/* * Copyright (C) 2001-2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #define _SVID_SOURCE // needed for MAP_ANONYMOUS #define _DARWIN_C_SOURCE // needed for MAP_ANON #include #include #include #include #if HAVE_SYS_MMAN_H #include #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS) #define MAP_ANONYMOUS MAP_ANON #endif #endif #if HAVE_VIRTUALALLOC #define WIN32_LEAN_AND_MEAN #include #endif #include "libavutil/attributes.h" #include "libavutil/avassert.h" #include "libavutil/avutil.h" #include "libavutil/bswap.h" #include "libavutil/cpu.h" #include "libavutil/intreadwrite.h" #include "libavutil/mathematics.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/ppc/cpu.h" #include "libavutil/x86/asm.h" #include "libavutil/x86/cpu.h" #include "rgb2rgb.h" #include "swscale.h" #include "swscale_internal.h" static void handle_formats(SwsContext *c); unsigned swscale_version(void) { av_assert0(LIBSWSCALE_VERSION_MICRO >= 100); return LIBSWSCALE_VERSION_INT; } const char *swscale_configuration(void) { return FFMPEG_CONFIGURATION; } const char *swscale_license(void) { #define LICENSE_PREFIX "libswscale license: " return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1; } #define RET 0xC3 // near return opcode for x86 typedef struct FormatEntry { uint8_t is_supported_in :1; uint8_t is_supported_out :1; uint8_t is_supported_endianness :1; } FormatEntry; static const FormatEntry format_entries[AV_PIX_FMT_NB] = { [AV_PIX_FMT_YUV420P] = { 1, 1 }, [AV_PIX_FMT_YUYV422] = { 1, 1 }, [AV_PIX_FMT_RGB24] = { 1, 1 }, [AV_PIX_FMT_BGR24] = { 1, 1 }, [AV_PIX_FMT_YUV422P] = { 1, 1 }, [AV_PIX_FMT_YUV444P] = { 1, 1 }, [AV_PIX_FMT_YUV410P] = { 1, 1 }, [AV_PIX_FMT_YUV411P] = { 1, 1 }, [AV_PIX_FMT_GRAY8] = { 1, 1 }, [AV_PIX_FMT_MONOWHITE] = { 1, 1 }, [AV_PIX_FMT_MONOBLACK] = { 1, 1 }, [AV_PIX_FMT_PAL8] = { 1, 0 }, [AV_PIX_FMT_YUVJ420P] = { 1, 1 }, [AV_PIX_FMT_YUVJ411P] = { 1, 1 }, [AV_PIX_FMT_YUVJ422P] = { 1, 1 }, [AV_PIX_FMT_YUVJ444P] = { 1, 1 }, [AV_PIX_FMT_UYVY422] = { 1, 1 }, [AV_PIX_FMT_UYYVYY411] = { 0, 0 }, [AV_PIX_FMT_BGR8] = { 1, 1 }, [AV_PIX_FMT_BGR4] = { 0, 1 }, [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 }, [AV_PIX_FMT_RGB8] = { 1, 1 }, [AV_PIX_FMT_RGB4] = { 0, 1 }, [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 }, [AV_PIX_FMT_NV12] = { 1, 1 }, [AV_PIX_FMT_NV21] = { 1, 1 }, [AV_PIX_FMT_ARGB] = { 1, 1 }, [AV_PIX_FMT_RGBA] = { 1, 1 }, [AV_PIX_FMT_ABGR] = { 1, 1 }, [AV_PIX_FMT_BGRA] = { 1, 1 }, [AV_PIX_FMT_0RGB] = { 1, 1 }, [AV_PIX_FMT_RGB0] = { 1, 1 }, [AV_PIX_FMT_0BGR] = { 1, 1 }, [AV_PIX_FMT_BGR0] = { 1, 1 }, [AV_PIX_FMT_GRAY16BE] = { 1, 1 }, [AV_PIX_FMT_GRAY16LE] = { 1, 1 }, [AV_PIX_FMT_YUV440P] = { 1, 1 }, [AV_PIX_FMT_YUVJ440P] = { 1, 1 }, [AV_PIX_FMT_YUVA420P] = { 1, 1 }, [AV_PIX_FMT_YUVA422P] = { 1, 1 }, [AV_PIX_FMT_YUVA444P] = { 1, 1 }, [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 }, [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 }, [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 }, [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 }, [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 }, [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 }, [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 }, [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 }, [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 }, [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 }, [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 }, [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 }, [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 }, [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 }, [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 }, [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 }, [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 }, [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 }, [AV_PIX_FMT_RGB48BE] = { 1, 1 }, [AV_PIX_FMT_RGB48LE] = { 1, 1 }, [AV_PIX_FMT_RGBA64BE] = { 1, 1 }, [AV_PIX_FMT_RGBA64LE] = { 1, 1 }, [AV_PIX_FMT_RGB565BE] = { 1, 1 }, [AV_PIX_FMT_RGB565LE] = { 1, 1 }, [AV_PIX_FMT_RGB555BE] = { 1, 1 }, [AV_PIX_FMT_RGB555LE] = { 1, 1 }, [AV_PIX_FMT_BGR565BE] = { 1, 1 }, [AV_PIX_FMT_BGR565LE] = { 1, 1 }, [AV_PIX_FMT_BGR555BE] = { 1, 1 }, [AV_PIX_FMT_BGR555LE] = { 1, 1 }, [AV_PIX_FMT_YUV420P16LE] = { 1, 1 }, [AV_PIX_FMT_YUV420P16BE] = { 1, 1 }, [AV_PIX_FMT_YUV422P16LE] = { 1, 1 }, [AV_PIX_FMT_YUV422P16BE] = { 1, 1 }, [AV_PIX_FMT_YUV444P16LE] = { 1, 1 }, [AV_PIX_FMT_YUV444P16BE] = { 1, 1 }, [AV_PIX_FMT_RGB444LE] = { 1, 1 }, [AV_PIX_FMT_RGB444BE] = { 1, 1 }, [AV_PIX_FMT_BGR444LE] = { 1, 1 }, [AV_PIX_FMT_BGR444BE] = { 1, 1 }, [AV_PIX_FMT_Y400A] = { 1, 0 }, [AV_PIX_FMT_BGR48BE] = { 1, 1 }, [AV_PIX_FMT_BGR48LE] = { 1, 1 }, [AV_PIX_FMT_BGRA64BE] = { 0, 0 }, [AV_PIX_FMT_BGRA64LE] = { 0, 0 }, [AV_PIX_FMT_YUV420P9BE] = { 1, 1 }, [AV_PIX_FMT_YUV420P9LE] = { 1, 1 }, [AV_PIX_FMT_YUV420P10BE] = { 1, 1 }, [AV_PIX_FMT_YUV420P10LE] = { 1, 1 }, [AV_PIX_FMT_YUV420P12BE] = { 1, 1 }, [AV_PIX_FMT_YUV420P12LE] = { 1, 1 }, [AV_PIX_FMT_YUV420P14BE] = { 1, 1 }, [AV_PIX_FMT_YUV420P14LE] = { 1, 1 }, [AV_PIX_FMT_YUV422P9BE] = { 1, 1 }, [AV_PIX_FMT_YUV422P9LE] = { 1, 1 }, [AV_PIX_FMT_YUV422P10BE] = { 1, 1 }, [AV_PIX_FMT_YUV422P10LE] = { 1, 1 }, [AV_PIX_FMT_YUV422P12BE] = { 1, 1 }, [AV_PIX_FMT_YUV422P12LE] = { 1, 1 }, [AV_PIX_FMT_YUV422P14BE] = { 1, 1 }, [AV_PIX_FMT_YUV422P14LE] = { 1, 1 }, [AV_PIX_FMT_YUV444P9BE] = { 1, 1 }, [AV_PIX_FMT_YUV444P9LE] = { 1, 1 }, [AV_PIX_FMT_YUV444P10BE] = { 1, 1 }, [AV_PIX_FMT_YUV444P10LE] = { 1, 1 }, [AV_PIX_FMT_YUV444P12BE] = { 1, 1 }, [AV_PIX_FMT_YUV444P12LE] = { 1, 1 }, [AV_PIX_FMT_YUV444P14BE] = { 1, 1 }, [AV_PIX_FMT_YUV444P14LE] = { 1, 1 }, [AV_PIX_FMT_GBRP] = { 1, 1 }, [AV_PIX_FMT_GBRP9LE] = { 1, 1 }, [AV_PIX_FMT_GBRP9BE] = { 1, 1 }, [AV_PIX_FMT_GBRP10LE] = { 1, 1 }, [AV_PIX_FMT_GBRP10BE] = { 1, 1 }, [AV_PIX_FMT_GBRP12LE] = { 1, 1 }, [AV_PIX_FMT_GBRP12BE] = { 1, 1 }, [AV_PIX_FMT_GBRP14LE] = { 1, 1 }, [AV_PIX_FMT_GBRP14BE] = { 1, 1 }, [AV_PIX_FMT_GBRP16LE] = { 1, 0 }, [AV_PIX_FMT_GBRP16BE] = { 1, 0 }, [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 }, [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 }, [AV_PIX_FMT_GBRAP] = { 1, 1 }, [AV_PIX_FMT_GBRAP16LE] = { 1, 0 }, [AV_PIX_FMT_GBRAP16BE] = { 1, 0 }, }; int sws_isSupportedInput(enum AVPixelFormat pix_fmt) { return (unsigned)pix_fmt < AV_PIX_FMT_NB ? format_entries[pix_fmt].is_supported_in : 0; } int sws_isSupportedOutput(enum AVPixelFormat pix_fmt) { return (unsigned)pix_fmt < AV_PIX_FMT_NB ? format_entries[pix_fmt].is_supported_out : 0; } int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt) { return (unsigned)pix_fmt < AV_PIX_FMT_NB ? format_entries[pix_fmt].is_supported_endianness : 0; } #if FF_API_SWS_FORMAT_NAME const char *sws_format_name(enum AVPixelFormat format) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format); if (desc) return desc->name; else return "Unknown format"; } #endif static double getSplineCoeff(double a, double b, double c, double d, double dist) { if (dist <= 1.0) return ((d * dist + c) * dist + b) * dist + a; else return getSplineCoeff(0.0, b + 2.0 * c + 3.0 * d, c + 3.0 * d, -b - 3.0 * c - 6.0 * d, dist - 1.0); } static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir) { if (pos < 0) { pos = (128 << chr_subsample) - 128; } pos += 128; // relative to ideal left edge return pos >> chr_subsample; } typedef struct { int flag; ///< flag associated to the algorithm const char *description; ///< human-readable description int size_factor; ///< size factor used when initing the filters } ScaleAlgorithm; static const ScaleAlgorithm scale_algorithms[] = { { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ }, { SWS_BICUBIC, "bicubic", 4 }, { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 }, { SWS_BILINEAR, "bilinear", 2 }, { SWS_FAST_BILINEAR, "fast bilinear", -1 }, { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ }, { SWS_LANCZOS, "Lanczos", -1 /* custom */ }, { SWS_POINT, "nearest neighbor / point", -1 }, { SWS_SINC, "sinc", 20 /* infinite ;) */ }, { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ }, { SWS_X, "experimental", 8 }, }; static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos) { int i; int filterSize; int filter2Size; int minFilterSize; int64_t *filter = NULL; int64_t *filter2 = NULL; const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8)); int ret = -1; emms_c(); // FIXME should not be required but IS (even for non-MMX versions) // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail); if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled int i; filterSize = 1; FF_ALLOCZ_OR_GOTO(NULL, filter, dstW * sizeof(*filter) * filterSize, fail); for (i = 0; i < dstW; i++) { filter[i * filterSize] = fone; (*filterPos)[i] = i; } } else if (flags & SWS_POINT) { // lame looking point sampling mode int i; int64_t xDstInSrc; filterSize = 1; FF_ALLOC_OR_GOTO(NULL, filter, dstW * sizeof(*filter) * filterSize, fail); xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7); for (i = 0; i < dstW; i++) { int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16; (*filterPos)[i] = xx; filter[i] = fone; xDstInSrc += xInc; } } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) || (flags & SWS_FAST_BILINEAR)) { // bilinear upscale int i; int64_t xDstInSrc; filterSize = 2; FF_ALLOC_OR_GOTO(NULL, filter, dstW * sizeof(*filter) * filterSize, fail); xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7); for (i = 0; i < dstW; i++) { int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16; int j; (*filterPos)[i] = xx; // bilinear upscale / linear interpolate / area averaging for (j = 0; j < filterSize; j++) { int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16); if (coeff < 0) coeff = 0; filter[i * filterSize + j] = coeff; xx++; } xDstInSrc += xInc; } } else { int64_t xDstInSrc; int sizeFactor = -1; for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) { if (flags & scale_algorithms[i].flag) { sizeFactor = scale_algorithms[i].size_factor; break; } } if (flags & SWS_LANCZOS) sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6; av_assert0(sizeFactor > 0); if (xInc <= 1 << 16) filterSize = 1 + sizeFactor; // upscale else filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW; filterSize = FFMIN(filterSize, srcW - 2); filterSize = FFMAX(filterSize, 1); FF_ALLOC_OR_GOTO(NULL, filter, dstW * sizeof(*filter) * filterSize, fail); xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7); for (i = 0; i < dstW; i++) { int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17); int j; (*filterPos)[i] = xx; for (j = 0; j < filterSize; j++) { int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13; double floatd; int64_t coeff; if (xInc > 1 << 16) d = d * dstW / srcW; floatd = d * (1.0 / (1 << 30)); if (flags & SWS_BICUBIC) { int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24); int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24); if (d >= 1LL << 31) { coeff = 0.0; } else { int64_t dd = (d * d) >> 30; int64_t ddd = (dd * d) >> 30; if (d < 1LL << 30) coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd + (-18 * (1 << 24) + 12 * B + 6 * C) * dd + (6 * (1 << 24) - 2 * B) * (1 << 30); else coeff = (-B - 6 * C) * ddd + (6 * B + 30 * C) * dd + (-12 * B - 48 * C) * d + (8 * B + 24 * C) * (1 << 30); } coeff /= (1LL<<54)/fone; } #if 0 else if (flags & SWS_X) { double p = param ? param * 0.01 : 0.3; coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0; coeff *= pow(2.0, -p * d * d); } #endif else if (flags & SWS_X) { double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0; double c; if (floatd < 1.0) c = cos(floatd * M_PI); else c = -1.0; if (c < 0.0) c = -pow(-c, A); else c = pow(c, A); coeff = (c * 0.5 + 0.5) * fone; } else if (flags & SWS_AREA) { int64_t d2 = d - (1 << 29); if (d2 * xInc < -(1LL << (29 + 16))) coeff = 1.0 * (1LL << (30 + 16)); else if (d2 * xInc < (1LL << (29 + 16))) coeff = -d2 * xInc + (1LL << (29 + 16)); else coeff = 0.0; coeff *= fone >> (30 + 16); } else if (flags & SWS_GAUSS) { double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; coeff = (pow(2.0, -p * floatd * floatd)) * fone; } else if (flags & SWS_SINC) { coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone; } else if (flags & SWS_LANCZOS) { double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) / (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone; if (floatd > p) coeff = 0; } else if (flags & SWS_BILINEAR) { coeff = (1 << 30) - d; if (coeff < 0) coeff = 0; coeff *= fone >> 30; } else if (flags & SWS_SPLINE) { double p = -2.196152422706632; coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone; } else { av_assert0(0); } filter[i * filterSize + j] = coeff; xx++; } xDstInSrc += 2 * xInc; } } /* apply src & dst Filter to filter -> filter2 * av_free(filter); */ av_assert0(filterSize > 0); filter2Size = filterSize; if (srcFilter) filter2Size += srcFilter->length - 1; if (dstFilter) filter2Size += dstFilter->length - 1; av_assert0(filter2Size > 0); FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail); for (i = 0; i < dstW; i++) { int j, k; if (srcFilter) { for (k = 0; k < srcFilter->length; k++) { for (j = 0; j < filterSize; j++) filter2[i * filter2Size + k + j] += srcFilter->coeff[k] * filter[i * filterSize + j]; } } else { for (j = 