/* * VC3/DNxHD encoder * Copyright (c) 2007 Baptiste Coudurier * Copyright (c) 2011 MirriAd Ltd * * VC-3 encoder funded by the British Broadcasting Corporation * 10 bit support added by MirriAd Ltd, Joseph Artsimovich * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/attributes.h" #include "libavutil/internal.h" #include "libavutil/mem_internal.h" #include "libavutil/opt.h" #include "avcodec.h" #include "blockdsp.h" #include "codec_internal.h" #include "encode.h" #include "fdctdsp.h" #include "mathops.h" #include "mpegvideo.h" #include "mpegvideoenc.h" #include "pixblockdsp.h" #include "packet_internal.h" #include "profiles.h" #include "dnxhdenc.h" // The largest value that will not lead to overflow for 10-bit samples. #define DNX10BIT_QMAT_SHIFT 18 #define RC_VARIANCE 1 // use variance or ssd for fast rc #define LAMBDA_FRAC_BITS 10 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, { "ibias", "intra quant bias", offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, VE }, { "profile", NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT, { .i64 = AV_PROFILE_DNXHD }, AV_PROFILE_DNXHD, AV_PROFILE_DNXHR_444, VE, .unit = "profile" }, { "dnxhd", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHD }, 0, 0, VE, .unit = "profile" }, { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_444 }, 0, 0, VE, .unit = "profile" }, { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_HQX }, 0, 0, VE, .unit = "profile" }, { "dnxhr_hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_HQ }, 0, 0, VE, .unit = "profile" }, { "dnxhr_sq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_SQ }, 0, 0, VE, .unit = "profile" }, { "dnxhr_lb", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_LB }, 0, 0, VE, .unit = "profile" }, { NULL } }; static const AVClass dnxhd_class = { .class_name = "dnxhd", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, ptrdiff_t line_size) { int i; for (i = 0; i < 4; i++) { block[0] = pixels[0]; block[1] = pixels[1]; block[2] = pixels[2]; block[3] = pixels[3]; block[4] = pixels[4]; block[5] = pixels[5]; block[6] = pixels[6]; block[7] = pixels[7]; pixels += line_size; block += 8; } memcpy(block, block - 8, sizeof(*block) * 8); memcpy(block + 8, block - 16, sizeof(*block) * 8); memcpy(block + 16, block - 24, sizeof(*block) * 8); memcpy(block + 24, block - 32, sizeof(*block) * 8); } static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, ptrdiff_t line_size) { memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block)); memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block)); memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block)); memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block)); memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block)); memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block)); memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block)); memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block)); } static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block, int n, int qscale, int *overflow) { int i, j, level, last_non_zero, start_i; const int *qmat; const uint8_t *scantable= ctx->intra_scantable.scantable; int bias; int max = 0; unsigned int threshold1, threshold2; ctx->fdsp.fdct(block); block[0] = (block[0] + 2) >> 2; start_i = 1; last_non_zero = 0; qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale]; bias= ctx->intra_quant_bias * (1 << (16 - 8)); threshold1 = (1 << 16) - bias - 1; threshold2 = (threshold1 << 1); for (i = 63; i >= start_i; i--) { j = scantable[i]; level = block[j] * qmat[j]; if (((unsigned)(level + threshold1)) > threshold2) { last_non_zero = i; break; } else{ block[j]=0; } } for (i = start_i; i <= last_non_zero; i++) { j = scantable[i]; level = block[j] * qmat[j]; if (((unsigned)(level + threshold1)) > threshold2) { if (level > 0) { level = (bias + level) >> 16; block[j] = level; } else{ level = (bias - level) >> 16; block[j] = -level; } max |= level; } else { block[j] = 0; } } *overflow = ctx->max_qcoeff < max; //overflow might have happened /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */ if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE) ff_block_permute(block, ctx->idsp.idct_permutation, scantable, last_non_zero); return last_non_zero; } static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block, int n, int qscale, int *overflow) { const uint8_t *scantable= ctx->intra_scantable.scantable; const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale]; int