/* * Copyright (c) 2001-2003 The FFmpeg project * * first version by Francois Revol (revol@free.fr) * fringe ADPCM codecs (e.g., DK3, DK4, Westwood) * by Mike Melanson (melanson@pcisys.net) * CD-ROM XA ADPCM codec by BERO * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com) * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org) * EA IMA EACS decoder by Peter Ross (pross@xvid.org) * EA IMA SEAD decoder by Peter Ross (pross@xvid.org) * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org) * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com) * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl) * Argonaut Games ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com) * Simon & Schuster Interactive ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com) * Ubisoft ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com) * High Voltage Software ALP decoder by Zane van Iperen (zane@zanevaniperen.com) * Cunning Developments decoder by Zane van Iperen (zane@zanevaniperen.com) * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #include "get_bits.h" #include "bytestream.h" #include "adpcm.h" #include "adpcm_data.h" #include "internal.h" /** * @file * ADPCM decoders * Features and limitations: * * Reference documents: * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead] * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead] * http://openquicktime.sourceforge.net/ * XAnim sources (xa_codec.c) http://xanim.polter.net/ * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead] * SoX source code http://sox.sourceforge.net/ * * CD-ROM XA: * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead] * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead] * readstr http://www.geocities.co.jp/Playtown/2004/ */ /* These are for CD-ROM XA ADPCM */ static const int8_t xa_adpcm_table[5][2] = { { 0, 0 }, { 60, 0 }, { 115, -52 }, { 98, -55 }, { 122, -60 } }; static const int16_t ea_adpcm_table[] = { 0, 240, 460, 392, 0, 0, -208, -220, 0, 1, 3, 4, 7, 8, 10, 11, 0, -1, -3, -4 }; // padded to zero where table size is less then 16 static const int8_t swf_index_tables[4][16] = { /*2*/ { -1, 2 }, /*3*/ { -1, -1, 2, 4 }, /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 }, /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 } }; static const int8_t zork_index_table[8] = { -1, -1, -1, 1, 4, 7, 10, 12, }; static const int8_t mtf_index_table[16] = { 8, 6, 4, 2, -1, -1, -1, -1, -1, -1, -1, -1, 2, 4, 6, 8, }; /* end of tables */ typedef struct ADPCMDecodeContext { ADPCMChannelStatus status[14]; int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */ int has_status; /**< Status flag. Reset to 0 after a flush. */ } ADPCMDecodeContext; static void adpcm_flush(AVCodecContext *avctx); static av_cold int adpcm_decode_init(AVCodecContext * avctx) { ADPCMDecodeContext *c = avctx->priv_data; unsigned int min_channels = 1; unsigned int max_channels = 2; adpcm_flush(avctx); switch(avctx->codec->id) { case AV_CODEC_ID_ADPCM_IMA_AMV: max_channels = 1; break; case AV_CODEC_ID_ADPCM_DTK: case AV_CODEC_ID_ADPCM_EA: min_channels = 2; break; case AV_CODEC_ID_ADPCM_AFC: case AV_CODEC_ID_ADPCM_EA_R1: case AV_CODEC_ID_ADPCM_EA_R2: case AV_CODEC_ID_ADPCM_EA_R3: case AV_CODEC_ID_ADPCM_EA_XAS: case AV_CODEC_ID_ADPCM_MS: max_channels = 6; break; case AV_CODEC_ID_ADPCM_MTAF: min_channels = 2; max_channels = 8; if (avctx->channels & 1) { avpriv_request_sample(avctx, "channel count %d", avctx->channels); return AVERROR_PATCHWELCOME; } break; case AV_CODEC_ID_ADPCM_PSX: max_channels = 8; if (avctx->channels <= 0 || avctx->block_align % (16 * avctx->channels)) return AVERROR_INVALIDDATA; break; case AV_CODEC_ID_ADPCM_IMA_DAT4: case AV_CODEC_ID_ADPCM_THP: case AV_CODEC_ID_ADPCM_THP_LE: max_channels = 14; break; } if (avctx->channels < min_channels || avctx->channels > max_channels) { av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n"); return AVERROR(EINVAL); } switch(avctx->codec->id) { case AV_CODEC_ID_ADPCM_IMA_WAV: if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5) return AVERROR_INVALIDDATA; break; case AV_CODEC_ID_ADPCM_ARGO: if (avctx->bits_per_coded_sample != 4 || avctx->block_align != 17 * avctx->channels) return AVERROR_INVALIDDATA; break; case AV_CODEC_ID_ADPCM_ZORK: if (avctx->bits_per_coded_sample != 8) return AVERROR_INVALIDDATA; break; default: break; } switch (avctx->codec->id) { case AV_CODEC_ID_ADPCM_AICA: case AV_CODEC_ID_ADPCM_IMA_CUNNING: case AV_CODEC_ID_ADPCM_IMA_DAT4: case AV_CODEC_ID_ADPCM_IMA_QT: case AV_CODEC_ID_ADPCM_IMA_WAV: case AV_CODEC_ID_ADPCM_4XM: case AV_CODEC_ID_ADPCM_XA: case AV_CODEC_ID_ADPCM_EA_R1: case AV_CODEC_ID_ADPCM_EA_R2: case AV_CODEC_ID_ADPCM_EA_R3: case AV_CODEC_ID_ADPCM_EA_XAS: case AV_CODEC_ID_ADPCM_THP: case AV_CODEC_ID_ADPCM_THP_LE: case AV_CODEC_ID_ADPCM_AFC: case AV_CODEC_ID_ADPCM_DTK: case AV_CODEC_ID_ADPCM_PSX: case AV_CODEC_ID_ADPCM_MTAF: case AV_CODEC_ID_ADPCM_ARGO: case AV_CODEC_ID_ADPCM_IMA_MOFLEX: avctx->sample_fmt = AV_SAMPLE_FMT_S16P; break; case AV_CODEC_ID_ADPCM_IMA_WS: avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P : AV_SAMPLE_FMT_S16; break; case AV_CODEC_ID_ADPCM_MS: avctx->sample_fmt = avctx->channels > 2 ? AV_SAMPLE_FMT_S16P : AV_SAMPLE_FMT_S16; break; default: avctx->sample_fmt = AV_SAMPLE_FMT_S16; } return 0; } static inline int16_t adpcm_agm_expand_nibble(ADPCMChannelStatus *c, int8_t nibble) { int delta, pred, step, add; pred = c->predictor; delta = nibble & 7; step = c->step; add = (delta * 2 + 1) * step; if (add < 0) add = add + 7; if ((nibble & 8) == 0) pred = av_clip(pred + (add >> 3), -32767, 32767); else pred = av_clip(pred - (add >> 3), -32767, 32767); switch (delta) { case 7: step *= 0x99; break; case 6: c->step = av_clip(c->step * 2, 127, 24576); c->predictor = pred; return pred; case 5: step *= 0x66; break; case 4: step *= 0x4d; break; default: step *= 0x39; break; } if (step < 0) step += 0x3f; c->step = step >> 6; c->step = av_clip(c->step, 127, 24576); c->predictor = pred; return pred; } static inline int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift) { int step_index; int predictor; int sign, delta, diff, step; step = ff_adpcm_step_table[c->step_index]; step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble]; step_index = av_clip(step_index, 0, 88); sign = nibble & 8; delta = nibble & 7; /* perform direct multiplication instead of series of jumps proposed by * the reference ADPCM implementation since modern CPUs can do the mults * quickly enough */ diff = ((2 * delta + 1) * step) >> shift; predictor = c->predictor; if (sign) predictor -= diff; else predictor += diff; c->predictor = av_clip_int16(predictor); c->step_index = step_index; return (int16_t)c->predictor; } static inline int16_t adpcm_ima_alp_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift) { int step_index; int predictor; int sign, delta, diff, step; step = ff_adpcm_step_table[c->step_index]; step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble]; step_index = av_clip(step_index, 0, 88); sign = nibble & 8; delta = nibble & 7; diff = (delta * step) >> shift; predictor = c->predictor; if (sign) predictor -= diff; else predictor += diff; c->predictor = av_clip_int16(predictor); c->step_index = step_index; return (int16_t)c->predictor; } static inline int16_t adpcm_ima_mtf_expand_nibble(ADPCMChannelStatus *c, int nibble) { int step_index, step, delta, predictor; step = ff_adpcm_step_table[c->step_index]; delta = step * (2 * nibble - 15); predictor = c->predictor + delta; step_index = c->step_index + mtf_index_table[(unsigned)nibble]; c->predictor = av_clip_int16(predictor >> 4); c->step_index = av_clip(step_index, 0, 88); return (int16_t)c->predictor; } static inline int16_t adpcm_ima_cunning_expand_nibble(ADPCMChannelStatus *c, int8_t nibble) { int step_index; int predictor; int step; nibble = sign_extend(nibble & 0xF, 4); step = ff_adpcm_ima_cunning_step_table[c->step_index]; step_index = c->step_index + ff_adpcm_ima_cunning_index_table[abs(nibble)]; step_index = av_clip(step_index, 0, 60); predictor = c->predictor + step * nibble; c->predictor = av_clip_int16(predictor); c->step_index = step_index; return c->predictor; } static inline int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps) { int nibble, step_index, predictor, sign, delta, diff, step, shift; shift = bps - 1; nibble = get_bits_le(gb, bps), step = ff_adpcm_step_table[c->step_index]; step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble]; step_index = av_clip(step_index, 0, 88); sign = nibble & (1 << shift); delta = av_mod_uintp2(nibble, shift); diff = ((2 * delta + 1) * step) >> shift; predictor = c->predictor; if (sign) predictor -= diff; else predictor += diff; c->predictor = av_clip_int16(predictor); c->step_index = step_index; return (int16_t)c->predictor; } static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble) { int step_index; int predictor; int diff, step; step = ff_adpcm_step_table[c->step_index]; step_index = c->step_index + ff_adpcm_index_table[nibble]; step_index = av_clip(step_index, 0, 88); diff = step >> 3; if (nibble & 4) diff += step; if (nibble & 2) diff += step >> 1; if (nibble & 1) diff += step >> 2; if (nibble & 8) predictor = c->predictor - diff; else predictor = c->predictor + diff; c->predictor = av_clip_int16(predictor); c->step_index = step_index; return c->predictor; } static inline int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble) { int predictor; predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64; predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; c->sample2 = c->sample1; c->sample1 = av_clip_int16(predictor); c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8; if (c->idelta < 16) c->idelta = 16; if (c->idelta > INT_MAX/768) { av_log(NULL, AV_LOG_WARNING, "idelta overflow\n"); c->idelta = INT_MAX/768; } return c->sample1; } static inline int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble) { int step_index, predictor, sign, delta, diff, step; step = ff_adpcm_oki_step_table[c->step_index]; step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble]; step_index = av_clip(step_index, 0, 48); sign = nibble & 8; delta = nibble & 7; diff = ((2 * delta + 1) * step) >> 3; predictor = c->predictor; if (sign) predictor -= diff; else predictor += diff; c->predictor = av_clip_intp2(predictor, 11); c->step_index = step_index; return c->predictor * 16; } static inline int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble) { int sign, delta, diff; int new_step; sign = nibble & 8; delta = nibble & 7; /* perform direct multiplication instead of series of jumps proposed by * the reference ADPCM implementation since modern CPUs can do the mults * quickly enough */ diff = ((2 * delta + 1) * c->step) >> 3; /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */ c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff); c->predictor = av_clip_int16(c->predictor); /* calculate new step and clamp it to range 511..32767 */ new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8; c->step = av_clip(new_step, 511, 32767); return (int16_t)c->predictor; } static inline