0; j < filterSize; j++) filter2[i * filter2Size + j] = filter[i * filterSize + j]; } // FIXME dstFilter (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2; } av_freep(&filter); /* try to reduce the filter-size (step1 find size and shift left) */ // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not). minFilterSize = 0; for (i = dstW - 1; i >= 0; i--) { int min = filter2Size; int j; int64_t cutOff = 0.0; /* get rid of near zero elements on the left by shifting left */ for (j = 0; j < filter2Size; j++) { int k; cutOff += FFABS(filter2[i * filter2Size]); if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone) break; /* preserve monotonicity because the core can't handle the * filter otherwise */ if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1]) break; // move filter coefficients left for (k = 1; k < filter2Size; k++) filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k]; filter2[i * filter2Size + k - 1] = 0; (*filterPos)[i]++; } cutOff = 0; /* count near zeros on the right */ for (j = filter2Size - 1; j > 0; j--) { cutOff += FFABS(filter2[i * filter2Size + j]); if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone) break; min--; } if (min > minFilterSize) minFilterSize = min; } if (PPC_ALTIVEC(cpu_flags)) { // we can handle the special case 4, so we don't want to go the full 8 if (minFilterSize < 5) filterAlign = 4; /* We really don't want to waste our time doing useless computation, so * fall back on the scalar C code for very small filters. * Vectorizing is worth it only if you have a decent-sized vector. */ if (minFilterSize < 3) filterAlign = 1; } if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) { // special case for unscaled vertical filtering if (minFilterSize == 1 && filterAlign == 2) filterAlign = 1; } av_assert0(minFilterSize > 0); filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1)); av_assert0(filterSize > 0); filter = av_malloc(filterSize * dstW * sizeof(*filter)); if (filterSize >= MAX_FILTER_SIZE * 16 / ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) { av_log(NULL, AV_LOG_ERROR, "sws: filterSize %d is too large, try less extreme scaling or increase MAX_FILTER_SIZE and recompile\n", filterSize); goto fail; } *outFilterSize = filterSize; if (flags & SWS_PRINT_INFO) av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize); /* try to reduce the filter-size (step2 reduce it) */ for (i = 0; i < dstW; i++) { int j; for (j = 0; j < filterSize; j++) { if (j >= filter2Size) filter[i * filterSize + j] = 0; else filter[i * filterSize + j] = filter2[i * filter2Size + j]; if ((flags & SWS_BITEXACT) && j >= minFilterSize) filter[i * filterSize + j] = 0; } } // FIXME try to align filterPos if possible // fix borders for (i = 0; i < dstW; i++) { int j; if ((*filterPos)[i] < 0) { // move filter coefficients left to compensate for filterPos for (j = 1; j < filterSize; j++) { int left = FFMAX(j + (*filterPos)[i], 0); filter[i * filterSize + left] += filter[i * filterSize + j]; filter[i * filterSize + j] = 0; } (*filterPos)[i]= 0; } if ((*filterPos)[i] + filterSize > srcW) { int shift = (*filterPos)[i] + filterSize - srcW; // move filter coefficients right to compensate for filterPos for (j = filterSize - 2; j >= 0; j--) { int right = FFMIN(j + shift, filterSize - 1); filter[i * filterSize + right] += filter[i * filterSize + j]; filter[i * filterSize + j] = 0; } (*filterPos)[i]= srcW - filterSize; } } // Note the +1 is for the MMX scaler which reads over the end /* align at 16 for AltiVec (needed by hScale_altivec_real) */ FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize * (dstW + 3) * sizeof(int16_t), fail); /* normalize & store in outFilter */ for (i = 0; i < dstW; i++) { int j; int64_t error = 0; int64_t sum = 0; for (j = 0; j < filterSize; j++) { sum += filter[i * filterSize + j]; } sum = (sum + one / 2) / one; if (!sum) { av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n"); sum = 1; } for (j = 0; j < *outFilterSize; j++) { int64_t v = filter[i * filterSize + j] + error; int intV = ROUNDED_DIV(v, sum); (*outFilter)[i * (*outFilterSize) + j] = intV; error = v - intV * sum; } } (*filterPos)[dstW + 0] = (*filterPos)[dstW + 1] = (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will * read over the end */ for (i = 0; i < *outFilterSize; i++) { int k = (dstW - 1) * (*outFilterSize) + i; (*outFilter)[k + 1 * (*outFilterSize)] = (*outFilter)[k + 2 * (*outFilterSize)] = (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k]; } ret = 0; fail: if(ret < 0) av_log(NULL, AV_LOG_ERROR, "sws: initFilter failed\n"); av_free(filter); av_free(filter2); return ret; } #if HAVE_MMXEXT_INLINE static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits) { uint8_t *fragmentA; x86_reg imm8OfPShufW1A; x86_reg imm8OfPShufW2A; x86_reg fragmentLengthA; uint8_t *fragmentB; x86_reg imm8OfPShufW1B; x86_reg imm8OfPShufW2B; x86_reg fragmentLengthB; int fragmentPos; int xpos, i; // create an optimized horizontal scaling routine /* This scaler is made of runtime-generated MMXEXT code using specially tuned * pshufw instructions. For every four output pixels, if four input pixels * are enough for the fast bilinear scaling, then a chunk of fragmentB is * used. If five input pixels are needed, then a chunk of fragmentA is used. */ // code fragment __asm__ volatile ( "jmp 9f \n\t" // Begin "0: \n\t" "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t" "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t" "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t" "punpcklbw %%mm7, %%mm1 \n\t" "punpcklbw %%mm7, %%mm0 \n\t" "pshufw $0xFF, %%mm1, %%mm1 \n\t" "1: \n\t" "pshufw $0xFF, %%mm0, %%mm0 \n\t" "2: \n\t" "psubw %%mm1, %%mm0 \n\t" "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t" "pmullw %%mm3, %%mm0 \n\t" "psllw $7, %%mm1 \n\t" "paddw %%mm1, %%mm0 \n\t" "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t" "add $8, %%"REG_a" \n\t" // End "9: \n\t" // "int $3 \n\t" "lea " LOCAL_MANGLE(0b) ", %0 \n\t" "lea " LOCAL_MANGLE(1b) ", %1 \n\t" "lea " LOCAL_MANGLE(2b) ", %2 \n\t" "dec %1 \n\t" "dec %2 \n\t" "sub %0, %1 \n\t" "sub %0, %2 \n\t" "lea " LOCAL_MANGLE(9b) ", %3 \n\t" "sub %0, %3 \n\t" : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A), "=r" (fragmentLengthA) ); __asm__ volatile ( "jmp 9f \n\t" // Begin "0: \n\t" "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t" "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t" "punpcklbw %%mm7, %%mm0 \n\t" "pshufw $0xFF, %%mm0, %%mm1 \n\t" "1: \n\t" "pshufw $0xFF, %%mm0, %%mm0 \n\t" "2: \n\t" "psubw %%mm1, %%mm0 \n\t" "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t" "pmullw %%mm3, %%mm0 \n\t" "psllw $7, %%mm1 \n\t" "paddw %%mm1, %%mm0 \n\t" "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t" "add $8, %%"REG_a" \n\t" // End "9: \n\t" // "int $3 \n\t" "lea " LOCAL_MANGLE(0b) ", %0 \n\t" "lea " LOCAL_MANGLE(1b) ", %1 \n\t" "lea " LOCAL_MANGLE(2b) ", %2 \n\t" "dec %1 \n\t" "dec %2 \n\t" "sub %0, %1 \n\t" "sub %0, %2 \n\t" "lea " LOCAL_MANGLE(9b) ", %3 \n\t" "sub %0, %3 \n\t" : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B), "=r" (fragmentLengthB) ); xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers fragmentPos = 0; for (i = 0; i < dstW / numSplits; i++) { int xx = xpos >> 16; if ((i & 3) == 0) { int a = 0; int b = ((xpos + xInc) >> 16) - xx; int c = ((xpos + xInc * 2) >> 16) - xx; int d = ((xpos + xInc * 3) >> 16) - xx; int inc = (d + 1 < 4); uint8_t *fragment = inc ? fragmentB : fragmentA; x86_reg imm8OfPShufW1 = inc ? imm8OfPShufW1B : imm8OfPShufW1A; x86_reg imm8OfPShufW2 = inc ? imm8OfPShufW2B : imm8OfPShufW2A; x86_reg fragmentLength = inc ? fragmentLengthB : fragmentLengthA; int maxShift = 3 - (d + inc); int shift = 0; if (filterCode) { filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9; filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9; filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9; filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9; filterPos[i / 2] = xx; memcpy(filterCode + fragmentPos, fragment, fragmentLength); filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) | ((b + inc) << 2) | ((c + inc) << 4) | ((d + inc) << 6); filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) | (c << 4) | (d << 6); if (i + 4 - inc >= dstW) shift = maxShift; // avoid overread else if ((filterPos[i / 2] & 3) <= maxShift) shift = filterPos[i / 2] & 3; // align if (shift && i >= shift) { filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift; filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift; filterPos[i / 2] -= shift; } } fragmentPos += fragmentLength; if (filterCode) filterCode[fragmentPos] = RET; } xpos += xInc; } if (filterCode) filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part return fragmentPos + 1; } #endif /* HAVE_MMXEXT_INLINE */ static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange) { int64_t W, V, Z, Cy, Cu, Cv; int64_t vr = table[0]; int64_t ub = table[1]; int64_t ug = -table[2]; int64_t vg = -table[3]; int64_t ONE = 65536; int64_t cy = ONE; uint8_t *p = (uint8_t*)c->input_rgb2yuv_table; int i; static const int8_t map[] = { BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX, BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX, BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31 BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32 BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33 BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34 }; dstRange = 0; //FIXME range = 1 is handled elsewhere if (!dstRange) { cy = cy * 255 / 219; } else { vr = vr * 224 / 255; ub = ub * 224 / 255; ug = ug * 224 / 255; vg = vg * 224 / 255; } W = ROUNDED_DIV(ONE*ONE*ug, ub); V = ROUNDED_DIV(ONE*ONE*vg, vr); Z = ONE*ONE-W-V; Cy = ROUNDED_DIV(cy*Z, ONE); Cu = ROUNDED_DIV(ub*Z, ONE); Cv = ROUNDED_DIV(vr*Z, ONE); c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy); c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy); c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy); c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu); c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu); c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu); c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv); c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv); c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv); if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) { c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)); c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)); c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)); c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)); c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)); c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)); c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)); c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)); c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5)); } for(i=0; i= 0 ? c->input_rgb2yuv_table[map[i]] : 0); } static void fill_xyztables(struct SwsContext *c) { int i; double xyzgamma = XYZ_GAMMA; double rgbgamma = 1.0 / RGB_GAMMA; double xyzgammainv = 1.0 / XYZ_GAMMA; double rgbgammainv = RGB_GAMMA; static const int16_t xyz2rgb_matrix[3][4] = { {13270, -6295, -2041}, {-3969, 7682, 170}, { 228, -835, 4329} }; static const int16_t rgb2xyz_matrix[3][4] = { {1689, 1464, 739}, { 871, 2929, 296}, { 79, 488, 3891} }; static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096]; memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix)); memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix)); c->xyzgamma = xyzgamma_tab; c->rgbgamma = rgbgamma_tab; c->xyzgammainv = xyzgammainv_tab; c->rgbgammainv = rgbgammainv_tab; if (rgbgamma_tab[4095]) return; /* set gamma vectors */ for (i = 0; i < 4096; i++) { xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0); rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0); xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0); rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0); } } int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation) { const AVPixFmtDescriptor *desc_dst; const AVPixFmtDescriptor *desc_src; memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4); memmove(c->dstColorspaceTable, table, sizeof(int) * 4); handle_formats(c); desc_dst = av_pix_fmt_desc_get(c->dstFormat); desc_src = av_pix_fmt_desc_get(c->srcFormat); if(!isYUV(c->dstFormat) && !isGray(c->dstFormat)) dstRange = 0; if(!isYUV(c->srcFormat) && !isGray(c->srcFormat)) srcRange = 0; c->brightness = brightness; c->contrast = contrast; c->saturation = saturation; c->srcRange = srcRange; c->dstRange = dstRange; if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) return -1; c->dstFormatBpp = av_get_bits_per_pixel(desc_dst); c->srcFormatBpp = av_get_bits_per_pixel(desc_src); if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) { ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation); // FIXME factorize if (ARCH_PPC) ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness, contrast, saturation); } fill_rgb2yuv_table(c, table, dstRange); return 0; } int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation) { if (!c ) return -1; *inv_table = c->srcColorspaceTable; *table = c->dstColorspaceTable; *srcRange = c->srcRange; *dstRange = c->dstRange; *brightness = c->brightness; *contrast = c->contrast; *saturation = c->saturation; return 0; } static int handle_jpeg(enum AVPixelFormat *format) { switch (*format) { case AV_PIX_FMT_YUVJ420P: *format = AV_PIX_FMT_YUV420P; return 1; case AV_PIX_FMT_YUVJ411P: *format = AV_PIX_FMT_YUV411P; return 1; case AV_PIX_FMT_YUVJ422P: *format = AV_PIX_FMT_YUV422P; return 1; case AV_PIX_FMT_YUVJ444P: *format = AV_PIX_FMT_YUV444P; return 1; case AV_PIX_FMT_YUVJ440P: *format = AV_PIX_FMT_YUV440P; return 1; case AV_PIX_FMT_GRAY8: return 1; default: return 0; } } static int handle_0alpha(enum AVPixelFormat *format) { switch (*format) { case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1; case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4; case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1; case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4; default: return 0; } } static int handle_xyz(enum AVPixelFormat *format) { switch (*format) { case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1; case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1; default: return 0; } } static void handle_formats(SwsContext *c) { c->src0Alpha |= handle_0alpha(&c->srcFormat); c->dst0Alpha |= handle_0alpha(&c->dstFormat); c->srcXYZ |= handle_xyz(&c->srcFormat); c->dstXYZ |= handle_xyz(&c->dstFormat); if (c->srcXYZ || c->dstXYZ) fill_xyztables(c); } SwsContext *sws_alloc_context(void) { SwsContext *c = av_mallocz(sizeof(SwsContext)); if (c) { c->av_class = &sws_context_class; av_opt_set_defaults(c); } return c; } av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter) { int i, j; int usesVFilter, usesHFilter; int unscaled; SwsFilter dummyFilter = { NULL, NULL, NULL, NULL }; int srcW = c->srcW; int srcH = c->srcH; int dstW = c->dstW; int dstH = c->dstH; int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16); int flags, cpu_flags; enum AVPixelFormat srcFormat = c->srcFormat; enum AVPixelFormat dstFormat = c->dstFormat; const AVPixFmtDescriptor *desc_src; const AVPixFmtDescriptor *desc_dst; cpu_flags = av_get_cpu_flags(); flags = c->flags; emms_c(); if (!rgb15to16) sws_rgb2rgb_init(); unscaled = (srcW == dstW && srcH == dstH); c->srcRange |= handle_jpeg(&c->srcFormat); c->dstRange |= handle_jpeg(&c->dstFormat); if (!c->contrast && !c->saturation && !c->dstFormatBpp) sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->dstRange, 0, 1 << 16, 1 << 16); if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat) av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n"); handle_formats(c); srcFormat = c->srcFormat; dstFormat = c->dstFormat; desc_src = av_pix_fmt_desc_get(srcFormat); desc_dst = av_pix_fmt_desc_get(dstFormat); if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) && av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) { if (!sws_isSupportedInput(srcFormat)) { av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n", av_get_pix_fmt_name(srcFormat)); return AVERROR(EINVAL); } if (!sws_isSupportedOutput(dstFormat)) { av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n", av_get_pix_fmt_name(dstFormat)); return AVERROR(EINVAL); } } i = flags & (SWS_POINT | SWS_AREA | SWS_BILINEAR | SWS_FAST_BILINEAR | SWS_BICUBIC | SWS_X | SWS_GAUSS | SWS_LANCZOS | SWS_SINC | SWS_SPLINE | SWS_BICUBLIN); /* provide a default scaler if not set by caller */ if (!i) { if (dstW < srcW && dstH < srcH) flags |= SWS_BICUBIC; else if (dstW > srcW && dstH > srcH) flags |= SWS_BICUBIC; else flags |= SWS_BICUBIC; c->flags = flags; } else if (i & (i - 1)) { av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen, got %X\n", i); return AVERROR(EINVAL); } /* sanity check */ if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) { /* FIXME check if these are enough and try to lower them after * fixing the relevant parts of the code */ av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n", srcW, srcH, dstW, dstH); return AVERROR(EINVAL); } if (!dstFilter) dstFilter = &dummyFilter; if (!srcFilter) srcFilter = &dummyFilter; c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW; c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH; c->dstFormatBpp = av_get_bits_per_pixel(desc_dst); c->srcFormatBpp = av_get_bits_per_pixel(desc_src); c->vRounder = 4 * 0x0001000100010001ULL; usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) || (srcFilter->chrV && srcFilter->chrV->length > 1) || (dstFilter->lumV && dstFilter->lumV->length > 1) || (dstFilter->chrV && dstFilter->chrV->length > 1); usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) || (srcFilter->chrH && srcFilter->chrH->length > 1) || (dstFilter->lumH && dstFilter->lumH->length > 1) || (dstFilter->chrH && dstFilter->chrH->length > 1); av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample); av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample); if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) { if (dstW&1) { av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n"); flags |= SWS_FULL_CHR_H_INT; c->flags = flags; } if ( c->chrSrcHSubSample == 0 && c->chrSrcVSubSample == 0 && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER && !(c->flags & SWS_FAST_BILINEAR) ) { av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n"); flags |= SWS_FULL_CHR_H_INT; c->flags = flags; } } if (c->dither == SWS_DITHER_AUTO) { if (flags & SWS_ERROR_DIFFUSION) c->dither = SWS_DITHER_ED; } if(dstFormat == AV_PIX_FMT_BGR4_BYTE || dstFormat == AV_PIX_FMT_RGB4_BYTE || dstFormat == AV_PIX_FMT_BGR8 || dstFormat == AV_PIX_FMT_RGB8) { if (c->dither == SWS_DITHER_AUTO) c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER; if (!(flags & SWS_FULL_CHR_H_INT)) { if (c->dither == SWS_DITHER_ED) { av_log(c, AV_LOG_DEBUG, "Desired dithering only supported in full chroma interpolation for destination format '%s'\n", av_get_pix_fmt_name(dstFormat)); flags |= SWS_FULL_CHR_H_INT; c->flags = flags; } } if (flags & SWS_FULL_CHR_H_INT) { if (c->dither == SWS_DITHER_BAYER) { av_log(c, AV_LOG_DEBUG, "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n", av_get_pix_fmt_name(dstFormat)); c->dither = SWS_DITHER_ED; } } } if (isPlanarRGB(dstFormat)) { if (!