/* * VVC motion vector decoder * * Copyright (C) 2023 Nuo Mi * Copyright (C) 2022 Xu Mu * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "vvc_ctu.h" #include "vvc_data.h" #include "vvc_refs.h" #include "vvc_mvs.h" #define IS_SAME_MV(a, b) (AV_RN64A(a) == AV_RN64A(b)) //check if the two luma locations belong to the same motion estimation region static av_always_inline int is_same_mer(const VVCFrameContext *fc, const int xN, const int yN, const int xP, const int yP) { const uint8_t plevel = fc->ps.sps->log2_parallel_merge_level; return xN >> plevel == xP >> plevel && yN >> plevel == yP >> plevel; } //return true if we have same mvs and ref_idxs static av_always_inline int compare_mv_ref_idx(const MvField *n, const MvField *o) { if (!o || n->pred_flag != o->pred_flag) return 0; for (int i = 0; i < 2; i++) { PredFlag mask = i + 1; if (n->pred_flag & mask) { const int same_ref_idx = n->ref_idx[i] == o->ref_idx[i]; const int same_mv = IS_SAME_MV(n->mv + i, o->mv + i); if (!same_ref_idx || !same_mv) return 0; } } return 1; } // 8.5.2.15 Temporal motion buffer compression process for collocated motion vectors static av_always_inline void mv_compression(Mv *motion) { int mv[2] = {motion->x, motion->y}; for (int i = 0; i < 2; i++) { const int s = mv[i] >> 17; const int f = av_log2((mv[i] ^ s) | 31) - 4; const int mask = (-1 * (1 << f)) >> 1; const int round = (1 << f) >> 2; mv[i] = (mv[i] + round) & mask; } motion->x = mv[0]; motion->y = mv[1]; } void ff_vvc_mv_scale(Mv *dst, const Mv *src, int td, int tb) { int tx, scale_factor; td = av_clip_int8(td); tb = av_clip_int8(tb); tx = (0x4000 + (abs(td) >> 1)) / td; scale_factor = av_clip_intp2((tb * tx + 32) >> 6, 12); dst->x = av_clip_intp2((scale_factor * src->x + 127 + (scale_factor * src->x < 0)) >> 8, 17); dst->y = av_clip_intp2((scale_factor * src->y + 127 + (scale_factor * src->y < 0)) >> 8, 17); } //part of 8.5.2.12 Derivation process for collocated motion vectors static int check_mvset(Mv *mvLXCol, Mv *mvCol, int colPic, int poc, const RefPicList *refPicList, int X, int refIdxLx, const RefPicList *refPicList_col, int listCol, int refidxCol) { int cur_lt = refPicList[X].isLongTerm[refIdxLx]; int col_lt = refPicList_col[listCol].isLongTerm[refidxCol]; int col_poc_diff, cur_poc_diff; if (cur_lt != col_lt) { mvLXCol->x = 0; mvLXCol->y = 0; return 0; } col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol]; cur_poc_diff = poc - refPicList[X].list[refIdxLx]; mv_compression(mvCol); if (cur_lt || col_poc_diff == cur_poc_diff) { mvLXCol->x = av_clip_intp2(mvCol->x, 17); mvLXCol->y = av_clip_intp2(mvCol->y, 17); } else { ff_vvc_mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff); } return 1; } #define CHECK_MVSET(l) \ check_mvset(mvLXCol, temp_col.mv + l, \ colPic, fc->ps.ph.poc, \ refPicList, X, refIdxLx, \ refPicList_col, L ## l, temp_col.ref_idx[l]) //derive NoBackwardPredFlag int ff_vvc_no_backward_pred_flag(const VVCLocalContext *lc) { int check_diffpicount = 0; int i, j; const RefPicList *rpl = lc->sc->rpl; for (j = 0; j < 2; j++) { for (i = 0; i < rpl[j].nb_refs; i++) { if (rpl[j].list[i] > lc->fc->ps.ph.poc) { check_diffpicount++; break; } } } return !check_diffpicount; } //8.5.2.12 Derivation process for collocated motion vectors static int derive_temporal_colocated_mvs(const VVCLocalContext *lc, MvField temp_col, int refIdxLx, Mv *mvLXCol, int X, int colPic, const RefPicList *refPicList_col, int sb_flag) { const VVCFrameContext *fc = lc->fc; const SliceContext *sc = lc->sc; RefPicList* refPicList = sc->rpl; if (temp_col.pred_flag == PF_INTRA) return 0; if (sb_flag){ if (X == 0) { if (temp_col.pred_flag & PF_L0) return CHECK_MVSET(0); else if (ff_vvc_no_backward_pred_flag(lc) && (temp_col.pred_flag & PF_L1)) return CHECK_MVSET(1); } else { if (temp_col.pred_flag & PF_L1) return CHECK_MVSET(1); else if (ff_vvc_no_backward_pred_flag(lc) && (temp_col.pred_flag & PF_L0)) return CHECK_MVSET(0); } } else { if (!(temp_col.pred_flag & PF_L0)) return CHECK_MVSET(1); else if (temp_col.pred_flag == PF_L0) return CHECK_MVSET(0); else if (temp_col.pred_flag == PF_BI) { if (ff_vvc_no_backward_pred_flag(lc)) { if (X == 0) return CHECK_MVSET(0); else return CHECK_MVSET(1); } else { if (!lc->sc->sh.r->sh_collocated_from_l0_flag) return CHECK_MVSET(0); else return CHECK_MVSET(1); } } } return 0; } #define TAB_MVF(x, y) \ tab_mvf[((y) >> MIN_PU_LOG2) * min_pu_width + ((x) >> MIN_PU_LOG2)] #define TAB_MVF_PU(v) \ TAB_MVF(x ## v, y ## v) #define TAB_CP_MV(lx, x, y) \ fc->tab.cp_mv[lx][((((y) >> min_cb_log2_size) * min_cb_width + ((x) >> min_cb_log2_size)) ) * MAX_CONTROL_POINTS] #define DERIVE_TEMPORAL_COLOCATED_MVS(sb_flag) \ derive_temporal_colocated_mvs(lc, temp_col, \ refIdxLx, mvLXCol, X, colPic, \ ff_vvc_get_ref_list(fc, ref, x, y), sb_flag) //8.5.2.11 Derivation process for temporal luma motion vector prediction static int temporal_luma_motion_vector(const VVCLocalContext *lc, const int refIdxLx, Mv *mvLXCol, const int X, int check_center, int sb_flag) { const VVCFrameContext *fc = lc->fc; const VVCSPS *sps = fc->ps.sps; const CodingUnit *cu = lc->cu; int x, y, colPic, availableFlagLXCol = 0; int min_pu_width = fc->ps.pps->min_pu_width; VVCFrame *ref = fc->ref->collocated_ref; MvField *tab_mvf; MvField temp_col; if (!ref) { memset(mvLXCol, 0, sizeof(*mvLXCol)); return 0; } if (!fc->ps.ph.r->ph_temporal_mvp_enabled_flag || (cu->cb_width * cu->cb_height <= 32)) return 0; tab_mvf = ref->tab_dmvr_mvf; colPic = ref->poc; //bottom right collocated motion vector x = cu->x0 + cu->cb_width; y = cu->y0 + cu->cb_height; if (tab_mvf && (cu->y0 >> sps->ctb_log2_size_y) == (y >> sps->ctb_log2_size_y) && y < fc->ps.sps->height && x < fc->ps.sps->width) { x &= ~7; y &= ~7; temp_col = TAB_MVF(x, y); availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS(sb_flag); } if (check_center) { // derive center collocated motion vector if (tab_mvf && !availableFlagLXCol) { x = cu->x0 + (cu->cb_width >> 1); y = cu->y0 + (cu->cb_height >> 1); x &= ~7; y &= ~7; temp_col = TAB_MVF(x, y); availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS(sb_flag); } } return availableFlagLXCol; } void ff_vvc_set_mvf(const VVCLocalContext *lc, const int x0, const int y0, const int w, const int h, const MvField *mvf) { const VVCFrameContext *fc = lc->fc; MvField *tab_mvf = fc->tab.mvf; const int min_pu_width = fc->ps.pps->min_pu_width; const int