/* * VP9 compatible video decoder * * Copyright (C) 2013 Ronald S. Bultje * Copyright (C) 2013 Clément Bœsch * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #include "get_bits.h" #include "internal.h" #include "profiles.h" #include "thread.h" #include "videodsp.h" #include "vp56.h" #include "vp9.h" #include "vp9data.h" #include "vp9.h" #include "libavutil/avassert.h" #include "libavutil/pixdesc.h" #define VP9_SYNCCODE 0x498342 static void vp9_frame_unref(AVCodecContext *avctx, VP9Frame *f) { ff_thread_release_buffer(avctx, &f->tf); av_buffer_unref(&f->extradata); av_buffer_unref(&f->hwaccel_priv_buf); f->segmentation_map = NULL; f->hwaccel_picture_private = NULL; } static int vp9_frame_alloc(AVCodecContext *avctx, VP9Frame *f) { VP9Context *s = avctx->priv_data; int ret, sz; ret = ff_thread_get_buffer(avctx, &f->tf, AV_GET_BUFFER_FLAG_REF); if (ret < 0) return ret; sz = 64 * s->sb_cols * s->sb_rows; f->extradata = av_buffer_allocz(sz * (1 + sizeof(VP9mvrefPair))); if (!f->extradata) { goto fail; } f->segmentation_map = f->extradata->data; f->mv = (VP9mvrefPair *) (f->extradata->data + sz); if (avctx->hwaccel) { const AVHWAccel *hwaccel = avctx->hwaccel; av_assert0(!f->hwaccel_picture_private); if (hwaccel->frame_priv_data_size) { f->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size); if (!f->hwaccel_priv_buf) goto fail; f->hwaccel_picture_private = f->hwaccel_priv_buf->data; } } return 0; fail: vp9_frame_unref(avctx, f); return AVERROR(ENOMEM); } static int vp9_frame_ref(AVCodecContext *avctx, VP9Frame *dst, VP9Frame *src) { int ret; ret = ff_thread_ref_frame(&dst->tf, &src->tf); if (ret < 0) return ret; dst->extradata = av_buffer_ref(src->extradata); if (!dst->extradata) goto fail; dst->segmentation_map = src->segmentation_map; dst->mv = src->mv; dst->uses_2pass = src->uses_2pass; if (src->hwaccel_picture_private) { dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf); if (!dst->hwaccel_priv_buf) goto fail; dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data; } return 0; fail: vp9_frame_unref(avctx, dst); return AVERROR(ENOMEM); } static int update_size(AVCodecContext *avctx, int w, int h) { #define HWACCEL_MAX (CONFIG_VP9_DXVA2_HWACCEL + CONFIG_VP9_D3D11VA_HWACCEL + CONFIG_VP9_VAAPI_HWACCEL) enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmtp = pix_fmts; VP9Context *s = avctx->priv_data; uint8_t *p; int bytesperpixel = s->bytesperpixel, ret, cols, rows; av_assert0(w > 0 && h > 0); if (!(s->pix_fmt == s->gf_fmt && w == s->w && h == s->h)) { if ((ret = ff_set_dimensions(avctx, w, h)) < 0) return ret; switch (s->pix_fmt) { case AV_PIX_FMT_YUV420P: #if CONFIG_VP9_DXVA2_HWACCEL *fmtp++ = AV_PIX_FMT_DXVA2_VLD; #endif #if CONFIG_VP9_D3D11VA_HWACCEL *fmtp++ = AV_PIX_FMT_D3D11VA_VLD; #endif #if CONFIG_VP9_VAAPI_HWACCEL *fmtp++ = AV_PIX_FMT_VAAPI; #endif break; case AV_PIX_FMT_YUV420P10: case AV_PIX_FMT_YUV420P12: #if CONFIG_VP9_VAAPI_HWACCEL *fmtp++ = AV_PIX_FMT_VAAPI; #endif break; } *fmtp++ = s->pix_fmt; *fmtp = AV_PIX_FMT_NONE; ret = ff_thread_get_format(avctx, pix_fmts); if (ret < 0) return ret; avctx->pix_fmt = ret; s->gf_fmt = s->pix_fmt; s->w = w; s->h = h; } cols = (w + 7) >> 3; rows = (h + 7) >> 3; if (s->intra_pred_data[0] && cols == s->cols && rows == s->rows && s->pix_fmt == s->last_fmt) return 0; s->last_fmt = s->pix_fmt; s->sb_cols = (w + 63) >> 6; s->sb_rows = (h + 63) >> 6; s->cols = (w + 7) >> 3; s->rows = (h + 7) >> 3; #define assign(var, type, n) var = (type) p; p += s->sb_cols * (n) * sizeof(*var) av_freep(&s->intra_pred_data[0]); // FIXME we slightly over-allocate here for subsampled chroma, but a little // bit of padding shouldn't affect performance... p = av_malloc(s->sb_cols * (128 + 192 * bytesperpixel + sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx))); if (!p) return AVERROR(ENOMEM); assign(s->intra_pred_data[0], uint8_t *, 64 * bytesperpixel); assign(s->intra_pred_data[1], uint8_t *, 64 * bytesperpixel); assign(s->intra_pred_data[2], uint8_t *, 64 * bytesperpixel); assign(s->above_y_nnz_ctx, uint8_t *, 16); assign(s->above_mode_ctx, uint8_t *, 16); assign(s->above_mv_ctx, VP56mv(*)[2], 16); assign(s->above_uv_nnz_ctx[0], uint8_t *, 16); assign(s->above_uv_nnz_ctx[1], uint8_t *, 16); assign(s->above_partition_ctx, uint8_t *, 8); assign(s->above_skip_ctx, uint8_t *, 8); assign(s->above_txfm_ctx, uint8_t *, 8); assign(s->above_segpred_ctx, uint8_t *, 8); assign(s->above_intra_ctx, uint8_t *, 8); assign(s->above_comp_ctx, uint8_t *, 8); assign(s->above_ref_ctx, uint8_t *, 8); assign(s->above_filter_ctx, uint8_t *, 8); assign(s->lflvl, VP9Filter *, 1); #undef assign // these will be re-allocated a little later av_freep(&s->b_base); av_freep(&s->block_base); if (s->s.h.bpp != s->last_bpp) { ff_vp9dsp_init(&s->dsp, s->s.h.bpp, avctx->flags & AV_CODEC_FLAG_BITEXACT); ff_videodsp_init(&s->vdsp, s->s.h.bpp); s->last_bpp = s->s.h.bpp; } return 0; } static int update_block_buffers(AVCodecContext *avctx) { VP9Context *s = avctx->priv_data; int chroma_blocks, chroma_eobs, bytesperpixel = s->bytesperpixel; if (s->b_base && s->block_base && s->block_alloc_using_2pass == s->s.frames[CUR_FRAME].uses_2pass) return 0; av_free(s->b_base); av_free(s->block_base); chroma_blocks = 64 * 64 >> (s->ss_h + s->ss_v); chroma_eobs = 16 * 16 >> (s->ss_h + s->ss_v); if (s->s.frames[CUR_FRAME].uses_2pass) { int sbs = s->sb_cols * s->sb_rows; s->b_base = av_malloc_array(s->cols * s->rows, sizeof(VP9Block)); s->block_base = av_mallocz(((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) + 16 * 16 + 2 * chroma_eobs) * sbs); if (!s->b_base || !s->block_base) return AVERROR(ENOMEM); s->uvblock_base[0] = s->block_base + sbs * 64 * 64 * bytesperpixel; s->uvblock_base[1] = s->uvblock_base[0] + sbs * chroma_blocks * bytesperpixel; s->eob_base = (uint8_t *) (s->uvblock_base[1] + sbs * chroma_blocks * bytesperpixel); s->uveob_base[0] = s->eob_base + 16 * 16 * sbs; s->uveob_base[1] = s->uveob_base[0] + chroma_eobs * sbs; } else { s->b_base = av_malloc(sizeof(VP9Block)); s->block_base = av_mallocz((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) + 16 * 16 + 2 * chroma_eobs); if (!s->b_base || !s->block_base) return AVERROR(ENOMEM); s->uvblock_base[0] = s->block_base + 64 * 64 * bytesperpixel; s->uvblock_base[1] = s->uvblock_base[0] + chroma_blocks * bytesperpixel; s->eob_base = (uint8_t *) (s->uvblock_base[1] + chroma_blocks * bytesperpixel); s->uveob_base[0] = s->eob_base + 16 * 16; s->uveob_base[1] = s->uveob_base[0] + chroma_eobs; } s->block_alloc_using_2pass = s->s.frames[CUR_FRAME].uses_2pass; return 0; } // The sign bit is at the end, not the start, of a bit sequence static av_always_inline int get_sbits_inv(GetBitContext *gb, int n) { int v = get_bits(gb, n); return get_bits1(gb) ? -v : v; } static av_always_inline int inv_recenter_nonneg(int v, int m) { if (v > 2 * m) return v; if (v & 1) return m - ((v + 1) >> 1); return m + (v >> 1); } // differential forward probability updates static int update_prob(VP56RangeCoder *c, int p) { static const int inv_map_table[255] = { 7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 253, }; int d; /* This code is trying to do a differential probability update. For a * current probability A in the range [1, 255], the difference to a new * probability of any value can be expressed differentially as 1-A, 255-A * where some part of this (absolute range) exists both in positive as * well as the negative part, whereas another part only exists in one * half. We're trying to code this shared part differentially, i.e. * times two where the value of the lowest bit specifies the sign, and * the single part is then coded on top of this. This absolute difference * then again has a value of [0, 254], but a bigger value in this range * indicates that we're further away from the original value A, so we * can code this as a VLC code, since higher values are increasingly * unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough' * updates vs. the 'fine, exact' updates further down the range, which * adds one extra dimension to this differential update model. */ if (!vp8_rac_get(c)) { d = vp8_rac_get_uint(c, 4) + 0; } else if (!vp8_rac_get(c)) { d = vp8_rac_get_uint(c, 4) + 16; } else if (!vp8_rac_get(c)) { d = vp8_rac_get_uint(c, 5) + 32; } else { d = vp8_rac_get_uint(c, 7); if (d >= 65) d = (d << 1) - 65 + vp8_rac_get(c); d += 64; av_assert2(d < FF_ARRAY_ELEMS(inv_map_table)); } return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) : 255 - inv_recenter_nonneg(inv_map_table[d], 255 - p); } static int read_colorspace_details(AVCodecContext *avctx) { static const enum AVColorSpace colorspaces[8] = { AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_BT470BG, AVCOL_SPC_BT709, AVCOL_SPC_SMPTE170M, AVCOL_SPC_SMPTE240M, AVCOL_SPC_BT2020_NCL, AVCOL_SPC_RESERVED, AVCOL_SPC_RGB, }; VP9Context *s = avctx->priv_data; int bits = avctx->profile <= 1 ? 0 : 1 + get_bits1(&s->gb); // 0:8, 1:10, 2:12 s->bpp_index = bits; s->s.h.bpp = 8 + bits * 2; s->bytesperpixel = (7 + s->s.h.bpp) >> 3; avctx->colorspace = colorspaces[get_bits(&s->gb, 3)]; if (avctx->colorspace == AVCOL_SPC_RGB) { // RGB = profile 1 static const enum AVPixelFormat pix_fmt_rgb[3] = { AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12 }; s->ss_h = s->ss_v = 0; avctx->color_range = AVCOL_RANGE_JPEG; s->pix_fmt = pix_fmt_rgb[bits]; if (avctx->profile & 1) { if (get_bits1(&s->gb)) { av_log(avctx, AV_LOG_ERROR, "Reserved bit set in RGB\n"); return AVERROR_INVALIDDATA; } } else { av_log(avctx, AV_LOG_ERROR, "RGB not supported in profile %d\n", avctx->profile); return AVERROR_INVALIDDATA; } } else { static const enum AVPixelFormat pix_fmt_for_ss[3][2 /* v */][2 /* h */] = { { { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P }, { AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV420P } }, { { AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10 }, { AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV420P10 } }, { { AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12 }, { AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P12 } } }; avctx->color_range = get_bits1(&s->gb) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; if (avctx->profile & 1) { s->ss_h = get_bits1(&s->gb); s->ss_v = get_bits1(&s->gb); s->pix_fmt = pix_fmt_for_ss[bits][s->ss_v][s->ss_h]; if (s->pix_fmt == AV_PIX_FMT_YUV420P) { av_log(avctx, AV_LOG_ERROR, "YUV 4:2:0 not supported in profile %d\n", avctx->profile); return AVERROR_INVALIDDATA; } else if (get_bits1(&s->gb)) { av_log(avctx, AV_LOG_ERROR, "Profile %d color details reserved bit set\n", avctx->profile); return AVERROR_INVALIDDATA; } } else { s->ss_h = s->ss_v = 1; s->pix_fmt = pix_fmt_for_ss[bits][1][1]; } } return 0; } static int decode_frame_header(AVCodecContext *avctx, const uint8_t *data, int size, int *ref) { VP9Context *s = avctx->priv_data; int c, i, j, k, l, m, n, w, h, max, size2, ret, sharp; int last_invisible; const uint8_t *data2; /* general header */ if ((ret = init_get_bits8(&s->gb, data, size)) < 0) { av_log(avctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n"); return ret; } if (get_bits(&s->gb, 2) != 0x2) { // frame marker av_log(avctx, AV_LOG_ERROR, "Invalid frame marker\n"); return AVERROR_INVALIDDATA; } avctx->profile = get_bits1(&s->gb); avctx->profile |= get_bits1(&s->gb) << 1; if (avctx->profile == 3) avctx->profile += get_bits1(&s->gb); if (avctx->profile > 3) { av_log(avctx, AV_LOG_ERROR, "Profile %d is not yet supported\n", avctx->profile); return AVERROR_INVALIDDATA; } s->s.h.profile = avctx->profile; if (get_bits1(&s->gb)) { *ref = get_bits(&s->gb, 3); return 0; } s->last_keyframe = s->s.h.keyframe; s->s.h.keyframe = !get_bits1(&s->gb); last_invisible = s->s.h.invisible; s->s.h.invisible = !get_bits1(&s->gb); s->s.h.errorres = get_bits1(&s->gb); s->s.h.use_last_frame_mvs = !s->s.h.errorres && !last_invisible; if (s->s.h.keyframe) { if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode av_log(avctx, AV_LOG_ERROR, "Invalid sync code\n"); return AVERROR_INVALIDDATA; } if ((ret = read_colorspace_details(avctx)) < 0) return ret; // for profile 1, here follows the subsampling bits s->s.h.refreshrefmask = 0xff; w = get_bits(&s->gb, 16) + 1; h = get_bits(&s->gb, 16) + 1; if (get_bits1(&s->gb)) // display size skip_bits(&s->gb, 32); } else { s->s.h.intraonly = s->s.h.invisible ? get_bits1(&s->gb) : 0; s->s.h.resetctx = s->s.h.errorres ? 