(flags & SWS_FULL_CHR_H_INT)) { av_log(c, AV_LOG_DEBUG, "%s output is not supported with half chroma resolution, switching to full\n", av_get_pix_fmt_name(dstFormat)); flags |= SWS_FULL_CHR_H_INT; c->flags = flags; } } /* reuse chroma for 2 pixels RGB/BGR unless user wants full * chroma interpolation */ if (flags & SWS_FULL_CHR_H_INT && isAnyRGB(dstFormat) && !isPlanarRGB(dstFormat) && dstFormat != AV_PIX_FMT_RGBA && dstFormat != AV_PIX_FMT_ARGB && dstFormat != AV_PIX_FMT_BGRA && dstFormat != AV_PIX_FMT_ABGR && dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_BGR24 && dstFormat != AV_PIX_FMT_BGR4_BYTE && dstFormat != AV_PIX_FMT_RGB4_BYTE && dstFormat != AV_PIX_FMT_BGR8 && dstFormat != AV_PIX_FMT_RGB8 ) { av_log(c, AV_LOG_WARNING, "full chroma interpolation for destination format '%s' not yet implemented\n", av_get_pix_fmt_name(dstFormat)); flags &= ~SWS_FULL_CHR_H_INT; c->flags = flags; } if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT)) c->chrDstHSubSample = 1; // drop some chroma lines if the user wants it c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >> SWS_SRC_V_CHR_DROP_SHIFT; c->chrSrcVSubSample += c->vChrDrop; /* drop every other pixel for chroma calculation unless user * wants full chroma */ if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) && srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 && srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 && srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE && srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE && srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE && srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE && srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE && srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE && ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) || (flags & SWS_FAST_BILINEAR))) c->chrSrcHSubSample = 1; // Note the FF_CEIL_RSHIFT is so that we always round toward +inf. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample); c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample); c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample); c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample); FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail); /* unscaled special cases */ if (unscaled && !usesHFilter && !usesVFilter && (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) { ff_get_unscaled_swscale(c); if (c->swscale) { if (flags & SWS_PRINT_INFO) av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n", av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat)); return 0; } } c->srcBpc = 1 + desc_src->comp[0].depth_minus1; if (c->srcBpc < 8) c->srcBpc = 8; c->dstBpc = 1 + desc_dst->comp[0].depth_minus1; if (c->dstBpc < 8) c->dstBpc = 8; if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8) c->srcBpc = 16; if (c->dstBpc == 16) dst_stride <<= 1; if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) { c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 && (srcW & 15) == 0; if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0 && (flags & SWS_FAST_BILINEAR)) { if (flags & SWS_PRINT_INFO) av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMXEXT scaler\n"); } if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat)) c->canMMXEXTBeUsed = 0; } else c->canMMXEXTBeUsed = 0; c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW; c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH; /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do * correct scaling. * n-2 is the last chrominance sample available. * This is not perfect, but no one should notice the difference, the more * correct variant would be like the vertical one, but that would require * some special code for the first and last pixel */ if (flags & SWS_FAST_BILINEAR) { if (c->canMMXEXTBeUsed) { c->lumXInc += 20; c->chrXInc += 20; } // we don't use the x86 asm scaler if MMX is available else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) { c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20; c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20; } } #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS) /* precalculate horizontal scaler filter coefficients */ { #if HAVE_MMXEXT_INLINE // can't downscale !!! if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) { c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL, NULL, NULL, 8); c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4); #if USE_MMAP c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); #elif HAVE_VIRTUALALLOC c->lumMmxextFilterCode = VirtualAlloc(NULL, c->lumMmxextFilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE); c->chrMmxextFilterCode = VirtualAlloc(NULL, c->chrMmxextFilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE); #else c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize); c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize); #endif #ifdef MAP_ANONYMOUS if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED) #else if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode) #endif { av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n"); return AVERROR(ENOMEM); } FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail); FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail); FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail); FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail); init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode, c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8); init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode, c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4); #if USE_MMAP if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1 || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) { av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n"); goto fail; } #endif } else #endif /* HAVE_MMXEXT_INLINE */ { const int filterAlign = X86_MMX(cpu_flags) ? 4 : PPC_ALTIVEC(cpu_flags) ? 8 : 1; if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc, srcW, dstW, filterAlign, 1 << 14, (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags, cpu_flags, srcFilter->lumH, dstFilter->lumH, c->param, get_local_pos(c, 0, 0, 0), get_local_pos(c, 0, 0, 0)) < 0) goto fail; if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc, c->chrSrcW, c->chrDstW, filterAlign, 1 << 14, (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags, cpu_flags, srcFilter->chrH, dstFilter->chrH, c->param, get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0), get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0)) < 0) goto fail; } } // initialize horizontal stuff /* precalculate vertical scaler filter coefficients */ { const int filterAlign = X86_MMX(cpu_flags) ? 2 : PPC_ALTIVEC(cpu_flags) ? 