min_pu_size = 1 << MIN_PU_LOG2; for (int dy = 0; dy < h; dy += min_pu_size) { for (int dx = 0; dx < w; dx += min_pu_size) { const int x = x0 + dx; const int y = y0 + dy; TAB_MVF(x, y) = *mvf; } } } void ff_vvc_set_intra_mvf(const VVCLocalContext *lc) { const VVCFrameContext *fc = lc->fc; const CodingUnit *cu = lc->cu; MvField *tab_mvf = fc->tab.mvf; const int min_pu_width = fc->ps.pps->min_pu_width; const int min_pu_size = 1 << MIN_PU_LOG2; for (int dy = 0; dy < cu->cb_height; dy += min_pu_size) { for (int dx = 0; dx < cu->cb_width; dx += min_pu_size) { const int x = cu->x0 + dx; const int y = cu->y0 + dy; TAB_MVF(x, y).pred_flag = PF_INTRA; } } } //cbProfFlagLX from 8.5.5.9 Derivation process for motion vector arrays from affine control point motion vectors static int derive_cb_prof_flag_lx(const VVCLocalContext *lc, const PredictionUnit* pu, int lx, int is_fallback) { const MotionInfo* mi = &pu->mi; const Mv* cp_mv = &mi->mv[lx][0]; if (lc->fc->ps.ph.r->ph_prof_disabled_flag || is_fallback) return 0; if (mi->motion_model_idc == MOTION_4_PARAMS_AFFINE) { if (IS_SAME_MV(cp_mv, cp_mv + 1)) return 0; } if (mi->motion_model_idc == MOTION_6_PARAMS_AFFINE) { if (IS_SAME_MV(cp_mv, cp_mv + 1) && IS_SAME_MV(cp_mv, cp_mv + 2)) return 0; } //fixme: RprConstraintsActiveFlag return 1; } typedef struct SubblockParams { int d_hor_x; int d_ver_x; int d_hor_y; int d_ver_y; int mv_scale_hor; int mv_scale_ver; int is_fallback; int cb_width; int cb_height; } SubblockParams; static int is_fallback_mode(const SubblockParams *sp, const PredFlag pred_flag) { const int a = 4 * (2048 + sp->d_hor_x); const int b = 4 * sp->d_hor_y; const int c = 4 * (2048 + sp->d_ver_y); const int d = 4 * sp->d_ver_x; if (pred_flag == PF_BI) { const int max_w4 = FFMAX(0, FFMAX(a, FFMAX(b, a + b))); const int min_w4 = FFMIN(0, FFMIN(a, FFMIN(b, a + b))); const int max_h4 = FFMAX(0, FFMAX(c, FFMAX(d, c + d))); const int min_h4 = FFMIN(0, FFMIN(c, FFMIN(d, c + d))); const int bx_wx4 = ((max_w4 - min_w4) >> 11) + 9; const int bx_hx4 = ((max_h4 - min_h4) >> 11) + 9; return bx_wx4 * bx_hx4 > 225; } else { const int bx_wxh = (FFABS(a) >> 11) + 9; const int bx_hxh = (FFABS(d) >> 11) + 9; const int bx_wxv = (FFABS(b) >> 11) + 9; const int bx_hxv = (FFABS(c) >> 11) + 9; if (bx_wxh * bx_hxh <= 165 && bx_wxv * bx_hxv <= 165) return 0; } return 1; } static void init_subblock_params(SubblockParams *sp, const MotionInfo* mi, const int cb_width, const int cb_height, const int lx) { const int log2_cbw = av_log2(cb_width); const int log2_cbh = av_log2(cb_height); const Mv* cp_mv = mi->mv[lx]; const int num_cp_mv = mi->motion_model_idc + 1; sp->d_hor_x = (cp_mv[1].x - cp_mv[0].x) * (1 << (MAX_CU_DEPTH - log2_cbw)); sp->d_ver_x = (cp_mv[1].y - cp_mv[0].y) * (1 << (MAX_CU_DEPTH - log2_cbw)); if (num_cp_mv == 3) { sp->d_hor_y = (cp_mv[2].x - cp_mv[0].x) * (1 << (MAX_CU_DEPTH - log2_cbh)); sp->d_ver_y = (cp_mv[2].y - cp_mv[0].y) * (1 << (MAX_CU_DEPTH - log2_cbh)); } else { sp->d_hor_y = -sp->d_ver_x; sp->d_ver_y = sp->d_hor_x; } sp->mv_scale_hor = (cp_mv[0].x) * (1 << MAX_CU_DEPTH); sp->mv_scale_ver = (cp_mv[0].y) * (1 << MAX_CU_DEPTH); sp->cb_width = cb_width; sp->cb_height = cb_height; sp->is_fallback = is_fallback_mode(sp, mi->pred_flag); } static void derive_subblock_diff_mvs(const VVCLocalContext *lc, PredictionUnit* pu, const SubblockParams* sp, const int lx) { pu->cb_prof_flag[lx] = derive_cb_prof_flag_lx(lc, pu, lx, sp->is_fallback); if (pu->cb_prof_flag[lx]) { const int dmv_limit = 1 << 5; const int pos_offset_x = 6 * (sp->d_hor_x + sp->d_hor_y); const int pos_offset_y = 6 * (sp->d_ver_x + sp->d_ver_y); for (int x = 0; x < AFFINE_MIN_BLOCK_SIZE; x++) { for (int y = 0; y < AFFINE_MIN_BLOCK_SIZE; y++) { LOCAL_ALIGNED_8(Mv, diff, [1]); diff->x = x * (sp->d_hor_x * (1 << 2)) + y * (sp->d_hor_y * (1 << 2)) - pos_offset_x; diff->y = x * (sp->d_ver_x * (1 << 2)) + y * (sp->d_ver_y * (1 << 2)) - pos_offset_y; ff_vvc_round_mv(diff, 0, 8); pu->diff_mv_x[lx][AFFINE_MIN_BLOCK_SIZE * y + x] = av_clip(diff->x, -dmv_limit + 1, dmv_limit - 1); pu->diff_mv_y[lx][AFFINE_MIN_BLOCK_SIZE * y + x] = av_clip(diff->y, -dmv_limit + 1, dmv_limit - 1); } } } } static void store_cp_mv(const VVCLocalContext *lc, const MotionInfo *mi, const int lx) { VVCFrameContext *fc = lc->fc; const CodingUnit *cu = lc->cu; const int log2_min_cb_size = fc->ps.sps->min_cb_log2_size_y; const int min_cb_size = fc->ps.sps->min_cb_size_y; const int min_cb_width = fc->ps.pps->min_cb_width; const int num_cp_mv = mi->motion_model_idc + 1; for (int dy = 0; dy < cu->cb_height; dy += min_cb_size) { for (int dx = 0; dx < cu->cb_width; dx += min_cb_size) { const int x_cb = (cu->x0 + dx) >> log2_min_cb_size; const int y_cb = (cu->y0 + dy) >> log2_min_cb_size; const int offset = (y_cb * min_cb_width + x_cb) * MAX_CONTROL_POINTS; memcpy(&fc->tab.cp_mv[lx][offset], mi->mv[lx], sizeof(Mv) * num_cp_mv); SAMPLE_CTB(fc->tab.mmi, x_cb, y_cb) = mi->motion_model_idc; } } } //8.5.5.9 Derivation process for motion vector arrays from affine control point motion vectors void ff_vvc_store_sb_mvs(const VVCLocalContext *lc, PredictionUnit *pu) { const CodingUnit *cu = lc->cu; const MotionInfo *mi = &pu->mi; const int sbw = cu->cb_width / mi->num_sb_x; const int sbh = cu->cb_height / mi->num_sb_y; SubblockParams params[2]; MvField mvf; mvf.pred_flag = mi->pred_flag; mvf.bcw_idx = mi->bcw_idx; mvf.hpel_if_idx = mi->hpel_if_idx; mvf.ciip_flag = 0; for (int i = 0; i < 2; i++) { const PredFlag mask = i + 1; if (mi->pred_flag & mask) { store_cp_mv(lc, mi, i); init_subblock_params(params + i, mi, cu->cb_width, cu->cb_height, i); derive_subblock_diff_mvs(lc, pu, params + i, i); mvf.ref_idx[i] = mi->ref_idx[i]; } } for (int sby = 0; sby < mi->num_sb_y; sby++) { for (int sbx = 0; sbx < mi->num_sb_x; sbx++) { const int x0 = cu->x0 + sbx * sbw; const int y0 = cu->y0 + sby * sbh; for (int i = 0; i < 2; i++) { const PredFlag mask = i + 1; if (mi->pred_flag & mask) { const SubblockParams* sp = params + i; const int x_pos_cb = sp->is_fallback ? (cu->cb_width >> 1) : (2 + (sbx << MIN_CU_LOG2)); const int y_pos_cb = sp->is_fallback ? (cu->cb_height >> 1) : (2 + (sby << MIN_CU_LOG2)); Mv *mv = mvf.mv + i; mv->x = sp->mv_scale_hor + sp->d_hor_x * x_pos_cb + sp->d_hor_y * y_pos_cb; mv->y = sp->mv_scale_ver + sp->d_ver_x * x_pos_cb + sp->d_ver_y * y_pos_cb; ff_vvc_round_mv(mv, 0, MAX_CU_DEPTH); ff_vvc_clip_mv(mv); } } ff_vvc_set_mvf(lc, x0, y0, sbw, sbh, &mvf); } } } void ff_vvc_store_gpm_mvf(const VVCLocalContext *lc, const PredictionUnit *pu) { const CodingUnit *cu = lc->cu; const int angle_idx = ff_vvc_gpm_angle_idx[pu->gpm_partition_idx]; const int distance_idx = ff_vvc_gpm_distance_idx[pu->gpm_partition_idx]; const int displacement_x = ff_vvc_gpm_distance_lut[angle_idx]; const int displacement_y = ff_vvc_gpm_distance_lut[(angle_idx + 8) % 32]; const int is_flip = angle_idx >= 13 &&angle_idx <= 27; const int shift_hor = (angle_idx % 16 == 8 || (angle_idx % 16 && cu->cb_height >= cu->cb_width)) ? 