0 : get_bits(&s->gb, 2); if (s->s.h.intraonly) { if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode av_log(avctx, AV_LOG_ERROR, "Invalid sync code\n"); return AVERROR_INVALIDDATA; } if (avctx->profile >= 1) { if ((ret = read_colorspace_details(avctx)) < 0) return ret; } else { s->ss_h = s->ss_v = 1; s->s.h.bpp = 8; s->bpp_index = 0; s->bytesperpixel = 1; s->pix_fmt = AV_PIX_FMT_YUV420P; avctx->colorspace = AVCOL_SPC_BT470BG; avctx->color_range = AVCOL_RANGE_JPEG; } s->s.h.refreshrefmask = get_bits(&s->gb, 8); w = get_bits(&s->gb, 16) + 1; h = get_bits(&s->gb, 16) + 1; if (get_bits1(&s->gb)) // display size skip_bits(&s->gb, 32); } else { s->s.h.refreshrefmask = get_bits(&s->gb, 8); s->s.h.refidx[0] = get_bits(&s->gb, 3); s->s.h.signbias[0] = get_bits1(&s->gb) && !s->s.h.errorres; s->s.h.refidx[1] = get_bits(&s->gb, 3); s->s.h.signbias[1] = get_bits1(&s->gb) && !s->s.h.errorres; s->s.h.refidx[2] = get_bits(&s->gb, 3); s->s.h.signbias[2] = get_bits1(&s->gb) && !s->s.h.errorres; if (!s->s.refs[s->s.h.refidx[0]].f->buf[0] || !s->s.refs[s->s.h.refidx[1]].f->buf[0] || !s->s.refs[s->s.h.refidx[2]].f->buf[0]) { av_log(avctx, AV_LOG_ERROR, "Not all references are available\n"); return AVERROR_INVALIDDATA; } if (get_bits1(&s->gb)) { w = s->s.refs[s->s.h.refidx[0]].f->width; h = s->s.refs[s->s.h.refidx[0]].f->height; } else if (get_bits1(&s->gb)) { w = s->s.refs[s->s.h.refidx[1]].f->width; h = s->s.refs[s->s.h.refidx[1]].f->height; } else if (get_bits1(&s->gb)) { w = s->s.refs[s->s.h.refidx[2]].f->width; h = s->s.refs[s->s.h.refidx[2]].f->height; } else { w = get_bits(&s->gb, 16) + 1; h = get_bits(&s->gb, 16) + 1; } // Note that in this code, "CUR_FRAME" is actually before we // have formally allocated a frame, and thus actually represents // the _last_ frame s->s.h.use_last_frame_mvs &= s->s.frames[CUR_FRAME].tf.f->width == w && s->s.frames[CUR_FRAME].tf.f->height == h; if (get_bits1(&s->gb)) // display size skip_bits(&s->gb, 32); s->s.h.highprecisionmvs = get_bits1(&s->gb); s->s.h.filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE : get_bits(&s->gb, 2); s->s.h.allowcompinter = s->s.h.signbias[0] != s->s.h.signbias[1] || s->s.h.signbias[0] != s->s.h.signbias[2]; if (s->s.h.allowcompinter) { if (s->s.h.signbias[0] == s->s.h.signbias[1]) { s->s.h.fixcompref = 2; s->s.h.varcompref[0] = 0; s->s.h.varcompref[1] = 1; } else if (s->s.h.signbias[0] == s->s.h.signbias[2]) { s->s.h.fixcompref = 1; s->s.h.varcompref[0] = 0; s->s.h.varcompref[1] = 2; } else { s->s.h.fixcompref = 0; s->s.h.varcompref[0] = 1; s->s.h.varcompref[1] = 2; } } } } s->s.h.refreshctx = s->s.h.errorres ? 0 : get_bits1(&s->gb); s->s.h.parallelmode = s->s.h.errorres ? 1 : get_bits1(&s->gb); s->s.h.framectxid = c = get_bits(&s->gb, 2); if (s->s.h.keyframe || s->s.h.intraonly) s->s.h.framectxid = 0; // BUG: libvpx ignores this field in keyframes /* loopfilter header data */ if (s->s.h.keyframe || s->s.h.errorres || s->s.h.intraonly) { // reset loopfilter defaults s->s.h.lf_delta.ref[0] = 1; s->s.h.lf_delta.ref[1] = 0; s->s.h.lf_delta.ref[2] = -1; s->s.h.lf_delta.ref[3] = -1; s->s.h.lf_delta.mode[0] = 0; s->s.h.lf_delta.mode[1] = 0; memset(s->s.h.segmentation.feat, 0, sizeof(s->s.h.segmentation.feat)); } s->s.h.filter.level = get_bits(&s->gb, 6); sharp = get_bits(&s->gb, 3); // if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep // the old cache values since they are still valid if (s->s.h.filter.sharpness != sharp) memset(s->filter_lut.lim_lut, 0, sizeof(s->filter_lut.lim_lut)); s->s.h.filter.sharpness = sharp; if ((s->s.h.lf_delta.enabled = get_bits1(&s->gb))) { if ((s->s.h.lf_delta.updated = get_bits1(&s->gb))) { for (i = 0; i < 4; i++) if (get_bits1(&s->gb)) s->s.h.lf_delta.ref[i] = get_sbits_inv(&s->gb, 6); for (i = 0; i < 2; i++) if (get_bits1(&s->gb)) s->s.h.lf_delta.mode[i] = get_sbits_inv(&s->gb, 6); } } /* quantization header data */ s->s.h.yac_qi = get_bits(&s->gb, 8); s->s.h.ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0; s->s.h.uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0; s->s.h.uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0; s->s.h.lossless = s->s.h.yac_qi == 0 && s->s.h.ydc_qdelta == 0 && s->s.h.uvdc_qdelta == 0 && s->s.h.uvac_qdelta == 0; if (s->s.h.lossless) avctx->properties |= FF_CODEC_PROPERTY_LOSSLESS; /* segmentation header info */ if ((s->s.h.segmentation.enabled = get_bits1(&s->gb))) { if ((s->s.h.segmentation.update_map = get_bits1(&s->gb))) { for (i = 0; i < 7; i++) s->s.h.segmentation.prob[i] = get_bits1(&s->gb) ? get_bits(&s->gb, 8) : 255; if ((s->s.h.segmentation.temporal = get_bits1(&s->gb))) for (i = 0; i < 3; i++) s->s.h.segmentation.pred_prob[i] = get_bits1(&s->gb) ? get_bits(&s->gb, 8) : 255; } if (get_bits1(&s->gb)) { s->s.h.segmentation.absolute_vals = get_bits1(&s->gb); for (i = 0; i < 8; i++) { if ((s->s.h.segmentation.feat[i].q_enabled = get_bits1(&s->gb))) s->s.h.segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8); if ((s->s.h.segmentation.feat[i].lf_enabled = get_bits1(&s->gb))) s->s.h.segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6); if ((s->s.h.segmentation.feat[i].ref_enabled = get_bits1(&s->gb))) s->s.h.segmentation.feat[i].ref_val = get_bits(&s->gb, 2); s->s.h.segmentation.feat[i].skip_enabled = get_bits1(&s->gb); } } } // set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas for (i = 0; i < (s->s.h.segmentation.enabled ? 