8 : 1; if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc, srcH, dstH, filterAlign, (1 << 12), (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags, cpu_flags, srcFilter->lumV, dstFilter->lumV, c->param, get_local_pos(c, 0, 0, 1), get_local_pos(c, 0, 0, 1)) < 0) goto fail; if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc, c->chrSrcH, c->chrDstH, filterAlign, (1 << 12), (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags, cpu_flags, srcFilter->chrV, dstFilter->chrV, c->param, get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1), get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1)) < 0) goto fail; #if HAVE_ALTIVEC FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail); FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail); for (i = 0; i < c->vLumFilterSize * c->dstH; i++) { int j; short *p = (short *)&c->vYCoeffsBank[i]; for (j = 0; j < 8; j++) p[j] = c->vLumFilter[i]; } for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) { int j; short *p = (short *)&c->vCCoeffsBank[i]; for (j = 0; j < 8; j++) p[j] = c->vChrFilter[i]; } #endif } // calculate buffer sizes so that they won't run out while handling these damn slices c->vLumBufSize = c->vLumFilterSize; c->vChrBufSize = c->vChrFilterSize; for (i = 0; i < dstH; i++) { int chrI = (int64_t)i * c->chrDstH / dstH; int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1, ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1) << c->chrSrcVSubSample)); nextSlice >>= c->chrSrcVSubSample; nextSlice <<= c->chrSrcVSubSample; if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice) c->vLumBufSize = nextSlice - c->vLumFilterPos[i]; if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice >> c->chrSrcVSubSample)) c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) - c->vChrFilterPos[chrI]; } for (i = 0; i < 4; i++) FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail); /* Allocate pixbufs (we use dynamic allocation because otherwise we would * need to allocate several megabytes to handle all possible cases) */ FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail); FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail); FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail); if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail); /* Note we need at least one pixel more at the end because of the MMX code * (just in case someone wants to replace the 4000/8000). */ /* align at 16 bytes for AltiVec */ for (i = 0; i < c->vLumBufSize; i++) { FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize], dst_stride + 16, fail); c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize]; } // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate) c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7); c->uv_offx2 = dst_stride + 16; for (i = 0; i < c->vChrBufSize; i++) { FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize], dst_stride * 2 + 32, fail); c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize]; c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize] = c->chrUPixBuf[i] + (dst_stride >> 1) + 8; } if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) for (i = 0; i < c->vLumBufSize; i++) { FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize], dst_stride + 16, fail); c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize]; } // try to avoid drawing green stuff between the right end and the stride end for (i = 0; i < c->vChrBufSize; i++) if(desc_dst->comp[0].depth_minus1 == 15){ av_assert0(c->dstBpc > 14); for(j=0; jchrUPixBuf[i]))[j] = 1<<18; } else for(j=0; jchrUPixBuf[i]))[j] = 1<<14; av_assert0(c->chrDstH <= dstH); if (flags & SWS_PRINT_INFO) { const char *scaler = NULL, *cpucaps; for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) { if (flags & scale_algorithms[i].flag) { scaler = scale_algorithms[i].description; break; } } if (!scaler) scaler = "ehh flags invalid?!"; av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ", scaler, av_get_pix_fmt_name(srcFormat), #ifdef DITHER1XBPP dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 || dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE || dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ? "dithered " : "", #else "", #endif av_get_pix_fmt_name(dstFormat)); if (INLINE_MMXEXT(cpu_flags)) cpucaps = "MMXEXT"; else if (INLINE_AMD3DNOW(cpu_flags)) cpucaps = "3DNOW"; else if (INLINE_MMX(cpu_flags)) cpucaps = "MMX"; else if (PPC_ALTIVEC(cpu_flags)) cpucaps = "AltiVec"; else cpucaps = "C"; av_log(c, AV_LOG_INFO, "using %s\n", cpucaps); av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH); av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc); av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc); } c->swscale = ff_getSwsFunc(c); return 0; fail: // FIXME replace things by appropriate error codes return -1; } #if FF_API_SWS_GETCONTEXT SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param) { SwsContext *c; if (!(c = sws_alloc_context())) return NULL; c->flags = flags; c->srcW = srcW; c->srcH = srcH; c->dstW = dstW; c->dstH = dstH; c->srcFormat = srcFormat; c->dstFormat = dstFormat; if (param) { c->param[0] = param[0]; c->param[1] = param[1]; } if (sws_init_context(c, srcFilter, dstFilter) < 0) { sws_freeContext(c); return NULL; } return c; } #endif SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose) { SwsFilter *filter = av_malloc(sizeof(SwsFilter)); if (!filter) return NULL; if (lumaGBlur != 0.0) { filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0); filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0); } else { filter->lumH = sws_getIdentityVec(); filter->lumV = sws_getIdentityVec(); } if (chromaGBlur != 0.0) { filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0); filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0); } else { filter->chrH = sws_getIdentityVec(); filter->chrV = sws_getIdentityVec(); } if (chromaSharpen != 0.0) { SwsVector *id = sws_getIdentityVec(); sws_scaleVec(filter->chrH, -chromaSharpen); sws_scaleVec(filter->chrV, -chromaSharpen); sws_addVec(filter->chrH, id); sws_addVec(filter->chrV, id); sws_freeVec(id); } if (lumaSharpen != 0.0) { SwsVector *id = sws_getIdentityVec(); sws_scaleVec(filter->lumH, -lumaSharpen); sws_scaleVec(filter->lumV, -lumaSharpen); sws_addVec(filter->lumH, id); sws_addVec(filter->lumV, id); sws_freeVec(id); } if (chromaHShift != 0.0) sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5)); if (chromaVShift != 0.0) sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5)); sws_normalizeVec(filter->chrH, 1.0); sws_normalizeVec(filter->chrV, 1.0); sws_normalizeVec(filter->lumH, 1.0); sws_normalizeVec(filter->lumV, 1.0); if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG); if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG); return filter; } SwsVector *sws_allocVec(int length) { SwsVector *vec; if(length <= 0 || length > INT_MAX/ sizeof(double)) return NULL; vec = av_malloc(sizeof(SwsVector)); if (!vec) return NULL; vec->length = length; vec->coeff = av_malloc(sizeof(double) * length); if (!vec->coeff) av_freep(&vec); return vec; } SwsVector *sws_getGaussianVec(double variance, double quality) { const int length = (int)(variance * quality + 0.5) | 1; int i; double middle = (length - 1) * 0.5; SwsVector *vec; if(variance < 0 || quality < 0) return NULL; vec = sws_allocVec(length); if (!vec) return NULL; for (i = 0; i < length; i++) { double dist = i - middle; vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) / sqrt(2 * variance * M_PI); } sws_normalizeVec(vec, 1.0); return vec; } SwsVector *sws_getConstVec(double c, int length) { int i; SwsVector *vec = sws_allocVec(length); if (!vec) return NULL; for (i = 0; i < length; i++) vec->coeff[i] = c; return vec; } SwsVector *sws_getIdentityVec(void) { return sws_getConstVec(1.0, 1); } static double sws_dcVec(SwsVector *a) { int i; double sum = 0; for (i = 0; i < a->length; i++) sum += a->coeff[i]; return sum; } void sws_scaleVec(SwsVector *a, double scalar) { int i; for (i = 0; i < a->length; i++) a->coeff[i] *= scalar; } void sws_normalizeVec(SwsVector *a, double height) { sws_scaleVec(a, height / sws_dcVec(a)); } static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b) { int length = a->length + b->length - 1; int i, j; SwsVector *vec = sws_getConstVec(0.0, length); if (!vec) return NULL; for (i = 0; i < a->length; i++) { for (j = 0; j < b->length; j++) { vec->coeff[i + j] += a->coeff[i] * b->coeff[j]; } } return vec; } static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b) { int length = FFMAX(a->length, b->length); int i; SwsVector *vec = sws_getConstVec(0.0, length); if (!vec) return NULL; for (i = 0; i < a->length; i++) vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i]; for (i = 0; i < b->length; i++) vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i]; return vec; } static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b) { int length = FFMAX(a->length, b->length); int i; SwsVector *vec = sws_getConstVec(0.0, length); if (!vec) return NULL; for (i = 0; i < a->length; i++) vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i]; for (i = 0; i < b->length; i++) vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i]; return vec; } /* shift left / or right if "shift" is negative */ static SwsVector *sws_getShiftedVec(SwsVector *a, int shift) { int length = a->length + FFABS(shift) * 2; int i; SwsVector *vec = sws_getConstVec(0.0, length); if (!vec) return NULL; for (i = 0; i < a->length; i++) { vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2 - shift] = a->coeff[i]; } return vec; } void sws_shiftVec(SwsVector *a, int shift) { SwsVector *shifted = sws_getShiftedVec(a, shift); av_free(a->coeff); a->coeff = shifted->coeff; a->length = shifted->length; av_free(shifted); } void sws_addVec(SwsVector *a, SwsVector *b) { SwsVector *sum = sws_sumVec(a, b); av_free(a->coeff); a->coeff = sum->coeff; a->length = sum->length; av_free(sum); } void sws_subVec(SwsVector *a, SwsVector *b) { SwsVector *diff = sws_diffVec(a, b); av_free(a->coeff); a->coeff = diff->coeff; a->length = diff->length; av_free(diff); } void sws_convVec(SwsVector *a, SwsVector *b) { SwsVector *conv = sws_getConvVec(a, b); av_free(a->coeff); a->coeff = conv->coeff; a->length = conv->length; av_free(conv); } SwsVector *sws_cloneVec(SwsVector *a) { SwsVector *vec = sws_allocVec(a->length); if (!vec) return NULL; memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff)); return vec; } void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level) { int i; double max = 0; double min = 0; double range; for (i = 0; i < a->length; i++) if (a->coeff[i] > max) max = a->coeff[i]; for (i = 0; i < a->length; i++) if (a->coeff[i] < min) min = a->coeff[i]; range = max - min; for (i = 0; i < a->length; i++) { int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5); av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]); for (; x > 0; x--) av_log(log_ctx, log_level, " "); av_log(log_ctx, log_level, "|\n"); } } void sws_freeVec(SwsVector *a) { if (!a) return; av_freep(&a->coeff); a->length = 0; av_free(a); } void sws_freeFilter(SwsFilter *filter) { if (!filter) return; sws_freeVec(filter->lumH); sws_freeVec(filter->lumV); sws_freeVec(filter->chrH); sws_freeVec(filter->chrV); av_free(filter); } void sws_freeContext(SwsContext *c) { int i; if (!c) return; if (c->lumPixBuf) { for (i = 0; i < c->vLumBufSize; i++) av_freep(&c->lumPixBuf[i]); av_freep(&c->lumPixBuf); } if (c->chrUPixBuf) { for (i = 0; i < c->vChrBufSize; i++) av_freep(&c->chrUPixBuf[i]); av_freep(&c->chrUPixBuf); av_freep(&c->chrVPixBuf); } if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) { for (i = 0; i < c->vLumBufSize; i++) av_freep(&c->alpPixBuf[i]); av_freep(&c->alpPixBuf); } for (i = 0; i < 4; i++) av_freep(&c->dither_error[i]); av_freep(&c->vLumFilter); av_freep(&c->vChrFilter); av_freep(&c->hLumFilter); av_freep(&c->hChrFilter); #if HAVE_ALTIVEC av_freep(&c->vYCoeffsBank); av_freep(&c->vCCoeffsBank); #endif av_freep(&c->vLumFilterPos); av_freep(&c->vChrFilterPos); av_freep(&c->hLumFilterPos); av_freep(&c->hChrFilterPos); #if HAVE_MMX_INLINE #if USE_MMAP if (c->lumMmxextFilterCode) munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize); if (c->chrMmxextFilterCode) munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize); #elif HAVE_VIRTUALALLOC if (c->lumMmxextFilterCode) VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE); if (c->chrMmxextFilterCode) VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE); #else av_free(c->lumMmxextFilterCode); av_free(c->chrMmxextFilterCode); #endif c->lumMmxextFilterCode = NULL; c->chrMmxextFilterCode = NULL; #endif /* HAVE_MMX_INLINE */ av_freep(&c->yuvTable); av_freep(&c->formatConvBuffer); av_free(c); } struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param) { static const double default_param[2] = { SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT }; if (!param) param = default_param; if (context && (context->srcW != srcW || context->srcH != srcH || context->srcFormat != srcFormat || context->dstW != dstW || context->dstH != dstH || context->dstFormat != dstFormat || context->flags != flags || context->param[0] != param[0] || context->param[1] != param[1])) { sws_freeContext(context); context = NULL; } if (!context) { if (!(context = sws_alloc_context())) return NULL; context->srcW = srcW; context->srcH = srcH; context->srcFormat = srcFormat; context->dstW = dstW; context->dstH = dstH; context->dstFormat = dstFormat; context->flags = flags; context->param[0] = param[0]; context->param[1] = param[1]; if (sws_init_context(context, srcFilter, dstFilter) < 0) { sws_freeContext(context); return NULL; } } return context; }