0 : 1; const int sign = angle_idx < 16 ? 1 : -1; const int block_size = 4; int offset_x = (-cu->cb_width) >> 1; int offset_y = (-cu->cb_height) >> 1; if (!shift_hor) offset_y += sign * ((distance_idx * cu->cb_height) >> 3); else offset_x += sign * ((distance_idx * cu->cb_width) >> 3); for (int y = 0; y < cu->cb_height; y += block_size) { for (int x = 0; x < cu->cb_width; x += block_size) { const int motion_idx = (((x + offset_x) * (1 << 1)) + 5) * displacement_x + (((y + offset_y) * (1 << 1)) + 5) * displacement_y; const int s_type = FFABS(motion_idx) < 32 ? 2 : (motion_idx <= 0 ? (1 - is_flip) : is_flip); const int pred_flag = pu->gpm_mv[0].pred_flag | pu->gpm_mv[1].pred_flag; const int x0 = cu->x0 + x; const int y0 = cu->y0 + y; if (!s_type) ff_vvc_set_mvf(lc, x0, y0, block_size, block_size, pu->gpm_mv + 0); else if (s_type == 1 || (s_type == 2 && pred_flag != PF_BI)) ff_vvc_set_mvf(lc, x0, y0, block_size, block_size, pu->gpm_mv + 1); else { MvField mvf = pu->gpm_mv[0]; const MvField *mv1 = &pu->gpm_mv[1]; const int lx = mv1->pred_flag - PF_L0; mvf.pred_flag = PF_BI; mvf.ref_idx[lx] = mv1->ref_idx[lx]; mvf.mv[lx] = mv1->mv[lx]; ff_vvc_set_mvf(lc, x0, y0, block_size, block_size, &mvf); } } } } void ff_vvc_store_mvf(const VVCLocalContext *lc, const MvField *mvf) { const CodingUnit *cu = lc->cu; ff_vvc_set_mvf(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height, mvf); } void ff_vvc_store_mv(const VVCLocalContext *lc, const MotionInfo *mi) { const CodingUnit *cu = lc->cu; MvField mvf; mvf.hpel_if_idx = mi->hpel_if_idx; mvf.bcw_idx = mi->bcw_idx; mvf.pred_flag = mi->pred_flag; mvf.ciip_flag = 0; for (int i = 0; i < 2; i++) { const PredFlag mask = i + 1; if (mvf.pred_flag & mask) { mvf.mv[i] = mi->mv[i][0]; mvf.ref_idx[i] = mi->ref_idx[i]; } } ff_vvc_set_mvf(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height, &mvf); } typedef enum NeighbourIdx { A0, A1, A2, B0, B1, B2, B3, NUM_NBS, NB_IDX_NONE = NUM_NBS, } NeighbourIdx; typedef struct Neighbour { int x; int y; int checked; int available; } Neighbour; typedef struct NeighbourContext { Neighbour neighbours[NUM_NBS]; const VVCLocalContext *lc; } NeighbourContext; static int is_a0_available(const VVCLocalContext *lc, const CodingUnit *cu) { const VVCFrameContext *fc = lc->fc; const VVCSPS *sps = fc->ps.sps; const int x0b = av_mod_uintp2(cu->x0, sps->ctb_log2_size_y); int cand_bottom_left; if (!x0b && !lc->ctb_left_flag) { cand_bottom_left = 0; } else { const int log2_min_cb_size = sps->min_cb_log2_size_y; const int min_cb_width = fc->ps.pps->min_cb_width; const int x = (cu->x0 - 1) >> log2_min_cb_size; const int y = (cu->y0 + cu->cb_height) >> log2_min_cb_size; const int max_y = FFMIN(fc->ps.pps->height, ((cu->y0 >> sps->ctb_log2_size_y) + 1) << sps->ctb_log2_size_y); if (cu->y0 + cu->cb_height >= max_y) cand_bottom_left = 0; else cand_bottom_left = SAMPLE_CTB(fc->tab.cb_width[0], x, y) != 0; } return cand_bottom_left; } static void init_neighbour_context(NeighbourContext *ctx, const VVCLocalContext *lc) { const CodingUnit *cu = lc->cu; const NeighbourAvailable *na = &lc->na; const int x0 = cu->x0; const int y0 = cu->y0; const int cb_width = cu->cb_width; const int cb_height = cu->cb_height; const int a0_available = is_a0_available(lc, cu); Neighbour neighbours[NUM_NBS] = { { x0 - 1, y0 + cb_height, !a0_available }, //A0 { x0 - 1, y0 + cb_height - 1, !na->cand_left }, //A1 { x0 - 1, y0, !na->cand_left }, //A2 { x0 + cb_width, y0 - 1, !na->cand_up_right }, //B0 { x0 + cb_width - 1, y0 - 1, !na->cand_up }, //B1 { x0 - 1, y0 - 1, !na->cand_up_left }, //B2 { x0, y0 - 1, !na->cand_up }, //B3 }; memcpy(ctx->neighbours, neighbours, sizeof(neighbours)); ctx->lc = lc; } static int check_available(Neighbour *n, const VVCLocalContext *lc, const int is_mvp) { const VVCFrameContext *fc = lc->fc; const VVCSPS *sps = fc->ps.sps; const CodingUnit *cu = lc->cu; const MvField *tab_mvf = fc->tab.mvf; const int min_pu_width = fc->ps.pps->min_pu_width; if (!n->checked) { n->checked = 1; n->available = !sps->r->sps_entropy_coding_sync_enabled_flag || ((n->x >> sps->ctb_log2_size_y) <= (cu->x0 >> sps->ctb_log2_size_y)); n->available &= TAB_MVF(n->x, n->y).pred_flag != PF_INTRA; if (!is_mvp) n->available &= !is_same_mer(fc, n->x, n->y, cu->x0, cu->y0); } return n->available; } static const MvField *mv_merge_candidate(const VVCLocalContext *lc, const int x_cand, const int y_cand) { const VVCFrameContext *fc = lc->fc; const int min_pu_width = fc->ps.pps->min_pu_width; const MvField* tab_mvf = fc->tab.mvf; const MvField *mvf = &TAB_MVF(x_cand, y_cand); return mvf; } static const MvField* mv_merge_from_nb(NeighbourContext *ctx, const NeighbourIdx nb) { const VVCLocalContext *lc = ctx->lc; const int is_mvp = 0; Neighbour *n = &ctx->neighbours[nb]; if (check_available(n, lc, is_mvp)) return mv_merge_candidate(lc, n->x, n->y); return 0; } #define MV_MERGE_FROM_NB(nb) mv_merge_from_nb(&nctx, nb) //8.5.2.3 Derivation process for spatial merging candidates static int mv_merge_spatial_candidates(const VVCLocalContext *lc, const int merge_idx, const MvField **nb_list, MvField *cand_list, int *nb_merge_cand) { const MvField *cand; int num_cands = 0; NeighbourContext nctx; static NeighbourIdx nbs[][2] = { {B1, NB_IDX_NONE }, {A1, B1 }, {B0, B1 }, {A0, A1 }, }; init_neighbour_context(&nctx, lc); for (int i = 0; i < FF_ARRAY_ELEMS(nbs); i++) { NeighbourIdx nb = nbs[i][0]; NeighbourIdx old = nbs[i][1]; cand = nb_list[nb] = MV_MERGE_FROM_NB(nb); if (cand && !compare_mv_ref_idx(cand, nb_list[old])) { cand_list[num_cands] = *cand; if (merge_idx == num_cands) return 1; num_cands++; } } if (num_cands != 4) { cand = MV_MERGE_FROM_NB(B2); if (cand && !compare_mv_ref_idx(cand, nb_list[A1]) && !compare_mv_ref_idx(cand, nb_list[B1])) { cand_list[num_cands] = *cand; if (merge_idx == num_cands) return 1; num_cands++; } } *nb_merge_cand = num_cands; return 0; } static int mv_merge_temporal_candidate(const VVCLocalContext *lc, MvField *cand) { const VVCFrameContext *fc = lc->fc; const CodingUnit *cu = lc->cu; memset(cand, 0, sizeof(*cand)); if (fc->ps.ph.r->ph_temporal_mvp_enabled_flag && (cu->cb_width * cu->cb_height > 32)) { int available_l0 = temporal_luma_motion_vector(lc, 0, cand->mv + 0, 0, 1, 0); int available_l1 = IS_B(lc->sc->sh.r) ? temporal_luma_motion_vector(lc, 0, cand->mv + 1, 1, 1, 0) : 0; cand->pred_flag = available_l0 + (available_l1 << 1); } return cand->pred_flag; } //8.5.2.6 Derivation process for history-based merging candidates static int mv_merge_history_candidates(const VVCLocalContext *lc, const int merge_idx, const MvField **nb_list, MvField *cand_list, int *num_cands) { const VVCSPS *sps = lc->fc->ps.sps; const EntryPoint* ep = lc->ep; for (int i = 1; i <= ep->num_hmvp && (*num_cands < sps->max_num_merge_cand - 1); i++) { const MvField *h = &ep->hmvp[ep->num_hmvp - i]; const int same_motion = i <= 2 && (compare_mv_ref_idx(h, nb_list[A1]) || compare_mv_ref_idx(h, nb_list[B1])); if (!same_motion) { cand_list[*num_cands] = *h; if (merge_idx == *num_cands) return 1; (*num_cands)++; } } return 0; } //8.5.2.4 Derivation process for pairwise average merging candidate static int mv_merge_pairwise_candidate(MvField *cand_list, const int num_cands, const int is_b) { if (num_cands > 1) { const int num_ref_rists = is_b ? 2 : 1; const MvField* p0 = cand_list + 0; const MvField* p1 = cand_list + 1; MvField* cand = cand_list + num_cands; cand->pred_flag = 0; for (int i = 0; i < num_ref_rists; i++) { PredFlag mask = i + 1; if (p0->pred_flag & mask) { cand->pred_flag |= mask; cand->ref_idx[i] = p0->ref_idx[i]; if (p1->pred_flag & mask) { Mv *mv = cand->mv + i; mv->x = p0->mv[i].x + p1->mv[i].x; mv->y = p0->mv[i].y + p1->mv[i].y; ff_vvc_round_mv(mv, 0, 1); } else { cand->mv[i] = p0->mv[i]; } } else if (p1->pred_flag & mask) { cand->pred_flag |= mask; cand->mv[i] = p1->mv[i]; cand->ref_idx[i] = p1->ref_idx[i]; } } if (cand->pred_flag) { cand->hpel_if_idx = p0->hpel_if_idx == p1->hpel_if_idx ? p0->hpel_if_idx : 0; cand->bcw_idx = 0; cand->ciip_flag = 0; return 1; } } return 0; } //8.5.2.5 Derivation process for zero motion vector merging candidates static void mv_merge_zero_motion_candidate(const VVCLocalContext *lc, const int merge_idx, MvField *cand_list, int num_cands) { const VVCSPS *sps = lc->fc->ps.sps; const H266RawSliceHeader *rsh = lc->sc->sh.r; const int num_ref_idx = IS_P(rsh) ? rsh->num_ref_idx_active[L0] : FFMIN(rsh->num_ref_idx_active[L0], rsh->num_ref_idx_active[L1]); int zero_idx = 0; while (num_cands < sps->max_num_merge_cand) { MvField *cand = cand_list + num_cands; cand->pred_flag = PF_L0 + (IS_B(rsh) << 1); AV_ZERO64(cand->mv + 0); AV_ZERO64(cand->mv + 1); cand->ref_idx[0] = zero_idx < num_ref_idx ? zero_idx : 0; cand->ref_idx[1] = zero_idx < num_ref_idx ? zero_idx : 0; cand->bcw_idx = 0; cand->hpel_if_idx = 0; if (merge_idx == num_cands) return; num_cands++; zero_idx++; } } static void mv_merge_mode(const VVCLocalContext *lc, const int merge_idx, MvField *cand_list) { int num_cands = 0; const MvField *nb_list[NUM_NBS + 1] = { NULL }; if (mv_merge_spatial_candidates(lc, merge_idx, nb_list, cand_list, &num_cands)) return; if (mv_merge_temporal_candidate(lc, &cand_list[num_cands])) { if (merge_idx == num_cands) return; num_cands++; } if (mv_merge_history_candidates(lc, merge_idx, nb_list, cand_list, &num_cands)) return; if (mv_merge_pairwise_candidate(cand_list, num_cands, IS_B(lc->sc->sh.r))) { if (merge_idx == num_cands) return; num_cands++; } mv_merge_zero_motion_candidate(lc, merge_idx, cand_list, num_cands); } //8.5.2.2 Derivation process for luma motion vectors for merge mode void ff_vvc_luma_mv_merge_mode(VVCLocalContext *lc, const int merge_idx, const int ciip_flag, MvField *mv) { const CodingUnit *cu = lc->cu; MvField cand_list[MRG_MAX_NUM_CANDS]; ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height); mv_merge_mode(lc, merge_idx, cand_list); *mv = cand_list[merge_idx]; //ciip flag in not inhritable mv->ciip_flag = ciip_flag; } //8.5.4.2 Derivation process for luma motion vectors for geometric partitioning merge mode void ff_vvc_luma_mv_merge_gpm(VVCLocalContext *lc, const int merge_gpm_idx[2], MvField *mv) { const CodingUnit *cu = lc->cu; MvField cand_list[MRG_MAX_NUM_CANDS]; const int idx[] = { merge_gpm_idx[0], merge_gpm_idx[1] + (merge_gpm_idx[1] >= merge_gpm_idx[0]) }; ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height); mv_merge_mode(lc, FFMAX(idx[0], idx[1]), cand_list); memset(mv, 0, 2 * sizeof(*mv)); for (int i = 0; i < 2; i++) { int lx = idx[i] & 1; int mask = lx + PF_L0; MvField *cand = cand_list + idx[i]; if (!(cand->pred_flag & mask)) { lx = !lx; mask = lx + PF_L0; } mv[i].pred_flag = mask; mv[i].ref_idx[lx] = cand->ref_idx[lx]; mv[i].mv[lx] = cand->mv[lx]; } } //8.5.5.5 Derivation process for luma affine control point motion vectors from a neighbouring block static void affine_cps_from_nb(const VVCLocalContext *lc, const int x_nb, int y_nb, const int nbw, const int nbh, const int lx, Mv *cps, int num_cps) { const VVCFrameContext *fc = lc->fc; const CodingUnit *cu = lc->cu; const int x0 = cu->x0; const int y0 = cu->y0; const int cb_width = cu->cb_width; const int cb_height = cu->cb_height; const MvField* tab_mvf = fc->tab.mvf; const int min_cb_log2_size = fc->ps.sps->min_cb_log2_size_y; const int min_cb_width = fc->ps.pps->min_cb_width; const int log2_nbw = ff_log2(nbw); const int log2_nbh = ff_log2(nbh); const int is_ctb_boundary = !