8 : 1); i++) { int qyac, qydc, quvac, quvdc, lflvl, sh; if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[i].q_enabled) { if (s->s.h.segmentation.absolute_vals) qyac = av_clip_uintp2(s->s.h.segmentation.feat[i].q_val, 8); else qyac = av_clip_uintp2(s->s.h.yac_qi + s->s.h.segmentation.feat[i].q_val, 8); } else { qyac = s->s.h.yac_qi; } qydc = av_clip_uintp2(qyac + s->s.h.ydc_qdelta, 8); quvdc = av_clip_uintp2(qyac + s->s.h.uvdc_qdelta, 8); quvac = av_clip_uintp2(qyac + s->s.h.uvac_qdelta, 8); qyac = av_clip_uintp2(qyac, 8); s->s.h.segmentation.feat[i].qmul[0][0] = ff_vp9_dc_qlookup[s->bpp_index][qydc]; s->s.h.segmentation.feat[i].qmul[0][1] = ff_vp9_ac_qlookup[s->bpp_index][qyac]; s->s.h.segmentation.feat[i].qmul[1][0] = ff_vp9_dc_qlookup[s->bpp_index][quvdc]; s->s.h.segmentation.feat[i].qmul[1][1] = ff_vp9_ac_qlookup[s->bpp_index][quvac]; sh = s->s.h.filter.level >= 32; if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[i].lf_enabled) { if (s->s.h.segmentation.absolute_vals) lflvl = av_clip_uintp2(s->s.h.segmentation.feat[i].lf_val, 6); else lflvl = av_clip_uintp2(s->s.h.filter.level + s->s.h.segmentation.feat[i].lf_val, 6); } else { lflvl = s->s.h.filter.level; } if (s->s.h.lf_delta.enabled) { s->s.h.segmentation.feat[i].lflvl[0][0] = s->s.h.segmentation.feat[i].lflvl[0][1] = av_clip_uintp2(lflvl + (s->s.h.lf_delta.ref[0] * (1 << sh)), 6); for (j = 1; j < 4; j++) { s->s.h.segmentation.feat[i].lflvl[j][0] = av_clip_uintp2(lflvl + ((s->s.h.lf_delta.ref[j] + s->s.h.lf_delta.mode[0]) * (1 << sh)), 6); s->s.h.segmentation.feat[i].lflvl[j][1] = av_clip_uintp2(lflvl + ((s->s.h.lf_delta.ref[j] + s->s.h.lf_delta.mode[1]) * (1 << sh)), 6); } } else { memset(s->s.h.segmentation.feat[i].lflvl, lflvl, sizeof(s->s.h.segmentation.feat[i].lflvl)); } } /* tiling info */ if ((ret = update_size(avctx, w, h)) < 0) { av_log(avctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d @ %d\n", w, h, s->pix_fmt); return ret; } for (s->s.h.tiling.log2_tile_cols = 0; s->sb_cols > (64 << s->s.h.tiling.log2_tile_cols); s->s.h.tiling.log2_tile_cols++) ; for (max = 0; (s->sb_cols >> max) >= 4; max++) ; max = FFMAX(0, max - 1); while (max > s->s.h.tiling.log2_tile_cols) { if (get_bits1(&s->gb)) s->s.h.tiling.log2_tile_cols++; else break; } s->s.h.tiling.log2_tile_rows = decode012(&s->gb); s->s.h.tiling.tile_rows = 1 << s->s.h.tiling.log2_tile_rows; if (s->s.h.tiling.tile_cols != (1 << s->s.h.tiling.log2_tile_cols)) { s->s.h.tiling.tile_cols = 1 << s->s.h.tiling.log2_tile_cols; s->c_b = av_fast_realloc(s->c_b, &s->c_b_size, sizeof(VP56RangeCoder) * s->s.h.tiling.tile_cols); if (!s->c_b) { av_log(avctx, AV_LOG_ERROR, "Ran out of memory during range coder init\n"); return AVERROR(ENOMEM); } } /* check reference frames */ if (!s->s.h.keyframe && !s->s.h.intraonly) { for (i = 0; i < 3; i++) { AVFrame *ref = s->s.refs[s->s.h.refidx[i]].f; int refw = ref->width, refh = ref->height; if (ref->format != avctx->pix_fmt) { av_log(avctx, AV_LOG_ERROR, "Ref pixfmt (%s) did not match current frame (%s)", av_get_pix_fmt_name(ref->format), av_get_pix_fmt_name(avctx->pix_fmt)); return AVERROR_INVALIDDATA; } else if (refw == w && refh == h) { s->mvscale[i][0] = s->mvscale[i][1] = 0; } else { if (w * 2 < refw || h * 2 < refh || w > 16 * refw || h > 16 * refh) { av_log(avctx, AV_LOG_ERROR, "Invalid ref frame dimensions %dx%d for frame size %dx%d\n", refw, refh, w, h); return AVERROR_INVALIDDATA; } s->mvscale[i][0] = (refw << 14) / w; s->mvscale[i][1] = (refh << 14) / h; s->mvstep[i][0] = 16 * s->mvscale[i][0] >> 14; s->mvstep[i][1] = 16 * s->mvscale[i][1] >> 14; } } } if (s->s.h.keyframe || s->s.h.errorres || (s->s.h.intraonly && s->s.h.resetctx == 3)) { s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p = s->prob_ctx[3].p = ff_vp9_default_probs; memcpy(s->prob_ctx[0].coef, ff_vp9_default_coef_probs, sizeof(ff_vp9_default_coef_probs)); memcpy(s->prob_ctx[1].coef, ff_vp9_default_coef_probs, sizeof(ff_vp9_default_coef_probs)); memcpy(s->prob_ctx[2].coef, ff_vp9_default_coef_probs, sizeof(ff_vp9_default_coef_probs)); memcpy(s->prob_ctx[3].coef, ff_vp9_default_coef_probs, sizeof(ff_vp9_default_coef_probs)); } else if (s->s.h.intraonly && s->s.h.resetctx == 2) { s->prob_ctx[c].p = ff_vp9_default_probs; memcpy(s->prob_ctx[c].coef, ff_vp9_default_coef_probs, sizeof(ff_vp9_default_coef_probs)); } // next 16 bits is size of the rest of the header (arith-coded) s->s.h.compressed_header_size = size2 = get_bits(&s->gb, 16); s->s.h.uncompressed_header_size = (get_bits_count(&s->gb) + 7) / 8; data2 = align_get_bits(&s->gb); if (size2 > size - (data2 - data)) { av_log(avctx, AV_LOG_ERROR, "Invalid compressed header size\n"); return AVERROR_INVALIDDATA; } ret = ff_vp56_init_range_decoder(&s->c, data2, size2); if (ret < 0) return ret; if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit av_log(avctx, AV_LOG_ERROR, "Marker bit was set\n"); return AVERROR_INVALIDDATA; } if (s->s.h.keyframe || s->s.h.intraonly) { memset(s->counts.coef, 0, sizeof(s->counts.coef)); memset(s->counts.eob, 0, sizeof(s->counts.eob)); } else { memset(&s->counts, 0, sizeof(s->counts)); } /* FIXME is it faster to not copy here, but do it down in the fw updates * as explicit copies if the fw update is missing (and skip the copy upon * fw update)? */ s->prob.p = s->prob_ctx[c].p; // txfm updates if (s->s.h.lossless) { s->s.h.txfmmode = TX_4X4; } else { s->s.h.txfmmode = vp8_rac_get_uint(&s->c, 2); if (s->s.h.txfmmode == 3) s->s.h.txfmmode += vp8_rac_get(&s->c); if (s->s.h.txfmmode == TX_SWITCHABLE) { for (i = 0; i < 2; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]); for (i = 0; i < 2; i++) for (j = 0; j < 2; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.tx16p[i][j] = update_prob(&s->c, s->prob.p.tx16p[i][j]); for (i = 0; i < 2; i++) for (j = 0; j < 3; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.tx32p[i][j] = update_prob(&s->c, s->prob.p.tx32p[i][j]); } } // coef updates for (i = 0; i < 4; i++) { uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i]; if (vp8_rac_get(&s->c)) { for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) for (l = 0; l < 6; l++) for (m = 0; m < 6; m++) { uint8_t *p = s->prob.coef[i][j][k][l][m]; uint8_t *r = ref[j][k][l][m]; if (m >= 3 && l == 0) // dc only has 3 pt break; for (n = 0; n < 3; n++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) p[n] = update_prob(&s->c, r[n]); else p[n] = r[n]; } p[3] = 0; } } else { for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) for (l = 0; l < 6; l++) for (m = 0; m < 6; m++) { uint8_t *p = s->prob.coef[i][j][k][l][m]; uint8_t *r = ref[j][k][l][m]; if (m > 3 && l == 0) // dc only has 3 pt break; memcpy(p, r, 3); p[3] = 0; } } if (s->s.h.txfmmode == i) break; } // mode updates for (i = 0; i < 3; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]); if (!s->s.h.keyframe && !s->s.h.intraonly) { for (i = 0; i < 7; i++) for (j = 0; j < 3; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_mode[i][j] = update_prob(&s->c, s->prob.p.mv_mode[i][j]); if (s->s.h.filtermode == FILTER_SWITCHABLE) for (i = 0; i < 4; i++) for (j = 0; j < 2; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.filter[i][j] = update_prob(&s->c, s->prob.p.filter[i][j]); for (i = 0; i < 4; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]); if (s->s.h.allowcompinter) { s->s.h.comppredmode = vp8_rac_get(&s->c); if (s->s.h.comppredmode) s->s.h.comppredmode += vp8_rac_get(&s->c); if (s->s.h.comppredmode == PRED_SWITCHABLE) for (i = 0; i < 5; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.comp[i] = update_prob(&s->c, s->prob.p.comp[i]); } else { s->s.h.comppredmode = PRED_SINGLEREF; } if (s->s.h.comppredmode != PRED_COMPREF) { for (i = 0; i < 5; i++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.single_ref[i][0] = update_prob(&s->c, s->prob.p.single_ref[i][0]); if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.single_ref[i][1] = update_prob(&s->c, s->prob.p.single_ref[i][1]); } } if (s->s.h.comppredmode != PRED_SINGLEREF) { for (i = 0; i < 5; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.comp_ref[i] = update_prob(&s->c, s->prob.p.comp_ref[i]); } for (i = 0; i < 4; i++) for (j = 0; j < 9; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.y_mode[i][j] = update_prob(&s->c, s->prob.p.y_mode[i][j]); for (i = 0; i < 4; i++) for (j = 0; j < 4; j++) for (k = 0; k < 3; k++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.partition[3 - i][j][k] = update_prob(&s->c, s->prob.p.partition[3 - i][j][k]); // mv fields don't use the update_prob subexp model for some reason for (i = 0; i < 3; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (i = 0; i < 2; i++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].sign = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (j = 0; j < 10; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].classes[j] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].class0 = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (j = 0; j < 10; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].bits[j] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; } for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) for (k = 0; k < 3; k++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].class0_fp[j][k] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (j = 0; j < 3; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].fp[j] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; } if (s->s.h.highprecisionmvs) { for (i = 0; i < 2; i++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].class0_hp = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].hp = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; } } } return (data2 - data) + size2; } static void decode_sb(AVCodecContext *avctx, int row, int col, VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl) { VP9Context *s = avctx->priv_data; int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) | (((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1); const uint8_t *p = s->s.h.keyframe || s->s.h.intraonly ? ff_vp9_default_kf_partition_probs[bl][c] : s->prob.p.partition[bl][c]; enum BlockPartition bp; ptrdiff_t hbs = 4 >> bl; AVFrame *f = s->s.frames[CUR_FRAME].tf.f; ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1]; int bytesperpixel = s->bytesperpixel; if (bl == BL_8X8) { bp = vp8_rac_get_tree(&s->c, ff_vp9_partition_tree, p); ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); } else if (col + hbs < s->cols) { // FIXME why not <=? if (row + hbs < s->rows) { // FIXME why not <=? bp = vp8_rac_get_tree(&s->c, ff_vp9_partition_tree, p); switch (bp) { case PARTITION_NONE: ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); break; case PARTITION_H: ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; ff_vp9_decode_block(avctx, row + hbs, col, lflvl, yoff, uvoff, bl, bp); break; case PARTITION_V: ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); yoff += hbs * 8 * bytesperpixel; uvoff += hbs * 8 * bytesperpixel >> s->ss_h; ff_vp9_decode_block(avctx, row, col + hbs, lflvl, yoff, uvoff, bl, bp); break; case PARTITION_SPLIT: decode_sb(avctx, row, col, lflvl, yoff, uvoff, bl + 1); decode_sb(avctx, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel, uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1); yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; decode_sb(avctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1); decode_sb(avctx, row + hbs, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel, uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1); break; default: av_assert0(0); } } else if (vp56_rac_get_prob_branchy(&s->c, p[1])) { bp = PARTITION_SPLIT; decode_sb(avctx, row, col, lflvl, yoff, uvoff, bl + 1); decode_sb(avctx, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel, uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1); } else { bp = PARTITION_H; ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); } } else if (row + hbs < s->rows) { // FIXME why not <=? if (vp56_rac_get_prob_branchy(&s->c, p[2])) { bp = PARTITION_SPLIT; decode_sb(avctx, row, col, lflvl, yoff, uvoff, bl + 1); yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; decode_sb(avctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1); } else { bp = PARTITION_V; ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, bl, bp); } } else { bp = PARTITION_SPLIT; decode_sb(avctx, row, col, lflvl, yoff, uvoff, bl + 1); } s->counts.partition[bl][c][bp]++; } static void decode_sb_mem(AVCodecContext *avctx, int row, int col, VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl) { VP9Context *s = avctx->priv_data; VP9Block *b = s->b; ptrdiff_t hbs = 4 >> bl; AVFrame *f = s->s.frames[CUR_FRAME].tf.f; ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1]; int bytesperpixel = s->bytesperpixel; if (bl == BL_8X8) { av_assert2(b->bl == BL_8X8); ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp); } else if (s->b->bl == bl) { ff_vp9_decode_block(avctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp); if (b->bp == PARTITION_H && row + hbs < s->rows) { yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; ff_vp9_decode_block(avctx, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp); } else if (b->bp == PARTITION_V && col + hbs < s->cols) { yoff += hbs * 8 * bytesperpixel; uvoff += hbs * 8 * bytesperpixel >> s->ss_h; ff_vp9_decode_block(avctx, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp); } } else { decode_sb_mem(avctx, row, col, lflvl, yoff, uvoff, bl + 1); if (col + hbs < s->cols) { // FIXME why not <=? if (row + hbs < s->rows) { decode_sb_mem(avctx, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel, uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1); yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; decode_sb_mem(avctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1); decode_sb_mem(avctx, row + hbs, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel, uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1); } else { yoff += hbs * 8 * bytesperpixel; uvoff += hbs * 8 * bytesperpixel >> s->ss_h; decode_sb_mem(avctx, row, col + hbs, lflvl, yoff, uvoff, bl + 1); } } else if (row + hbs < s->rows) { yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; decode_sb_mem(avctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1); } } } static av_always_inline void filter_plane_cols(VP9Context *s, int col, int ss_h, int ss_v, uint8_t *lvl, uint8_t (*mask)[4], uint8_t *dst, ptrdiff_t ls) { int y, x, bytesperpixel = s->bytesperpixel; // filter edges between columns (e.g. block1 | block2) for (y = 0; y < 8; y += 2 << ss_v, dst += 16 * ls, lvl += 16 << ss_v) { uint8_t *ptr = dst, *l = lvl, *hmask1 = mask[y], *hmask2 = mask[y + 1 + ss_v]; unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3]; unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3]; unsigned hm = hm1 | hm2 | hm13 | hm23; for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8 * bytesperpixel >> ss_h) { if (col || x > 1) { if (hm1 & x) { int L = *l, H = L >> 4; int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L]; if (hmask1[0] & x) { if (hmask2[0] & x) { av_assert2(l[8 << ss_v] == L); s->dsp.loop_filter_16[0](ptr, ls, E, I, H); } else { s->dsp.loop_filter_8[2][0](ptr, ls, E, I, H); } } else if (hm2 & x) { L = l[8 << ss_v]; H |= (L >> 4) << 8; E |= s->filter_lut.mblim_lut[L] << 8; I |= s->filter_lut.lim_lut[L] << 8; s->dsp.loop_filter_mix2[!!(hmask1[1] & x)] [!!(hmask2[1] & x)] [0](ptr, ls, E, I, H); } else { s->dsp.loop_filter_8[!!(hmask1[1] & x)] [0](ptr, ls, E, I, H); } } else if (hm2 & x) { int L = l[8 << ss_v], H = L >> 4; int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L]; s->dsp.loop_filter_8[!!(hmask2[1] & x)] [0](ptr + 8 * ls, ls, E, I, H); } } if (ss_h) { if (x & 0xAA) l += 2; } else { if (hm13 & x) { int L = *l, H = L >> 4; int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L]; if (hm23 & x) { L = l[8 << ss_v]; H |= (L >> 4) << 8; E |= s->filter_lut.mblim_lut[L] << 8; I |= s->filter_lut.lim_lut[L] << 8; s->dsp.loop_filter_mix2[0][0][0](ptr + 4 * bytesperpixel, ls, E, I, H); } else { s->dsp.loop_filter_8[0][0](ptr + 4 * bytesperpixel, ls, E, I, H); } } else if (hm23 & x) { int L = l[8 << ss_v], H = L >> 4; int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L]; s->dsp.loop_filter_8[0][0](ptr + 8 * ls + 4 * bytesperpixel, ls, E, I, H); } l++; } } } } static av_always_inline void filter_plane_rows(VP9Context *s, int row, int ss_h, int ss_v, uint8_t *lvl, uint8_t (*mask)[4], uint8_t *dst, ptrdiff_t ls) { int y, x, bytesperpixel = s->bytesperpixel; // block1 // filter edges between rows (e.g. ------) // block2 for (y = 0; y < 8; y++, dst += 8 * ls >> ss_v) { uint8_t *ptr = dst, *l = lvl, *vmask = mask[y]; unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3]; for (x = 1; vm & ~(x - 1); x <<= (2 << ss_h), ptr += 16 * bytesperpixel, l += 2 << ss_h) { if (row || y) { if (vm & x) { int L = *l, H = L >> 4; int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L]; if (vmask[0] & x) { if (vmask[0] & (x << (1 + ss_h))) { av_assert2(l[1 + ss_h] == L); s->dsp.loop_filter_16[1](ptr, ls, E, I, H); } else { s->dsp.loop_filter_8[2][1](ptr, ls, E, I, H); } } else if (vm & (x << (1 + ss_h))) { L = l[1 + ss_h]; H |= (L >> 4) << 8; E |= s->filter_lut.mblim_lut[L] << 8; I |= s->filter_lut.lim_lut[L] << 8; s->dsp.loop_filter_mix2[!!(vmask[1] & x)] [!!(vmask[1] & (x << (1 + ss_h)))] [1](ptr, ls, E, I, H); } else { s->dsp.loop_filter_8[!!(vmask[1] & x)] [1](ptr, ls, E, I, H); } } else if (vm & (x << (1 + ss_h))) { int L = l[1 + ss_h], H = L >> 4; int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L]; s->dsp.loop_filter_8[!!(vmask[1] & (x << (1 + ss_h)))] [1](ptr + 8 * bytesperpixel, ls, E, I, H); } } if (!ss_v) { if (vm3 & x) { int L = *l, H = L >> 4; int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L]; if (vm3 & (x << (1 + ss_h))) { L = l[1 + ss_h]; H |= (L >> 4) << 8; E |= s->filter_lut.mblim_lut[L] << 8; I |= s->filter_lut.lim_lut[L] << 8; s->dsp.loop_filter_mix2[0][0][1](ptr + ls * 4, ls, E, I, H); } else { s->dsp.loop_filter_8[0][1](ptr + ls * 4, ls, E, I, H); } } else if (vm3 & (x << (1 + ss_h))) { int L = l[1 + ss_h], H = L >> 4; int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L]; s->dsp.loop_filter_8[0][1](ptr + ls * 4 + 8 * bytesperpixel, ls, E, I, H); } } } if (ss_v) { if (y & 1) lvl += 16; } else { lvl += 8; } } } static void loopfilter_sb(AVCodecContext *avctx, VP9Filter *lflvl, int row, int col, ptrdiff_t yoff, ptrdiff_t uvoff) { VP9Context *s = avctx->priv_data; AVFrame *f = s->s.frames[CUR_FRAME].tf.f; uint8_t *dst = f->data[0] + yoff; ptrdiff_t ls_y = f->linesize[0], ls_uv = f->linesize[1]; uint8_t (*uv_masks)[8][4] = lflvl->mask[s->ss_h | s->ss_v]; int p; /* FIXME: In how far can we interleave the v/h loopfilter calls? E.g. * if you think of them as acting on a 8x8 block max, we can interleave * each v/h within the single x loop, but that only works if we work on * 8 pixel blocks, and we won't always do that (we want at least 16px * to use SSE2 optimizations, perhaps 32 for AVX2) */ filter_plane_cols(s, col, 0, 0, lflvl->level, lflvl->mask[0][0], dst, ls_y); filter_plane_rows(s, row, 0, 0, lflvl->level, lflvl->mask[0][1], dst, ls_y); for (p = 0; p < 2; p++) { dst = f->data[1 + p] + uvoff; filter_plane_cols(s, col, s->ss_h, s->ss_v, lflvl->level, uv_masks[0], dst, ls_uv); filter_plane_rows(s, row, s->ss_h, s->ss_v, lflvl->level, uv_masks[1], dst, ls_uv); } } static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n) { int sb_start = ( idx * n) >> log2_n; int sb_end = ((idx + 1) * n) >> log2_n; *start = FFMIN(sb_start, n) << 3; *end = FFMIN(sb_end, n) << 3; } static void free_buffers(VP9Context *s) { av_freep(&s->intra_pred_data[0]); av_freep(&s->b_base); av_freep(&s->block_base); } static av_cold int vp9_decode_free(AVCodecContext *avctx) { VP9Context *s = avctx->priv_data; int i; for (i = 0; i < 3; i++) { if (s->s.frames[i].tf.f->buf[0]) vp9_frame_unref(avctx, &s->s.frames[i]); av_frame_free(&s->s.frames[i].tf.f); } for (i = 0; i < 8; i++) { if (s->s.refs[i].f->buf[0]) ff_thread_release_buffer(avctx, &s->s.refs[i]); av_frame_free(&s->s.refs[i].f); if (s->next_refs[i].f->buf[0]) ff_thread_release_buffer(avctx, &s->next_refs[i]); av_frame_free(&s->next_refs[i].f); } free_buffers(s); av_freep(&s->c_b); s->c_b_size = 0; return 0; } static int vp9_decode_frame(AVCodecContext *avctx, void *frame, int *got_frame, AVPacket *pkt) { const uint8_t *data = pkt->data; int size = pkt->size; VP9Context *s = avctx->priv_data; int ret, tile_row, tile_col, i, ref, row, col; int retain_segmap_ref = s->s.frames[REF_FRAME_SEGMAP].segmentation_map && (!s->s.h.segmentation.enabled || !s->s.h.segmentation.update_map); ptrdiff_t yoff, uvoff, ls_y, ls_uv; AVFrame *f; int bytesperpixel; if ((ret = decode_frame_header(avctx, data, size, &ref)) < 0) { return ret; } else if (ret == 0) { if (!s->s.refs[ref].f->buf[0]) { av_log(avctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref); return AVERROR_INVALIDDATA; } if ((ret = av_frame_ref(frame, s->s.refs[ref].f)) < 0) return ret; ((AVFrame *)frame)->pts = pkt->pts; #if FF_API_PKT_PTS FF_DISABLE_DEPRECATION_WARNINGS ((AVFrame *)frame)->pkt_pts = pkt->pts; FF_ENABLE_DEPRECATION_WARNINGS #endif ((AVFrame *)frame)->pkt_dts = pkt->dts; for (i = 0; i < 8; i++) { if (s->next_refs[i].f->buf[0]) ff_thread_release_buffer(avctx, &s->next_refs[i]); if (s->s.refs[i].f->buf[0] && (ret = ff_thread_ref_frame(&s->next_refs[i], &s->s.refs[i])) < 0) return ret; } *got_frame = 1; return pkt->size; } data += ret; size -= ret; if (!retain_segmap_ref || s->s.h.keyframe || s->s.h.intraonly) { if (s->s.frames[REF_FRAME_SEGMAP].tf.f->buf[0]) vp9_frame_unref(avctx, &s->s.frames[REF_FRAME_SEGMAP]); if (!s->s.h.keyframe && !s->s.h.intraonly && !s->s.h.errorres && s->s.frames[CUR_FRAME].tf.f->buf[0] && (ret = vp9_frame_ref(avctx, &s->s.frames[REF_FRAME_SEGMAP], &s->s.frames[CUR_FRAME])) < 0) return ret; } if (s->s.frames[REF_FRAME_MVPAIR].tf.f->buf[0]) vp9_frame_unref(avctx, &s->s.frames[REF_FRAME_MVPAIR]); if (!s->s.h.intraonly && !s->s.h.keyframe && !s->s.h.errorres && s->s.frames[CUR_FRAME].tf.f->buf[0] && (ret = vp9_frame_ref(avctx, &s->s.frames[REF_FRAME_MVPAIR], &s->s.frames[CUR_FRAME])) < 0) return ret; if (s->s.frames[CUR_FRAME].tf.f->buf[0]) vp9_frame_unref(avctx, &s->s.frames[CUR_FRAME]); if ((ret = vp9_frame_alloc(avctx, &s->s.frames[CUR_FRAME])) < 0) return ret; f = s->s.frames[CUR_FRAME].tf.f; f->key_frame = s->s.h.keyframe; f->pict_type = (s->s.h.keyframe || s->s.h.intraonly) ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; ls_y = f->linesize[0]; ls_uv =f->linesize[1]; if (s->s.frames[REF_FRAME_SEGMAP].tf.f->buf[0] && (s->s.frames[REF_FRAME_MVPAIR].tf.f->width != s->s.frames[CUR_FRAME].tf.f->width || s->s.frames[REF_FRAME_MVPAIR].tf.f->height != s->s.frames[CUR_FRAME].tf.f->height)) { vp9_frame_unref(avctx, &s->s.frames[REF_FRAME_SEGMAP]); } // ref frame setup for (i = 0; i < 8; i++) { if (s->next_refs[i].f->buf[0]) ff_thread_release_buffer(avctx, &s->next_refs[i]); if (s->s.h.refreshrefmask & (1 << i)) { ret = ff_thread_ref_frame(&s->next_refs[i], &s->s.frames[CUR_FRAME].tf); } else if (s->s.refs[i].f->buf[0]) { ret = ff_thread_ref_frame(&s->next_refs[i], &s->s.refs[i]); } if (ret < 0) return ret; } if (avctx->hwaccel) { ret = avctx->hwaccel->start_frame(avctx, NULL, 0); if (ret < 0) return ret; ret = avctx->hwaccel->decode_slice(avctx, pkt->data, pkt->size); if (ret < 0) return ret; ret = avctx->hwaccel->end_frame(avctx); if (ret < 0) return ret; goto finish; } // main tile decode loop bytesperpixel = s->bytesperpixel; memset(s->above_partition_ctx, 0, s->cols); memset(s->above_skip_ctx, 0, s->cols); if (s->s.h.keyframe || s->s.h.intraonly) { memset(s->above_mode_ctx, DC_PRED, s->cols * 2); } else { memset(s->above_mode_ctx, NEARESTMV, s->cols); } memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16); memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 16 >> s->ss_h); memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 16 >> s->ss_h); memset(s->above_segpred_ctx, 0, s->cols); s->pass = s->s.frames[CUR_FRAME].uses_2pass = avctx->active_thread_type == FF_THREAD_FRAME && s->s.h.refreshctx && !s->s.h.parallelmode; if ((ret = update_block_buffers(avctx)) < 0) { av_log(avctx, AV_LOG_ERROR, "Failed to allocate block buffers\n"); return ret; } if (s->s.h.refreshctx && s->s.h.parallelmode) { int j, k, l, m; for (i = 0; i < 4; i++) { for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) for (l = 0; l < 6; l++) for (m = 0; m < 6; m++) memcpy(s->prob_ctx[s->s.h.framectxid].coef[i][j][k][l][m], s->prob.coef[i][j][k][l][m], 3); if (s->s.h.txfmmode == i) break; } s->prob_ctx[s->s.h.framectxid].p = s->prob.p; ff_thread_finish_setup(avctx); } else if (!s->s.h.refreshctx) { ff_thread_finish_setup(avctx); } do { yoff = uvoff = 0; s->b = s->b_base; s->block = s->block_base; s->uvblock[0] = s->uvblock_base[0]; s->uvblock[1] = s->uvblock_base[1]; s->eob = s->eob_base; s->uveob[0] = s->uveob_base[0]; s->uveob[1] = s->uveob_base[1]; for (tile_row = 0; tile_row < s->s.h.tiling.tile_rows; tile_row++) { set_tile_offset(&s->tile_row_start, &s->tile_row_end, tile_row, s->s.h.tiling.log2_tile_rows, s->sb_rows); if (s->pass != 2) { for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) { int64_t tile_size; if (tile_col == s->s.h.tiling.tile_cols - 1 && tile_row == s->s.h.tiling.tile_rows - 1) { tile_size = size; } else { tile_size = AV_RB32(data); data += 4; size -= 4; } if (tile_size > size) { ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0); return AVERROR_INVALIDDATA; } ret = ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size); if (ret < 0) return ret; if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) { // marker