/** * MLP encoder * Copyright (c) 2008 Ramiro Polla * Copyright (c) 2016-2019 Jai Luthra * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #include "internal.h" #include "put_bits.h" #include "audio_frame_queue.h" #include "libavutil/crc.h" #include "libavutil/avstring.h" #include "libavutil/samplefmt.h" #include "mlp.h" #include "lpc.h" #define MAJOR_HEADER_INTERVAL 16 #define MLP_MIN_LPC_ORDER 1 #define MLP_MAX_LPC_ORDER 8 #define MLP_MIN_LPC_SHIFT 8 #define MLP_MAX_LPC_SHIFT 15 typedef struct { uint8_t min_channel; ///< The index of the first channel coded in this substream. uint8_t max_channel; ///< The index of the last channel coded in this substream. uint8_t max_matrix_channel; ///< The number of channels input into the rematrix stage. uint8_t noise_shift; ///< The left shift applied to random noise in 0x31ea substreams. uint32_t noisegen_seed; ///< The current seed value for the pseudorandom noise generator(s). int data_check_present; ///< Set if the substream contains extra info to check the size of VLC blocks. int32_t lossless_check_data; ///< XOR of all output samples uint8_t max_huff_lsbs; ///< largest huff_lsbs uint8_t max_output_bits; ///< largest output bit-depth } RestartHeader; typedef struct { uint8_t count; ///< number of matrices to apply uint8_t outch[MAX_MATRICES]; ///< output channel for each matrix int32_t forco[MAX_MATRICES][MAX_CHANNELS+2]; ///< forward coefficients int32_t coeff[MAX_MATRICES][MAX_CHANNELS+2]; ///< decoding coefficients uint8_t fbits[MAX_CHANNELS]; ///< fraction bits int8_t shift[MAX_CHANNELS]; ///< Left shift to apply to decoded PCM values to get final 24-bit output. } MatrixParams; enum ParamFlags { PARAMS_DEFAULT = 0xff, PARAM_PRESENCE_FLAGS = 1 << 8, PARAM_BLOCKSIZE = 1 << 7, PARAM_MATRIX = 1 << 6, PARAM_OUTSHIFT = 1 << 5, PARAM_QUANTSTEP = 1 << 4, PARAM_FIR = 1 << 3, PARAM_IIR = 1 << 2, PARAM_HUFFOFFSET = 1 << 1, PARAM_PRESENT = 1 << 0, }; typedef struct { uint16_t blocksize; ///< number of PCM samples in current audio block uint8_t quant_step_size[MAX_CHANNELS]; ///< left shift to apply to Huffman-decoded residuals MatrixParams matrix_params; uint8_t param_presence_flags; ///< Bitmask of which parameter sets are conveyed in a decoding parameter block. } DecodingParams; typedef struct BestOffset { int32_t offset; int bitcount; int lsb_bits; int32_t min; int32_t max; } BestOffset; #define HUFF_OFFSET_MIN (-16384) #define HUFF_OFFSET_MAX ( 16383) /** Number of possible codebooks (counting "no codebooks") */ #define NUM_CODEBOOKS 4 typedef struct { AVCodecContext *avctx; int num_substreams; ///< Number of substreams contained within this stream. int num_channels; /**< Number of channels in major_scratch_buffer. * Normal channels + noise channels. */ int coded_sample_fmt [2]; ///< sample format encoded for MLP int coded_sample_rate[2]; ///< sample rate encoded for MLP int coded_peak_bitrate; ///< peak bitrate for this major sync header int flags; ///< major sync info flags /* channel_meaning */ int substream_info; int fs; int wordlength; int channel_occupancy; int summary_info; int32_t *inout_buffer; ///< Pointer to data currently being read from lavc or written to bitstream. int32_t *major_inout_buffer; ///< Buffer with all in/out data for one entire major frame interval. int32_t *write_buffer; ///< Pointer to data currently being written to bitstream. int32_t *sample_buffer; ///< Pointer to current access unit samples. int32_t *major_scratch_buffer; ///< Scratch buffer big enough to fit all data for one entire major frame interval. int32_t *last_frame; ///< Pointer to last frame with data to encode. int32_t *lpc_sample_buffer; unsigned int major_number_of_frames; unsigned int next_major_number_of_frames; unsigned int major_frame_size; ///< Number of samples in current major frame being encoded. unsigned int next_major_frame_size; ///< Counter of number of samples for next major frame. int32_t *lossless_check_data; ///< Array with lossless_check_data for each access unit. unsigned int *max_output_bits; ///< largest output bit-depth unsigned int *frame_size; ///< Array with number of samples/channel in each access unit. unsigned int frame_index; ///< Index of current frame being encoded. unsigned int one_sample_buffer_size; ///< Number of samples*channel for one access unit. unsigned int max_restart_interval; ///< Max interval of access units in between two major frames. unsigned int min_restart_interval; ///< Min interval of access units in between two major frames. unsigned int restart_intervals; ///< Number of possible major frame sizes. uint16_t timestamp; ///< Timestamp of current access unit. uint16_t dts; ///< Decoding timestamp of current access unit. uint8_t channel_arrangement; ///< channel arrangement for MLP streams uint8_t ch_modifier_thd0; ///< channel modifier for TrueHD stream 0 uint8_t ch_modifier_thd1; ///< channel modifier for TrueHD stream 1 uint8_t ch_modifier_thd2; ///< channel modifier for TrueHD stream 2 unsigned int seq_size [MAJOR_HEADER_INTERVAL]; unsigned int seq_offset[MAJOR_HEADER_INTERVAL]; unsigned int sequence_size; ChannelParams *channel_params; BestOffset best_offset[MAJOR_HEADER_INTERVAL+1][MAX_CHANNELS][NUM_CODEBOOKS]; DecodingParams *decoding_params; RestartHeader restart_header [MAX_SUBSTREAMS]; ChannelParams major_channel_params[MAJOR_HEADER_INTERVAL+1][MAX_CHANNELS]; ///< ChannelParams to be written to bitstream. DecodingParams major_decoding_params[MAJOR_HEADER_INTERVAL+1][MAX_SUBSTREAMS]; ///< DecodingParams to be written to bitstream. int major_params_changed[MAJOR_HEADER_INTERVAL+1][MAX_SUBSTREAMS]; ///< params_changed to be written to bitstream. unsigned int major_cur_subblock_index; unsigned int major_filter_state_subblock; unsigned int major_number_of_subblocks; BestOffset (*cur_best_offset)[NUM_CODEBOOKS]; ChannelParams *cur_channel_params; DecodingParams *cur_decoding_params; RestartHeader *cur_restart_header; AudioFrameQueue afq; /* Analysis stage. */ unsigned int starting_frame_index; unsigned int number_of_frames; unsigned int number_of_samples; unsigned int number_of_subblocks; unsigned int seq_index; ///< Sequence index for high compression levels. ChannelParams *prev_channel_params; DecodingParams *prev_decoding_params; ChannelParams *seq_channel_params; DecodingParams *seq_decoding_params; unsigned int max_codebook_search; LPCContext lpc_ctx; } MLPEncodeContext; static ChannelParams restart_channel_params[MAX_CHANNELS]; static DecodingParams restart_decoding_params[MAX_SUBSTREAMS]; static BestOffset restart_best_offset[NUM_CODEBOOKS] = {{0}}; #define SYNC_MAJOR 0xf8726f #define MAJOR_SYNC_INFO_SIGNATURE 0xB752 #define SYNC_MLP 0xbb #define SYNC_TRUEHD 0xba /* must be set for DVD-A */ #define FLAGS_DVDA 0x4000 /* FIFO delay must be constant */ #define FLAGS_CONST 0x8000 #define SUBSTREAM_INFO_MAX_2_CHAN 0x01 #define SUBSTREAM_INFO_HIGH_RATE 0x02 #define SUBSTREAM_INFO_ALWAYS_SET 0x04 #define SUBSTREAM_INFO_2_SUBSTREAMS 0x08 /**************************************************************************** ************ Functions that copy, clear, or compare parameters ************* ****************************************************************************/ /** Compares two FilterParams structures and returns 1 if anything has * changed. Returns 0 if they are both equal. */ static int compare_filter_params(const ChannelParams *prev_cp, const ChannelParams *cp, int filter) { const FilterParams *prev = &prev_cp->filter_params[filter]; const FilterParams *fp = &cp->filter_params[filter]; int i; if (prev->order != fp->order) return 1; if (!prev->order) return 0; if (prev->shift != fp->shift) return 1; for (i = 0; i < fp->order; i++) if (prev_cp->coeff[filter][i] != cp->coeff[filter][i]) return 1; return 0; } /** Compare two primitive matrices and returns 1 if anything has changed. * Returns 0 if they are both equal. */ static int compare_matrix_params(MLPEncodeContext *ctx, const MatrixParams *prev, const MatrixParams *mp) { RestartHeader *rh = ctx->cur_restart_header; unsigned int channel, mat; if (prev->count != mp->count) return 1; if (!prev->count) return 0; for (channel = rh->min_channel; channel <= rh->max_channel; channel++) if (prev->fbits[channel] != mp->fbits[channel]) return 1; for (mat = 0; mat < mp->count; mat++) { if (prev->outch[mat] != mp->outch[mat]) return 1; for (channel = 0; channel < ctx->num_channels; channel++) if (prev->coeff[mat][channel] != mp->coeff[mat][channel]) return 1; } return 0; } /** Compares two DecodingParams and ChannelParams structures to decide if a * new decoding params header has to be written. */ static int compare_decoding_params(MLPEncodeContext *ctx) { DecodingParams *prev = ctx->prev_decoding_params; DecodingParams *dp = ctx->cur_decoding_params; MatrixParams *prev_mp = &prev->matrix_params; MatrixParams *mp = &dp->matrix_params; RestartHeader *rh = ctx->cur_restart_header; unsigned int ch; int retval = 0; if (prev->param_presence_flags != dp->param_presence_flags) retval |= PARAM_PRESENCE_FLAGS; if (prev->blocksize != dp->blocksize) retval |= PARAM_BLOCKSIZE; if (compare_matrix_params(ctx, prev_mp, mp)) retval |= PARAM_MATRIX; for (ch = 0; ch <= rh->max_matrix_channel; ch++) if (prev_mp->shift[ch] != mp->shift[ch]) { retval |= PARAM_OUTSHIFT; break; } for (ch = 0; ch <= rh->max_channel; ch++) if (prev->quant_step_size[ch] != dp->quant_step_size[ch]) { retval |= PARAM_QUANTSTEP; break; } for (ch = rh->min_channel; ch <= rh->max_channel; ch++) { ChannelParams *prev_cp = &ctx->prev_channel_params[ch]; ChannelParams *cp = &ctx->cur_channel_params[ch]; if (!