last_non_zero = 0; int i; ctx->fdsp.fdct(block); // Divide by 4 with rounding, to compensate scaling of DCT coefficients block[0] = (block[0] + 2) >> 2; for (i = 1; i < 64; ++i) { int j = scantable[i]; int sign = FF_SIGNBIT(block[j]); int level = (block[j] ^ sign) - sign; level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT; block[j] = (level ^ sign) - sign; if (level) last_non_zero = i; } /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */ if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE) ff_block_permute(block, ctx->idsp.idct_permutation, scantable, last_non_zero); return last_non_zero; } static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx) { int i, j, level, run; int max_level = 1 << (ctx->bit_depth + 2); if (!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_codes, max_level * 4) || !FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_bits, max_level * 4) || !(ctx->run_codes = av_mallocz(63 * 2)) || !(ctx->run_bits = av_mallocz(63))) return AVERROR(ENOMEM); ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2; ctx->vlc_bits = ctx->orig_vlc_bits + max_level * 2; for (level = -max_level; level < max_level; level++) { for (run = 0; run < 2; run++) { int index = level * (1 << 1) | run; int sign, offset = 0, alevel = level; MASK_ABS(sign, alevel); if (alevel > 64) { offset = (alevel - 1) >> 6; alevel -= offset << 6; } for (j = 0; j < 257; j++) { if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel && (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) && (!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) { av_assert1(!ctx->vlc_codes[index]); if (alevel) { ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j] << 1) | (sign & 1); ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1; } else { ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j]; ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j]; } break; } } av_assert0(!alevel || j < 257); if (offset) { ctx->vlc_codes[index] = (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset; ctx->vlc_bits[index] += ctx->cid_table->index_bits; } } } for (i = 0; i < 62; i++) { int run = ctx->cid_table->run[i]; av_assert0(run < 63); ctx->run_codes[run] = ctx->cid_table->run_codes[i]; ctx->run_bits[run] = ctx->cid_table->run_bits[i]; } return 0; } static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias) { // init first elem to 1 to avoid div by 0 in convert_matrix uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t* int qscale, i; const uint8_t *luma_weight_table = ctx->cid_table->luma_weight; const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight; if (!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l, ctx->m.avctx->qmax + 1) || !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c, ctx->m.avctx->qmax + 1) || !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l16, ctx->m.avctx->qmax + 1) || !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c16, ctx->m.avctx->qmax + 1)) return AVERROR(ENOMEM); if (ctx->bit_depth == 8) { for (i = 1; i < 64; i++) { int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]]; weight_matrix[j] = ctx->cid_table->luma_weight[i]; } ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix, ctx->intra_quant_bias, 1, ctx->m.avctx->qmax, 1); for (i = 1; i < 64; i++) { int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]]; weight_matrix[j] = ctx->cid_table->chroma_weight[i]; } ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix, ctx->intra_quant_bias, 1, ctx->m.avctx->qmax, 1); for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) { for (i = 0; i < 64; i++) { ctx->qmatrix_l[qscale][i] <<= 2; ctx->qmatrix_c[qscale][i] <<= 2; ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2; ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2; } } } else { // 10-bit for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) { for (i = 1; i < 64; i++) { int j = ff_zigzag_direct[i]; /* The quantization formula from the VC-3 standard is: * quantized = sign(block[i]) * floor(abs(block[i]/s) * p / * (qscale * weight_table[i])) * Where p is 32 for 8-bit samples and 8 for 10-bit ones. * The s factor compensates scaling of DCT coefficients done by * the DCT routines, and therefore is not present in standard. * It's 8 for 8-bit samples and 4 for 10-bit ones. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be: * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / * (qscale * weight_table[i]) * For 10-bit samples, p / s == 2 */ ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]); ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]); } } } ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16; ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c; ctx->m.q_intra_matrix16 = ctx->qmatrix_l16; ctx->m.q_intra_matrix = ctx->qmatrix_l; return 0; } static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx) { if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_rc, (ctx->m.avctx->qmax + 1) * ctx->m.mb_num)) return AVERROR(ENOMEM); if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) { if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp, ctx->m.mb_num) || !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp_tmp, ctx->m.mb_num)) return AVERROR(ENOMEM); } ctx->frame_bits = (ctx->coding_unit_size - ctx->data_offset - 4 - ctx->min_padding) * 8; ctx->qscale = 1; ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2 return 0; } static av_cold int dnxhd_encode_init(AVCodecContext *avctx) { DNXHDEncContext *ctx = avctx->priv_data; int i, ret; switch (avctx->pix_fmt) { case AV_PIX_FMT_YUV422P: ctx->bit_depth = 8; break; case AV_PIX_FMT_YUV422P10: case AV_PIX_FMT_YUV444P10: case AV_PIX_FMT_GBRP10: ctx->bit_depth = 10; break; } if ((ctx->profile == AV_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 && avctx->pix_fmt != AV_PIX_FMT_GBRP10)) || (ctx->profile != AV_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 || avctx->pix_fmt == AV_PIX_FMT_GBRP10))) { av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD profile\n"); return AVERROR(EINVAL); } if (ctx->profile == AV_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) { av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHR HQX profile\n"); return AVERROR(EINVAL); } if ((ctx->profile == AV_PROFILE_DNXHR_LB || ctx->profile == AV_PROFILE_DNXHR_SQ || ctx->profile == AV_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) { av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n"); return AVERROR(EINVAL); } ctx->is_444 = ctx->profile == AV_PROFILE_DNXHR_444; avctx->profile = ctx->profile; ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth); if (!ctx->cid) { av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n"); ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR); return AVERROR(EINVAL); } av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid); if (ctx->cid >= 1270 && ctx->cid <= 1274) avctx->codec_tag = MKTAG('A','V','d','h'); if (avctx->width < 256 || avctx->height < 120) { av_log(avctx, AV_LOG_ERROR, "Input dimensions too small, input must be at least 256x120\n"); return AVERROR(EINVAL); } ctx->cid_table = ff_dnxhd_get_cid_table(ctx->cid); av_assert0(ctx->cid_table); ctx->m.avctx = avctx; ctx->m.mb_intra = 1; ctx->m.h263_aic = 1; avctx->bits_per_raw_sample = ctx->bit_depth; ff_blockdsp_init(&ctx->bdsp); ff_fdctdsp_init(&ctx->m.fdsp, avctx); ff_mpv_idct_init(&ctx->m); ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx); ff_pixblockdsp_init(&ctx->m.pdsp, avctx); ff_dct_encode_init(&ctx->m); if (ctx->profile != AV_PROFILE_DNXHD) ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth); if (!ctx->m.dct_quantize) ctx->m.dct_quantize = ff_dct_quantize_c; if (ctx->is_444 || ctx->profile == AV_PROFILE_DNXHR_HQX) { ctx->m.dct_quantize = dnxhd_10bit_dct_quantize_444; ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym; ctx->block_width_l2 = 4; } else if (ctx->bit_depth == 10) { ctx->m.dct_quantize = dnxhd_10bit_dct_quantize; ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym; ctx->block_width_l2 = 4; } else { ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym; ctx->block_width_l2 = 3; } ff_dnxhdenc_init(ctx); ctx->m.mb_height = (avctx->height + 15) / 16; ctx->m.mb_width = (avctx->width + 15) / 16; if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { ctx->interlaced = 1; ctx->m.mb_height /= 2; } if (ctx->interlaced && ctx->profile != AV_PROFILE_DNXHD) { av_log(avctx, AV_LOG_ERROR, "Interlaced encoding is not supported for DNxHR profiles.\n"); return AVERROR(EINVAL); } ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width; if (ctx->cid_table->frame_size == DNXHD_VARIABLE) { ctx->frame_size = ff_dnxhd_get_hr_frame_size(ctx->cid, avctx->width, avctx->height); av_assert0(ctx->frame_size >= 0); ctx->coding_unit_size = ctx->frame_size; } else { ctx->frame_size = ctx->cid_table->frame_size; ctx->coding_unit_size = ctx->cid_table->coding_unit_size; } if (ctx->m.mb_height > 68) ctx->data_offset = 0x170 + (ctx->m.mb_height << 2); else ctx->data_offset = 0x280; // XXX tune lbias/cbias if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0) return ret; /* Avid Nitris hardware decoder requires a minimum amount of padding * in the coding unit payload */ if (ctx->nitris_compat) ctx->min_padding = 1600; if ((ret = dnxhd_init_vlc(ctx)) < 0) return ret; if ((ret = dnxhd_init_rc(ctx)) < 0) return ret; if (!