/* * Copyright (c) 2023-2024 Nuo Mi * Copyright (c) 2023-2024 Wu Jianhua * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with FFmpeg; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include "checkasm.h" #include "libavcodec/vvc/ctu.h" #include "libavcodec/vvc/data.h" #include "libavcodec/vvc/dsp.h" #include "libavutil/common.h" #include "libavutil/intreadwrite.h" #include "libavutil/mem_internal.h" static const uint32_t pixel_mask[] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff, 0x3fff3fff, 0xffffffff }; static const int sizes[] = { 2, 4, 8, 16, 32, 64, 128 }; #define SIZEOF_PIXEL ((bit_depth + 7) / 8) #define PIXEL_STRIDE (MAX_CTU_SIZE * 2) #define EXTRA_BEFORE 3 #define EXTRA_AFTER 4 #define SRC_EXTRA (EXTRA_BEFORE + EXTRA_AFTER) * 2 #define SRC_BUF_SIZE (PIXEL_STRIDE + SRC_EXTRA) * (PIXEL_STRIDE + SRC_EXTRA) #define DST_BUF_SIZE (MAX_CTU_SIZE * MAX_CTU_SIZE * 2) #define SRC_OFFSET ((PIXEL_STRIDE + EXTRA_BEFORE * 2) * EXTRA_BEFORE) #define randomize_buffers(buf0, buf1, size, mask) \ do { \ int k; \ for (k = 0; k < size; k += 4 / sizeof(*buf0)) { \ uint32_t r = rnd() & mask; \ AV_WN32A(buf0 + k, r); \ AV_WN32A(buf1 + k, r); \ } \ } while (0) #define randomize_pixels(buf0, buf1, size) \ do { \ uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \ randomize_buffers(buf0, buf1, size, mask); \ } while (0) #define randomize_avg_src(buf0, buf1, size) \ do { \ uint32_t mask = 0x3fff3fff; \ randomize_buffers(buf0, buf1, size, mask); \ } while (0) static void check_put_vvc_luma(void) { LOCAL_ALIGNED_32(int16_t, dst0, [DST_BUF_SIZE / 2]); LOCAL_ALIGNED_32(int16_t, dst1, [DST_BUF_SIZE / 2]); LOCAL_ALIGNED_32(uint8_t, src0, [SRC_BUF_SIZE]); LOCAL_ALIGNED_32(uint8_t, src1, [SRC_BUF_SIZE]); VVCDSPContext c; declare_func(void, int16_t *dst, const uint8_t *src, const ptrdiff_t src_stride, const int height, const int8_t *hf, const int8_t *vf, const int width); for (int bit_depth = 8; bit_depth <= 12; bit_depth += 2) { randomize_pixels(src0, src1, SRC_BUF_SIZE); ff_vvc_dsp_init(&c, bit_depth); for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { for (int h = 4; h <= MAX_CTU_SIZE; h *= 2) { for (int w = 4; w <= MAX_CTU_SIZE; w *= 2) { const int idx = av_log2(w) - 1; const int mx = rnd() % 16; const int my = rnd() % 16; const int8_t *hf = ff_vvc_inter_luma_filters[rnd() % 3][mx]; const int8_t *vf = ff_vvc_inter_luma_filters[rnd() % 3][my]; const char *type; switch ((j << 1) | i) { case 0: type = "put_luma_pixels"; break; // 0 0 case 1: type = "put_luma_h"; break; // 0 1 case 2: type = "put_luma_v"; break; // 1 0 case 3: type = "put_luma_hv"; break; // 1 1 } if (check_func(c.inter.put[LUMA][idx][j][i], "%s_%d_%dx%d", type, bit_depth, w, h)) { memset(dst0, 0, DST_BUF_SIZE); memset(dst1, 0, DST_BUF_SIZE); call_ref(dst0, src0 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); call_new(dst1, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); if (memcmp(dst0, dst1, DST_BUF_SIZE)) fail(); if (w == h) bench_new(dst1, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); } } } } } } report("put_luma"); } static void check_put_vvc_luma_uni(void) { LOCAL_ALIGNED_32(uint8_t, dst0, [DST_BUF_SIZE]); LOCAL_ALIGNED_32(uint8_t, dst1, [DST_BUF_SIZE]); LOCAL_ALIGNED_32(uint8_t, src0, [SRC_BUF_SIZE]); LOCAL_ALIGNED_32(uint8_t, src1, [SRC_BUF_SIZE]); VVCDSPContext c; declare_func(void, uint8_t *dst, ptrdiff_t dststride, const uint8_t *src, ptrdiff_t srcstride, int height, const int8_t *hf, const int8_t *vf, int width); for (int bit_depth = 8; bit_depth <= 12; bit_depth += 2) { ff_vvc_dsp_init(&c, bit_depth); randomize_pixels(src0, src1, SRC_BUF_SIZE); for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { for (int h = 4; h <= MAX_CTU_SIZE; h *= 2) { for (int w = 4; w <= MAX_CTU_SIZE; w *= 2) { const int idx = av_log2(w) - 1; const int mx = rnd() % VVC_INTER_LUMA_FACTS; const int my = rnd() % VVC_INTER_LUMA_FACTS; const int8_t *hf = ff_vvc_inter_luma_filters[rnd() % VVC_INTER_LUMA_FILTER_TYPES][mx]; const int8_t *vf = ff_vvc_inter_luma_filters[rnd() % VVC_INTER_LUMA_FILTER_TYPES][my]; const char *type; switch ((j << 1) | i) { case 0: type = "put_uni_pixels"; break; // 0 0 case 1: type = "put_uni_h"; break; // 0 1 case 2: type = "put_uni_v"; break; // 1 0 case 3: type = "put_uni_hv"; break; // 1 1 } if (check_func(c.inter.put_uni[LUMA][idx][j][i], "%s_luma_%d_%dx%d", type, bit_depth, w, h)) { memset(dst0, 0, DST_BUF_SIZE); memset(dst1, 0, DST_BUF_SIZE); call_ref(dst0, PIXEL_STRIDE, src0 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); call_new(dst1, PIXEL_STRIDE, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); if (memcmp(dst0, dst1, DST_BUF_SIZE)) fail(); if (w == h) bench_new(dst1, PIXEL_STRIDE, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); } } } } } } report("put_uni_luma"); } static void check_put_vvc_chroma(void) { LOCAL_ALIGNED_32(int16_t, dst0, [DST_BUF_SIZE / 2]); LOCAL_ALIGNED_32(int16_t, dst1, [DST_BUF_SIZE / 2]); LOCAL_ALIGNED_32(uint8_t, src0, [SRC_BUF_SIZE]); LOCAL_ALIGNED_32(uint8_t, src1, [SRC_BUF_SIZE]); VVCDSPContext c; declare_func(void, int16_t *dst, const uint8_t *src, const ptrdiff_t src_stride, const int height, const int8_t *hf, const int8_t *vf, const int width); for (int bit_depth = 8; bit_depth <= 12; bit_depth += 2) { randomize_pixels(src0, src1, SRC_BUF_SIZE); ff_vvc_dsp_init(&c, bit_depth); for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { for (int h = 2; h <= MAX_CTU_SIZE; h *= 2) { for (int w = 2; w <= MAX_CTU_SIZE; w *= 2) { const int idx = av_log2(w) - 1; const int mx = rnd() % VVC_INTER_CHROMA_FACTS; const int my = rnd() % VVC_INTER_CHROMA_FACTS; const int8_t *hf = ff_vvc_inter_chroma_filters[rnd() % VVC_INTER_CHROMA_FILTER_TYPES][mx]; const int8_t *vf = ff_vvc_inter_chroma_filters[rnd() % VVC_INTER_CHROMA_FILTER_TYPES][my]; const char *type; switch ((j << 1) | i) { case 0: type = "put_chroma_pixels"; break; // 