(retval & PARAM_FIR) && compare_filter_params(prev_cp, cp, FIR)) retval |= PARAM_FIR; if (!(retval & PARAM_IIR) && compare_filter_params(prev_cp, cp, IIR)) retval |= PARAM_IIR; if (prev_cp->huff_offset != cp->huff_offset) retval |= PARAM_HUFFOFFSET; if (prev_cp->codebook != cp->codebook || prev_cp->huff_lsbs != cp->huff_lsbs ) retval |= 0x1; } return retval; } static void copy_filter_params(ChannelParams *dst_cp, ChannelParams *src_cp, int filter) { FilterParams *dst = &dst_cp->filter_params[filter]; FilterParams *src = &src_cp->filter_params[filter]; unsigned int order; dst->order = src->order; if (dst->order) { dst->shift = src->shift; dst->coeff_shift = src->coeff_shift; dst->coeff_bits = src->coeff_bits; } for (order = 0; order < dst->order; order++) dst_cp->coeff[filter][order] = src_cp->coeff[filter][order]; } static void copy_matrix_params(MatrixParams *dst, MatrixParams *src) { dst->count = src->count; if (dst->count) { unsigned int channel, count; for (channel = 0; channel < MAX_CHANNELS; channel++) { dst->fbits[channel] = src->fbits[channel]; dst->shift[channel] = src->shift[channel]; for (count = 0; count < MAX_MATRICES; count++) dst->coeff[count][channel] = src->coeff[count][channel]; } for (count = 0; count < MAX_MATRICES; count++) dst->outch[count] = src->outch[count]; } } static void copy_restart_frame_params(MLPEncodeContext *ctx, unsigned int substr) { unsigned int index; for (index = 0; index < ctx->number_of_subblocks; index++) { DecodingParams *dp = ctx->seq_decoding_params + index*(ctx->num_substreams) + substr; unsigned int channel; copy_matrix_params(&dp->matrix_params, &ctx->cur_decoding_params->matrix_params); for (channel = 0; channel < ctx->avctx->channels; channel++) { ChannelParams *cp = ctx->seq_channel_params + index*(ctx->avctx->channels) + channel; unsigned int filter; dp->quant_step_size[channel] = ctx->cur_decoding_params->quant_step_size[channel]; dp->matrix_params.shift[channel] = ctx->cur_decoding_params->matrix_params.shift[channel]; if (index) for (filter = 0; filter < NUM_FILTERS; filter++) copy_filter_params(cp, &ctx->cur_channel_params[channel], filter); } } } /** Clears a DecodingParams struct the way it should be after a restart header. */ static void clear_decoding_params(MLPEncodeContext *ctx, DecodingParams decoding_params[MAX_SUBSTREAMS]) { unsigned int substr; for (substr = 0; substr < ctx->num_substreams; substr++) { DecodingParams *dp = &decoding_params[substr]; dp->param_presence_flags = 0xff; dp->blocksize = 8; memset(&dp->matrix_params , 0, sizeof(MatrixParams )); memset(dp->quant_step_size, 0, sizeof(dp->quant_step_size)); } } /** Clears a ChannelParams struct the way it should be after a restart header. */ static void clear_channel_params(MLPEncodeContext *ctx, ChannelParams channel_params[MAX_CHANNELS]) { unsigned int channel; for (channel = 0; channel < ctx->avctx->channels; channel++) { ChannelParams *cp = &channel_params[channel]; memset(&cp->filter_params, 0, sizeof(cp->filter_params)); /* Default audio coding is 24-bit raw PCM. */ cp->huff_offset = 0; cp->codebook = 0; cp->huff_lsbs = 24; } } /** Sets default vales in our encoder for a DecodingParams struct. */ static void default_decoding_params(MLPEncodeContext *ctx, DecodingParams decoding_params[MAX_SUBSTREAMS]) { unsigned int substr; clear_decoding_params(ctx, decoding_params); for (substr = 0; substr < ctx->num_substreams; substr++) { DecodingParams *dp = &decoding_params[substr]; uint8_t param_presence_flags = 0; param_presence_flags |= PARAM_BLOCKSIZE; param_presence_flags |= PARAM_MATRIX; param_presence_flags |= PARAM_OUTSHIFT; param_presence_flags |= PARAM_QUANTSTEP; param_presence_flags |= PARAM_FIR; /* param_presence_flags |= PARAM_IIR; */ param_presence_flags |= PARAM_HUFFOFFSET; param_presence_flags |= PARAM_PRESENT; dp->param_presence_flags = param_presence_flags; } } /****************************************************************************/ /** Calculates the smallest number of bits it takes to encode a given signed * value in two's complement. */ static int inline number_sbits(int number) { if (number < -1) number++; return av_log2(FFABS(number)) + 1 + !!number; } enum InputBitDepth { BITS_16, BITS_20, BITS_24, }; static int mlp_peak_bitrate(int peak_bitrate, int sample_rate) { return ((peak_bitrate << 4) - 8) / sample_rate; } static av_cold int mlp_encode_init(AVCodecContext *avctx) { MLPEncodeContext *ctx = avctx->priv_data; unsigned int substr, index; unsigned int sum = 0; unsigned int size; int ret; ctx->avctx = avctx; switch (avctx->sample_rate) { case 44100 << 0: avctx->frame_size = 40 << 0; ctx->coded_sample_rate[0] = 0x08 + 0; ctx->fs = 0x08 + 1; break; case 44100 << 1: avctx->frame_size = 40 << 1; ctx->coded_sample_rate[0] = 0x08 + 1; ctx->fs = 0x0C + 1; break; case 44100 << 2: ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE; avctx->frame_size = 40 << 2; ctx->coded_sample_rate[0] = 0x08 + 2; ctx->fs = 0x10 + 1; break; case 48000 << 0: avctx->frame_size = 40 << 0; ctx->coded_sample_rate[0] = 0x00 + 0; ctx->fs = 0x08 + 2; break; case 48000 << 1: avctx->frame_size = 40 << 1; ctx->coded_sample_rate[0] = 0x00 + 1; ctx->fs = 0x0C + 2; break; case 48000 << 2: ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE; avctx->frame_size = 40 << 2; ctx->coded_sample_rate[0] = 0x00 + 2; ctx->fs = 0x10 + 2; break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d. Supported " "sample rates are 44100, 88200, 176400, 48000, " "96000, and 192000.\n", avctx->sample_rate); return AVERROR(EINVAL); } ctx->coded_sample_rate[1] = -1 & 0xf; /* TODO Keep count of bitrate and calculate real value. */ ctx->coded_peak_bitrate = mlp_peak_bitrate(9600000, avctx->sample_rate); /* TODO support more channels. */ if (avctx->channels > 2) { av_log(avctx, AV_LOG_WARNING, "Only mono and stereo are supported at the moment.\n"); } ctx->substream_info |= SUBSTREAM_INFO_ALWAYS_SET; if (avctx->channels <= 2) { ctx->substream_info |= SUBSTREAM_INFO_MAX_2_CHAN; } switch (avctx->sample_fmt) { case AV_SAMPLE_FMT_S16: ctx->coded_sample_fmt[0] = BITS_16; ctx->wordlength = 16; avctx->bits_per_raw_sample = 16; break; /* TODO 20 bits: */ case AV_SAMPLE_FMT_S32: ctx->coded_sample_fmt[0] = BITS_24; ctx->wordlength = 24; avctx->bits_per_raw_sample = 24; break; default: av_log(avctx, AV_LOG_ERROR, "Sample format not supported. " "Only 16- and 24-bit samples are supported.\n"); return AVERROR(EINVAL); } ctx->coded_sample_fmt[1] = -1 & 0xf; ctx->dts = -avctx->frame_size; ctx->num_channels = avctx->channels + 2; /* +2 noise channels */ ctx->one_sample_buffer_size = avctx->frame_size * ctx->num_channels; /* TODO Let user pass major header interval as parameter. */ ctx->max_restart_interval = MAJOR_HEADER_INTERVAL; ctx->max_codebook_search = 3; ctx->min_restart_interval = MAJOR_HEADER_INTERVAL; ctx->restart_intervals = ctx->max_restart_interval / ctx->min_restart_interval; /* TODO Let user pass parameters for LPC filter. */ size = avctx->frame_size * ctx->max_restart_interval; ctx->lpc_sample_buffer = av_malloc_array(size, sizeof(int32_t)); if (!ctx->lpc_sample_buffer) { av_log(avctx, AV_LOG_ERROR, "Not enough memory for buffering samples.