/* * Copyright 2002-2008 Xiph.org Foundation * Copyright 2002-2008 Jean-Marc Valin * Copyright 2005-2007 Analog Devices Inc. * Copyright 2005-2008 Commonwealth Scientific and Industrial Research Organisation (CSIRO) * Copyright 1993, 2002, 2006 David Rowe * Copyright 2003 EpicGames * Copyright 1992-1994 Jutta Degener, Carsten Bormann * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - Neither the name of the Xiph.org Foundation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "libavutil/avstring.h" #include "libavutil/float_dsp.h" #include "avcodec.h" #include "bytestream.h" #include "codec_internal.h" #include "decode.h" #include "get_bits.h" #include "speexdata.h" #define SPEEX_NB_MODES 3 #define SPEEX_INBAND_STEREO 9 #define QMF_ORDER 64 #define NB_ORDER 10 #define NB_FRAME_SIZE 160 #define NB_SUBMODES 9 #define NB_SUBMODE_BITS 4 #define SB_SUBMODE_BITS 3 #define NB_SUBFRAME_SIZE 40 #define NB_NB_SUBFRAMES 4 #define NB_PITCH_START 17 #define NB_PITCH_END 144 #define NB_DEC_BUFFER (NB_FRAME_SIZE + 2 * NB_PITCH_END + NB_SUBFRAME_SIZE + 12) #define SPEEX_MEMSET(dst, c, n) (memset((dst), (c), (n) * sizeof(*(dst)))) #define SPEEX_COPY(dst, src, n) (memcpy((dst), (src), (n) * sizeof(*(dst)))) #define LSP_LINEAR(i) (.25f * (i) + .25f) #define LSP_LINEAR_HIGH(i) (.3125f * (i) + .75f) #define LSP_DIV_256(x) (0.00390625f * (x)) #define LSP_DIV_512(x) (0.001953125f * (x)) #define LSP_DIV_1024(x) (0.0009765625f * (x)) typedef struct LtpParams { const int8_t *gain_cdbk; int gain_bits; int pitch_bits; } LtpParam; static const LtpParam ltp_params_vlbr = { gain_cdbk_lbr, 5, 0 }; static const LtpParam ltp_params_lbr = { gain_cdbk_lbr, 5, 7 }; static const LtpParam ltp_params_med = { gain_cdbk_lbr, 5, 7 }; static const LtpParam ltp_params_nb = { gain_cdbk_nb, 7, 7 }; typedef struct SplitCodebookParams { int subvect_size; int nb_subvect; const signed char *shape_cb; int shape_bits; int have_sign; } SplitCodebookParams; static const SplitCodebookParams split_cb_nb_ulbr = { 20, 2, exc_20_32_table, 5, 0 }; static const SplitCodebookParams split_cb_nb_vlbr = { 10, 4, exc_10_16_table, 4, 0 }; static const SplitCodebookParams split_cb_nb_lbr = { 10, 4, exc_10_32_table, 5, 0 }; static const SplitCodebookParams split_cb_nb_med = { 8, 5, exc_8_128_table, 7, 0 }; static const SplitCodebookParams split_cb_nb = { 5, 8, exc_5_64_table, 6, 0 }; static const SplitCodebookParams split_cb_sb = { 5, 8, exc_5_256_table, 8, 0 }; static const SplitCodebookParams split_cb_high = { 8, 5, hexc_table, 7, 1 }; static const SplitCodebookParams split_cb_high_lbr= { 10, 4, hexc_10_32_table,5, 0 }; /** Quantizes LSPs */ typedef void (*lsp_quant_func)(float *, float *, int, GetBitContext *); /** Decodes quantized LSPs */ typedef void (*lsp_unquant_func)(float *, int, GetBitContext *); /** Long-term predictor quantization */ typedef int (*ltp_quant_func)(float *, float *, float *, float *, float *, float *, const void *, int, int, float, int, int, GetBitContext *, char *, float *, float *, int, int, int, float *); /** Long-term un-quantize */ typedef void (*ltp_unquant_func)(float *, float *, int, int, float, const void *, int, int *, float *, GetBitContext *, int, int, float, int); /** Innovation quantization function */ typedef void (*innovation_quant_func)(float *, float *, float *, float *, const void *, int, int, float *, float *, GetBitContext *, char *, int, int); /** Innovation unquantization function */ typedef void (*innovation_unquant_func)(float *, const void *, int, GetBitContext *, uint32_t *); typedef struct SpeexSubmode { int lbr_pitch; /**< Set to -1 for "normal" modes, otherwise encode pitch using a global pitch and allowing a +- lbr_pitch variation (for low not-rates)*/ int forced_pitch_gain; /**< Use the same (forced) pitch gain for all sub-frames */ int have_subframe_gain; /**< Number of bits to use as sub-frame innovation gain */ int double_codebook; /**< Apply innovation quantization twice for higher quality (and higher bit-rate)*/ lsp_unquant_func lsp_unquant; /**< LSP unquantization function */ ltp_unquant_func ltp_unquant; /**< Long-term predictor (pitch) un-quantizer */ const void *LtpParam; /**< Pitch parameters (options) */ innovation_unquant_func innovation_unquant; /**< Innovation un-quantization */ const void *innovation_params; /**< Innovation quantization parameters*/ float comb_gain; /**< Gain of enhancer comb filter */ } SpeexSubmode; typedef struct SpeexMode { int modeID; /**< ID of the mode */ int (*decode)(AVCodecContext *avctx, void *dec, GetBitContext *gb, float *out); int frame_size; /**< Size of frames used for decoding */ int subframe_size; /**< Size of sub-frames used for decoding */ int lpc_size; /**< Order of LPC filter */ float folding_gain; /**< Folding gain */ const SpeexSubmode *submodes[NB_SUBMODES]; /**< Sub-mode data for the mode */ int default_submode; /**< Default sub-mode to use when decoding */ } SpeexMode; typedef struct DecoderState { const SpeexMode *mode; int modeID; /**< ID of the decoder mode */ int first; /**< Is first frame */ int full_frame_size; /**< Length of full-band frames */ int is_wideband; /**< If wideband is present */ int count_lost; /**< Was the last frame lost? */ int frame_size; /**< Length of high-band frames */ int subframe_size; /**< Length of high-band sub-frames */ int nb_subframes; /**< Number