to 0, it has to be applied like out[map[i]] = in[i], otherwise * if it's set to 1, has to be applied as out[i] = in[map[i]] */ int ff_tx_gen_ptwo_revtab(AVTXContext *s, FFTXCodeletOptions *opts); /* * Generates an index into AVTXContext->inplace_idx that if followed in the * specific order, allows the revtab to be done in-place. The sub-transform * and its map should already be initialized. */ int ff_tx_gen_inplace_map(AVTXContext *s, int len); /* * This generates a parity-based revtab of length len and direction inv. * * Parity means even and odd complex numbers will be split, e.g. the even * coefficients will come first, after which the odd coefficients will be * placed. For example, a 4-point transform's coefficients after reordering: * z[0].re, z[0].im, z[2].re, z[2].im, z[1].re, z[1].im, z[3].re, z[3].im * * The basis argument is the length of the largest non-composite transform * supported, and also implies that the basis/2 transform is supported as well, * as the split-radix algorithm requires it to be. * * The dual_stride argument indicates that both the basis, as well as the * basis/2 transforms support doing two transforms at once, and the coefficients * will be interleaved between each pair in a split-radix like so (stride == 2): * tx1[0], tx1[2], tx2[0], tx2[2], tx1[1], tx1[3], tx2[1], tx2[3] * A non-zero number switches this on, with the value indicating the stride * (how many values of 1 transform to put first before switching to the other). * Must be a power of two or 0. Must be less than the basis. * Value will be clipped to the transform size, so for a basis of 16 and a * dual_stride of 8, dual 8-point transforms will be laid out as if dual_stride * was set to 4. * Usually you'll set this to half the complex numbers that fit in a single * register or 0. This allows to reuse SSE functions as dual-transform * functions in AVX mode. * * If length is smaller than basis/2 this function will not do anything. * * If inv_lookup is set to 1, it will flip the lookup from out[map[i]] = src[i] * to out[i] = src[map[i]]. */ int ff_tx_gen_split_radix_parity_revtab(AVTXContext *s, int len, int inv, FFTXCodeletOptions *opts, int basis, int dual_stride); /* Typed init function to initialize shared tables. Will initialize all tables * for all factors of a length. */ void ff_tx_init_tabs_float (int len); void ff_tx_init_tabs_double(int len); void ff_tx_init_tabs_int32 (int len); /* Typed init function to initialize an MDCT exptab in a context. * If pre_tab is set, duplicates the entire table, with the first * copy being shuffled according to pre_tab, and the second copy * being the original. */ int ff_tx_mdct_gen_exp_float (AVTXContext *s, int *pre_tab); int ff_tx_mdct_gen_exp_double(AVTXContext *s, int *pre_tab); int ff_tx_mdct_gen_exp_int32 (AVTXContext *s, int *pre_tab); /* Lists of codelets */ extern const FFTXCodelet * const ff_tx_codelet_list_float_c []; extern const FFTXCodelet * const ff_tx_codelet_list_float_x86 []; extern const FFTXCodelet * const ff_tx_codelet_list_float_aarch64 []; extern const FFTXCodelet * const ff_tx_codelet_list_double_c []; extern const FFTXCodelet * const ff_tx_codelet_list_int32_c []; #endif /* AVUTIL_TX_PRIV_H */