\n"); return AVERROR(ENOMEM); } size = ctx->one_sample_buffer_size * ctx->max_restart_interval; ctx->major_scratch_buffer = av_malloc_array(size, sizeof(int32_t)); if (!ctx->major_scratch_buffer) { av_log(avctx, AV_LOG_ERROR, "Not enough memory for buffering samples.\n"); return AVERROR(ENOMEM); } ctx->major_inout_buffer = av_malloc_array(size, sizeof(int32_t)); if (!ctx->major_inout_buffer) { av_log(avctx, AV_LOG_ERROR, "Not enough memory for buffering samples.\n"); return AVERROR(ENOMEM); } ff_mlp_init_crc(); ctx->num_substreams = 1; // TODO: change this after adding multi-channel support for TrueHD if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) { /* MLP */ switch(avctx->channel_layout) { case AV_CH_LAYOUT_MONO: ctx->channel_arrangement = 0; break; case AV_CH_LAYOUT_STEREO: ctx->channel_arrangement = 1; break; case AV_CH_LAYOUT_2_1: ctx->channel_arrangement = 2; break; case AV_CH_LAYOUT_QUAD: ctx->channel_arrangement = 3; break; case AV_CH_LAYOUT_2POINT1: ctx->channel_arrangement = 4; break; case AV_CH_LAYOUT_SURROUND: ctx->channel_arrangement = 7; break; case AV_CH_LAYOUT_4POINT0: ctx->channel_arrangement = 8; break; case AV_CH_LAYOUT_5POINT0_BACK: ctx->channel_arrangement = 9; break; case AV_CH_LAYOUT_3POINT1: ctx->channel_arrangement = 10; break; case AV_CH_LAYOUT_4POINT1: ctx->channel_arrangement = 11; break; case AV_CH_LAYOUT_5POINT1_BACK: ctx->channel_arrangement = 12; break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported channel arrangement\n"); return AVERROR(EINVAL); } ctx->flags = FLAGS_DVDA; ctx->channel_occupancy = ff_mlp_ch_info[ctx->channel_arrangement].channel_occupancy; ctx->summary_info = ff_mlp_ch_info[ctx->channel_arrangement].summary_info ; } else { /* TrueHD */ switch(avctx->channel_layout) { case AV_CH_LAYOUT_STEREO: ctx->ch_modifier_thd0 = 0; ctx->ch_modifier_thd1 = 0; ctx->ch_modifier_thd2 = 0; ctx->channel_arrangement = 1; break; case AV_CH_LAYOUT_5POINT0_BACK: ctx->ch_modifier_thd0 = 1; ctx->ch_modifier_thd1 = 1; ctx->ch_modifier_thd2 = 1; ctx->channel_arrangement = 11; break; case AV_CH_LAYOUT_5POINT1_BACK: ctx->ch_modifier_thd0 = 2; ctx->ch_modifier_thd1 = 1; ctx->ch_modifier_thd2 = 2; ctx->channel_arrangement = 15; break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported channel arrangement\n"); return AVERROR(EINVAL); } ctx->flags = 0; ctx->channel_occupancy = 0; ctx->summary_info = 0; } size = sizeof(unsigned int) * ctx->max_restart_interval; ctx->frame_size = av_malloc(size); if (!ctx->frame_size) return AVERROR(ENOMEM); ctx->max_output_bits = av_malloc(size); if (!ctx->max_output_bits) return AVERROR(ENOMEM); size = sizeof(int32_t) * ctx->num_substreams * ctx->max_restart_interval; ctx->lossless_check_data = av_malloc(size); if (!ctx->lossless_check_data) return AVERROR(ENOMEM); for (index = 0; index < ctx->restart_intervals; index++) { ctx->seq_offset[index] = sum; ctx->seq_size [index] = ((index + 1) * ctx->min_restart_interval) + 1; sum += ctx->seq_size[index]; } ctx->sequence_size = sum; size = sizeof(ChannelParams) * ctx->restart_intervals * ctx->sequence_size * ctx->avctx->channels; ctx->channel_params = av_malloc(size); if (!ctx->channel_params) { av_log(avctx, AV_LOG_ERROR, "Not enough memory for analysis context.\n"); return AVERROR(ENOMEM); } size = sizeof(DecodingParams) * ctx->restart_intervals * ctx->sequence_size * ctx->num_substreams; ctx->decoding_params = av_malloc(size); if (!ctx->decoding_params) { av_log(avctx, AV_LOG_ERROR, "Not enough memory for analysis context.\n"); return AVERROR(ENOMEM); } for (substr = 0; substr < ctx->num_substreams; substr++) { RestartHeader *rh = &ctx->restart_header [substr]; /* TODO see if noisegen_seed is really worth it. */ rh->noisegen_seed = 0; rh->min_channel = 0; rh->max_channel = avctx->channels - 1; /* FIXME: this works for 1 and 2 channels, but check for more */ rh->max_matrix_channel = rh->max_channel; } clear_channel_params(ctx, restart_channel_params); clear_decoding_params(ctx, restart_decoding_params); if ((ret = ff_lpc_init(&ctx->lpc_ctx, ctx->number_of_samples, MLP_MAX_LPC_ORDER, FF_LPC_TYPE_LEVINSON)) < 0) { av_log(avctx, AV_LOG_ERROR, "Not enough memory for LPC context.\n"); return ret; } ff_af_queue_init(avctx, &ctx->afq); return 0; } /**************************************************************************** ****************** Functions that write to the bitstream ******************* ****************************************************************************/ /** Writes a major sync header to the bitstream. */ static void write_major_sync(MLPEncodeContext *ctx, uint8_t *buf, int buf_size) { PutBitContext pb; init_put_bits(&pb, buf, buf_size); put_bits(&pb, 24, SYNC_MAJOR ); if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) { put_bits(&pb, 8, SYNC_MLP ); put_bits(&pb, 4, ctx->coded_sample_fmt [0]); put_bits(&pb, 4, ctx->coded_sample_fmt [1]); put_bits(&pb, 4, ctx->coded_sample_rate[0]); put_bits(&pb, 4, ctx->coded_sample_rate[1]); put_bits(&pb, 4, 0 ); /* ignored */ put_bits(&pb, 4, 0 ); /* multi_channel_type */ put_bits(&pb, 3, 0 ); /* ignored */ put_bits(&pb, 5, ctx->channel_arrangement ); } else if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) { put_bits(&pb, 8, SYNC_TRUEHD ); put_bits(&pb, 4, ctx->coded_sample_rate[0]); put_bits(&pb, 4, 0 ); /* ignored */ put_bits(&pb, 2, ctx->ch_modifier_thd0 ); put_bits(&pb, 2, ctx->ch_modifier_thd1 ); put_bits(&pb, 5, ctx->channel_arrangement ); put_bits(&pb, 2, ctx->ch_modifier_thd2 ); put_bits(&pb, 13, ctx->channel_arrangement ); } put_bits(&pb, 16, MAJOR_SYNC_INFO_SIGNATURE); put_bits(&pb, 16, ctx->flags ); put_bits(&pb, 16, 0 ); /* ignored */ put_bits(&pb, 1, 1 ); /* is_vbr */ put_bits(&pb, 15, ctx->coded_peak_bitrate ); put_bits(&pb, 4, 1 ); /* num_substreams */ put_bits(&pb, 4, 0x1 ); /* ignored */ /* channel_meaning */ put_bits(&pb, 8, ctx->substream_info ); put_bits(&pb, 5, ctx->fs ); put_bits(&pb, 5, ctx->wordlength ); put_bits(&pb, 6, ctx->channel_occupancy ); put_bits(&pb, 3, 0 ); /* ignored */ put_bits(&pb, 10, 0 ); /* speaker_layout */ put_bits(&pb, 3, 0 ); /* copy_protection */ put_bits(&pb, 16, 0x8080 ); /* ignored */ put_bits(&pb, 7, 0 ); /* ignored */ put_bits(&pb, 4, 0 ); /* source_format */ put_bits(&pb, 5, ctx->summary_info ); flush_put_bits(&pb); AV_WL16(buf+26, ff_mlp_checksum16(buf, 26)); } /** Writes a restart header to the bitstream. Damaged streams can start being * decoded losslessly again after such a header and the subsequent decoding * params header. */ static void write_restart_header(MLPEncodeContext *ctx, PutBitContext *pb) { RestartHeader *rh = ctx->cur_restart_header; uint8_t lossless_check = xor_32_to_8(rh->lossless_check_data); unsigned int start_count = put_bits_count(pb); PutBitContext tmpb; uint8_t checksum; unsigned int ch; put_bits(pb, 14, 0x31ea ); /* TODO 0x31eb */ put_bits(pb, 16, ctx->timestamp ); put_bits(pb, 4, rh->min_channel ); put_bits(pb, 4, rh->max_channel ); put_bits(pb, 4, rh->max_matrix_channel); put_bits(pb, 4, rh->noise_shift ); put_bits(pb, 23, rh->noisegen_seed ); put_bits(pb, 4, 0 ); /* TODO max_shift */ put_bits(pb, 5, rh->max_huff_lsbs ); put_bits(pb, 5, rh->max_output_bits ); put_bits(pb, 5, rh->max_output_bits ); put_bits(pb, 1, rh->data_check_present); put_bits(pb, 8, lossless_check ); put_bits(pb, 16, 0 ); /* ignored */ for (ch = 0; ch <= rh->max_matrix_channel; ch++) put_bits(pb, 6, ch); /* Data must be flushed for the checksum to be correct. */ tmpb = *pb; flush_put_bits(&tmpb); checksum = ff_mlp_restart_checksum(pb->buf, put_bits_count(pb) - start_count); put_bits(pb, 8, checksum); } /** Writes matrix params for all primitive matrices to the bitstream. */ static void write_matrix_params(MLPEncodeContext *ctx, PutBitContext *pb) { DecodingParams *dp = ctx->cur_decoding_params; MatrixParams *mp = &dp->matrix_params; unsigned int mat; put_bits(pb, 4, mp->count); for (mat = 0; mat < mp->count; mat++) { unsigned int channel; put_bits(pb, 4, mp->outch[mat]); /* matrix_out_ch */ put_bits(pb, 4, mp->fbits[mat]); put_bits(pb, 1, 0 ); /* lsb_bypass */ for (channel = 0; channel < ctx->num_channels; channel++) { int32_t coeff = mp->coeff[mat][channel]; if (coeff) { put_bits(pb, 1, 1); coeff >>= 14 - mp->fbits[mat]; put_sbits(pb, mp->fbits[mat] + 2, coeff); } else { put_bits(pb, 1, 0); } } } } /** Writes filter parameters for one filter to the bitstream. */ static void write_filter_params(MLPEncodeContext *ctx, PutBitContext *pb, unsigned