0 0 case 1: type = "put_chroma_h"; break; // 0 1 case 2: type = "put_chroma_v"; break; // 1 0 case 3: type = "put_chroma_hv"; break; // 1 1 } if (check_func(c.inter.put[CHROMA][idx][j][i], "%s_%d_%dx%d", type, bit_depth, w, h)) { memset(dst0, 0, DST_BUF_SIZE); memset(dst1, 0, DST_BUF_SIZE); call_ref(dst0, src0 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); call_new(dst1, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); if (memcmp(dst0, dst1, DST_BUF_SIZE)) fail(); if (w == h) bench_new(dst1, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); } } } } } } report("put_chroma"); } static void check_put_vvc_chroma_uni(void) { LOCAL_ALIGNED_32(uint8_t, dst0, [DST_BUF_SIZE]); LOCAL_ALIGNED_32(uint8_t, dst1, [DST_BUF_SIZE]); LOCAL_ALIGNED_32(uint8_t, src0, [SRC_BUF_SIZE]); LOCAL_ALIGNED_32(uint8_t, src1, [SRC_BUF_SIZE]); VVCDSPContext c; declare_func(void, uint8_t *dst, ptrdiff_t dststride, const uint8_t *src, ptrdiff_t srcstride, int height, const int8_t *hf, const int8_t *vf, int width); for (int bit_depth = 8; bit_depth <= 12; bit_depth += 2) { ff_vvc_dsp_init(&c, bit_depth); randomize_pixels(src0, src1, SRC_BUF_SIZE); for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { for (int h = 4; h <= MAX_CTU_SIZE; h *= 2) { for (int w = 4; w <= MAX_CTU_SIZE; w *= 2) { const int idx = av_log2(w) - 1; const int mx = rnd() % VVC_INTER_CHROMA_FACTS; const int my = rnd() % VVC_INTER_CHROMA_FACTS; const int8_t *hf = ff_vvc_inter_chroma_filters[rnd() % VVC_INTER_CHROMA_FILTER_TYPES][mx]; const int8_t *vf = ff_vvc_inter_chroma_filters[rnd() % VVC_INTER_CHROMA_FILTER_TYPES][my]; const char *type; switch ((j << 1) | i) { case 0: type = "put_uni_pixels"; break; // 0 0 case 1: type = "put_uni_h"; break; // 0 1 case 2: type = "put_uni_v"; break; // 1 0 case 3: type = "put_uni_hv"; break; // 1 1 } if (check_func(c.inter.put_uni[CHROMA][idx][j][i], "%s_chroma_%d_%dx%d", type, bit_depth, w, h)) { memset(dst0, 0, DST_BUF_SIZE); memset(dst1, 0, DST_BUF_SIZE); call_ref(dst0, PIXEL_STRIDE, src0 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); call_new(dst1, PIXEL_STRIDE, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); if (memcmp(dst0, dst1, DST_BUF_SIZE)) fail(); if (w == h) bench_new(dst1, PIXEL_STRIDE, src1 + SRC_OFFSET, PIXEL_STRIDE, h, hf, vf, w); } } } } } } report("put_uni_chroma"); } #define AVG_SRC_BUF_SIZE (MAX_CTU_SIZE * MAX_CTU_SIZE) #define AVG_DST_BUF_SIZE (MAX_PB_SIZE * MAX_PB_SIZE * 2) static void check_avg(void) { LOCAL_ALIGNED_32(int16_t, src00, [AVG_SRC_BUF_SIZE]); LOCAL_ALIGNED_32(int16_t, src01, [AVG_SRC_BUF_SIZE]); LOCAL_ALIGNED_32(int16_t, src10, [AVG_SRC_BUF_SIZE]); LOCAL_ALIGNED_32(int16_t, src11, [AVG_SRC_BUF_SIZE]); LOCAL_ALIGNED_32(uint8_t, dst0, [AVG_DST_BUF_SIZE]); LOCAL_ALIGNED_32(uint8_t, dst1, [AVG_DST_BUF_SIZE]); VVCDSPContext c; for (int bit_depth = 8; bit_depth <= 12; bit_depth += 2) { randomize_avg_src((uint8_t*)src00, (uint8_t*)src10, AVG_SRC_BUF_SIZE * sizeof(int16_t)); randomize_avg_src((uint8_t*)src01, (uint8_t*)src11, AVG_SRC_BUF_SIZE * sizeof(int16_t)); ff_vvc_dsp_init(&c, bit_depth); for (int h = 2; h <= MAX_CTU_SIZE; h *= 2) { for (int w = 2; w <= MAX_CTU_SIZE; w *= 2) { { declare_func(void, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *src0, const int16_t *src1, int width, int height); if (check_func(c.inter.avg, "avg_%d_%dx%d", bit_depth, w, h)) { memset(dst0, 0, AVG_DST_BUF_SIZE); memset(dst1, 0, AVG_DST_BUF_SIZE); call_ref(dst0, MAX_CTU_SIZE * SIZEOF_PIXEL, src00, src01, w, h); call_new(dst1, MAX_CTU_SIZE * SIZEOF_PIXEL, src10, src11, w, h); if (memcmp(dst0, dst1, DST_BUF_SIZE)) fail(); if (w == h) bench_new(dst0, MAX_CTU_SIZE * SIZEOF_PIXEL, src00, src01, w, h); } } { declare_func(void, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *src0, const int16_t *src1, int width, int height, int denom, int w0, int w1, int o0, int o1); { const int denom = rnd() % 8; const int w0 = rnd() % 256 - 128; const int w1 = rnd() % 256 - 128; const int o0 = rnd() % 256 - 128; const int o1 = rnd() % 256 - 128; if (check_func(c.inter.w_avg, "w_avg_%d_%dx%d", bit_depth, w, h)) { memset(dst0, 0, AVG_DST_BUF_SIZE); memset(dst1, 0, AVG_DST_BUF_SIZE); call_ref(dst0, MAX_CTU_SIZE * SIZEOF_PIXEL, src00, src01, w, h, denom, w0, w1, o0, o1); call_new(dst1, MAX_CTU_SIZE * SIZEOF_PIXEL, src10, src11, w, h, denom, w0, w1, o0, o1); if (memcmp(dst0, dst1, DST_BUF_SIZE)) fail(); if (w == h) bench_new(dst0, MAX_CTU_SIZE * SIZEOF_PIXEL, src00, src01, w, h, denom, w0, w1, o0, o1); } } } } } } report("avg"); } static void check_vvc_sad(void) { const int bit_depth = 10; VVCDSPContext c; LOCAL_ALIGNED_32(uint16_t, src0, [MAX_CTU_SIZE * MAX_CTU_SIZE * 4]); LOCAL_ALIGNED_32(uint16_t, src1, [MAX_CTU_SIZE * MAX_CTU_SIZE * 4]); declare_func(int, const int16_t *src0, const int16_t *src1, int dx, int dy, int block_w, int block_h); ff_vvc_dsp_init(&c, bit_depth); memset(src0, 0, MAX_CTU_SIZE * MAX_CTU_SIZE * 4 * sizeof(uint16_t)); memset(src1, 0, MAX_CTU_SIZE * MAX_CTU_SIZE * 4 * sizeof(uint16_t)); randomize_pixels(src0, src1, MAX_CTU_SIZE * MAX_CTU_SIZE * 4); for (int h = 8; h <= MAX_CTU_SIZE; h *= 2) { for (int w = 8; w <= MAX_CTU_SIZE; w *= 2) { for(int offy = 0; offy <= 4; offy++) { for(int offx = 0; offx <= 4; offx++) { if(check_func(c.inter.sad, "sad_%dx%d", w, h)) { int result0; int result1; result0 = call_ref(src0 + PIXEL_STRIDE * 2 + 2, src1 + PIXEL_STRIDE * 2 + 2, offx, offy, w, h); result1 = call_new(src0 + PIXEL_STRIDE * 2 + 2, src1 + PIXEL_STRIDE * 2 + 2, offx, offy, w, h); if (result1 != result0) fail(); if(w == h && offx == 0 && offy == 0) bench_new(src0 + PIXEL_STRIDE * 2 + 2, src1 + PIXEL_STRIDE * 2 + 2, offx, offy, w, h); } } } } } report("sad"); } void checkasm_check_vvc_mc(void) { check_vvc_sad(); check_put_vvc_luma(); check_put_vvc_luma_uni(); check_put_vvc_chroma(); check_put_vvc_chroma_uni(); check_avg(); }