bit ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0); return AVERROR_INVALIDDATA; } data += tile_size; size -= tile_size; } } for (row = s->tile_row_start; row < s->tile_row_end; row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) { VP9Filter *lflvl_ptr = s->lflvl; ptrdiff_t yoff2 = yoff, uvoff2 = uvoff; for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) { set_tile_offset(&s->tile_col_start, &s->tile_col_end, tile_col, s->s.h.tiling.log2_tile_cols, s->sb_cols); if (s->pass != 2) { memset(s->left_partition_ctx, 0, 8); memset(s->left_skip_ctx, 0, 8); if (s->s.h.keyframe || s->s.h.intraonly) { memset(s->left_mode_ctx, DC_PRED, 16); } else { memset(s->left_mode_ctx, NEARESTMV, 8); } memset(s->left_y_nnz_ctx, 0, 16); memset(s->left_uv_nnz_ctx, 0, 32); memset(s->left_segpred_ctx, 0, 8); memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c)); } for (col = s->tile_col_start; col < s->tile_col_end; col += 8, yoff2 += 64 * bytesperpixel, uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) { // FIXME integrate with lf code (i.e. zero after each // use, similar to invtxfm coefficients, or similar) if (s->pass != 1) { memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask)); } if (s->pass == 2) { decode_sb_mem(avctx, row, col, lflvl_ptr, yoff2, uvoff2, BL_64X64); } else { decode_sb(avctx, row, col, lflvl_ptr, yoff2, uvoff2, BL_64X64); } } if (s->pass != 2) memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c)); } if (s->pass == 1) continue; // backup pre-loopfilter reconstruction data for intra // prediction of next row of sb64s if (row + 8 < s->rows) { memcpy(s->intra_pred_data[0], f->data[0] + yoff + 63 * ls_y, 8 * s->cols * bytesperpixel); memcpy(s->intra_pred_data[1], f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv, 8 * s->cols * bytesperpixel >> s->ss_h); memcpy(s->intra_pred_data[2], f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv, 8 * s->cols * bytesperpixel >> s->ss_h); } // loopfilter one row if (s->s.h.filter.level) { yoff2 = yoff; uvoff2 = uvoff; lflvl_ptr = s->lflvl; for (col = 0; col < s->cols; col += 8, yoff2 += 64 * bytesperpixel, uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) { loopfilter_sb(avctx, lflvl_ptr, row, col, yoff2, uvoff2); } } // FIXME maybe we can make this more finegrained by running the // loopfilter per-block instead of after each sbrow // In fact that would also make intra pred left preparation easier? ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, row >> 3, 0); } } if (s->pass < 2 && s->s.h.refreshctx && !s->s.h.parallelmode) { ff_vp9_adapt_probs(s); ff_thread_finish_setup(avctx); } } while (s->pass++ == 1); ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0); finish: // ref frame setup for (i = 0; i < 8; i++) { if (s->s.refs[i].f->buf[0]) ff_thread_release_buffer(avctx, &s->s.refs[i]); if (s->next_refs[i].f->buf[0] && (ret = ff_thread_ref_frame(&s->s.refs[i], &s->next_refs[i])) < 0) return ret; } if (!s->s.h.invisible) { if ((ret = av_frame_ref(frame, s->s.frames[CUR_FRAME].tf.f)) < 0) return ret; *got_frame = 1; } return pkt->size; } static void vp9_decode_flush(AVCodecContext *avctx) { VP9Context *s = avctx->priv_data; int i; for (i = 0; i < 3; i++) vp9_frame_unref(avctx, &s->s.frames[i]); for (i = 0; i < 8; i++) ff_thread_release_buffer(avctx, &s->s.refs[i]); } static int init_frames(AVCodecContext *avctx) { VP9Context *s = avctx->priv_data; int i; for (i = 0; i < 3; i++) { s->s.frames[i].tf.f = av_frame_alloc(); if (!s->s.frames[i].tf.f) { vp9_decode_free(avctx); av_log(avctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i); return AVERROR(ENOMEM); } } for (i = 0; i < 8; i++) { s->s.refs[i].f = av_frame_alloc(); s->next_refs[i].f = av_frame_alloc(); if (!s->s.refs[i].f || !s->next_refs[i].f) { vp9_decode_free(avctx); av_log(avctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i); return AVERROR(ENOMEM); } } return 0; } static av_cold int vp9_decode_init(AVCodecContext *avctx) { VP9Context *s = avctx->priv_data; avctx->internal->allocate_progress = 1; s->last_bpp = 0; s->s.h.filter.sharpness = -1; return init_frames(avctx); } #if HAVE_THREADS static av_cold int vp9_decode_init_thread_copy(AVCodecContext *avctx) { return init_frames(avctx); } static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { int i, ret; VP9Context *s = dst->priv_data, *ssrc = src->priv_data; for (i = 0; i < 3; i++) { if (s->s.frames[i].tf.f->buf[0]) vp9_frame_unref(dst, &s->s.frames[i]); if (ssrc->s.frames[i].tf.f->buf[0]) { if ((ret = vp9_frame_ref(dst, &s->s.frames[i], &ssrc->s.frames[i])) < 0) return ret; } } for (i = 0; i < 8; i++) { if (s->s.refs[i].f->buf[0]) ff_thread_release_buffer(dst, &s->s.refs[i]); if (ssrc->next_refs[i].f->buf[0]) { if ((ret = ff_thread_ref_frame(&s->s.refs[i], &ssrc->next_refs[i])) < 0) return ret; } } s->s.h.invisible = ssrc->s.h.invisible; s->s.h.keyframe = ssrc->s.h.keyframe; s->s.h.intraonly = ssrc->s.h.intraonly; s->ss_v = ssrc->ss_v; s->ss_h = ssrc->ss_h; s->s.h.segmentation.enabled = ssrc->s.h.segmentation.enabled; s->s.h.segmentation.update_map = ssrc->s.h.segmentation.update_map; s->s.h.segmentation.absolute_vals = ssrc->s.h.segmentation.absolute_vals; s->bytesperpixel = ssrc->bytesperpixel; s->gf_fmt = ssrc->gf_fmt; s->w = ssrc->w; s->h = ssrc->h; s->s.h.bpp = ssrc->s.h.bpp; s->bpp_index = ssrc->bpp_index; s->pix_fmt = ssrc->pix_fmt; memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx)); memcpy(&s->s.h.lf_delta, &ssrc->s.h.lf_delta, sizeof(s->s.h.lf_delta)); memcpy(&s->s.h.segmentation.feat, &ssrc->s.h.segmentation.feat, sizeof(s->s.h.segmentation.feat)); return 0; } #endif AVCodec ff_vp9_decoder = { .name = "vp9", .long_name = NULL_IF_CONFIG_SMALL("Google VP9"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_VP9, .priv_data_size = sizeof(VP9Context), .init = vp9_decode_init, .close = vp9_decode_free, .decode = vp9_decode_frame, .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS, .flush = vp9_decode_flush, .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp9_decode_init_thread_copy), .update_thread_context = ONLY_IF_THREADS_ENABLED(vp9_decode_update_thread_context), .profiles = NULL_IF_CONFIG_SMALL(ff_vp9_profiles), };