int channel, unsigned int filter) { FilterParams *fp = &ctx->cur_channel_params[channel].filter_params[filter]; put_bits(pb, 4, fp->order); if (fp->order > 0) { int i; int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter]; put_bits(pb, 4, fp->shift ); put_bits(pb, 5, fp->coeff_bits ); put_bits(pb, 3, fp->coeff_shift); for (i = 0; i < fp->order; i++) { put_sbits(pb, fp->coeff_bits, fcoeff[i] >> fp->coeff_shift); } /* TODO state data for IIR filter. */ put_bits(pb, 1, 0); } } /** Writes decoding parameters to the bitstream. These change very often, * usually at almost every frame. */ static void write_decoding_params(MLPEncodeContext *ctx, PutBitContext *pb, int params_changed) { DecodingParams *dp = ctx->cur_decoding_params; RestartHeader *rh = ctx->cur_restart_header; MatrixParams *mp = &dp->matrix_params; unsigned int ch; if (dp->param_presence_flags != PARAMS_DEFAULT && params_changed & PARAM_PRESENCE_FLAGS) { put_bits(pb, 1, 1); put_bits(pb, 8, dp->param_presence_flags); } else { put_bits(pb, 1, 0); } if (dp->param_presence_flags & PARAM_BLOCKSIZE) { if (params_changed & PARAM_BLOCKSIZE) { put_bits(pb, 1, 1); put_bits(pb, 9, dp->blocksize); } else { put_bits(pb, 1, 0); } } if (dp->param_presence_flags & PARAM_MATRIX) { if (params_changed & PARAM_MATRIX) { put_bits(pb, 1, 1); write_matrix_params(ctx, pb); } else { put_bits(pb, 1, 0); } } if (dp->param_presence_flags & PARAM_OUTSHIFT) { if (params_changed & PARAM_OUTSHIFT) { put_bits(pb, 1, 1); for (ch = 0; ch <= rh->max_matrix_channel; ch++) put_sbits(pb, 4, mp->shift[ch]); } else { put_bits(pb, 1, 0); } } if (dp->param_presence_flags & PARAM_QUANTSTEP) { if (params_changed & PARAM_QUANTSTEP) { put_bits(pb, 1, 1); for (ch = 0; ch <= rh->max_channel; ch++) put_bits(pb, 4, dp->quant_step_size[ch]); } else { put_bits(pb, 1, 0); } } for (ch = rh->min_channel; ch <= rh->max_channel; ch++) { ChannelParams *cp = &ctx->cur_channel_params[ch]; if (dp->param_presence_flags & 0xF) { put_bits(pb, 1, 1); if (dp->param_presence_flags & PARAM_FIR) { if (params_changed & PARAM_FIR) { put_bits(pb, 1, 1); write_filter_params(ctx, pb, ch, FIR); } else { put_bits(pb, 1, 0); } } if (dp->param_presence_flags & PARAM_IIR) { if (params_changed & PARAM_IIR) { put_bits(pb, 1, 1); write_filter_params(ctx, pb, ch, IIR); } else { put_bits(pb, 1, 0); } } if (dp->param_presence_flags & PARAM_HUFFOFFSET) { if (params_changed & PARAM_HUFFOFFSET) { put_bits (pb, 1, 1); put_sbits(pb, 15, cp->huff_offset); } else { put_bits(pb, 1, 0); } } if (cp->codebook > 0 && cp->huff_lsbs > 24) { av_log(ctx->avctx, AV_LOG_ERROR, "Invalid Huff LSBs\n"); } put_bits(pb, 2, cp->codebook ); put_bits(pb, 5, cp->huff_lsbs); } else { put_bits(pb, 1, 0); } } } /** Writes the residuals to the bitstream. That is, the VLC codes from the * codebooks (if any is used), and then the residual. */ static void write_block_data(MLPEncodeContext *ctx, PutBitContext *pb) { DecodingParams *dp = ctx->cur_decoding_params; RestartHeader *rh = ctx->cur_restart_header; int32_t *sample_buffer = ctx->write_buffer; int32_t sign_huff_offset[MAX_CHANNELS]; int codebook_index [MAX_CHANNELS]; int lsb_bits [MAX_CHANNELS]; unsigned int i, ch; for (ch = rh->min_channel; ch <= rh->max_channel; ch++) { ChannelParams *cp = &ctx->cur_channel_params[ch]; int sign_shift; lsb_bits [ch] = cp->huff_lsbs - dp->quant_step_size[ch]; codebook_index [ch] = cp->codebook - 1; sign_huff_offset[ch] = cp->huff_offset; sign_shift = lsb_bits[ch] + (cp->codebook ? 2 - cp->codebook : -1); if (cp->codebook > 0) sign_huff_offset[ch] -= 7 << lsb_bits[ch]; /* Unsign if needed. */ if (sign_shift >= 0) sign_huff_offset[ch] -= 1 << sign_shift; } for (i = 0; i < dp->blocksize; i++) { for (ch = rh->min_channel; ch <= rh->max_channel; ch++) { int32_t sample = *sample_buffer++ >> dp->quant_step_size[ch]; sample -= sign_huff_offset[ch]; if (codebook_index[ch] >= 0) { int vlc = sample >> lsb_bits[ch]; put_bits(pb, ff_mlp_huffman_tables[codebook_index[ch]][vlc][1], ff_mlp_huffman_tables[codebook_index[ch]][vlc][0]); } put_sbits(pb, lsb_bits[ch], sample); } sample_buffer += 2; /* noise channels */ } ctx->write_buffer = sample_buffer; } /** Writes the substreams data to the bitstream. */ static uint8_t *write_substrs(MLPEncodeContext *ctx, uint8_t *buf, int buf_size, int restart_frame, uint16_t substream_data_len[MAX_SUBSTREAMS]) { int32_t *lossless_check_data = ctx->lossless_check_data; unsigned int substr; int end = 0; lossless_check_data += ctx->frame_index * ctx->num_substreams; for (substr = 0; substr < ctx->num_substreams; substr++) { unsigned int cur_subblock_index = ctx->major_cur_subblock_index; unsigned int num_subblocks = ctx->major_filter_state_subblock; unsigned int subblock; RestartHeader *rh = &ctx->restart_header [substr]; int substr_restart_frame = restart_frame; uint8_t parity, checksum; PutBitContext pb; int params_changed; ctx->cur_restart_header = rh; init_put_bits(&pb, buf, buf_size); for (subblock = 0; subblock <= num_subblocks; subblock++) { unsigned int subblock_index; subblock_index = cur_subblock_index++; ctx->cur_decoding_params = &ctx->major_decoding_params[subblock_index][substr]; ctx->cur_channel_params = ctx->major_channel_params[subblock_index]; params_changed = ctx->major_params_changed[subblock_index][substr]; if (substr_restart_frame || params_changed) { put_bits(&pb, 1, 1); if (substr_restart_frame) { put_bits(&pb, 1, 1); write_restart_header(ctx, &pb); rh->lossless_check_data = 0; } else { put_bits(&pb, 1, 0); } write_decoding_params(ctx, &pb, params_changed); } else { put_bits(&pb, 1, 0); } write_block_data(ctx, &pb); put_bits(&pb, 1, !substr_restart_frame); substr_restart_frame = 0; } put_bits(&pb, (-put_bits_count(&pb)) & 15, 0); rh->lossless_check_data ^= *lossless_check_data++; if (ctx->last_frame == ctx->inout_buffer) { /* TODO find a sample and implement shorten_by. */ put_bits(&pb, 32, END_OF_STREAM); } /* Data must be flushed for the checksum and parity to be correct; * notice that we already are word-aligned here. */ flush_put_bits(&pb); parity = ff_mlp_calculate_parity(buf, put_bits_count(&pb) >> 3) ^ 0xa9; checksum = ff_mlp_checksum8 (buf, put_bits_count(&pb) >> 3); put_bits(&pb, 8, parity ); put_bits(&pb, 8, checksum); flush_put_bits(&pb); end += put_bits_count(&pb) >> 3; substream_data_len[substr] = end; buf += put_bits_count(&pb) >> 3; } ctx->major_cur_subblock_index += ctx->major_filter_state_subblock + 1; ctx->major_filter_state_subblock = 0; return buf; } /** Writes the access unit and substream headers to the bitstream. */ static void write_frame_headers(MLPEncodeContext *ctx, uint8_t *frame_header, uint8_t *substream_headers, unsigned int length, int restart_frame, uint16_t substream_data_len[MAX_SUBSTREAMS]) { uint16_t access_unit_header = 0; uint16_t parity_nibble = 0; unsigned int substr; parity_nibble = ctx->dts; parity_nibble ^= length; for (substr = 0; substr < ctx->num_substreams; substr++) { uint16_t substr_hdr = 0; substr_hdr |= (0 << 15); /* extraword */ substr_hdr |= (!restart_frame << 14); /* !restart_frame */ substr_hdr |= (1 << 13); /* checkdata */ substr_hdr |= (0 << 12); /* ??? */ substr_hdr |= (substream_data_len[substr] / 2) & 0x0FFF; AV_WB16(substream_headers, substr_hdr); parity_nibble ^= *substream_headers++; parity_nibble ^= *substream_headers++; } parity_nibble ^= parity_nibble >> 8; parity_nibble ^= parity_nibble >> 4; parity_nibble &= 0xF; access_unit_header |= (parity_nibble ^ 0xF) << 12; access_unit_header |= length & 0xFFF; AV_WB16(frame_header , access_unit_header); AV_WB16(frame_header+2, ctx->dts ); } /** Writes an entire access unit to the bitstream. */ static unsigned int write_access_unit(MLPEncodeContext *ctx, uint8_t *buf, int buf_size, int restart_frame) { uint16_t substream_data_len[MAX_SUBSTREAMS]; uint8_t *buf1, *buf0 = buf; unsigned int substr; int total_length; if (buf_size < 4) return AVERROR(EINVAL); /* Frame header will be written at the end. */ buf += 4; buf_size -= 4; if (restart_frame) { if (buf_size < 28) return AVERROR(EINVAL); write_major_sync(ctx, buf, buf_size); buf += 28; buf_size -= 28; } buf1 = buf; /* Substream headers will be written at the end. */ for (substr = 0; substr < ctx->num_substreams; substr++) { buf += 2; buf_size -= 2; } buf = write_substrs(ctx, buf, buf_size, restart_frame, substream_data_len); total_length = buf - buf0; write_frame_headers(ctx, buf0, buf1, total_length / 2, restart_frame, substream_data_len); return total_length; } /**************************************************************************** ****************** Functions that input data to context ******************** ****************************************************************************/ /** Inputs data from the samples passed by lavc into the context, shifts them * appropriately depending on the bit-depth, and calculates the * lossless_check_data that will be written to the restart header. */ static void input_data_internal(MLPEncodeContext *ctx, const uint8_t *samples, int is24) { int32_t *lossless_check_data = ctx->lossless_check_data; const int32_t *samples_32 = (const int32_t *) samples; const int16_t *samples_16 = (const int16_t *) samples; unsigned int substr; lossless_check_data += ctx->frame_index * ctx->num_substreams; for (substr = 0; substr < ctx->num_substreams; substr++) { RestartHeader *rh = &ctx->restart_header [substr]; int32_t *sample_buffer = ctx->inout_buffer; int32_t temp_lossless_check_data = 0; uint32_t greatest = 0; unsigned int channel; int i; for (i = 0; i < ctx->frame_size[ctx->frame_index]; i++) { for (channel = 0; channel <= rh->max_channel; channel++) { uint32_t abs_sample; int32_t sample; sample = is24 ? *samples_32++ >> 8 : *samples_16++ * 256; /* TODO Find out if number_sbits can be used for negative values. */ abs_sample = FFABS(sample); if (greatest < abs_sample) greatest = abs_sample; temp_lossless_check_data ^= (sample & 0x00ffffff) << channel; *sample_buffer++ = sample; } sample_buffer += 2; /* noise channels */ } ctx->max_output_bits[ctx->frame_index] = number_sbits(greatest); *lossless_check_data++ = temp_lossless_check_data; } } /** Wrapper function for inputting data in two different bit-depths. */ static void input_data(MLPEncodeContext *ctx, void *samples) { if (ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S32) input_data_internal(ctx, samples, 1); else input_data_internal(ctx, samples, 0); } static void input_to_sample_buffer(MLPEncodeContext *ctx) { int32_t *sample_buffer = ctx->sample_buffer; unsigned int index; for (index = 0; index < ctx->number_of_frames; index++) { unsigned int cur_index = (ctx->starting_frame_index + index) % ctx->max_restart_interval; int32_t *input_buffer = ctx->inout_buffer + cur_index * ctx->one_sample_buffer_size; unsigned int i, channel; for (i = 0; i < ctx->frame_size[cur_index]; i++) { for (channel = 0; channel < ctx->avctx->channels; channel++) *sample_buffer++ = *input_buffer++; sample_buffer += 2; /* noise_channels */ input_buffer += 2; /* noise_channels */ } } } /**************************************************************************** ********* Functions that analyze the data and set the parameters *********** ****************************************************************************/ /** Counts the number of trailing zeroes in a value */ static int number_trailing_zeroes(int32_t sample) { int bits; for (bits = 0; bits < 24 && !(sample & (1<cur_decoding_params; RestartHeader *rh = ctx->cur_restart_header; MatrixParams *mp = &dp->matrix_params; int32_t *sample_buffer = ctx->sample_buffer; int32_t sample_mask[MAX_CHANNELS]; unsigned int channel; int i; memset(sample_mask, 0x00, sizeof(sample_mask)); for (i = 0; i < ctx->number_of_samples; i++) { for (channel = 0; channel <= rh->max_channel; channel++) sample_mask[channel] |= *sample_buffer++; sample_buffer += 2; /* noise channels */ } for (channel = 0; channel <= rh->max_channel; channel++) dp->quant_step_size[channel] = number_trailing_zeroes(sample_mask[channel]) - mp->shift[channel]; } /** Determines the smallest number of bits needed to encode the filter * coefficients, and if it's possible to right-shift their values without * losing any precision. */ static void code_filter_coeffs(MLPEncodeContext *ctx, FilterParams *fp, int32_t *fcoeff) { int min = INT_MAX, max = INT_MIN; int bits, shift; int coeff_mask = 0; int order; for (order = 0; order < fp->order; order++) { int coeff = fcoeff[order]; if (coeff < min) min = coeff; if (coeff > max) max = coeff; coeff_mask |= coeff; } bits = FFMAX(number_sbits(min), number_sbits(max)); for (shift = 0; shift < 7 && bits + shift < 16 && !(coeff_mask & (1<coeff_bits = bits; fp->coeff_shift = shift; } /** Determines the best filter parameters for the given data and writes the * necessary information to the context. * TODO Add IIR filter predictor! */ static void set_filter_params(MLPEncodeContext *ctx, unsigned int channel, unsigned int filter, int clear_filter) { ChannelParams *cp = &ctx->cur_channel_params[channel]; FilterParams *fp = &cp->filter_params[filter]; if ((filter == IIR && ctx->substream_info & SUBSTREAM_INFO_HIGH_RATE) || clear_filter) { fp->order = 0; } else if (filter == IIR) { fp->order = 0; } else if (filter == FIR) { const int max_order = (ctx->substream_info & SUBSTREAM_INFO_HIGH_RATE) ? 4 : MLP_MAX_LPC_ORDER; int32_t *sample_buffer = ctx->sample_buffer + channel; int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER]; int32_t *lpc_samples = ctx->lpc_sample_buffer; int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter]; int shift[MLP_MAX_LPC_ORDER]; unsigned int i; int order; for (i = 0; i < ctx->number_of_samples; i++) { *lpc_samples++ = *sample_buffer; sample_buffer += ctx->num_channels; } order = ff_lpc_calc_coefs(&ctx->lpc_ctx, ctx->lpc_sample_buffer, ctx->number_of_samples, MLP_MIN_LPC_ORDER, max_order, 11, coefs, shift, FF_LPC_TYPE_LEVINSON, 0, ORDER_METHOD_EST, MLP_MIN_LPC_SHIFT, MLP_MAX_LPC_SHIFT, MLP_MIN_LPC_SHIFT); fp->order = order; fp->shift = shift[order-1]; for (i = 0; i < order; i++) fcoeff[i] = coefs[order-1][i]; code_filter_coeffs(ctx, fp, fcoeff); } } /** Tries to determine a good prediction filter, and applies it to the samples * buffer if the filter is good enough. Sets the filter data to be cleared if * no good filter was found. */ static void determine_filters(MLPEncodeContext *ctx) { RestartHeader *rh = ctx->cur_restart_header; int channel, filter; for (channel = rh->min_channel; channel <= rh->max_channel; channel++) { for (filter = 0; filter < NUM_FILTERS; filter++) set_filter_params(ctx, channel, filter, 0); } } enum MLPChMode { MLP_CHMODE_LEFT_RIGHT, MLP_CHMODE_LEFT_SIDE, MLP_CHMODE_RIGHT_SIDE, MLP_CHMODE_MID_SIDE, }; static enum MLPChMode estimate_stereo_mode(MLPEncodeContext *ctx) { uint64_t score[4], sum[4] = { 0, 0, 0, 0, }; int32_t *right_ch = ctx->sample_buffer + 1; int32_t *left_ch = ctx->sample_buffer; int i; enum MLPChMode best = 0; for(i = 2; i < ctx->number_of_samples; i++) { int32_t left = left_ch [i * ctx->num_channels] - 2 * left_ch [(i - 1) * ctx->num_channels] + left_ch [(i - 2) * ctx->num_channels]; int32_t right = right_ch[i * ctx->num_channels] - 2 * right_ch[(i - 1) * ctx->num_channels] + right_ch[(i - 2) * ctx->num_channels]; sum[0] += FFABS( left ); sum[1] += FFABS( right); sum[2] += FFABS((left + right) >> 1); sum[3] += FFABS( left - right); } score[MLP_CHMODE_LEFT_RIGHT] = sum[0] + sum[1]; score[MLP_CHMODE_LEFT_SIDE] = sum[0] + sum[3]; score[MLP_CHMODE_RIGHT_SIDE] = sum[1] + sum[3]; score[MLP_CHMODE_MID_SIDE] = sum[2] + sum[3]; for(i = 1; i < 3; i++) if(score[i] < score[best]) best = i; return best; } /** Determines how many fractional bits are needed to encode matrix * coefficients. Also shifts the coefficients to fit within 2.14 bits. */ static void code_matrix_coeffs(MLPEncodeContext *ctx, unsigned int mat) { DecodingParams *dp = ctx->cur_decoding_params; MatrixParams *mp = &dp->matrix_params; int32_t coeff_mask = 0; unsigned int channel; unsigned int bits; for (channel = 0; channel < ctx->num_channels; channel++) { int32_t coeff = mp->coeff[mat][channel]; coeff_mask |= coeff; } for (bits = 0; bits < 14 && !