of high-band sub-frames */ int lpc_size; /**< Order of high-band LPC analysis */ float last_ol_gain; /**< Open-loop gain for previous frame */ float *innov_save; /**< If non-NULL, innovation is copied here */ /* This is used in packet loss concealment */ int last_pitch; /**< Pitch of last correctly decoded frame */ float last_pitch_gain; /**< Pitch gain of last correctly decoded frame */ uint32_t seed; /**< Seed used for random number generation */ int encode_submode; const SpeexSubmode *const *submodes; /**< Sub-mode data */ int submodeID; /**< Activated sub-mode */ int lpc_enh_enabled; /**< 1 when LPC enhancer is on, 0 otherwise */ /* Vocoder data */ float voc_m1; float voc_m2; float voc_mean; int voc_offset; int dtx_enabled; int highpass_enabled; /**< Is the input filter enabled */ float *exc; /**< Start of excitation frame */ float mem_hp[2]; /**< High-pass filter memory */ float exc_buf[NB_DEC_BUFFER]; /**< Excitation buffer */ float old_qlsp[NB_ORDER]; /**< Quantized LSPs for previous frame */ float interp_qlpc[NB_ORDER]; /**< Interpolated quantized LPCs */ float mem_sp[NB_ORDER]; /**< Filter memory for synthesis signal */ float g0_mem[QMF_ORDER]; float g1_mem[QMF_ORDER]; float pi_gain[NB_NB_SUBFRAMES]; /**< Gain of LPC filter at theta=pi (fe/2) */ float exc_rms[NB_NB_SUBFRAMES]; /**< RMS of excitation per subframe */ } DecoderState; /* Default handler for user callbacks: skip it */ static int speex_default_user_handler(GetBitContext *gb, void *state, void *data) { const int req_size = get_bits(gb, 4); skip_bits_long(gb, 5 + 8 * req_size); return 0; } typedef struct StereoState { float balance; /**< Left/right balance info */ float e_ratio; /**< Ratio of energies: E(left+right)/[E(left)+E(right)] */ float smooth_left; /**< Smoothed left channel gain */ float smooth_right; /**< Smoothed right channel gain */ } StereoState; typedef struct SpeexContext { AVClass *class; GetBitContext gb; int32_t version_id; /**< Version for Speex (for checking compatibility) */ int32_t rate; /**< Sampling rate used */ int32_t mode; /**< Mode used (0 for narrowband, 1 for wideband) */ int32_t bitstream_version; /**< Version ID of the bit-stream */ int32_t nb_channels; /**< Number of channels decoded */ int32_t bitrate; /**< Bit-rate used */ int32_t frame_size; /**< Size of frames */ int32_t vbr; /**< 1 for a VBR decoding, 0 otherwise */ int32_t frames_per_packet; /**< Number of frames stored per Ogg packet */ int32_t extra_headers; /**< Number of additional headers after the comments */ int pkt_size; StereoState stereo; DecoderState st[SPEEX_NB_MODES]; AVFloatDSPContext *fdsp; } SpeexContext; static void lsp_unquant_lbr(float *lsp, int order, GetBitContext *gb) { int id; for (int i = 0; i < order; i++) lsp[i] = LSP_LINEAR(i); id = get_bits(gb, 6); for (int i = 0; i < 10; i++) lsp[i] += LSP_DIV_256(cdbk_nb[id * 10 + i]); id = get_bits(gb, 6); for (int i = 0; i < 5; i++) lsp[i] += LSP_DIV_512(cdbk_nb_low1[id * 5 + i]); id = get_bits(gb, 6); for (int i = 0; i < 5; i++) lsp[i + 5] += LSP_DIV_512(cdbk_nb_high1[id * 5 + i]); } static void forced_pitch_unquant(float *exc, float *exc_out, int start, int end, float pitch_coef, const void *par, int nsf, int *pitch_val, float *gain_val, GetBitContext *gb, int count_lost, int subframe_offset, float last_pitch_gain, int cdbk_offset) { av_assert0(!isnan(pitch_coef)); pitch_coef = fminf(pitch_coef, .99f); for (int i = 0; i < nsf; i++) { exc_out[i] = exc[i - start] * pitch_coef; exc[i] = exc_out[i]; } pitch_val[0] = start; gain_val[0] = gain_val[2] = 0.f; gain_val[1] = pitch_coef; } static inline float speex_rand(float std, uint32_t *seed) { const uint32_t jflone = 0x3f800000; const uint32_t jflmsk = 0x007fffff; float fran; uint32_t ran; seed[0] = 1664525 * seed[0] + 1013904223; ran = jflone | (jflmsk & seed[0]); fran = av_int2float(ran); fran -= 1.5f; fran *= std; return fran; } static void noise_codebook_unquant(float *exc, const void *par, int nsf, GetBitContext *gb, uint32_t *seed) { for (int i = 0; i < nsf; i++) exc[i] = speex_rand(1.f, seed); } static void split_cb_shape_sign_unquant(float *exc, const void *par, int nsf, GetBitContext *gb, uint32_t *seed) { int subvect_size, nb_subvect, have_sign, shape_bits; const SplitCodebookParams *params; const signed char *shape_cb; int signs[10], ind[10]; params = par; subvect_size = params->subvect_size; nb_subvect = params->nb_subvect; shape_cb = params->shape_cb; have_sign = params->have_sign; shape_bits = params->shape_bits; /* Decode codewords and gains */ for (int i = 0; i < nb_subvect; i++) { signs[i] = have_sign ? get_bits1(gb) : 0; ind[i] = get_bitsz(gb, shape_bits); } /* Compute decoded excitation */ for (int i = 0; i < nb_subvect; i++) { const float s = signs[i] ? -1.f : 1.f; for (int j = 0; j < subvect_size; j++) exc[subvect_size * i + j] += s * 0.03125f * shape_cb[ind[i] * subvect_size + j]; } } #define SUBMODE(x) st->submodes[st->submodeID]->x #define gain_3tap_to_1tap(g) (FFABS(g[1]) + (g[0] > 0.f ? g[0] : -.5f * g[0]) + (g[2] > 0.f ? g[2] : -.5f * g[2])) static void pitch_unquant_3tap(float *exc, float *exc_out, int start, int end, float pitch_coef, const void *par, int nsf, int *pitch_val, float *gain_val, GetBitContext *gb, int count_lost, int subframe_offset, float last_pitch_gain, int cdbk_offset) { int pitch, gain_index, gain_cdbk_size; const