((y_nb + nbh) % fc->ps.sps->ctb_size_y) && (y_nb + nbh == y0); const Mv *l, *r; int mv_scale_hor, mv_scale_ver, d_hor_x, d_ver_x, d_hor_y, d_ver_y, motion_model_idc_nb; if (is_ctb_boundary) { const int min_pu_width = fc->ps.pps->min_pu_width; l = &TAB_MVF(x_nb, y_nb + nbh - 1).mv[lx]; r = &TAB_MVF(x_nb + nbw - 1, y_nb + nbh - 1).mv[lx]; } else { const int x = x_nb >> min_cb_log2_size; const int y = y_nb >> min_cb_log2_size; motion_model_idc_nb = SAMPLE_CTB(fc->tab.mmi, x, y); l = &TAB_CP_MV(lx, x_nb, y_nb); r = &TAB_CP_MV(lx, x_nb + nbw - 1, y_nb) + 1; } mv_scale_hor = l->x * (1 << 7); mv_scale_ver = l->y * (1 << 7); d_hor_x = (r->x - l->x) * (1 << (7 - log2_nbw)); d_ver_x = (r->y - l->y) * (1 << (7 - log2_nbw)); if (!is_ctb_boundary && motion_model_idc_nb == MOTION_6_PARAMS_AFFINE) { const Mv* lb = &TAB_CP_MV(lx, x_nb, y_nb + nbh - 1) + 2; d_hor_y = (lb->x - l->x) * (1 << (7 - log2_nbh)); d_ver_y = (lb->y - l->y) * (1 << (7 - log2_nbh)); } else { d_hor_y = -d_ver_x; d_ver_y = d_hor_x; } if (is_ctb_boundary) { y_nb = y0; } cps[0].x = mv_scale_hor + d_hor_x * (x0 - x_nb) + d_hor_y * (y0 - y_nb); cps[0].y = mv_scale_ver + d_ver_x * (x0 - x_nb) + d_ver_y * (y0 - y_nb); cps[1].x = mv_scale_hor + d_hor_x * (x0 + cb_width - x_nb) + d_hor_y * (y0 - y_nb); cps[1].y = mv_scale_ver + d_ver_x * (x0 + cb_width - x_nb) + d_ver_y * (y0 - y_nb); if (num_cps == 3) { cps[2].x = mv_scale_hor + d_hor_x * (x0 - x_nb) + d_hor_y * (y0 + cb_height - y_nb); cps[2].y = mv_scale_ver + d_ver_x * (x0 - x_nb) + d_ver_y * (y0 + cb_height - y_nb); } for (int i = 0; i < num_cps; i++) { ff_vvc_round_mv(cps + i, 0, 7); ff_vvc_clip_mv(cps + i); } } //derive affine neighbour's postion, width and height, static int affine_neighbour_cb(const VVCFrameContext *fc, const int x_nb, const int y_nb, int *x_cb, int *y_cb, int *cbw, int *cbh) { const int log2_min_cb_size = fc->ps.sps->min_cb_log2_size_y; const int min_cb_width = fc->ps.pps->min_cb_width; const int x = x_nb >> log2_min_cb_size; const int y = y_nb >> log2_min_cb_size; const int motion_model_idc = SAMPLE_CTB(fc->tab.mmi, x, y); if (motion_model_idc) { *x_cb = SAMPLE_CTB(fc->tab.cb_pos_x[0], x, y); *y_cb = SAMPLE_CTB(fc->tab.cb_pos_y[0], x, y); *cbw = SAMPLE_CTB(fc->tab.cb_width[0], x, y); *cbh = SAMPLE_CTB(fc->tab.cb_height[0], x, y); } return motion_model_idc; } //part of 8.5.5.2 Derivation process for motion vectors and reference indices in subblock merge mode static int affine_merge_candidate(const VVCLocalContext *lc, const int x_cand, const int y_cand, MotionInfo* mi) { const VVCFrameContext *fc = lc->fc; int x, y, w, h, motion_model_idc; motion_model_idc = affine_neighbour_cb(fc, x_cand, y_cand, &x, &y, &w, &h); if (motion_model_idc) { const int min_pu_width = fc->ps.pps->min_pu_width; const MvField* tab_mvf = fc->tab.mvf; const MvField *mvf = &TAB_MVF(x, y); mi->bcw_idx = mvf->bcw_idx; mi->pred_flag = mvf->pred_flag; for (int i = 0; i < 2; i++) { PredFlag mask = i + 1; if (mi->pred_flag & mask) { affine_cps_from_nb(lc, x, y, w, h, i, &mi->mv[i][0], motion_model_idc + 1); } mi->ref_idx[i] = mvf->ref_idx[i]; } mi->motion_model_idc = motion_model_idc; } return motion_model_idc; } static int affine_merge_from_nbs(NeighbourContext *ctx, const NeighbourIdx *nbs, const int num_nbs, MotionInfo* cand) { const VVCLocalContext *lc = ctx->lc; const int is_mvp = 0; for (int i = 0; i < num_nbs; i++) { Neighbour *n = &ctx->neighbours[nbs[i]]; if (check_available(n, lc, is_mvp) && affine_merge_candidate(lc, n->x, n->y, cand)) return 1; } return 0; } #define AFFINE_MERGE_FROM_NBS(nbs) affine_merge_from_nbs(&nctx, nbs, FF_ARRAY_ELEMS(nbs), mi) static const MvField* derive_corner_mvf(NeighbourContext *ctx, const NeighbourIdx *neighbour, const int num_neighbour) { const VVCFrameContext *fc = ctx->lc->fc; const MvField *tab_mvf = fc->tab.mvf; const int min_pu_width = fc->ps.pps->min_pu_width; for (int i = 0; i < num_neighbour; i++) { Neighbour *n = &ctx->neighbours[neighbour[i]]; if (check_available(n, ctx->lc, 0)) { return &TAB_MVF(n->x, n->y); } } return NULL; } #define DERIVE_CORNER_MV(nbs) derive_corner_mvf(nctx, nbs, FF_ARRAY_ELEMS(nbs)) // check if the mv's and refidx are the same between A and B static av_always_inline int compare_pf_ref_idx(const MvField *A, const struct MvField *B, const struct MvField *C, const int lx) { const PredFlag mask = (lx + 1) & A->pred_flag; if (!(B->pred_flag & mask)) return 0; if (A->ref_idx[lx] != B->ref_idx[lx]) return 0; if (C) { if (!(C->pred_flag & mask)) return 0; if (A->ref_idx[lx] != C->ref_idx[lx]) return 0; } return 1; } static av_always_inline void sb_clip_location(const VVCFrameContext *fc, const int x_ctb, const int y_ctb, const Mv* temp_mv, int *x, int *y) { const VVCPPS *pps = fc->ps.pps; const int ctb_log2_size = fc->ps.sps->ctb_log2_size_y; *y = av_clip(*y + temp_mv->y, y_ctb, FFMIN(pps->height - 1, y_ctb + (1 << ctb_log2_size) - 1)) & ~7; *x = av_clip(*x + temp_mv->x, x_ctb, FFMIN(pps->width - 1, x_ctb + (1 << ctb_log2_size) + 3)) & ~7; } static void sb_temproal_luma_motion(const VVCLocalContext *lc, const int x_ctb, const int y_ctb, const Mv *temp_mv, int x, int y, uint8_t *pred_flag, Mv *mv) { MvField temp_col; Mv* mvLXCol; const int refIdxLx = 0; const VVCFrameContext *fc = lc->fc; const VVCSH *sh = &lc->sc->sh; const int min_pu_width = fc->ps.pps->min_pu_width; VVCFrame *ref = fc->ref->collocated_ref; MvField *tab_mvf = ref->tab_dmvr_mvf; int colPic = ref->poc; int X = 0; sb_clip_location(fc, x_ctb, y_ctb, temp_mv, &x, &y); temp_col = TAB_MVF(x, y); mvLXCol = mv + 0; *pred_flag = DERIVE_TEMPORAL_COLOCATED_MVS(1); if (IS_B(sh->r)) { X = 1; mvLXCol = mv + 1; *pred_flag |= (DERIVE_TEMPORAL_COLOCATED_MVS(1)) << 1; } } //8.5.5.4 Derivation process for subblock-based temporal merging base motion data static int sb_temporal_luma_motion_data(const VVCLocalContext *lc, const MvField *a1, const int x_ctb, const int y_ctb, MvField *ctr_mvf, Mv *temp_mv) { const VVCFrameContext *fc = lc->fc; const RefPicList *rpl = lc->sc->rpl; const CodingUnit *cu = lc->cu; const int x = cu->x0 + cu->cb_width / 2; const int y = cu->y0 + cu->cb_height / 2; const VVCFrame *ref = fc->ref->collocated_ref; int colPic; memset(temp_mv, 0, sizeof(*temp_mv)); if (!ref) { memset(ctr_mvf, 0, sizeof(*ctr_mvf)); return 0; } colPic = ref->poc; if (a1) { if ((a1->pred_flag & PF_L0) && colPic == rpl[0].list[a1->ref_idx[0]]) *temp_mv = a1->mv[0]; else if ((a1->pred_flag & PF_L1) && colPic == rpl[1].list[a1->ref_idx[1]]) *temp_mv = a1->mv[1]; ff_vvc_round_mv(temp_mv, 0, 4); } sb_temproal_luma_motion(lc, x_ctb, y_ctb, temp_mv, x, y, &ctr_mvf->pred_flag , ctr_mvf->mv); return ctr_mvf->pred_flag; } //8.5.5.3 Derivation process for subblock-based temporal merging candidates static int sb_temporal_merge_candidate(const VVCLocalContext* lc, NeighbourContext *nctx, PredictionUnit *pu) { const VVCFrameContext *fc = lc->fc; const CodingUnit *cu = lc->cu; const VVCSPS *sps = fc->ps.sps; const VVCPH *ph = &fc->ps.ph; MotionInfo *mi = &pu->mi; const int ctb_log2_size = sps->ctb_log2_size_y; const int x0 = cu->x0; const int y0 = cu->y0; const NeighbourIdx n = A1; const MvField *a1; MvField