/* * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with FFmpeg; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include <string.h> #include "libavutil/common.h" #include "libavutil/intreadwrite.h" #include "libavutil/mem.h" #include "libavutil/mem_internal.h" #include "libswscale/swscale.h" #include "libswscale/swscale_internal.h" #include "checkasm.h" #define randomize_buffers(buf, size) \ do { \ int j; \ for (j = 0; j < size; j+=4) \ AV_WN32(buf + j, rnd()); \ } while (0) // This reference function is the same approximate algorithm employed by the // SIMD functions static void ref_function(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset) { int i, d; d = ((filterSize - 1) * 8 + dither[0]) >> 4; for ( i = 0; i < dstW; i++) { int16_t val = d; int j; union { int val; int16_t v[2]; } t; for (j = 0; j < filterSize; j++){ t.val = (int)src[j][i + offset] * (int)filter[j]; val += t.v[1]; } dest[i]= av_clip_uint8(val>>3); } } static void check_yuv2yuvX(void) { struct SwsContext *ctx; int fsi, osi, isi, i, j; int dstW; #define LARGEST_FILTER 16 #define FILTER_SIZES 4 static const int filter_sizes[FILTER_SIZES] = {1, 4, 8, 16}; #define LARGEST_INPUT_SIZE 512 #define INPUT_SIZES 6 static const int input_sizes[INPUT_SIZES] = {8, 24, 128, 144, 256, 512}; declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset); const int16_t **src; LOCAL_ALIGNED_8(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]); LOCAL_ALIGNED_8(int16_t, filter_coeff, [LARGEST_FILTER]); LOCAL_ALIGNED_8(uint8_t, dst0, [LARGEST_INPUT_SIZE]); LOCAL_ALIGNED_8(uint8_t, dst1, [LARGEST_INPUT_SIZE]); LOCAL_ALIGNED_8(uint8_t, dither, [LARGEST_INPUT_SIZE]); union VFilterData{ const int16_t *src; uint16_t coeff[8]; } *vFilterData; uint8_t d_val = rnd(); memset(dither, d_val, LARGEST_INPUT_SIZE); randomize_buffers((uint8_t*)src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int16_t)); randomize_buffers((uint8_t*)filter_coeff, LARGEST_FILTER * sizeof(int16_t)); ctx = sws_alloc_context(); if (sws_init_context(ctx, NULL, NULL) < 0) fail(); ff_getSwsFunc(ctx); for(isi = 0; isi < INPUT_SIZES; ++isi){ dstW = input_sizes[isi]; for(osi = 0; osi < 64; osi += 16){ for(fsi = 0; fsi < FILTER_SIZES; ++fsi){ src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]); vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData)); memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData)); for(i = 0; i < filter_sizes[fsi]; ++i){ src[i] = &src_pixels[i * LARGEST_INPUT_SIZE]; vFilterData[i].src = src[i]; for(j = 0; j < 4; ++j) vFilterData[i].coeff[j + 4] = filter_coeff[i]; } if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d_%d", filter_sizes[fsi], osi, dstW)){ memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0])); memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0])); // The reference function is not the scalar function selected when mmx // is deactivated as the SIMD functions do not give the same result as // the scalar ones due to rounding. The SIMD functions are activated by // the flag SWS_ACCURATE_RND ref_function(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi); // There's no point in calling new for the reference function if(ctx->use_mmx_vfilter){ call_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi); if (memcmp(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]))) fail(); if(dstW == LARGEST_INPUT_SIZE) bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi); } } av_freep(&src); av_freep(&vFilterData); } } } sws_freeContext(ctx); #undef FILTER_SIZES } #undef SRC_PIXELS #define SRC_PIXELS 128 static void check_hscale(void) { #define MAX_FILTER_WIDTH 40 #define FILTER_SIZES 5 static const int filter_sizes[FILTER_SIZES] = { 4, 8, 16, 32, 40 }; #define HSCALE_PAIRS 2 static const int hscale_pairs[HSCALE_PAIRS][2] = { { 8, 14 }, { 8, 18 }, }; int i, j, fsi, hpi, width; struct SwsContext *ctx; // padded LOCAL_ALIGNED_32(uint8_t, src, [FFALIGN(SRC_PIXELS + MAX_FILTER_WIDTH - 1, 4)]); LOCAL_ALIGNED_32(uint32_t, dst0, [SRC_PIXELS]); LOCAL_ALIGNED_32(uint32_t, dst1, [SRC_PIXELS]); // padded LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]); LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]); // The dst parameter here is either int16_t or int32_t but we use void* to // just cover both cases. declare_func_emms(AV_CPU_FLAG_MMX, void, void *c, void *dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize); ctx = sws_alloc_context(); if (sws_init_context(ctx, NULL, NULL) < 0) fail(); randomize_buffers(src, SRC_PIXELS + MAX_FILTER_WIDTH - 1); for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) { for (fsi = 0; fsi < FILTER_SIZES; fsi++) { width = filter_sizes[fsi]; ctx->srcBpc = hscale_pairs[hpi][0]; ctx->dstBpc = hscale_pairs[hpi][1]; ctx->hLumFilterSize = ctx->hChrFilterSize = width; for (i = 0; i < SRC_PIXELS; i++) { filterPos[i] = i; // These filter cofficients are chosen to try break two corner // cases, namely: // // - Negative filter coefficients. The filters output signed // values, and it should be possible to end up with negative // output values. // // - Positive clipping. The hscale filter function has clipping // at (1<<15) - 1 // // The coefficients sum to the 1.0 point for the hscale // functions (1 << 14). for (j = 0; j < width; j++) { filter[i * width + j] = -((1 << 14) / (width - 1)); } filter[i * width + (rnd() % width)] = ((1 << 15) - 1); } for (i = 0; i < MAX_FILTER_WIDTH; i++) { // These values should be unused in SIMD implementations but // may still be read, random coefficients here should help show // issues where they are used in error. filter[SRC_PIXELS * width + i] = rnd(); } ff_getSwsFunc(ctx); if (check_func(ctx->hcScale, "hscale_%d_to_%d_width%d", ctx->srcBpc, ctx->dstBpc + 1, width)) { memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0])); memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0])); call_ref(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width); call_new(NULL, dst1, SRC_PIXELS, src, filter, filterPos, width); if (memcmp(dst0, dst1, SRC_PIXELS * sizeof(dst0[0]))) fail(); bench_new(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width); } } } sws_freeContext(ctx); } void checkasm_check_sw_scale(void) { check_hscale(); report("hscale"); check_yuv2yuvX(); report("yuv2yuvX"); }