int8_t *gain_cdbk; const LtpParam *params; float gain[3]; params = (const LtpParam *)par; gain_cdbk_size = 1 << params->gain_bits; gain_cdbk = params->gain_cdbk + 4 * gain_cdbk_size * cdbk_offset; pitch = get_bitsz(gb, params->pitch_bits); pitch += start; gain_index = get_bitsz(gb, params->gain_bits); gain[0] = 0.015625f * gain_cdbk[gain_index * 4] + .5f; gain[1] = 0.015625f * gain_cdbk[gain_index * 4 + 1] + .5f; gain[2] = 0.015625f * gain_cdbk[gain_index * 4 + 2] + .5f; if (count_lost && pitch > subframe_offset) { float tmp = count_lost < 4 ? last_pitch_gain : 0.5f * last_pitch_gain; float gain_sum; tmp = fminf(tmp, .95f); gain_sum = gain_3tap_to_1tap(gain); if (gain_sum > tmp && gain_sum > 0.f) { float fact = tmp / gain_sum; for (int i = 0; i < 3; i++) gain[i] *= fact; } } pitch_val[0] = pitch; gain_val[0] = gain[0]; gain_val[1] = gain[1]; gain_val[2] = gain[2]; SPEEX_MEMSET(exc_out, 0, nsf); for (int i = 0; i < 3; i++) { int tmp1, tmp3; int pp = pitch + 1 - i; tmp1 = nsf; if (tmp1 > pp) tmp1 = pp; for (int j = 0; j < tmp1; j++) exc_out[j] += gain[2 - i] * exc[j - pp]; tmp3 = nsf; if (tmp3 > pp + pitch) tmp3 = pp + pitch; for (int j = tmp1; j < tmp3; j++) exc_out[j] += gain[2 - i] * exc[j - pp - pitch]; } } static void lsp_unquant_nb(float *lsp, int order, GetBitContext *gb) { int id; for (int i = 0; i < order; i++) lsp[i] = LSP_LINEAR(i); id = get_bits(gb, 6); for (int i = 0; i < 10; i++) lsp[i] += LSP_DIV_256(cdbk_nb[id * 10 + i]); id = get_bits(gb, 6); for (int i = 0; i < 5; i++) lsp[i] += LSP_DIV_512(cdbk_nb_low1[id * 5 + i]); id = get_bits(gb, 6); for (int i = 0; i < 5; i++) lsp[i] += LSP_DIV_1024(cdbk_nb_low2[id * 5 + i]); id = get_bits(gb, 6); for (int i = 0; i < 5; i++) lsp[i + 5] += LSP_DIV_512(cdbk_nb_high1[id * 5 + i]); id = get_bits(gb, 6); for (int i = 0; i < 5; i++) lsp[i + 5] += LSP_DIV_1024(cdbk_nb_high2[id * 5 + i]); } static void lsp_unquant_high(float *lsp, int order, GetBitContext *gb) { int id; for (int i = 0; i < order; i++) lsp[i] = LSP_LINEAR_HIGH(i); id = get_bits(gb, 6); for (int i = 0; i < order; i++) lsp[i] += LSP_DIV_256(high_lsp_cdbk[id * order + i]); id = get_bits(gb, 6); for (int i = 0; i < order; i++) lsp[i] += LSP_DIV_512(high_lsp_cdbk2[id * order + i]); } /* 2150 bps "vocoder-like" mode for comfort noise */ static const SpeexSubmode nb_submode1 = { 0, 1, 0, 0, lsp_unquant_lbr, forced_pitch_unquant, NULL, noise_codebook_unquant, NULL, -1.f }; /* 5.95 kbps very low bit-rate mode */ static const SpeexSubmode nb_submode2 = { 0, 0, 0, 0, lsp_unquant_lbr, pitch_unquant_3tap, <p_params_vlbr, split_cb_shape_sign_unquant, &split_cb_nb_vlbr, .6f }; /* 8 kbps low bit-rate mode */ static const SpeexSubmode nb_submode3 = { -1, 0, 1, 0, lsp_unquant_lbr, pitch_unquant_3tap, <p_params_lbr, split_cb_shape_sign_unquant, &split_cb_nb_lbr, .55f }; /* 11 kbps medium bit-rate mode */ static const SpeexSubmode nb_submode4 = { -1, 0, 1, 0, lsp_unquant_lbr, pitch_unquant_3tap, <p_params_med, split_cb_shape_sign_unquant, &split_cb_nb_med, .45f }; /* 15 kbps high bit-rate mode */ static const SpeexSubmode nb_submode5 = { -1, 0, 3, 0, lsp_unquant_nb, pitch_unquant_3tap, <p_params_nb, split_cb_shape_sign_unquant, &split_cb_nb, .25f }; /* 18.2 high bit-rate mode */ static const SpeexSubmode nb_submode6 = { -1, 0, 3, 0, lsp_unquant_nb, pitch_unquant_3tap, <p_params_nb, split_cb_shape_sign_unquant, &split_cb_sb, .15f }; /* 24.6 kbps high bit-rate mode */ static const SpeexSubmode nb_submode7 = { -1, 0, 3, 1, lsp_unquant_nb, pitch_unquant_3tap, <p_params_nb, split_cb_shape_sign_unquant, &split_cb_nb, 0.05f }; /* 3.95 kbps very low bit-rate mode */ static const SpeexSubmode nb_submode8 = { 0, 1, 0, 0, lsp_unquant_lbr, forced_pitch_unquant, NULL, split_cb_shape_sign_unquant, &split_cb_nb_ulbr, .5f }; static const SpeexSubmode wb_submode1 = { 0, 0, 1, 0, lsp_unquant_high, NULL, NULL, NULL, NULL, -1.f }; static const SpeexSubmode wb_submode2 = { 0, 0, 1, 0, lsp_unquant_high, NULL, NULL, split_cb_shape_sign_unquant, &split_cb_high_lbr, -1.f }; static const SpeexSubmode wb_submode3 = { 0, 0, 1, 0, lsp_unquant_high, NULL, NULL, split_cb_shape_sign_unquant, &split_cb_high, -1.f }; static const SpeexSubmode wb_submode4 = { 0, 0, 1, 1, lsp_unquant_high, NULL, NULL, split_cb_shape_sign_unquant, &split_cb_high, -1.f }; static int nb_decode(AVCodecContext *, void *, GetBitContext *, float *); static int sb_decode(AVCodecContext *, void *, GetBitContext *, float *); static const SpeexMode speex_modes[SPEEX_NB_MODES] = { { .modeID = 0, .decode = nb_decode, .frame_size = NB_FRAME_SIZE, .subframe_size = NB_SUBFRAME_SIZE, .lpc_size = NB_ORDER, .submodes = { NULL, &nb_submode1, &nb_submode2, &nb_submode3, &nb_submode4, &nb_submode5, &nb_submode6, &nb_submode7, &nb_submode8 }, .default_submode = 5, }, { .modeID = 1, .decode = sb_decode, .frame_size = NB_FRAME_SIZE, .subframe_size = NB_SUBFRAME_SIZE, .lpc_size = 8, .folding_gain = 0.9f, .submodes = { NULL, &wb_submode1, &wb_submode2, &wb_submode3, &wb_submode4 }, .default_submode = 3, }, { .modeID = 2, .decode = sb_decode, .frame_size = 320, .subframe_size = 80, .lpc_size = 8, .folding_gain = 0.7f, .submodes = { NULL, &wb_submode1 }, .default_submode = 1, }, }; static float compute_rms(const float *x, int len) { float sum = 0.f; for (int i = 0; i < len; i++) sum += x[i] * x[i]; av_assert0(len > 