ctr_mvf; LOCAL_ALIGNED_8(Mv, temp_mv, [1]); const int x_ctb = (x0 >> ctb_log2_size) << ctb_log2_size; const int y_ctb = (y0 >> ctb_log2_size) << ctb_log2_size; if (!ph->r->ph_temporal_mvp_enabled_flag || !sps->r->sps_sbtmvp_enabled_flag || (cu->cb_width < 8 && cu->cb_height < 8)) return 0; mi->num_sb_x = cu->cb_width >> 3; mi->num_sb_y = cu->cb_height >> 3; a1 = derive_corner_mvf(nctx, &n, 1); if (sb_temporal_luma_motion_data(lc, a1, x_ctb, y_ctb, &ctr_mvf, temp_mv)) { const int sbw = cu->cb_width / mi->num_sb_x; const int sbh = cu->cb_height / mi->num_sb_y; MvField mvf = {0}; for (int sby = 0; sby < mi->num_sb_y; sby++) { for (int sbx = 0; sbx < mi->num_sb_x; sbx++) { int x = x0 + sbx * sbw; int y = y0 + sby * sbh; sb_temproal_luma_motion(lc, x_ctb, y_ctb, temp_mv, x + sbw / 2, y + sbh / 2, &mvf.pred_flag, mvf.mv); if (!mvf.pred_flag) { mvf.pred_flag = ctr_mvf.pred_flag; memcpy(mvf.mv, ctr_mvf.mv, sizeof(mvf.mv)); } ff_vvc_set_mvf(lc, x, y, sbw, sbh, &mvf); } } return 1; } return 0; } static int affine_merge_const1(const MvField *c0, const MvField *c1, const MvField *c2, MotionInfo *mi) { if (c0 && c1 && c2) { mi->pred_flag = 0; for (int i = 0; i < 2; i++) { PredFlag mask = i + 1; if (compare_pf_ref_idx(c0, c1, c2, i)) { mi->pred_flag |= mask; mi->ref_idx[i] = c0->ref_idx[i]; mi->mv[i][0] = c0->mv[i]; mi->mv[i][1] = c1->mv[i]; mi->mv[i][2] = c2->mv[i]; } } if (mi->pred_flag) { if (mi->pred_flag == PF_BI) mi->bcw_idx = c0->bcw_idx; mi->motion_model_idc = MOTION_6_PARAMS_AFFINE; return 1; } } return 0; } static int affine_merge_const2(const MvField *c0, const MvField *c1, const MvField *c3, MotionInfo *mi) { if (c0 && c1 && c3) { mi->pred_flag = 0; for (int i = 0; i < 2; i++) { PredFlag mask = i + 1; if (compare_pf_ref_idx(c0, c1, c3, i)) { mi->pred_flag |= mask; mi->ref_idx[i] = c0->ref_idx[i]; mi->mv[i][0] = c0->mv[i]; mi->mv[i][1] = c1->mv[i]; mi->mv[i][2].x = c3->mv[i].x + c0->mv[i].x - c1->mv[i].x; mi->mv[i][2].y = c3->mv[i].y + c0->mv[i].y - c1->mv[i].y; ff_vvc_clip_mv(&mi->mv[i][2]); } } if (mi->pred_flag) { mi->bcw_idx = mi->pred_flag == PF_BI ? c0->bcw_idx : 0; mi->motion_model_idc = MOTION_6_PARAMS_AFFINE; return 1; } } return 0; } static int affine_merge_const3(const MvField *c0, const MvField *c2, const MvField *c3, MotionInfo *mi) { if (c0 && c2 && c3) { mi->pred_flag = 0; for (int i = 0; i < 2; i++) { PredFlag mask = i + 1; if (compare_pf_ref_idx(c0, c2, c3, i)) { mi->pred_flag |= mask; mi->ref_idx[i] = c0->ref_idx[i]; mi->mv[i][0] = c0->mv[i]; mi->mv[i][1].x = c3->mv[i].x + c0->mv[i].x - c2->mv[i].x; mi->mv[i][1].y = c3->mv[i].y + c0->mv[i].y - c2->mv[i].y; ff_vvc_clip_mv(&mi->mv[i][1]); mi->mv[i][2] = c2->mv[i]; } } if (mi->pred_flag) { mi->bcw_idx = mi->pred_flag == PF_BI ? c0->bcw_idx : 0; mi->motion_model_idc = MOTION_6_PARAMS_AFFINE; return 1; } } return 0; } static int affine_merge_const4(const MvField *c1, const MvField *c2, const MvField *c3, MotionInfo *mi) { if (c1 && c2 && c3) { mi->pred_flag = 0; for (int i = 0; i < 2; i++) { PredFlag mask = i + 1; if (compare_pf_ref_idx(c1, c2, c3, i)) { mi->pred_flag |= mask; mi->ref_idx[i] = c1->ref_idx[i]; mi->mv[i][0].x = c1->mv[i].x + c2->mv[i].x - c3->mv[i].x; mi->mv[i][0].y = c1->mv[i].y + c2->mv[i].y - c3->mv[i].y; ff_vvc_clip_mv(&mi->mv[i][0]); mi->mv[i][1] = c1->mv[i]; mi->mv[i][2] = c2->mv[i]; } } if (mi->pred_flag) { mi->bcw_idx = mi->pred_flag == PF_BI ? c1->bcw_idx : 0; mi->motion_model_idc = MOTION_6_PARAMS_AFFINE; return 1; } } return 0; } static int affine_merge_const5(const MvField *c0, const MvField *c1, MotionInfo *mi) { if (c0 && c1) { mi->pred_flag = 0; for (int i = 0; i < 2; i++) { PredFlag mask = i + 1; if (compare_pf_ref_idx(c0, c1, NULL, i)) { mi->pred_flag |= mask; mi->ref_idx[i] = c0->ref_idx[i]; mi->mv[i][0] = c0->mv[i]; mi->mv[i][1] = c1->mv[i]; } } if (mi->pred_flag) { if (mi->pred_flag == PF_BI) mi->bcw_idx = c0->bcw_idx; mi->motion_model_idc = MOTION_4_PARAMS_AFFINE; return 1; } } return 0; } static int affine_merge_const6(const MvField* c0, const MvField* c2, const int cb_width, const int cb_height, MotionInfo *mi) { if (c0 && c2) { const int shift = 7 + av_log2(cb_width) - av_log2(cb_height); mi->pred_flag = 0; for (int i = 0; i < 2; i++) { PredFlag mask = i + 1; if (compare_pf_ref_idx(c0, c2, NULL, i)) { mi->pred_flag |= mask; mi->ref_idx[i] = c0->ref_idx[i]; mi->mv[i][0] = c0->mv[i]; mi->mv[i][1].x = (c0->mv[i].x * (1 << 7)) + ((c2->mv[i].y - c0->mv[i].y) * (1 << shift)); mi->mv[i][1].y = (c0->mv[i].y * (1 << 7)) - ((c2->mv[i].x - c0->mv[i].x) * (1 << shift)); ff_vvc_round_mv(&mi->mv[i][1], 0, 7); ff_vvc_clip_mv(&mi->mv[i][1]); } } if (mi->pred_flag) { if (mi->pred_flag == PF_BI) mi->bcw_idx = c0->bcw_idx; mi->motion_model_idc = MOTION_4_PARAMS_AFFINE; return 1; } } return 0; } static void affine_merge_zero_motion(const VVCLocalContext *lc, MotionInfo *mi) { const CodingUnit *cu = lc->cu; memset(mi, 0, sizeof(*mi)); mi->pred_flag = PF_L0 + (IS_B(lc->sc->sh.r) << 1); mi->motion_model_idc = MOTION_4_PARAMS_AFFINE; mi->num_sb_x = cu->cb_width >> MIN_PU_LOG2; mi->num_sb_y = cu->cb_height >> MIN_PU_LOG2; } //8.5.5.6 Derivation process for constructed affine control point motion vector merging candidates static int affine_merge_const_candidates(const VVCLocalContext *lc, MotionInfo *mi, NeighbourContext *nctx, const int merge_subblock_idx, int num_cands) { const VVCFrameContext *fc = lc->fc; const CodingUnit *cu = lc->cu; const NeighbourIdx tl[] = { B2, B3, A2 }; const NeighbourIdx tr[] = { B1, B0}; const NeighbourIdx bl[] = { A1, A0}; const MvField *c0, *c1, *c2; c0 = DERIVE_CORNER_MV(tl); c1 = DERIVE_CORNER_MV(tr); c2 = DERIVE_CORNER_MV(bl); if (fc->ps.sps->r->sps_6param_affine_enabled_flag) { MvField corner3, *c3 = NULL; //Const1 if (affine_merge_const1(c0, c1, c2, mi)) { if (merge_subblock_idx == num_cands) return 1; num_cands++; } memset(&corner3, 0, sizeof(corner3)); if (fc->ps.ph.r->ph_temporal_mvp_enabled_flag){ const int available_l0 = temporal_luma_motion_vector(lc, 0, corner3.mv + 0, 0, 0, 0); const int available_l1 = (lc->sc->sh.r->sh_slice_type == VVC_SLICE_TYPE_B) ? temporal_luma_motion_vector(lc, 0, corner3.mv + 1, 1, 0, 0) : 0; corner3.pred_flag = available_l0 + (available_l1 << 1); if (corner3.pred_flag) c3 = &corner3; } //Const2 if (affine_merge_const2(c0, c1, c3, mi)) { if (merge_subblock_idx == num_cands) return 1; num_cands++; } //Const3 if (affine_merge_const3(c0, c2, c3, mi)) { if (merge_subblock_idx == num_cands) return 1; num_cands++; } //Const4 if (affine_merge_const4(c1, c2, c3, mi)) { if (merge_subblock_idx == num_cands) return 1; num_cands++; } } //Const5 if (affine_merge_const5(c0, c1, mi)) { if (merge_subblock_idx == num_cands) return 1; num_cands++; } if (affine_merge_const6(c0, c2, cu->cb_width, cu->cb_height, mi)) { if (merge_subblock_idx == num_cands) return 1; } return 0; } //8.5.5.2 Derivation process for motion vectors and reference indices in subblock merge mode //return 1 if candidate is SbCol static int sb_mv_merge_mode(const VVCLocalContext *lc, const int merge_subblock_idx, PredictionUnit *pu) { const VVCSPS *sps = lc->fc->ps.sps; const CodingUnit *cu = lc->cu; MotionInfo *mi = &pu->mi; int num_cands = 0; NeighbourContext nctx; init_neighbour_context(&nctx, lc); //SbCol if (sb_temporal_merge_candidate(lc, &nctx, pu)) { if (merge_subblock_idx == num_cands) return 1; num_cands++; } pu->inter_affine_flag = 1; mi->num_sb_x = cu->cb_width >> MIN_PU_LOG2; mi->num_sb_y = cu->cb_height >> MIN_PU_LOG2; if (sps->r->sps_affine_enabled_flag) { const NeighbourIdx ak[] = { A0, A1 }; const NeighbourIdx bk[] = { B0, B1, B2 }; //A if (AFFINE_MERGE_FROM_NBS(ak)) { if (merge_subblock_idx == num_cands) return 0; num_cands++; } //B if (AFFINE_MERGE_FROM_NBS(bk)) { if (merge_subblock_idx == num_cands) return 0; num_cands++; } //Const1 to Const6 if (affine_merge_const_candidates(lc, mi, &nctx, merge_subblock_idx, num_cands)) return 0; } //Zero affine_merge_zero_motion(lc, mi); return 0; } void ff_vvc_sb_mv_merge_mode(VVCLocalContext *lc, const int merge_subblock_idx, PredictionUnit *pu) { const CodingUnit *cu = lc->cu; ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height); if (!sb_mv_merge_mode(lc, merge_subblock_idx, pu)) { ff_vvc_store_sb_mvs(lc, pu); } } static int mvp_candidate(const VVCLocalContext *lc, const int x_cand, const int y_cand, const int lx, const int8_t *ref_idx, Mv *mv) { const VVCFrameContext *fc = lc->fc; const RefPicList *rpl = lc->sc->rpl; const int min_pu_width = fc->ps.pps->min_pu_width; const MvField* tab_mvf = fc->tab.mvf; const MvField *mvf = &TAB_MVF(x_cand, y_cand); const PredFlag maskx = lx + 1; const int poc = rpl[lx].list[ref_idx[lx]]; int available = 0; if ((mvf->pred_flag & maskx) && rpl[lx].list[mvf->ref_idx[lx]] == poc) { available = 1; *mv = mvf->mv[lx]; } else { const int ly = !lx; const PredFlag masky = ly + 1; if ((mvf->pred_flag & masky) && rpl[ly].list[mvf->ref_idx[ly]] == poc) { available = 1; *mv = mvf->mv[ly]; } } return available; } static int affine_mvp_candidate(const VVCLocalContext *lc, const int x_cand, const int y_cand, const int lx, const int8_t *ref_idx, Mv *cps, const int num_cp) { const VVCFrameContext *fc = lc->fc; int x_nb, y_nb, nbw, nbh, motion_model_idc, available = 0; motion_model_idc = affine_neighbour_cb(fc, x_cand, y_cand, &x_nb, &y_nb, &nbw, &nbh); if (motion_model_idc) { const int min_pu_width = fc->ps.pps->min_pu_width; const MvField* tab_mvf = fc->tab.mvf; const MvField *mvf = &TAB_MVF(x_nb, y_nb); RefPicList* rpl = lc->sc->rpl; const PredFlag maskx = lx + 1; const int poc = rpl[lx].list[ref_idx[lx]]; if ((mvf->pred_flag & maskx) && rpl[lx].list[mvf->ref_idx[lx]] == poc) { available = 1; affine_cps_from_nb(lc, x_nb, y_nb, nbw, nbh, lx, cps, num_cp); } else { const int ly = !lx; const PredFlag masky = ly + 1; if ((mvf->pred_flag & masky) && rpl[ly].list[mvf->ref_idx[ly]] == poc) { available = 1; affine_cps_from_nb(lc, x_nb, y_nb, nbw, nbh, ly, cps, num_cp); } } } return available; } static int mvp_from_nbs(NeighbourContext *ctx, const NeighbourIdx *nbs, const int num_nbs, const int lx, const int8_t *ref_idx, const int amvr_shift, Mv *cps, const int num_cps) { const VVCLocalContext *lc = ctx->lc; const int is_mvp = 1; int available = 0; for (int i = 0; i < num_nbs; i++) { Neighbour *n = &ctx->neighbours[nbs[i]]; if (check_available(n, lc, is_mvp)) { if (num_cps > 1) available = affine_mvp_candidate(lc, n->x, n->y, lx, ref_idx, cps, num_cps); else available = mvp_candidate(lc, n->x, n->y, lx, ref_idx, cps); if (available) { for (int c = 0; c < num_cps; c++) ff_vvc_round_mv(cps + c, amvr_shift, amvr_shift); return 1; } } } return 0; } //get mvp from neighbours #define AFFINE_MVP_FROM_NBS(nbs) \ mvp_from_nbs(&nctx, nbs, FF_ARRAY_ELEMS(nbs), lx, ref_idx, amvr_shift, cps, num_cp) \ #define MVP_FROM_NBS(nbs) \ mvp_from_nbs(&nctx, nbs, FF_ARRAY_ELEMS(nbs), lx, ref_idx, amvr_shift, mv, 1) \ static int mvp_spatial_candidates(const VVCLocalContext *lc, const int mvp_lx_flag, const int lx, const int8_t* ref_idx, const int amvr_shift, Mv* mv, int *nb_merge_cand) { const NeighbourIdx ak[] = { A0, A1 }; const NeighbourIdx bk[] = { B0, B1, B2 }; NeighbourContext nctx; int available_a, num_cands = 0; LOCAL_ALIGNED_8(Mv, mv_a, [1]); init_neighbour_context(&nctx, lc); available_a = MVP_FROM_NBS(ak); if (available_a) { if (mvp_lx_flag == num_cands) return 1; num_cands++; *mv_a = *mv; } if (MVP_FROM_NBS(bk)) { if (!available_a || !IS_SAME_MV(mv_a, mv)) { if (mvp_lx_flag == num_cands) return 1; num_cands++; } } *nb_merge_cand = num_cands; return 0; } static int mvp_temporal_candidates(const VVCLocalContext* lc, const int mvp_lx_flag, const int lx, const int8_t *ref_idx, const int amvr_shift, Mv* mv, int *num_cands) { if (temporal_luma_motion_vector(lc, ref_idx[lx], mv, lx, 1, 0)) { if (mvp_lx_flag == *num_cands) { ff_vvc_round_mv(mv, amvr_shift, amvr_shift); return 1; } (*num_cands)++; } return 0; } static int mvp_history_candidates(const VVCLocalContext *lc, const int mvp_lx_flag, const int lx, const int8_t ref_idx, const int amvr_shift, Mv *mv, int num_cands) { const EntryPoint* ep = lc->ep; const RefPicList* rpl = lc->sc->rpl; const int poc = rpl[lx].list[ref_idx]; if (ep->num_hmvp == 0) return 0; for (int i = 1; i <= FFMIN(4, ep->num_hmvp); i++) { const MvField* h = &ep->hmvp[i - 1]; for (int j = 0; j < 2; j++) { const int ly = (j ? !lx : lx); PredFlag mask = PF_L0 + ly; if ((h->pred_flag & mask) && poc == rpl[ly].list[h->ref_idx[ly]]) { if (mvp_lx_flag == num_cands) { *mv = h->mv[ly]; ff_vvc_round_mv(mv, amvr_shift, amvr_shift); return 1; } num_cands++; } } } return 0; } //8.5.2.8 Derivation process for luma motion vector prediction static void mvp(const VVCLocalContext *lc, const int mvp_lx_flag, const int lx, const int8_t *ref_idx, const int