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_size, ctx->m.mb_height) || !FF_ALLOCZ_TYPED_ARRAY(ctx->slice_offs, ctx->m.mb_height) || !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_bits, ctx->m.mb_num) || !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_qscale, ctx->m.mb_num)) return AVERROR(ENOMEM); if (avctx->active_thread_type == FF_THREAD_SLICE) { if (avctx->thread_count > MAX_THREADS) { av_log(avctx, AV_LOG_ERROR, "too many threads\n"); return AVERROR(EINVAL); } } if (avctx->qmax <= 1) { av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n"); return AVERROR(EINVAL); } ctx->thread[0] = ctx; if (avctx->active_thread_type == FF_THREAD_SLICE) { for (i = 1; i < avctx->thread_count; i++) { ctx->thread[i] = av_memdup(ctx, sizeof(DNXHDEncContext)); if (!ctx->thread[i]) return AVERROR(ENOMEM); } } return 0; } static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf) { DNXHDEncContext *ctx = avctx->priv_data; memset(buf, 0, ctx->data_offset); // * write prefix */ AV_WB16(buf + 0x02, ctx->data_offset); if (ctx->cid >= 1270 && ctx->cid <= 1274) buf[4] = 0x03; else buf[4] = 0x01; buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01; buf[6] = 0x80; // crc flag off buf[7] = 0xa0; // reserved AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF AV_WB16(buf + 0x1a, avctx->width); // SPL AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38; buf[0x22] = 0x88 + (ctx->interlaced << 2); AV_WB32(buf + 0x28, ctx->cid); // CID buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10); buf[0x5f] = 0x01; // UDL buf[0x167] = 0x02; // reserved AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns buf[0x16f] = 0x10; // reserved ctx->msip = buf + 0x170; return 0; } static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff) { int nbits; if (diff < 0) { nbits = av_log2_16bit(-2 * diff); diff--; } else { nbits = av_log2_16bit(2 * diff); } put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits, (ctx->cid_table->dc_codes[nbits] << nbits) + av_mod_uintp2(diff, nbits)); } static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n) { int last_non_zero = 0; int slevel, i, j; dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]); ctx->m.last_dc[n] = block[0]; for (i = 1; i <= last_index; i++) { j = ctx->m.intra_scantable.permutated[i]; slevel = block[j]; if (slevel) { int run_level = i - last_non_zero - 1; int rlevel = slevel * (1 << 1) | !!run_level; put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]); if (run_level) put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]); last_non_zero = i; } } put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB } static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index) { const uint8_t *weight_matrix; int level; int i; if (ctx->is_444) { weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight : ctx->cid_table->chroma_weight; } else { weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight; } for (i = 1; i <= last_index; i++) { int j = ctx->m.intra_scantable.permutated[i]; level = block[j]; if (level) { if (level < 0) { level = (1 - 2 * level) * qscale * weight_matrix[i]; if (ctx->bit_depth == 10) { if (weight_matrix[i] != 8) level += 8; level >>= 4; } else { if (weight_matrix[i] != 32) level += 32; level >>= 6; } level = -level; } else { level = (2 * level + 1) * qscale * weight_matrix[i]; if (ctx->bit_depth == 10) { if (weight_matrix[i] != 8) level += 8; level >>= 4; } else { if (weight_matrix[i] != 32) level += 32; level >>= 6; } } block[j] = level; } } } static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block) { int score = 0; int i; for (i = 0; i < 64; i++) score += (block[i] - qblock[i]) * (block[i] - qblock[i]); return score; } static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index) { int last_non_zero = 0; int bits = 0; int i, j, level; for (i = 1; i <= last_index; i++) { j = ctx->m.intra_scantable.permutated[i]; level = block[j]; if (level) { int run_level = i - last_non_zero - 1; bits += ctx->vlc_bits[level * (1 << 1) | !!run_level] + ctx->run_bits[run_level]; last_non_zero = i; } } return bits; } static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y) { const int bs = ctx->block_width_l2; const int bw = 1 << bs; int dct_y_offset = ctx->dct_y_offset; int dct_uv_offset = ctx->dct_uv_offset; int linesize = ctx->m.linesize; int uvlinesize = ctx->m.uvlinesize; const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1); const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444); const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444); PixblockDSPContext *pdsp = &ctx->m.pdsp; VideoDSPContext *vdsp = &ctx->m.vdsp; if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width || (mb_y << 4) + 16 > ctx->m.avctx->height)) { int y_w = ctx->m.avctx->width - (mb_x << 4); int y_h = ctx->m.avctx->height - (mb_y << 4); int uv_w = (y_w + 1) / 2; int uv_h = y_h; linesize = 16; uvlinesize = 8; vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y, linesize, ctx->m.linesize, linesize, 16, 0, 0, y_w, y_h); vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u, uvlinesize, ctx->m.uvlinesize, uvlinesize, 16, 0, 0, uv_w, uv_h); vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v, uvlinesize, ctx->m.uvlinesize, uvlinesize, 16, 0, 0, uv_w, uv_h); dct_y_offset = bw * linesize; dct_uv_offset = bw * uvlinesize; ptr_y = &ctx->edge_buf_y[0]; ptr_u = &ctx->edge_buf_uv[0][0]; ptr_v = &ctx->edge_buf_uv[1][0]; } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width || (mb_y << 4) + 16 > ctx->m.avctx->height)) { int y_w = ctx->m.avctx->width - (mb_x << 4); int y_h = ctx->m.avctx->height - (mb_y << 4); int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2; int uv_h = y_h; linesize = 32; uvlinesize = 16 + 16 * ctx->is_444; vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y, linesize, ctx->m.linesize, linesize / 2, 16, 0, 0, y_w, y_h); vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u, uvlinesize, ctx->m.uvlinesize, uvlinesize / 2, 16, 0, 0, uv_w, uv_h); vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v, uvlinesize, ctx->m.uvlinesize, uvlinesize / 2, 16, 0, 0, uv_w, uv_h); dct_y_offset = bw * linesize / 2; dct_uv_offset = bw * uvlinesize / 2; ptr_y = &ctx->edge_buf_y[0]; ptr_u = &ctx->edge_buf_uv[0][0]; ptr_v = &ctx->edge_buf_uv[1][0]; } if (!ctx->is_444) { pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize); pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize); pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize); pdsp->get_pixels(ctx->blocks[3], ptr_v, uvlinesize); if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) { if (ctx->interlaced) { ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + dct_y_offset, linesize); ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + dct_y_offset + bw, linesize); ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + dct_uv_offset, uvlinesize); ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + dct_uv_offset, uvlinesize); } else { ctx->bdsp.clear_block(ctx->blocks[4]); ctx->bdsp.clear_block(ctx->blocks[5]); ctx->bdsp.clear_block(ctx->blocks[6]); ctx->bdsp.clear_block(ctx->blocks[7]); } } else { pdsp->get_pixels(ctx->blocks[4], ptr_y + dct_y_offset, linesize); pdsp->get_pixels(ctx->blocks[5], ptr_y + dct_y_offset + bw, linesize); pdsp->get_pixels(ctx->blocks[6], ptr_u + dct_uv_offset, uvlinesize); pdsp->get_pixels(ctx->blocks[7], ptr_v + dct_uv_offset, uvlinesize); } } else { pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize); pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize); pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize); pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize); pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize); pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize); pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize); pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize); pdsp->get_pixels(ctx->blocks[4], ptr_v, uvlinesize); pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize); pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize); pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize); } } static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i) { int x; if (ctx->is_444) { x = (i >> 1) % 3; } else { const static uint8_t component[8]={0,0,1,2,0,0,1,2}; x = component[i]; } return x; } static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) { DNXHDEncContext *ctx = avctx->priv_data; int mb_y = jobnr, mb_x; int qscale = ctx->qscale; LOCAL_ALIGNED_16(int16_t, block, [64]); ctx = ctx->thread[threadnr]; ctx->m.last_dc[0] = ctx->m.last_dc[1] = ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2); for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { unsigned mb = mb_y * ctx->m.mb_width + mb_x; int ssd = 0; int ac_bits = 0; int dc_bits = 0; int i; dnxhd_get_blocks(ctx, mb_x, mb_y); for (i = 0; i < 8 + 4 * ctx->is_444; i++) { int16_t *src_block = ctx->blocks[i]; int overflow, nbits, diff, last_index; int n = dnxhd_switch_matrix(ctx, i); memcpy(block, src_block, 64 * sizeof(*block)); last_index = ctx->m.dct_quantize(&ctx->m, block, ctx->is_444 ? 