(coeff_mask & (1<fbits [mat] = 14 - bits; } /** Determines best coefficients to use for the lossless matrix. */ static void lossless_matrix_coeffs(MLPEncodeContext *ctx) { DecodingParams *dp = ctx->cur_decoding_params; MatrixParams *mp = &dp->matrix_params; unsigned int shift = 0; unsigned int channel; int mat; enum MLPChMode mode; /* No decorrelation for non-stereo. */ if (ctx->num_channels - 2 != 2) { mp->count = 0; return; } mode = estimate_stereo_mode(ctx); switch(mode) { /* TODO: add matrix for MID_SIDE */ case MLP_CHMODE_MID_SIDE: case MLP_CHMODE_LEFT_RIGHT: mp->count = 0; break; case MLP_CHMODE_LEFT_SIDE: mp->count = 1; mp->outch[0] = 1; mp->coeff[0][0] = 1 << 14; mp->coeff[0][1] = -(1 << 14); mp->coeff[0][2] = 0 << 14; mp->coeff[0][2] = 0 << 14; mp->forco[0][0] = 1 << 14; mp->forco[0][1] = -(1 << 14); mp->forco[0][2] = 0 << 14; mp->forco[0][2] = 0 << 14; break; case MLP_CHMODE_RIGHT_SIDE: mp->count = 1; mp->outch[0] = 0; mp->coeff[0][0] = 1 << 14; mp->coeff[0][1] = 1 << 14; mp->coeff[0][2] = 0 << 14; mp->coeff[0][2] = 0 << 14; mp->forco[0][0] = 1 << 14; mp->forco[0][1] = -(1 << 14); mp->forco[0][2] = 0 << 14; mp->forco[0][2] = 0 << 14; break; } for (mat = 0; mat < mp->count; mat++) code_matrix_coeffs(ctx, mat); for (channel = 0; channel < ctx->num_channels; channel++) mp->shift[channel] = shift; } /** Min and max values that can be encoded with each codebook. The values for * the third codebook take into account the fact that the sign shift for this * codebook is outside the coded value, so it has one more bit of precision. * It should actually be -7 -> 7, shifted down by 0.5. */ static const int codebook_extremes[3][2] = { {-9, 8}, {-8, 7}, {-15, 14}, }; /** Determines the amount of bits needed to encode the samples using no * codebooks and a specified offset. */ static void no_codebook_bits_offset(MLPEncodeContext *ctx, unsigned int channel, int16_t offset, int32_t min, int32_t max, BestOffset *bo) { DecodingParams *dp = ctx->cur_decoding_params; int32_t unsign = 0; int lsb_bits; min -= offset; max -= offset; lsb_bits = FFMAX(number_sbits(min), number_sbits(max)) - 1; lsb_bits += !!lsb_bits; if (lsb_bits > 0) unsign = 1 << (lsb_bits - 1); bo->offset = offset; bo->lsb_bits = lsb_bits; bo->bitcount = lsb_bits * dp->blocksize; bo->min = offset - unsign + 1; bo->max = offset + unsign; } /** Determines the least amount of bits needed to encode the samples using no * codebooks. */ static void no_codebook_bits(MLPEncodeContext *ctx, unsigned int channel, int32_t min, int32_t max, BestOffset *bo) { DecodingParams *dp = ctx->cur_decoding_params; int16_t offset; int32_t unsign = 0; uint32_t diff; int lsb_bits; /* Set offset inside huffoffset's boundaries by adjusting extremes * so that more bits are used, thus shifting the offset. */ if (min < HUFF_OFFSET_MIN) max = FFMAX(max, 2 * HUFF_OFFSET_MIN - min + 1); if (max > HUFF_OFFSET_MAX) min = FFMIN(min, 2 * HUFF_OFFSET_MAX - max - 1); /* Determine offset and minimum number of bits. */ diff = max - min; lsb_bits = number_sbits(diff) - 1; if (lsb_bits > 0) unsign = 1 << (lsb_bits - 1); /* If all samples are the same (lsb_bits == 0), offset must be * adjusted because of sign_shift. */ offset = min + diff / 2 + !!lsb_bits; bo->offset = offset; bo->lsb_bits = lsb_bits; bo->bitcount = lsb_bits * dp->blocksize; bo->min = max - unsign + 1; bo->max = min + unsign; } /** Determines the least amount of bits needed to encode the samples using a * given codebook and a given offset. */ static inline void codebook_bits_offset(MLPEncodeContext *ctx, unsigned int channel, int codebook, int32_t sample_min, int32_t sample_max, int16_t offset, BestOffset *bo) { int32_t codebook_min = codebook_extremes[codebook][0]; int32_t codebook_max = codebook_extremes[codebook][1]; int32_t *sample_buffer = ctx->sample_buffer + channel; DecodingParams *dp = ctx->cur_decoding_params; int codebook_offset = 7 + (2 - codebook); int32_t unsign_offset = offset; int lsb_bits = 0, bitcount = 0; int offset_min = INT_MAX, offset_max = INT_MAX; int unsign, mask; int i; sample_min -= offset; sample_max -= offset; while (sample_min < codebook_min || sample_max > codebook_max) { lsb_bits++; sample_min >>= 1; sample_max >>= 1; } unsign = 1 << lsb_bits; mask = unsign - 1; if (codebook == 2) { unsign_offset -= unsign; lsb_bits++; } for (i = 0; i < dp->blocksize; i++) { int32_t sample = *sample_buffer >> dp->quant_step_size[channel]; int temp_min, temp_max; sample -= unsign_offset; temp_min = sample & mask; if (temp_min < offset_min) offset_min = temp_min; temp_max = unsign - temp_min - 1; if (temp_max < offset_max) offset_max = temp_max; sample >>= lsb_bits; bitcount += ff_mlp_huffman_tables[codebook][sample + codebook_offset][1]; sample_buffer += ctx->num_channels; } bo->offset = offset; bo->lsb_bits = lsb_bits; bo->bitcount = lsb_bits * dp->blocksize + bitcount; bo->min = FFMAX(offset - offset_min, HUFF_OFFSET_MIN); bo->max = FFMIN(offset + offset_max, HUFF_OFFSET_MAX); } /** Determines the least amount of bits needed to encode the samples using a * given codebook. Searches for the best offset to minimize the bits. */ static inline void codebook_bits(MLPEncodeContext *ctx, unsigned int channel, int codebook, int offset, int32_t min, int32_t max, BestOffset *bo, int direction) { int previous_count = INT_MAX; int offset_min, offset_max; int is_greater = 0; offset_min = FFMAX(min, HUFF_OFFSET_MIN); offset_max = FFMIN(max, HUFF_OFFSET_MAX); while (offset <= offset_max && offset >= offset_min) { BestOffset temp_bo; codebook_bits_offset(ctx, channel, codebook, min, max, offset, &temp_bo); if (temp_bo.bitcount < previous_count) { if (temp_bo.bitcount < bo->bitcount) *bo = temp_bo; is_greater = 0; } else if (++is_greater >= ctx->max_codebook_search) break; previous_count = temp_bo.bitcount; if (direction) { offset = temp_bo.max + 1; } else { offset = temp_bo.min - 1; } } } /** Determines the least amount of bits needed to encode the samples using * any or no codebook. */ static void determine_bits(MLPEncodeContext *ctx) { DecodingParams *dp = ctx->cur_decoding_params; RestartHeader *rh = ctx->cur_restart_header; unsigned int channel; for (channel = 0; channel <= rh->max_channel; channel++) { ChannelParams *cp = &ctx->cur_channel_params[channel]; int32_t *sample_buffer = ctx->sample_buffer + channel; int32_t min = INT32_MAX, max = INT32_MIN; int no_filters_used = !cp->filter_params[FIR].order; int average = 0; int offset = 0; int i; /* Determine extremes and average. */ for (i = 0; i < dp->blocksize; i++) { int32_t sample = *sample_buffer >> dp->quant_step_size[channel]; if (sample < min) min = sample; if (sample > max) max = sample; average += sample; sample_buffer += ctx->num_channels; } average /= dp->blocksize; /* If filtering is used, we always set the offset to zero, otherwise * we search for the offset that minimizes the bitcount. */ if (no_filters_used) { no_codebook_bits(ctx, channel, min, max, &ctx->cur_best_offset[channel][0]); offset = av_clip(average, HUFF_OFFSET_MIN, HUFF_OFFSET_MAX); } else { no_codebook_bits_offset(ctx, channel, offset, min, max, &ctx->cur_best_offset[channel][0]); } for (i = 1; i < NUM_CODEBOOKS; i++) { BestOffset temp_bo = { 0, INT_MAX, 0, 0, 0, }; int16_t offset_max; codebook_bits_offset(ctx, channel, i - 1, min, max, offset, &temp_bo); if (no_filters_used) { offset_max = temp_bo.max; codebook_bits(ctx, channel, i - 1, temp_bo.min - 1, min, max, &temp_bo, 0); codebook_bits(ctx, channel, i - 1, offset_max + 1, min, max, &temp_bo, 1); } ctx->cur_best_offset[channel][i] = temp_bo; } } } /**************************************************************************** *************** Functions that process the data in some way **************** ****************************************************************************/ #define SAMPLE_MAX(bitdepth) ((1 << (bitdepth - 1)) - 1) #define SAMPLE_MIN(bitdepth) (~SAMPLE_MAX(bitdepth)) #define MSB_MASK(bits) (-(int)(1u << (bits))) /** Applies the filter to the current samples, and saves the residual back * into the samples buffer. If the filter is too bad and overflows the * maximum amount of bits allowed (24), the samples buffer is left as is and * the function returns -1. */ static int apply_filter(MLPEncodeContext *ctx, unsigned int channel) { FilterParams *fp[NUM_FILTERS] = { &ctx->cur_channel_params[channel].filter_params[FIR], &ctx->cur_channel_params[channel].filter_params[IIR], }; int32_t *filter_state_buffer[NUM_FILTERS] = { NULL }; int32_t mask = MSB_MASK(ctx->cur_decoding_params->quant_step_size[channel]); int32_t *sample_buffer = ctx->sample_buffer + channel; unsigned int number_of_samples = ctx->number_of_samples; unsigned int filter_shift = fp[FIR]->shift; int filter; int i, ret = 0; for (i = 0; i < NUM_FILTERS; i++) { unsigned int size = ctx->number_of_samples; filter_state_buffer[i] = av_malloc(size*sizeof(int32_t)); if (!filter_state_buffer[i]) { av_log(ctx->avctx, AV_LOG_ERROR, "Not enough memory for applying filters.