0); return sqrtf(.1f + sum / len); } static void bw_lpc(float gamma, const float *lpc_in, float *lpc_out, int order) { float tmp = gamma; for (int i = 0; i < order; i++) { lpc_out[i] = tmp * lpc_in[i]; tmp *= gamma; } } static void iir_mem(const float *x, const float *den, float *y, int N, int ord, float *mem) { for (int i = 0; i < N; i++) { float yi = x[i] + mem[0]; float nyi = -yi; for (int j = 0; j < ord - 1; j++) mem[j] = mem[j + 1] + den[j] * nyi; mem[ord - 1] = den[ord - 1] * nyi; y[i] = yi; } } static void highpass(const float *x, float *y, int len, float *mem, int wide) { static const float Pcoef[2][3] = {{ 1.00000f, -1.92683f, 0.93071f }, { 1.00000f, -1.97226f, 0.97332f } }; static const float Zcoef[2][3] = {{ 0.96446f, -1.92879f, 0.96446f }, { 0.98645f, -1.97277f, 0.98645f } }; const float *den, *num; den = Pcoef[wide]; num = Zcoef[wide]; for (int i = 0; i < len; i++) { float yi = num[0] * x[i] + mem[0]; mem[0] = mem[1] + num[1] * x[i] + -den[1] * yi; mem[1] = num[2] * x[i] + -den[2] * yi; y[i] = yi; } } #define median3(a, b, c) \ ((a) < (b) ? ((b) < (c) ? (b) : ((a) < (c) ? (c) : (a))) \ : ((c) < (b) ? (b) : ((c) < (a) ? (c) : (a)))) static int speex_std_stereo(GetBitContext *gb, void *state, void *data) { StereoState *stereo = data; float sign = get_bits1(gb) ? -1.f : 1.f; stereo->balance = exp(sign * .25f * get_bits(gb, 5)); stereo->e_ratio = e_ratio_quant[get_bits(gb, 2)]; return 0; } static int speex_inband_handler(GetBitContext *gb, void *state, StereoState *stereo) { int id = get_bits(gb, 4); if (id == SPEEX_INBAND_STEREO) { return speex_std_stereo(gb, state, stereo); } else { int adv; if (id < 2) adv = 1; else if (id < 8) adv = 4; else if (id < 10) adv = 8; else if (id < 12) adv = 16; else if (id < 14) adv = 32; else adv = 64; skip_bits_long(gb, adv); } return 0; } static void sanitize_values(float *vec, float min_val, float max_val, int len) { for (int i = 0; i < len; i++) { if (!isnormal(vec[i]) || fabsf(vec[i]) < 1e-8f) vec[i] = 0.f; else vec[i] = av_clipf(vec[i], min_val, max_val); } } static void signal_mul(const float *x, float *y, float scale, int len) { for (int i = 0; i < len; i++) y[i] = scale * x[i]; } static float inner_prod(const float *x, const float *y, int len) { float sum = 0.f; for (int i = 0; i < len; i += 8) { float part = 0.f; part += x[i + 0] * y[i + 0]; part += x[i + 1] * y[i + 1]; part += x[i + 2] * y[i + 2]; part += x[i + 3] * y[i + 3]; part += x[i + 4] * y[i + 4]; part += x[i + 5] * y[i + 5]; part += x[i + 6] * y[i + 6]; part += x[i + 7] * y[i + 7]; sum += part; } return sum; } static int interp_pitch(const float *exc, float *interp, int pitch, int len) { float corr[4][7], maxcorr; int maxi, maxj; for (int i = 0; i < 7; i++) corr[0][i] = inner_prod(exc, exc - pitch - 3 + i, len); for (int i = 0; i < 3; i++) { for (int j = 0; j < 7; j++) { int i1, i2; float tmp = 0.f; i1 = 3 - j; if (i1 < 0) i1 = 0; i2 = 10 - j; if (i2 > 7) i2 = 7; for (int k = i1; k < i2; k++) tmp += shift_filt[i][k] * corr[0][j + k - 3]; corr[i + 1][j] = tmp; } } maxi = maxj = 0; maxcorr = corr[0][0]; for (int i = 0; i < 4; i++) { for (int j = 0; j < 7; j++) { if (corr[i][j] > maxcorr) { maxcorr = corr[i][j]; maxi = i; maxj = j; } } } for (int i = 0; i < len; i++) { float tmp = 0.f; if (maxi > 0.f) { for (int k = 0; k < 7; k++) tmp += exc[i - (pitch - maxj + 3) + k - 3] * shift_filt[maxi - 1][k]; } else { tmp = exc[i - (pitch - maxj + 3)]; } interp[i] = tmp; } return pitch - maxj + 3; } static void multicomb(const float *exc, float *new_exc, float *ak, int p, int nsf, int pitch, int max_pitch, float comb_gain) { float old_ener, new_ener; float iexc0_mag, iexc1_mag, exc_mag; float iexc[4 * NB_SUBFRAME_SIZE]; float corr0, corr1, gain0, gain1; float pgain1, pgain2; float c1, c2, g1, g2; float ngain, gg1, gg2; int corr_pitch = pitch; interp_pitch(exc, iexc, corr_pitch, 80); if (corr_pitch > max_pitch) interp_pitch(exc, iexc + nsf, 2 * corr_pitch, 80); else interp_pitch(exc, iexc + nsf, -corr_pitch, 80); iexc0_mag = sqrtf(1000.f + inner_prod(iexc, iexc, nsf)); iexc1_mag = sqrtf(1000.f + inner_prod(iexc + nsf, iexc + nsf, nsf)); exc_mag = sqrtf(1.f + inner_prod(exc, exc, nsf)); corr0 = inner_prod(iexc, exc, nsf); corr1 = inner_prod(iexc + nsf, exc, nsf); if (corr0 > iexc0_mag * exc_mag) pgain1 = 1.f; else pgain1 = (corr0 / exc_mag) / iexc0_mag; if (corr1 > iexc1_mag * exc_mag) pgain2 = 1.f; else pgain2 = (corr1 / exc_mag) / iexc1_mag; gg1 = exc_mag / iexc0_mag; gg2 = exc_mag / iexc1_mag; if (comb_gain > 0.f) { c1 = .4f * comb_gain + .07f; c2 = .5f + 1.72f * (c1 - .07f); } else { c1 = c2 = 0.f; } g1 = 1.f - c2 * pgain1 * pgain1; g2 = 1.f - c2 * pgain2 * pgain2; g1 = fmaxf(g1, c1); g2 = fmaxf(g2, c1); g1 = c1 / g1; g2 = c1 / g2; if (corr_pitch > max_pitch) { gain0 = .7f * g1 * gg1; gain1 = .3f * g2 * gg2; } else { gain0 = .6f * g1 * gg1; gain1 = .6f * g2 * gg2; } for (int i = 0; i < nsf; i++) new_exc[i] = exc[i] + (gain0 * iexc[i]) + (gain1 * iexc[i + nsf]); new_ener = compute_rms(new_exc, nsf); old_ener = compute_rms(exc, nsf); old_ener = fmaxf(old_ener, 1.f); new_ener = fmaxf(new_ener, 1.f); old_ener = fminf(old_ener, new_ener); ngain = old_ener / new_ener; for (int i = 0; i < nsf; i++) new_exc[i] *= ngain; } static void lsp_interpolate(const float *old_lsp, const float *new_lsp, float *lsp, int len, int subframe, int