amvr_shift, Mv *mv) { int num_cands; if (mvp_spatial_candidates(lc, mvp_lx_flag, lx, ref_idx, amvr_shift, mv, &num_cands)) return; if (mvp_temporal_candidates(lc, mvp_lx_flag, lx, ref_idx, amvr_shift, mv, &num_cands)) return; if (mvp_history_candidates(lc, mvp_lx_flag, lx, ref_idx[lx], amvr_shift, mv, num_cands)) return; memset(mv, 0, sizeof(*mv)); } void ff_vvc_mvp(VVCLocalContext *lc, const int *mvp_lx_flag, const int amvr_shift, MotionInfo *mi) { const CodingUnit *cu = lc->cu; mi->num_sb_x = 1; mi->num_sb_y = 1; ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height); if (mi->pred_flag != PF_L1) mvp(lc, mvp_lx_flag[L0], L0, mi->ref_idx, amvr_shift, &mi->mv[L0][0]); if (mi->pred_flag != PF_L0) mvp(lc, mvp_lx_flag[L1], L1, mi->ref_idx, amvr_shift, &mi->mv[L1][0]); } static int affine_mvp_constructed_cp(NeighbourContext *ctx, const NeighbourIdx *neighbour, const int num_neighbour, const int lx, const int8_t ref_idx, const int amvr_shift, Mv *cp) { const VVCLocalContext *lc = ctx->lc; const VVCFrameContext *fc = lc->fc; const MvField *tab_mvf = fc->tab.mvf; const int min_pu_width = fc->ps.pps->min_pu_width; const RefPicList* rpl = lc->sc->rpl; const int is_mvp = 1; int available = 0; for (int i = 0; i < num_neighbour; i++) { Neighbour *n = &ctx->neighbours[neighbour[i]]; if (check_available(n, ctx->lc, is_mvp)) { const PredFlag maskx = lx + 1; const MvField* mvf = &TAB_MVF(n->x, n->y); const int poc = rpl[lx].list[ref_idx]; if ((mvf->pred_flag & maskx) && rpl[lx].list[mvf->ref_idx[lx]] == poc) { available = 1; *cp = mvf->mv[lx]; } else { const int ly = !lx; const PredFlag masky = ly + 1; if ((mvf->pred_flag & masky) && rpl[ly].list[mvf->ref_idx[ly]] == poc) { available = 1; *cp = mvf->mv[ly]; } } if (available) { ff_vvc_round_mv(cp, amvr_shift, amvr_shift); return 1; } } } return 0; } #define AFFINE_MVP_CONSTRUCTED_CP(cands, cp) \ affine_mvp_constructed_cp(nctx, cands, FF_ARRAY_ELEMS(cands), lx, ref_idx, \ amvr_shift, cp) //8.5.5.8 Derivation process for constructed affine control point motion vector prediction candidates static int affine_mvp_const1(NeighbourContext* nctx, const int lx, const int8_t ref_idx, const int amvr_shift, Mv *cps, int *available) { const NeighbourIdx tl[] = { B2, B3, A2 }; const NeighbourIdx tr[] = { B1, B0 }; const NeighbourIdx bl[] = { A1, A0 }; available[0] = AFFINE_MVP_CONSTRUCTED_CP(tl, cps + 0); available[1] = AFFINE_MVP_CONSTRUCTED_CP(tr, cps + 1); available[2] = AFFINE_MVP_CONSTRUCTED_CP(bl, cps + 2); return available[0] && available[1]; } //8.5.5.7 item 7 static void affine_mvp_const2(const int idx, Mv *cps, const int num_cp) { const Mv mv = cps[idx]; for (int j = 0; j < num_cp; j++) cps[j] = mv; } //8.5.5.7 Derivation process for luma affine control point motion vector predictors static void affine_mvp(const VVCLocalContext *lc, const int mvp_lx_flag, const int lx, const int8_t *ref_idx, const int amvr_shift, MotionModelIdc motion_model_idc, Mv *cps) { const NeighbourIdx ak[] = { A0, A1 }; const NeighbourIdx bk[] = { B0, B1, B2 }; const int num_cp = motion_model_idc + 1; NeighbourContext nctx; int available[MAX_CONTROL_POINTS]; int num_cands = 0; init_neighbour_context(&nctx, lc); //Ak if (AFFINE_MVP_FROM_NBS(ak)) { if (mvp_lx_flag == num_cands) return; num_cands++; } //Bk if (AFFINE_MVP_FROM_NBS(bk)) { if (mvp_lx_flag == num_cands) return; num_cands++; } //Const1 if (affine_mvp_const1(&nctx, lx, ref_idx[lx], amvr_shift, cps, available)) { if (available[2] || motion_model_idc == MOTION_4_PARAMS_AFFINE) { if (mvp_lx_flag == num_cands) return; num_cands++; } } //Const2 for (int i = 2; i >= 0; i--) { if (available[i]) { if (mvp_lx_flag == num_cands) { affine_mvp_const2(i, cps, num_cp); return; } num_cands++; } } if (temporal_luma_motion_vector(lc, ref_idx[lx], cps, lx, 1, 0)) { if (mvp_lx_flag == num_cands) { ff_vvc_round_mv(cps, amvr_shift, amvr_shift); for (int i = 1; i < num_cp; i++) cps[i] = cps[0]; return; } num_cands++; } //Zero Mv memset(cps, 0, num_cp * sizeof(Mv)); } void ff_vvc_affine_mvp(VVCLocalContext *lc, const int *mvp_lx_flag, const int amvr_shift, MotionInfo *mi) { const CodingUnit *cu = lc->cu; mi->num_sb_x = cu->cb_width >> MIN_PU_LOG2; mi->num_sb_y = cu->cb_height >> MIN_PU_LOG2; ff_vvc_set_neighbour_available(lc, cu->x0, cu->y0, cu->cb_width, cu->cb_height); if (mi->pred_flag != PF_L1) affine_mvp(lc, mvp_lx_flag[L0], L0, mi->ref_idx, amvr_shift, mi->motion_model_idc, &mi->mv[L0][0]); if (mi->pred_flag != PF_L0) affine_mvp(lc, mvp_lx_flag[L1], L1, mi->ref_idx, amvr_shift, mi->motion_model_idc, &mi->mv[L1][0]); } //8.5.2.14 Rounding process for motion vectors void ff_vvc_round_mv(Mv *mv, const int lshift, const int rshift) { if (rshift) { const int offset = 1 << (rshift - 1); mv->x = ((mv->x + offset - (mv->x >= 0)) >> rshift) * (1 << lshift); mv->y = ((mv->y + offset - (mv->y >= 0)) >> rshift) * (1 << lshift); } else { mv->x = mv->x * (1 << lshift); mv->y = mv->y * (1 << lshift); } } void ff_vvc_clip_mv(Mv *mv) { mv->x = av_clip(mv->x, -(1 << 17), (1 << 17) - 1); mv->y = av_clip(mv->y, -(1 << 17), (1 << 17) - 1); } //8.5.2.1 Derivation process for motion vector components and reference indices static av_always_inline int is_greater_mer(const VVCFrameContext *fc, const int x0, const int y0, const int x0_br, const int y0_br) { const uint8_t plevel = fc->ps.sps->log2_parallel_merge_level; return x0_br >> plevel > x0 >> plevel && y0_br >> plevel > y0 >> plevel; } //8.5.2.16 Updating process for the history-based motion vector predictor candidate list void ff_vvc_update_hmvp(VVCLocalContext *lc, const MotionInfo *mi) { const VVCFrameContext *fc = lc->fc; const CodingUnit *cu = lc->cu; const int min_pu_width = fc->ps.pps->min_pu_width; const MvField* tab_mvf = fc->tab.mvf; EntryPoint* ep = lc->ep; const MvField *mvf; int i; if (!is_greater_mer(fc, cu->x0, cu->y0, cu->x0 + cu->cb_width, cu->y0 + cu->cb_height)) return; mvf = &TAB_MVF(cu->x0, cu->y0); for (i = 0; i < ep->num_hmvp; i++) { if (compare_mv_ref_idx(mvf, ep->hmvp + i)) { ep->num_hmvp--; break; } } if (i == MAX_NUM_HMVP_CANDS) { ep->num_hmvp--; i = 0; } memmove(ep->hmvp + i, ep->hmvp + i + 1, (ep->num_hmvp - i) * sizeof(MvField)); ep->hmvp[ep->num_hmvp++] = *mvf; } MvField* ff_vvc_get_mvf(const VVCFrameContext *fc, const int x0, const int y0) { const int min_pu_width = fc->ps.pps->min_pu_width; MvField* tab_mvf = fc->tab.mvf; return &TAB_MVF(x0, y0); }