\n"); ret = AVERROR(ENOMEM); goto free_and_return; } } for (i = 0; i < 8; i++) { filter_state_buffer[FIR][i] = *sample_buffer; filter_state_buffer[IIR][i] = *sample_buffer; sample_buffer += ctx->num_channels; } for (i = 8; i < number_of_samples; i++) { int32_t sample = *sample_buffer; unsigned int order; int64_t accum = 0; int64_t residual; for (filter = 0; filter < NUM_FILTERS; filter++) { int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter]; for (order = 0; order < fp[filter]->order; order++) accum += (int64_t)filter_state_buffer[filter][i - 1 - order] * fcoeff[order]; } accum >>= filter_shift; residual = sample - (accum & mask); if (residual < SAMPLE_MIN(24) || residual > SAMPLE_MAX(24)) { ret = AVERROR_INVALIDDATA; goto free_and_return; } filter_state_buffer[FIR][i] = sample; filter_state_buffer[IIR][i] = (int32_t) residual; sample_buffer += ctx->num_channels; } sample_buffer = ctx->sample_buffer + channel; for (i = 0; i < number_of_samples; i++) { *sample_buffer = filter_state_buffer[IIR][i]; sample_buffer += ctx->num_channels; } free_and_return: for (i = 0; i < NUM_FILTERS; i++) { av_freep(&filter_state_buffer[i]); } return ret; } static void apply_filters(MLPEncodeContext *ctx) { RestartHeader *rh = ctx->cur_restart_header; int channel; for (channel = rh->min_channel; channel <= rh->max_channel; channel++) { if (apply_filter(ctx, channel) < 0) { /* Filter is horribly wrong. * Clear filter params and update state. */ set_filter_params(ctx, channel, FIR, 1); set_filter_params(ctx, channel, IIR, 1); apply_filter(ctx, channel); } } } /** Generates two noise channels worth of data. */ static void generate_2_noise_channels(MLPEncodeContext *ctx) { int32_t *sample_buffer = ctx->sample_buffer + ctx->num_channels - 2; RestartHeader *rh = ctx->cur_restart_header; unsigned int i; uint32_t seed = rh->noisegen_seed; for (i = 0; i < ctx->number_of_samples; i++) { uint16_t seed_shr7 = seed >> 7; *sample_buffer++ = ((int8_t)(seed >> 15)) * (1 << rh->noise_shift); *sample_buffer++ = ((int8_t) seed_shr7) * (1 << rh->noise_shift); seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5); sample_buffer += ctx->num_channels - 2; } rh->noisegen_seed = seed & ((1 << 24)-1); } /** Rematrixes all channels using chosen coefficients. */ static void rematrix_channels(MLPEncodeContext *ctx) { DecodingParams *dp = ctx->cur_decoding_params; MatrixParams *mp = &dp->matrix_params; int32_t *sample_buffer = ctx->sample_buffer; unsigned int mat, i, maxchan; maxchan = ctx->num_channels; for (mat = 0; mat < mp->count; mat++) { unsigned int msb_mask_bits = (ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S16 ? 8 : 0) - mp->shift[mat]; int32_t mask = MSB_MASK(msb_mask_bits); unsigned int outch = mp->outch[mat]; sample_buffer = ctx->sample_buffer; for (i = 0; i < ctx->number_of_samples; i++) { unsigned int src_ch; int64_t accum = 0; for (src_ch = 0; src_ch < maxchan; src_ch++) { int32_t sample = *(sample_buffer + src_ch); accum += (int64_t) sample * mp->forco[mat][src_ch]; } sample_buffer[outch] = (accum >> 14) & mask; sample_buffer += ctx->num_channels; } } } /**************************************************************************** **** Functions that deal with determining the best parameters and output *** ****************************************************************************/ typedef struct { char path[MAJOR_HEADER_INTERVAL + 2]; int cur_idx; int bitcount; } PathCounter; #define CODEBOOK_CHANGE_BITS 21 static void clear_path_counter(PathCounter *path_counter) { memset(path_counter, 0, (NUM_CODEBOOKS + 1) * sizeof(*path_counter)); } static int compare_best_offset(BestOffset *prev, BestOffset *cur) { if (prev->lsb_bits != cur->lsb_bits) return 1; return 0; } static int best_codebook_path_cost(MLPEncodeContext *ctx, unsigned int channel, PathCounter *src, int cur_codebook) { int idx = src->cur_idx; BestOffset *cur_bo = ctx->best_offset[idx][channel], *prev_bo = idx ? ctx->best_offset[idx - 1][channel] : restart_best_offset; int bitcount = src->bitcount; int prev_codebook = src->path[idx]; bitcount += cur_bo[cur_codebook].bitcount; if (prev_codebook != cur_codebook || compare_best_offset(&prev_bo[prev_codebook], &cur_bo[cur_codebook])) bitcount += CODEBOOK_CHANGE_BITS; return bitcount; } static void set_best_codebook(MLPEncodeContext *ctx) { DecodingParams *dp = ctx->cur_decoding_params; RestartHeader *rh = ctx->cur_restart_header; unsigned int channel; for (channel = rh->min_channel; channel <= rh->max_channel; channel++) { BestOffset *cur_bo, *prev_bo = restart_best_offset; PathCounter path_counter[NUM_CODEBOOKS + 1]; unsigned int best_codebook; unsigned int index; char *best_path; clear_path_counter(path_counter); for (index = 0; index < ctx->number_of_subblocks; index++) { unsigned int best_bitcount = INT_MAX; unsigned int codebook; cur_bo = ctx->best_offset[index][channel]; for (codebook = 0; codebook < NUM_CODEBOOKS; codebook++) { int prev_best_bitcount = INT_MAX; int last_best; for (last_best = 0; last_best < 2; last_best++) { PathCounter *dst_path = &path_counter[codebook]; PathCounter *src_path; int temp_bitcount; /* First test last path with same headers, * then with last best. */ if (last_best) { src_path = &path_counter[NUM_CODEBOOKS]; } else { if (compare_best_offset(&prev_bo[codebook], &cur_bo[codebook])) continue; else src_path = &path_counter[codebook]; } temp_bitcount = best_codebook_path_cost(ctx, channel, src_path, codebook); if (temp_bitcount < best_bitcount) { best_bitcount = temp_bitcount; best_codebook = codebook; } if (temp_bitcount < prev_best_bitcount) { prev_best_bitcount = temp_bitcount; if (src_path != dst_path) memcpy(dst_path, src_path, sizeof(PathCounter)); if (dst_path->cur_idx < FF_ARRAY_ELEMS(dst_path->path) - 1) dst_path->path[++dst_path->cur_idx] = codebook; dst_path->bitcount = temp_bitcount; } } } prev_bo = cur_bo; memcpy(&path_counter[NUM_CODEBOOKS], &path_counter[best_codebook], sizeof(PathCounter)); } best_path = path_counter[NUM_CODEBOOKS].path + 1; /* Update context. */ for (index = 0; index < ctx->number_of_subblocks; index++) { ChannelParams *cp = ctx->seq_channel_params + index*(ctx->avctx->channels) + channel; best_codebook = *best_path++; cur_bo = &ctx->best_offset[index][channel][best_codebook]; cp->huff_offset = cur_bo->offset; cp->huff_lsbs = cur_bo->lsb_bits + dp->quant_step_size[channel]; cp->codebook = best_codebook; } } } /** Analyzes all collected bitcounts and selects the best parameters for each * individual access unit. * TODO This is just a stub! */ static void set_major_params(MLPEncodeContext *ctx) { RestartHeader *rh = ctx->cur_restart_header; unsigned int index; unsigned int substr; uint8_t max_huff_lsbs = 0; uint8_t max_output_bits = 0; for (substr = 0; substr < ctx->num_substreams; substr++) { DecodingParams *seq_dp = (DecodingParams *) ctx->decoding_params+ (ctx->restart_intervals - 1)*(ctx->sequence_size)*(ctx->avctx->channels) + (ctx->seq_offset[ctx->restart_intervals - 1])*(ctx->avctx->channels); ChannelParams *seq_cp = (ChannelParams *) ctx->channel_params + (ctx->restart_intervals - 1)*(ctx->sequence_size)*(ctx->avctx->channels) + (ctx->seq_offset[ctx->restart_intervals - 1])*(ctx->avctx->channels); unsigned int channel; for (index = 0; index < ctx->seq_size[ctx->restart_intervals-1]; index++) { memcpy(&ctx->major_decoding_params[index][substr], seq_dp + index*(ctx->num_substreams) + substr, sizeof(DecodingParams)); for (channel = 0; channel < ctx->avctx->channels; channel++) { uint8_t huff_lsbs = (seq_cp + index*(ctx->avctx->channels) + channel)->huff_lsbs; if (max_huff_lsbs < huff_lsbs) max_huff_lsbs = huff_lsbs; memcpy(&ctx->major_channel_params[index][channel], (seq_cp + index*(ctx->avctx->channels) + channel), sizeof(ChannelParams)); } } } rh->max_huff_lsbs = max_huff_lsbs; for (index = 0; index < ctx->number_of_frames; index++) if (max_output_bits < ctx->max_output_bits[index]) max_output_bits = ctx->max_output_bits[index]; rh->max_output_bits = max_output_bits; for (substr = 0; substr < ctx->num_substreams; substr++) { ctx->cur_restart_header = &ctx->restart_header[substr]; ctx->prev_decoding_params = &restart_decoding_params[substr]; ctx->prev_channel_params = restart_channel_params; for (index = 0; index < MAJOR_HEADER_INTERVAL + 1; index++) { ctx->cur_decoding_params = &ctx->major_decoding_params[index][substr]; ctx->cur_channel_params = ctx->major_channel_params[index]; ctx->major_params_changed[index][substr] = compare_decoding_params(ctx); ctx->prev_decoding_params = ctx->cur_decoding_params; ctx->prev_channel_params = ctx->cur_channel_params; } } ctx->major_number_of_subblocks = ctx->number_of_subblocks; ctx->major_filter_state_subblock = 1; ctx->major_cur_subblock_index = 0; } static void analyze_sample_buffer(MLPEncodeContext *ctx) { ChannelParams *seq_cp = ctx->seq_channel_params; DecodingParams *seq_dp = ctx->seq_decoding_params; unsigned int index; unsigned int substr; for (substr = 0; substr < ctx->num_substreams; substr++) { ctx->cur_restart_header = &ctx->restart_header[substr]; ctx->cur_decoding_params = seq_dp + 1*(ctx->num_substreams) + substr; ctx->cur_channel_params = seq_cp + 1*(ctx->avctx->channels); determine_quant_step_size(ctx); generate_2_noise_channels(ctx); lossless_matrix_coeffs (ctx); rematrix_channels (ctx); determine_filters (ctx); apply_filters (ctx); copy_restart_frame_params(ctx, substr); /* Copy frame_size from frames 0...max to decoding_params 1...max + 1 * decoding_params[0] is for the filter state subblock. */ for (index = 0; index < ctx->number_of_frames; index++) { DecodingParams *dp = seq_dp + (index + 1)*(ctx->num_substreams) + substr; dp->blocksize = ctx->frame_size[index]; } /* The official encoder seems to always encode a filter state subblock * even if there are no filters. TODO check if it is possible to skip * the filter state subblock for no filters. */ (seq_dp + substr)->blocksize = 8; (seq_dp + 1*(ctx->num_substreams) + substr)->blocksize -= 8; for (index = 0; index < ctx->number_of_subblocks; index++) { ctx->cur_decoding_params = seq_dp + index*(ctx->num_substreams) + substr; ctx->cur_channel_params = seq_cp + index*(ctx->avctx->channels); ctx->cur_best_offset = ctx->best_offset[index]; determine_bits(ctx); ctx->sample_buffer += ctx->cur_decoding_params->blocksize * ctx->num_channels; } set_best_codebook(ctx); } } static void process_major_frame(MLPEncodeContext *ctx) { unsigned int substr; ctx->sample_buffer = ctx->major_inout_buffer; ctx->starting_frame_index = 0; ctx->number_of_frames = ctx->major_number_of_frames; ctx->number_of_samples = ctx->major_frame_size; for (substr = 0; substr < ctx->num_substreams; substr++) { ctx->cur_restart_header = &ctx->restart_header[substr]; ctx->cur_decoding_params = &ctx->major_decoding_params[1][substr]; ctx->cur_channel_params = ctx->major_channel_params[1]; generate_2_noise_channels(ctx); rematrix_channels (ctx); apply_filters(ctx); } } /****************************************************************************/ static int mlp_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet) { MLPEncodeContext *ctx = avctx->priv_data; unsigned int bytes_written = 0; int restart_frame, ret; uint8_t *data; if ((ret = ff_alloc_packet2(avctx, avpkt, 87500 * avctx->channels, 0)) < 0) return ret; /* add current frame to queue */ if ((ret = ff_af_queue_add(&ctx->afq, frame)) < 0) return ret; data = frame->data[0]; ctx->frame_index = avctx->frame_number % ctx->max_restart_interval; ctx->inout_buffer = ctx->major_inout_buffer + ctx->frame_index * ctx->one_sample_buffer_size; if (ctx->last_frame == ctx->inout_buffer) { return 0; } ctx->sample_buffer = ctx->major_scratch_buffer + ctx->frame_index * ctx->one_sample_buffer_size; ctx->write_buffer = ctx->inout_buffer; if (avctx->frame_number < ctx->max_restart_interval) { if (data) { goto input_and_return; } else { /* There are less frames than the requested major header interval. * Update the context to reflect this. */ ctx->max_restart_interval = avctx->frame_number; ctx->frame_index = 0; ctx->sample_buffer = ctx->major_scratch_buffer; ctx->inout_buffer = ctx->major_inout_buffer; } } if (ctx->frame_size[ctx->frame_index] > MAX_BLOCKSIZE) { av_log(avctx, AV_LOG_ERROR, "Invalid frame size (%d > %d)\n", ctx->frame_size[ctx->frame_index], MAX_BLOCKSIZE); return AVERROR_INVALIDDATA; } restart_frame = !ctx->frame_index; if (restart_frame) { set_major_params(ctx); if (ctx->min_restart_interval != ctx->max_restart_interval) process_major_frame(ctx); } if (ctx->min_restart_interval == ctx->max_restart_interval) ctx->write_buffer = ctx->sample_buffer; bytes_written = write_access_unit(ctx, avpkt->data, avpkt->size, restart_frame); ctx->timestamp += ctx->frame_size[ctx->frame_index]; ctx->dts += ctx->frame_size[ctx->frame_index]; input_and_return: if (data) { ctx->frame_size[ctx->frame_index] = avctx->frame_size; ctx->next_major_frame_size += avctx->frame_size; ctx->next_major_number_of_frames++; input_data(ctx, data); } else if (!ctx->last_frame) { ctx->last_frame = ctx->inout_buffer; } restart_frame = (ctx->frame_index + 1) % ctx->min_restart_interval; if (!restart_frame) { int seq_index; for (seq_index = 0; seq_index < ctx->restart_intervals && (seq_index * ctx->min_restart_interval) <= ctx->avctx->frame_number; seq_index++) { unsigned int number_of_samples = 0; unsigned int index; ctx->sample_buffer = ctx->major_scratch_buffer; ctx->inout_buffer = ctx->major_inout_buffer; ctx->seq_index = seq_index; ctx->starting_frame_index = (ctx->avctx->frame_number - (ctx->avctx->frame_number % ctx->min_restart_interval) - (seq_index * ctx->min_restart_interval)) % ctx->max_restart_interval; ctx->number_of_frames = ctx->next_major_number_of_frames; ctx->number_of_subblocks = ctx->next_major_number_of_frames + 1; ctx->seq_channel_params = (ChannelParams *) ctx->channel_params + (ctx->frame_index / ctx->min_restart_interval)*(ctx->sequence_size)*(ctx->avctx->channels) + (ctx->seq_offset[seq_index])*(ctx->avctx->channels); ctx->seq_decoding_params = (DecodingParams *) ctx->decoding_params + (ctx->frame_index / ctx->min_restart_interval)*(ctx->sequence_size)*(ctx->num_substreams) + (ctx->seq_offset[seq_index])*(ctx->num_substreams); for (index = 0; index < ctx->number_of_frames; index++) { number_of_samples += ctx->frame_size[(ctx->starting_frame_index + index) % ctx->max_restart_interval]; } ctx->number_of_samples = number_of_samples; for (index = 0; index < ctx->seq_size[seq_index]; index++) { clear_channel_params(ctx, ctx->seq_channel_params + index*(ctx->avctx->channels)); default_decoding_params(ctx, ctx->seq_decoding_params + index*(ctx->num_substreams)); } input_to_sample_buffer(ctx); analyze_sample_buffer(ctx); } if (ctx->frame_index == (ctx->max_restart_interval - 1)) { ctx->major_frame_size = ctx->next_major_frame_size; ctx->next_major_frame_size = 0; ctx->major_number_of_frames = ctx->next_major_number_of_frames; ctx->next_major_number_of_frames = 0; if (!ctx->major_frame_size) goto no_data_left; } } no_data_left: ff_af_queue_remove(&ctx->afq, avctx->frame_size, &avpkt->pts, &avpkt->duration); avpkt->size = bytes_written; *got_packet = 1; return 0; } static av_cold int mlp_encode_close(AVCodecContext *avctx) { MLPEncodeContext *ctx = avctx->priv_data; ff_lpc_end(&ctx->lpc_ctx); av_freep(&ctx->lossless_check_data); av_freep(&ctx->major_scratch_buffer); av_freep(&ctx->major_inout_buffer); av_freep(&ctx->lpc_sample_buffer); av_freep(&ctx->decoding_params); av_freep(&ctx->channel_params); av_freep(&ctx->frame_size); av_freep(&ctx->max_output_bits); ff_af_queue_close(&ctx->afq); return 0; } #if CONFIG_MLP_ENCODER AVCodec ff_mlp_encoder = { .name ="mlp", .long_name = NULL_IF_CONFIG_SMALL("MLP (Meridian Lossless Packing)"), .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_MLP, .priv_data_size = sizeof(MLPEncodeContext), .init = mlp_encode_init, .encode2 = mlp_encode_frame, .close = mlp_encode_close, .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_EXPERIMENTAL, .sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE}, .supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0}, .channel_layouts = ff_mlp_channel_layouts, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; #endif #if CONFIG_TRUEHD_ENCODER AVCodec ff_truehd_encoder = { .name ="truehd", .long_name = NULL_IF_CONFIG_SMALL("TrueHD"), .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_TRUEHD, .priv_data_size = sizeof(MLPEncodeContext), .init = mlp_encode_init, .encode2 = mlp_encode_frame, .close = mlp_encode_close, .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_EXPERIMENTAL, .sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE}, .supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0}, .channel_layouts = (const uint64_t[]) {AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_5POINT0_BACK, AV_CH_LAYOUT_5POINT1_BACK, 0}, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; #endif