4 * (n > 0): 4 & (2*i), qscale, &overflow); ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index); diff = block[0] - ctx->m.last_dc[n]; if (diff < 0) nbits = av_log2_16bit(-2 * diff); else nbits = av_log2_16bit(2 * diff); av_assert1(nbits < ctx->bit_depth + 4); dc_bits += ctx->cid_table->dc_bits[nbits] + nbits; ctx->m.last_dc[n] = block[0]; if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) { dnxhd_unquantize_c(ctx, block, i, qscale, last_index); ctx->m.idsp.idct(block); ssd += dnxhd_ssd_block(block, src_block); } } ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd = ssd; ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 + (1 + ctx->is_444) * 8 * ctx->vlc_bits[0]; } return 0; } static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) { DNXHDEncContext *ctx = avctx->priv_data; int mb_y = jobnr, mb_x; ctx = ctx->thread[threadnr]; init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]); ctx->m.last_dc[0] = ctx->m.last_dc[1] = ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2); for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { unsigned mb = mb_y * ctx->m.mb_width + mb_x; int qscale = ctx->mb_qscale[mb]; int i; put_bits(&ctx->m.pb, 11, qscale); put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10); dnxhd_get_blocks(ctx, mb_x, mb_y); for (i = 0; i < 8 + 4 * ctx->is_444; i++) { int16_t *block = ctx->blocks[i]; int overflow, n = dnxhd_switch_matrix(ctx, i); int last_index = ctx->m.dct_quantize(&ctx->m, block, ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i), qscale, &overflow); dnxhd_encode_block(ctx, block, last_index, n); } } if (put_bits_count(&ctx->m.pb) & 31) put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0); flush_put_bits(&ctx->m.pb); memset(put_bits_ptr(&ctx->m.pb), 0, put_bytes_left(&ctx->m.pb, 0)); return 0; } static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx) { int mb_y, mb_x; int offset = 0; for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) { int thread_size; ctx->slice_offs[mb_y] = offset; ctx->slice_size[mb_y] = 0; for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { unsigned mb = mb_y * ctx->m.mb_width + mb_x; ctx->slice_size[mb_y] += ctx->mb_bits[mb]; } ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31U) & ~31U; ctx->slice_size[mb_y] >>= 3; thread_size = ctx->slice_size[mb_y]; offset += thread_size; } } static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) { DNXHDEncContext *ctx = avctx->priv_data; int mb_y = jobnr, mb_x, x, y; int partial_last_row = (mb_y == ctx->m.mb_height - 1) && ((avctx->height >> ctx->interlaced) & 0xF); ctx = ctx->thread[threadnr]; if (ctx->bit_depth == 8) { const uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize); for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) { unsigned mb = mb_y * ctx->m.mb_width + mb_x; int sum; int varc; if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) { sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize); varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize); } else { int bw = FFMIN(avctx->width - 16 * mb_x, 16); int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16); sum = varc = 0; for (y = 0; y < bh; y++) { for (x = 0; x < bw; x++) { uint8_t val = pix[x + y * ctx->m.linesize]; sum += val; varc += val * val; } } } varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8; ctx->mb_cmp[mb].value = varc; ctx->mb_cmp[mb].mb = mb; } } else { // 10-bit const int linesize = ctx->m.linesize >> 1; for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) { const uint16_t *pix = (const uint16_t *)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4); unsigned mb = mb_y * ctx->m.mb_width + mb_x; int sum = 0; int sqsum = 0; int bw = FFMIN(avctx->width - 16 * mb_x, 16); int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16); int mean, sqmean; int i, j; // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8. for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { // Turn 16-bit pixels into 10-bit ones. const int sample = (unsigned) pix[j] >> 6; sum += sample; sqsum += sample * sample; // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX } pix += linesize; } mean = sum >> 8; // 16*16 == 2^8 sqmean = sqsum >> 8; ctx->mb_cmp[mb].value = sqmean - mean * mean; ctx->mb_cmp[mb].mb = mb; } } return 0; } static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx) { int lambda, up_step, down_step; int last_lower = INT_MAX, last_higher = 0; int x, y, q; for (q = 1; q < avctx->qmax; q++) { ctx->qscale = q; avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height); } up_step = down_step = 2 << LAMBDA_FRAC_BITS; lambda = ctx->lambda; for (;;) { int bits = 0; int end = 0; if (lambda == last_higher) { lambda++; end = 1; // need to set final qscales/bits } for (y = 0; y < ctx->m.mb_height; y++) { for (x = 0; x < ctx->m.mb_width; x++) { unsigned min = UINT_MAX; int qscale = 1; int mb = y * ctx->m.mb_width + x; int rc = 0; for (q = 1; q < avctx->qmax; q++) { int i = (q*ctx->m.mb_num) + mb; unsigned score = ctx->mb_rc[i].bits * lambda + ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS); if (score < min) { min = score; qscale = q; rc = i; } } bits += ctx->mb_rc[rc].bits; ctx->mb_qscale[mb] = qscale; ctx->mb_bits[mb] = ctx->mb_rc[rc].bits; } bits = (bits + 31) & ~31; // padding if (bits > ctx->frame_bits) break; } if (end) { if (bits > ctx->frame_bits) return AVERROR(EINVAL); break; } if (bits < ctx->frame_bits) { last_lower = FFMIN(lambda, last_lower); if (last_higher != 0) lambda = (lambda+last_higher)>>1; else lambda -= down_step; down_step = FFMIN((int64_t)down_step*5, INT_MAX); up_step = 1<>1; else if ((int64_t)lambda + up_step > INT_MAX) return AVERROR(EINVAL); else lambda += up_step; up_step = FFMIN((int64_t)up_step*5, INT_MAX); down_step = 1<lambda = lambda; return 0; } static int dnxhd_find_qscale(DNXHDEncContext *ctx) { int bits = 0; int up_step = 1; int down_step = 1; int last_higher = 0; int last_lower = INT_MAX; int qscale; int x, y; qscale = ctx->qscale; for (;;) { bits = 0; ctx->qscale = qscale; // XXX avoid recalculating bits ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height); for (y = 0; y < ctx->m.mb_height; y++) { for (x = 0; x < ctx->m.mb_width; x++) bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits; bits = (bits+31)&~31; // padding if (bits > ctx->frame_bits) break; } if (bits < ctx->frame_bits) { if (qscale == 1) return 1; if (last_higher == qscale - 1) { qscale = last_higher; break; } last_lower = FFMIN(qscale, last_lower); if (last_higher != 0) qscale = (qscale + last_higher) >> 1; else qscale -= down_step++; if (qscale < 1) qscale = 1; up_step = 1; } else { if (last_lower == qscale + 1) break; last_higher = FFMAX(qscale, last_higher); if (last_lower != INT_MAX) qscale = (qscale + last_lower) >> 1; else qscale += up_step++; down_step = 1; if (qscale >= ctx->m.avctx->qmax) return AVERROR(EINVAL); } } ctx->qscale = qscale; return 0; } #define BUCKET_BITS 8 #define RADIX_PASSES 4 #define NBUCKETS (1 << BUCKET_BITS) static inline int get_bucket(int value, int shift) { value >>= shift; value &= NBUCKETS - 1; return NBUCKETS - 1 - value; } static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS]) { int i, j; memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS); for (i = 0; i < size; i++) { int v = data[i].value; for (j = 0; j < RADIX_PASSES; j++) { buckets[j][get_bucket(v, 0)]++; v >>= BUCKET_BITS; } av_assert1(!v); } for (j = 0; j < RADIX_PASSES; j++) { int offset = size; for (i = NBUCKETS - 1; i >= 0; i--) buckets[j][i] = offset -= buckets[j][i]; av_assert1(!buckets[j][0]); } } static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass) { int shift = pass * BUCKET_BITS; int i; for (i = 0; i < size; i++) { int v = get_bucket(data[i].value, shift); int pos = buckets[v]++; dst[pos] = data[i]; } } static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size) { int buckets[RADIX_PASSES][NBUCKETS]; radix_count(data, size, buckets); radix_sort_pass(tmp, data, size, buckets[0], 0); radix_sort_pass(data, tmp, size, buckets[1], 1); if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) { radix_sort_pass(tmp, data, size, buckets[2], 2); radix_sort_pass(data, tmp, size, buckets[3], 3); } } static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx) { int max_bits = 0; int ret, x, y; if ((ret = dnxhd_find_qscale(ctx)) < 0) return ret; for (y = 0; y < ctx->m.mb_height; y++) { for (x = 0; x < ctx->m.mb_width; x++) { int mb = y * ctx->m.mb_width + x; int rc = (ctx->qscale * ctx->m.mb_num ) + mb; int delta_bits; ctx->mb_qscale[mb] = ctx->qscale; ctx->mb_bits[mb] = ctx->mb_rc[rc].bits; max_bits += ctx->mb_rc[rc].bits; if (!RC_VARIANCE) { delta_bits = ctx->mb_rc[rc].bits - ctx->mb_rc[rc + ctx->m.mb_num].bits; ctx->mb_cmp[mb].mb = mb; ctx->mb_cmp[mb].value = delta_bits ? ((ctx->mb_rc[rc].ssd - ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) / delta_bits : INT_MIN; // avoid increasing qscale } } max_bits += 31; // worst padding } if (!ret) { if (RC_VARIANCE) avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height); radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num); retry: for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) { int mb = ctx->mb_cmp[x].mb; int rc = (ctx->qscale * ctx->m.mb_num ) + mb; max_bits -= ctx->mb_rc[rc].bits - ctx->mb_rc[rc + ctx->m.mb_num].bits; if (ctx->mb_qscale[mb] < 255) ctx->mb_qscale[mb]++; ctx->mb_bits[mb] = ctx->mb_rc[rc + ctx->m.mb_num].bits; } if (max_bits > ctx->frame_bits) goto retry; } return 0; } static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame) { int i; for (i = 0; i < ctx->m.avctx->thread_count; i++) { ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced; ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced; ctx->thread[i]->dct_y_offset = ctx->m.linesize *8; ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8; } ctx->cur_field = (frame->flags & AV_FRAME_FLAG_INTERLACED) && !(frame->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST); } static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet) { DNXHDEncContext *ctx = avctx->priv_data; int first_field = 1; int offset, i, ret; uint8_t *buf; if ((ret = ff_get_encode_buffer(avctx, pkt, ctx->frame_size, 0)) < 0) return ret; buf = pkt->data; dnxhd_load_picture(ctx, frame); encode_coding_unit: for (i = 0; i < 3; i++) { ctx->src[i] = frame->data[i]; if (ctx->interlaced && ctx->cur_field) ctx->src[i] += frame->linesize[i]; } dnxhd_write_header(avctx, buf); if (avctx->mb_decision == FF_MB_DECISION_RD) ret = dnxhd_encode_rdo(avctx, ctx); else ret = dnxhd_encode_fast(avctx, ctx); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "picture could not fit ratecontrol constraints, increase qmax\n"); return ret; } dnxhd_setup_threads_slices(ctx); offset = 0; for (i = 0; i < ctx->m.mb_height; i++) { AV_WB32(ctx->msip + i * 4, offset); offset += ctx->slice_size[i]; av_assert1(!(ctx->slice_size[i] & 3)); } avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height); av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size); memset(buf + ctx->data_offset + offset, 0, ctx->coding_unit_size - 4 - offset - ctx->data_offset); AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF if (ctx->interlaced && first_field) { first_field = 0; ctx->cur_field ^= 1; buf += ctx->coding_unit_size; goto encode_coding_unit; } ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I); *got_packet = 1; return 0; } static av_cold int dnxhd_encode_end(AVCodecContext *avctx) { DNXHDEncContext *ctx = avctx->priv_data; int i; av_freep(&ctx->orig_vlc_codes); av_freep(&ctx->orig_vlc_bits); av_freep(&ctx->run_codes); av_freep(&ctx->run_bits); av_freep(&ctx->mb_bits); av_freep(&ctx->mb_qscale); av_freep(&ctx->mb_rc); av_freep(&ctx->mb_cmp); av_freep(&ctx->mb_cmp_tmp); av_freep(&ctx->slice_size); av_freep(&ctx->slice_offs); av_freep(&ctx->qmatrix_c); av_freep(&ctx->qmatrix_l); av_freep(&ctx->qmatrix_c16); av_freep(&ctx->qmatrix_l16); if (ctx->thread[1]) { for (i = 1; i < avctx->thread_count; i++) av_freep(&ctx->thread[i]); } return 0; } static const FFCodecDefault dnxhd_defaults[] = { { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */ { NULL }, }; const FFCodec ff_dnxhd_encoder = { .p.name = "dnxhd", CODEC_LONG_NAME("VC3/DNxHD"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_DNXHD, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, .priv_data_size = sizeof(DNXHDEncContext), .init = dnxhd_encode_init, FF_CODEC_ENCODE_CB(dnxhd_encode_picture), .close = dnxhd_encode_end, .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_GBRP10, AV_PIX_FMT_NONE }, .p.priv_class = &dnxhd_class, .defaults = dnxhd_defaults, .p.profiles = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles), .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; void ff_dnxhdenc_init(DNXHDEncContext *ctx) { #if ARCH_X86 ff_dnxhdenc_init_x86(ctx); #endif }