nb_subframes, float margin) { const float tmp = (1.f + subframe) / nb_subframes; for (int i = 0; i < len; i++) { lsp[i] = (1.f - tmp) * old_lsp[i] + tmp * new_lsp[i]; lsp[i] = av_clipf(lsp[i], margin, M_PI - margin); } for (int i = 1; i < len - 1; i++) { lsp[i] = fmaxf(lsp[i], lsp[i - 1] + margin); if (lsp[i] > lsp[i + 1] - margin) lsp[i] = .5f * (lsp[i] + lsp[i + 1] - margin); } } static void lsp_to_lpc(const float *freq, float *ak, int lpcrdr) { float xout1, xout2, xin1, xin2; float *pw, *n0; float Wp[4 * NB_ORDER + 2] = { 0 }; float x_freq[NB_ORDER]; const int m = lpcrdr >> 1; pw = Wp; xin1 = xin2 = 1.f; for (int i = 0; i < lpcrdr; i++) x_freq[i] = -cosf(freq[i]); /* reconstruct P(z) and Q(z) by cascading second order * polynomials in form 1 - 2xz(-1) +z(-2), where x is the * LSP coefficient */ for (int j = 0; j <= lpcrdr; j++) { int i2 = 0; for (int i = 0; i < m; i++, i2 += 2) { n0 = pw + (i * 4); xout1 = xin1 + 2.f * x_freq[i2 ] * n0[0] + n0[1]; xout2 = xin2 + 2.f * x_freq[i2 + 1] * n0[2] + n0[3]; n0[1] = n0[0]; n0[3] = n0[2]; n0[0] = xin1; n0[2] = xin2; xin1 = xout1; xin2 = xout2; } xout1 = xin1 + n0[4]; xout2 = xin2 - n0[5]; if (j > 0) ak[j - 1] = (xout1 + xout2) * 0.5f; n0[4] = xin1; n0[5] = xin2; xin1 = 0.f; xin2 = 0.f; } } static int nb_decode(AVCodecContext *avctx, void *ptr_st, GetBitContext *gb, float *out) { DecoderState *st = ptr_st; float ol_gain = 0, ol_pitch_coef = 0, best_pitch_gain = 0, pitch_average = 0; int m, pitch, wideband, ol_pitch = 0, best_pitch = 40; SpeexContext *s = avctx->priv_data; float innov[NB_SUBFRAME_SIZE]; float exc32[NB_SUBFRAME_SIZE]; float interp_qlsp[NB_ORDER]; float qlsp[NB_ORDER]; float ak[NB_ORDER]; float pitch_gain[3] = { 0 }; st->exc = st->exc_buf + 2 * NB_PITCH_END + NB_SUBFRAME_SIZE + 6; if (st->encode_submode) { do { /* Search for next narrowband block (handle requests, skip wideband blocks) */ if (get_bits_left(gb) < 5) return AVERROR_INVALIDDATA; wideband = get_bits1(gb); if (wideband) /* Skip wideband block (for compatibility) */ { int submode, advance; submode = get_bits(gb, SB_SUBMODE_BITS); advance = wb_skip_table[submode]; advance -= SB_SUBMODE_BITS + 1; if (advance < 0) return AVERROR_INVALIDDATA; skip_bits_long(gb, advance); if (get_bits_left(gb) < 5) return AVERROR_INVALIDDATA; wideband = get_bits1(gb); if (wideband) { submode = get_bits(gb, SB_SUBMODE_BITS); advance = wb_skip_table[submode]; advance -= SB_SUBMODE_BITS + 1; if (advance < 0) return AVERROR_INVALIDDATA; skip_bits_long(gb, advance); wideband = get_bits1(gb); if (wideband) { av_log(avctx, AV_LOG_ERROR, "more than two wideband layers found\n"); return AVERROR_INVALIDDATA; } } } if (get_bits_left(gb) < 4) return AVERROR_INVALIDDATA; m = get_bits(gb, 4); if (m == 15) /* We found a terminator */ { return AVERROR_INVALIDDATA; } else if (m == 14) /* Speex in-band request */ { int ret = speex_inband_handler(gb, st, &s->stereo); if (ret) return ret; } else if (m == 13) /* User in-band request */ { int ret = speex_default_user_handler(gb, st, NULL); if (ret) return ret; } else if (m > 8) /* Invalid mode */ { return AVERROR_INVALIDDATA; } } while (m > 8); st->submodeID = m; /* Get the sub-mode that was used */ } /* Shift all buffers by one frame */ memmove(st->exc_buf, st->exc_buf + NB_FRAME_SIZE, (2 * NB_PITCH_END + NB_SUBFRAME_SIZE + 12) * sizeof(float)); /* If null mode (no transmission), just set a couple things to zero */ if (st->submodes[st->submodeID] == NULL) { float lpc[NB_ORDER]; float innov_gain = 0.f; bw_lpc(0.93f, st->interp_qlpc, lpc, NB_ORDER); innov_gain = compute_rms(st->exc, NB_FRAME_SIZE); for (int i = 0; i < NB_FRAME_SIZE; i++) st->exc[i] = speex_rand(innov_gain, &st->seed); /* Final signal synthesis from excitation */ iir_mem(st->exc, lpc, out, NB_FRAME_SIZE, NB_ORDER, st->mem_sp); st->count_lost = 0; return 0; } /* Unquantize LSPs */ SUBMODE(lsp_unquant)(qlsp, NB_ORDER, gb); /* Damp memory if a frame was lost and the LSP changed too much */ if (st->count_lost) { float fact, lsp_dist = 0; for (int i = 0; i < NB_ORDER; i++) lsp_dist = lsp_dist + FFABS(st->old_qlsp[i] - qlsp[i]); fact = .6f * exp(-.2f * lsp_dist); for (int i = 0; i < NB_ORDER; i++) st->mem_sp[i] = fact * st->mem_sp[i]; } /* Handle first frame and lost-packet case */ if (st->first || st->count_lost) memcpy(st->old_qlsp, qlsp, sizeof(st->old_qlsp)); /* Get open-loop pitch estimation for low bit-rate pitch coding */ if (SUBMODE(lbr_pitch) != -1) ol_pitch = NB_PITCH_START + get_bits(gb, 7); if (SUBMODE(forced_pitch_gain)) ol_pitch_coef = 0.066667f * get_bits(gb, 4); /* Get global excitation gain */ ol_gain = expf(get_bits(gb, 5) / 3.5f); if (st->submodeID == 1) st->dtx_enabled = get_bits(gb, 4) == 15; if (st->submodeID > 1) st->dtx_enabled = 0; for (int sub = 0; sub < NB_NB_SUBFRAMES; sub++) { /* Loop on subframes */ float *exc, *innov_save = NULL, tmp, ener; int pit_min, pit_max, offset, q_energy; offset = NB_SUBFRAME_SIZE * sub; /* Offset relative to start of frame */ exc = st->exc + offset; /* Excitation */ if (st->innov_save) /* Original signal */ innov_save = st->innov_save + offset; SPEEX_MEMSET(exc, 0, NB_SUBFRAME_SIZE); /* Reset excitation */ /* Adaptive codebook contribution */ av_assert0(SUBMODE(ltp_unquant)); /* Handle pitch constraints if any */ if (SUBMODE(lbr_pitch) != -1) { int margin = SUBMODE(lbr_pitch); if (margin) { pit_min = ol_pitch - margin + 1; pit_min = FFMAX(pit_min, NB_PITCH_START); pit_max = ol_pitch + margin; pit_max = FFMIN(pit_max, NB_PITCH_START); } else { pit_min = pit_max = ol_pitch; } } else { pit_min = NB_PITCH_START; pit_max = NB_PITCH_END; } SUBMODE(ltp_unquant)(exc, exc32, pit_min, pit_max, ol_pitch_coef, SUBMODE(LtpParam), NB_SUBFRAME_SIZE, &pitch, pitch_gain, gb, st->count_lost, offset, st->last_pitch_gain, 0); sanitize_values(exc32, -32000, 32000, NB_SUBFRAME_SIZE); tmp = gain_3tap_to_1tap(pitch_gain); pitch_average += tmp; if ((tmp > best_pitch_gain && FFABS(2 * best_pitch - pitch) >= 3 && FFABS(3 * best_pitch - pitch) >= 4 && FFABS(4 * best_pitch - pitch) >= 5) || (tmp > .6f * best_pitch_gain && (FFABS(best_pitch - 2 * pitch) < 3 || FFABS(best_pitch - 3 * pitch) < 4 || FFABS(best_pitch - 4 * pitch) < 5)) || ((.67f * tmp) > best_pitch_gain && (FFABS(2 * best_pitch - pitch) < 3 || FFABS(3 * best_pitch - pitch) < 4 || FFABS(4 * best_pitch - pitch) < 5))) { best_pitch = pitch; if (tmp > best_pitch_gain) best_pitch_gain = tmp; } memset(innov, 0, sizeof(innov)); /* Decode sub-frame gain correction */ if (SUBMODE(have_subframe_gain) == 3) { q_energy = get_bits(gb, 3); ener = exc_gain_quant_scal3[q_energy] * ol_gain; } else if (SUBMODE(have_subframe_gain) == 1) { q_energy = get_bits1(gb); ener = exc_gain_quant_scal1[q_energy] * ol_gain; } else { ener = ol_gain; } av_assert0(SUBMODE(innovation_unquant)); /* Fixed codebook contribution */ SUBMODE(innovation_unquant)(innov, SUBMODE(innovation_params), NB_SUBFRAME_SIZE, gb, &st->seed); /* De-normalize innovation and update excitation */ signal_mul(innov, innov, ener, NB_SUBFRAME_SIZE); /* Decode second codebook (only for some modes) */ if (SUBMODE(double_codebook)) { float innov2[NB_SUBFRAME_SIZE] = { 0 }; SUBMODE(innovation_unquant)(innov2, SUBMODE(innovation_params), NB_SUBFRAME_SIZE, gb, &st->seed); signal_mul(innov2, innov2, 0.454545f * ener, NB_SUBFRAME_SIZE); for (int i = 0; i < NB_SUBFRAME_SIZE; i++) innov[i] += innov2[i]; } for (int i = 0; i < NB_SUBFRAME_SIZE; i++) exc[i] = exc32[i] + innov[i]; if (innov_save) memcpy(innov_save, innov, sizeof(innov)); /* Vocoder mode */ if (st->submodeID == 1) { float g = ol_pitch_coef; g = av_clipf(1.5f * (g - .2f), 0.f, 1.f); SPEEX_MEMSET(exc, 0, NB_SUBFRAME_SIZE); while (st->voc_offset < NB_SUBFRAME_SIZE) { if (st->voc_offset >= 0) exc[st->voc_offset] = sqrtf(2.f * ol_pitch) * (g * ol_gain); st->voc_offset += ol_pitch; } st->voc_offset -= NB_SUBFRAME_SIZE; for (int i = 0; i < NB_SUBFRAME_SIZE; i++) { float exci = exc[i]; exc[i] = (.7f * exc[i] + .3f * st->voc_m1) + ((1.f - .85f * g) * innov[i]) - .15f * g * st->voc_m2; st->voc_m1 = exci; st->voc_m2 = innov[i]; st->voc_mean = .8f * st->voc_mean + .2f * exc[i]; exc[i] -= st->voc_mean; } } } if (st->lpc_enh_enabled && SUBMODE(comb_gain) > 0 && !st->count_lost) { multicomb(st->exc - NB_SUBFRAME_SIZE, out, st->interp_qlpc, NB_ORDER, 2 * NB_SUBFRAME_SIZE, best_pitch, 40, SUBMODE(comb_gain)); multicomb(st->exc + NB_SUBFRAME_SIZE, out + 2 * NB_SUBFRAME_SIZE, st->interp_qlpc, NB_ORDER, 2 * NB_SUBFRAME_SIZE, best_pitch, 40, SUBMODE(comb_gain)); } else { SPEEX_COPY(out, &st->exc[-NB_SUBFRAME_SIZE], NB_FRAME_SIZE); } /* If the last packet was lost, re-scale the excitation to obtain the same * energy as encoded in ol_gain */ if (st->count_lost) { float exc_ener, gain; exc_ener = compute_rms(st->exc, NB_FRAME_SIZE); av_assert0(exc_ener + 1.f > 0.f); gain = fminf(ol_gain / (exc_ener + 1.f), 2.f); for (int i = 0; i < NB_FRAME_SIZE; i++) { st->exc[i] *= gain; out[i] = st->exc[i - NB_SUBFRAME_SIZE]; } } for (int sub = 0; sub < NB_NB_SUBFRAMES; sub++) { /* Loop on subframes */ const int offset = NB_SUBFRAME_SIZE * sub; /* Offset relative to start of frame */ float pi_g = 1.f, *sp = out + offset; /* Original signal */ lsp_interpolate(st->old_qlsp, qlsp, interp_qlsp, NB_ORDER, sub, NB_NB_SUBFRAMES, 0.002f); lsp_to_lpc(interp_qlsp, ak, NB_ORDER); /* Compute interpolated LPCs (unquantized) */ for (int i = 0; i < NB_ORDER; i += 2) /* Compute analysis filter at w=pi */ pi_g += ak[i + 1] - ak[i]; st->pi_gain[sub] = pi_g; st->exc_rms[sub] = compute_rms(st->exc + offset, NB_SUBFRAME_SIZE); iir_mem(sp, st->interp_qlpc, sp, NB_SUBFRAME_SIZE, NB_ORDER, st->mem_sp); memcpy(st->interp_qlpc, ak, sizeof(st->interp_qlpc)); } if (st->highpass_enabled) highpass(out, out, NB_FRAME_SIZE, st->mem_hp, st->is_wideband); /* Store the LSPs for interpolation in the next frame */ memcpy(st->old_qlsp, qlsp, sizeof(st->old_qlsp)); st->count_lost = 0; st->last_pitch = best_pitch; st->last_pitch_gain = .25f * pitch_average; st->last_ol_gain = ol_gain; st->first = 0; return 0; } static void qmf_synth(const float *x1, const float *x2, const float *a, float *y, int N, int M, float *mem1, float *mem2) { const int M2 = M >> 1, N2 = N >> 1; float xx1[352], xx2[352]; for (int i = 0; i < N2; i++) xx1[i] = x1[N2-1-i]; for (int i = 0; i < M2; i++) xx1[N2+i] = mem1[2*i+1]; for (int i = 0; i < N2; i++) xx2[i] = x2[N2-1-i]; for (int i = 0; i < M2; i++) xx2[N2+i] = mem2[2*i+1]; for (int i = 0; i < N2; i += 2) { float y0, y1, y2, y3; float x10, x20; y0 = y1 = y2 = y3 = 0.f; x10 = xx1[N2-2-i]; x20 = xx2[N2-2-i]; for (int j = 0; j < M2; j += 2) { float x11, x21; float a0, a1; a0 = a[2*j]; a1 = a[2*j+1]; x11 = xx1[N2-1+j-i]; x21 = xx2[N2-1+j-i]; y0 += a0 * (x11-x21); y1 += a1 * (x11+x21); y2 += a0 * (x10-x20); y3 += a1 * (x10+x20); a0 = a[2*j+2]; a1 = a[2*j+3]; x10 = xx1[N2+j-i]; x20 = xx2[N2+j-i]; y0 += a0 * (x10-x20); y1 += a1 * (x10+x20); y2 += a0 * (x11-x21); y3 += a1 * (x11+x21); } y[2 * i ] = 2.f * y0; y[2 * i+1] = 2.f * y1; y[2 * i+2] = 2.f * y2; y[2 * i+3] = 2.f * y3; } for (int i = 0; i < M2; i++) mem1[2*i+1] = xx1[i]; for (int i = 0; i < M2; i++) mem2[2*i+1] = xx2[i]; } static int sb_decode(AVCodecContext *avctx, void *ptr_st, GetBitContext *gb, float *out) { SpeexContext *s = avctx->priv_data; DecoderState *st = ptr_st; float low_pi_gain[NB_NB_SUBFRAMES]; float low_exc_rms[NB_NB_SUBFRAMES]; float interp_qlsp[NB_ORDER]; int ret, wideband; float *low_innov_alias; float qlsp[NB_ORDER]; float ak[NB_ORDER]; const SpeexMode *mode; mode = st->mode; if (st->modeID > 0) { low_innov_alias = out + st->frame_size; s->st[st->modeID - 1].innov_save = low_innov_alias; ret = speex_modes[st->modeID - 1].decode(avctx, &s->st[st->modeID - 1], gb, out); if (ret < 0) return ret; } if (st->encode_submode) { /* Check "wideband bit" */ if (get_bits_left(gb) > 0) wideband = show_bits1(gb); else wideband = 0; if (wideband) { /* Regular wideband frame, read the submode */ wideband = get_bits1(gb); st->submodeID = get_bits(gb, SB_SUBMODE_BITS); } else { /* Was a narrowband frame, set "null submode" */ st->submodeID = 0; } if (st->submodeID != 0 && st->submodes[st->submodeID] == NULL) return AVERROR_INVALIDDATA; } /* If null mode (no transmission), just set a couple things to zero */ if (st->submodes[st->submodeID] == NULL) { for (int i = 0; i < st->frame_size; i++) out[st->frame_size + i] = 1e-15f; st->first = 1; /* Final signal synthesis from excitation */ iir_mem(out + st->frame_size, st->interp_qlpc, out + st->frame_size, st->frame_size, st->lpc_size, st->mem_sp); qmf_synth(out, out + st->frame_size, h0, out, st->full_frame_size, QMF_ORDER, st->g0_mem, st->g1_mem); return 0; } memcpy(low_pi_gain, s->st[st->modeID - 1].pi_gain, sizeof(low_pi_gain)); memcpy(low_exc_rms, s->st[st->modeID - 1].exc_rms, sizeof(low_exc_rms)); SUBMODE(lsp_unquant)(qlsp, st->lpc_size, gb); if (st->first) memcpy(st->old_qlsp, qlsp, sizeof(st->old_qlsp)); for (int sub = 0; sub < st->nb_subframes; sub++) { float filter_ratio, el, rl, rh; float *innov_save = NULL, *sp; float exc[80]; int offset; offset = st->subframe_size * sub; sp = out + st->frame_size + offset; /* Pointer for saving innovation */ if (st->innov_save) { innov_save = st->innov_save + 2 * offset; SPEEX_MEMSET(innov_save, 0, 2 * st->subframe_size); } av_assert0(st->nb_subframes > 0); lsp_interpolate(st->old_qlsp, qlsp, interp_qlsp, st->lpc_size, sub, st->nb_subframes, 0.05f); lsp_to_lpc(interp_qlsp, ak, st->lpc_size); /* Calculate reponse ratio between the low and high filter in the middle of the band (4000 Hz) */ st->pi_gain[sub] = 1.f; rh = 1.f; for (int i = 0; i < st->lpc_size; i += 2) { rh += ak[i + 1] - ak[i]; st->pi_gain[sub] += ak[i] + ak[i + 1]; } rl = low_pi_gain[sub]; filter_ratio = (rl + .01f) / (rh + .01f); SPEEX_MEMSET(exc, 0, st->subframe_size); if (!SUBMODE(innovation_unquant)) { const int x = get_bits(gb, 5); const float g = expf(.125f * (x - 10)) / filter_ratio; for (int i = 0; i < st->subframe_size; i += 2) { exc[i ] = mode->folding_gain * low_innov_alias[offset + i ] * g; exc[i + 1] = -mode->folding_gain * low_innov_alias[offset + i + 1] * g; } } else { float gc, scale; el = low_exc_rms[sub]; gc = 0.87360f * gc_quant_bound[get_bits(gb, 4)]; if (st->subframe_size == 80) gc *= M_SQRT2; scale = (gc * el) / filter_ratio; SUBMODE(innovation_unquant) (exc, SUBMODE(innovation_params), st->subframe_size, gb, &st->seed); signal_mul(exc, exc, scale, st->subframe_size); if (SUBMODE(double_codebook)) { float innov2[80]; SPEEX_MEMSET(innov2, 0, st->subframe_size); SUBMODE(innovation_unquant)(innov2, SUBMODE(innovation_params), st->subframe_size, gb, &st->seed); signal_mul(innov2, innov2, 0.4f * scale, st->subframe_size); for (int i = 0; i < st->subframe_size; i++) exc[i] += innov2[i]; } } if (st->innov_save) { for (int i = 0; i < st->subframe_size; i++) innov_save[2 * i] = exc[i]; } iir_mem(st->exc_buf, st->interp_qlpc, sp, st->subframe_size, st->lpc_size, st->mem_sp); memcpy(st->exc_buf, exc, sizeof(exc)); memcpy(st->interp_qlpc, ak, sizeof(st->interp_qlpc)); st->exc_rms[sub] = compute_rms(st->exc_buf, st->subframe_size); } qmf_synth(out, out + st->frame_size, h0, out, st->full_frame_size, QMF_ORDER, st->g0_mem, st->g1_mem); memcpy(st->old_qlsp, qlsp, sizeof(st->old_qlsp)); st->first = 0; return 0; } static int decoder_init(SpeexContext *s, DecoderState *st, const SpeexMode *mode) { st->mode = mode; st->modeID = mode->modeID; st->first = 1; st->encode_submode = 1; st->is_wideband = st->modeID > 0; st->innov_save = NULL; st->submodes = mode->submodes; st->submodeID = mode->default_submode; st->subframe_size = mode->subframe_size; st->lpc_size = mode->lpc_size; st->full_frame_size = (1 + (st->modeID > 0)) * mode->frame_size; st->nb_subframes = mode->frame_size / mode->subframe_size; st->frame_size = mode->frame_size; st->lpc_enh_enabled = 1; st->last_pitch = 40; st->count_lost = 0; st->seed = 1000; st->last_ol_gain = 0; st->voc_m1 = st->voc_m2 = st->voc_mean = 0; st->voc_offset = 0; st->dtx_enabled = 0; st->highpass_enabled = mode->modeID == 0; return 0; } static int parse_speex_extradata(AVCodecContext *avctx, const uint8_t *extradata, int extradata_size) { SpeexContext *s = avctx->priv_data; const uint8_t *buf = av_strnstr(extradata, "Speex ", extradata_size); if (!buf) return AVERROR_INVALIDDATA; buf += 28; s->version_id = bytestream_get_le32(&buf); buf += 4; s->rate = bytestream_get_le32(&buf); if (s->rate <= 0) return AVERROR_INVALIDDATA; s->mode = bytestream_get_le32(&buf); if (s->mode < 0 || s->mode >= SPEEX_NB_MODES) return AVERROR_INVALIDDATA; s->bitstream_version = bytestream_get_le32(&buf); if (s->bitstream_version != 4) return AVERROR_INVALIDDATA; s->nb_channels = bytestream_get_le32(&buf); if (s->nb_channels <= 0 || s->nb_channels > 2) return AVERROR_INVALIDDATA; s->bitrate = bytestream_get_le32(&buf); s->frame_size = (1 + (s->mode > 0)) * bytestream_get_le32(&buf); s->vbr = bytestream_get_le32(&buf); s->frames_per_packet = bytestream_get_le32(&buf); if (s->frames_per_packet <= 0 || s->frames_per_packet > 64 || s->frames_per_packet >= INT32_MAX / s->nb_channels / s->frame_size) return AVERROR_INVALIDDATA; s->extra_headers = bytestream_get_le32(&buf); return 0; } static av_cold int speex_decode_init(AVCodecContext *avctx) { SpeexContext *s = avctx->priv_data; int ret; s->fdsp = avpriv_float_dsp_alloc(0); if (!s->fdsp) return AVERROR(ENOMEM); if (avctx->extradata && avctx->extradata_size >= 80) { ret = parse_speex_extradata(avctx, avctx->extradata, avctx->extradata_size); if (ret < 0) return ret; } else { s->rate = avctx->sample_rate; if (s->rate <= 0) return AVERROR_INVALIDDATA; s->nb_channels = avctx->ch_layout.nb_channels; if (s->nb_channels <= 0 || s->nb_channels > 2) return AVERROR_INVALIDDATA; switch (s->rate) { case 8000: s->mode = 0; break; case 16000: s->mode = 1; break; case 32000: s->mode = 2; break; default: s->mode = 2; } s->frames_per_packet = 64; s->frame_size = NB_FRAME_SIZE << s->mode; } if (avctx->codec_tag == MKTAG('S', 'P', 'X', 'N')) { int quality; if (!avctx->extradata || avctx->extradata && avctx->extradata_size < 47) { av_log(avctx, AV_LOG_ERROR, "Missing or invalid extradata.\n"); return AVERROR_INVALIDDATA; } quality = avctx->extradata[37]; if (quality > 10) { av_log(avctx, AV_LOG_ERROR, "Unsupported quality mode %d.\n", quality); return AVERROR_PATCHWELCOME; } s->pkt_size = ((const uint8_t[]){ 5, 10, 15, 20, 20, 28, 28, 38, 38, 46, 62 })[quality]; s->mode = 0; s->nb_channels = 1; s->rate = avctx->sample_rate; if (s->rate <= 0) return AVERROR_INVALIDDATA; s->frames_per_packet = 1; s->frame_size = NB_FRAME_SIZE; } if (s->bitrate > 0) avctx->bit_rate = s->bitrate; av_channel_layout_uninit(&avctx->ch_layout); avctx->ch_layout.order = AV_CHANNEL_ORDER_UNSPEC; avctx->ch_layout.nb_channels = s->nb_channels; avctx->sample_rate = s->rate; avctx->sample_fmt = AV_SAMPLE_FMT_FLT; for (int m = 0; m <= s->mode; m++) { ret = decoder_init(s, &s->st[m], &speex_modes[m]); if (ret < 0) return ret; } s->stereo.balance = 1.f; s->stereo.e_ratio = .5f; s->stereo.smooth_left = 1.f; s->stereo.smooth_right = 1.f; return 0; } static void speex_decode_stereo(float *data, int frame_size, StereoState *stereo) { float balance, e_left, e_right, e_ratio; balance = stereo->balance; e_ratio = stereo->e_ratio; /* These two are Q14, with max value just below 2. */ e_right = 1.f / sqrtf(e_ratio * (1.f + balance)); e_left = sqrtf(balance) * e_right; for (int i = frame_size - 1; i >= 0; i--) { float tmp = data[i]; stereo->smooth_left = stereo->smooth_left * 0.98f + e_left * 0.02f; stereo->smooth_right = stereo->smooth_right * 0.98f + e_right * 0.02f; data[2 * i ] = stereo->smooth_left * tmp; data[2 * i + 1] = stereo->smooth_right * tmp; } } static int speex_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt) { SpeexContext *s = avctx->priv_data; int frames_per_packet = s->frames_per_packet; const float scale = 1.f / 32768.f; int buf_size = avpkt->size; float *dst; int ret; if (s->pkt_size && avpkt->size == 62) buf_size = s->pkt_size; if ((ret = init_get_bits8(&s->gb, avpkt->data, buf_size)) < 0) return ret; frame->nb_samples = FFALIGN(s->frame_size * frames_per_packet, 4); if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; dst = (float *)frame->extended_data[0]; for (int i = 0; i < frames_per_packet; i++) { ret = speex_modes[s->mode].decode(avctx, &s->st[s->mode], &s->gb, dst + i * s->frame_size); if (ret < 0) return ret; if (avctx->ch_layout.nb_channels == 2) speex_decode_stereo(dst + i * s->frame_size, s->frame_size, &s->stereo); if (get_bits_left(&s->gb) < 5 || show_bits(&s->gb, 5) == 15) { frames_per_packet = i + 1; break; } } dst = (float *)frame->extended_data[0]; s->fdsp->vector_fmul_scalar(dst, dst, scale, frame->nb_samples * frame->ch_layout.nb_channels); frame->nb_samples = s->frame_size * frames_per_packet; *got_frame_ptr = 1; return (get_bits_count(&s->gb) + 7) >> 3; } static av_cold int speex_decode_close(AVCodecContext *avctx) { SpeexContext *s = avctx->priv_data; av_freep(&s->fdsp); return 0; } const FFCodec ff_speex_decoder = { .p.name = "speex", CODEC_LONG_NAME("Speex"), .p.type = AVMEDIA_TYPE_AUDIO, .p.id = AV_CODEC_ID_SPEEX, .init = speex_decode_init, FF_CODEC_DECODE_CB(speex_decode_frame), .close = speex_decode_close, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, .priv_data_size = sizeof(SpeexContext), .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, };