int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift) { int sign, delta, diff; sign = nibble & (1<<(size-1)); delta = nibble & ((1<<(size-1))-1); diff = delta << (7 + c->step + shift); /* clamp result */ c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256); /* calculate new step */ if (delta >= (2*size - 3) && c->step < 3) c->step++; else if (delta == 0 && c->step > 0) c->step--; return (int16_t) c->predictor; } static inline int16_t adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble) { if(!c->step) { c->predictor = 0; c->step = 127; } c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8; c->predictor = av_clip_int16(c->predictor); c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8; c->step = av_clip(c->step, 127, 24576); return c->predictor; } static inline int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble) { c->predictor += ff_adpcm_mtaf_stepsize[c->step][nibble]; c->predictor = av_clip_int16(c->predictor); c->step += ff_adpcm_index_table[nibble]; c->step = av_clip_uintp2(c->step, 5); return c->predictor; } static inline int16_t adpcm_zork_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble) { int16_t index = c->step_index; uint32_t lookup_sample = ff_adpcm_step_table[index]; int32_t sample = 0; if (nibble & 0x40) sample += lookup_sample; if (nibble & 0x20) sample += lookup_sample >> 1; if (nibble & 0x10) sample += lookup_sample >> 2; if (nibble & 0x08) sample += lookup_sample >> 3; if (nibble & 0x04) sample += lookup_sample >> 4; if (nibble & 0x02) sample += lookup_sample >> 5; if (nibble & 0x01) sample += lookup_sample >> 6; if (nibble & 0x80) sample = -sample; sample += c->predictor; sample = av_clip_int16(sample); index += zork_index_table[(nibble >> 4) & 7]; index = av_clip(index, 0, 88); c->predictor = sample; c->step_index = index; return sample; } static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1, const uint8_t *in, ADPCMChannelStatus *left, ADPCMChannelStatus *right, int channels, int sample_offset) { int i, j; int shift,filter,f0,f1; int s_1,s_2; int d,s,t; out0 += sample_offset; if (channels == 1) out1 = out0 + 28; else out1 += sample_offset; for(i=0;i<4;i++) { shift = 12 - (in[4+i*2] & 15); filter = in[4+i*2] >> 4; if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) { avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter); filter=0; } if (shift < 0) { avpriv_request_sample(avctx, "unknown XA-ADPCM shift %d", shift); shift = 0; } f0 = xa_adpcm_table[filter][0]; f1 = xa_adpcm_table[filter][1]; s_1 = left->sample1; s_2 = left->sample2; for(j=0;j<28;j++) { d = in[16+i+j*4]; t = sign_extend(d, 4); s = t*(1<>6); s_2 = s_1; s_1 = av_clip_int16(s); out0[j] = s_1; } if (channels == 2) { left->sample1 = s_1; left->sample2 = s_2; s_1 = right->sample1; s_2 = right->sample2; } shift = 12 - (in[5+i*2] & 15); filter = in[5+i*2] >> 4; if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table) || shift < 0) { avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter); filter=0; } if (shift < 0) { avpriv_request_sample(avctx, "unknown XA-ADPCM shift %d", shift); shift = 0; } f0 = xa_adpcm_table[filter][0]; f1 = xa_adpcm_table[filter][1]; for(j=0;j<28;j++) { d = in[16+i+j*4]; t = sign_extend(d >> 4, 4); s = t*(1<>6); s_2 = s_1; s_1 = av_clip_int16(s); out1[j] = s_1; } if (channels == 2) { right->sample1 = s_1; right->sample2 = s_2; } else { left->sample1 = s_1; left->sample2 = s_2; } out0 += 28 * (3 - channels); out1 += 28 * (3 - channels); } return 0; } static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples) { ADPCMDecodeContext *c = avctx->priv_data; GetBitContext gb; const int8_t *table; int k0, signmask, nb_bits, count; int size = buf_size*8; int i; init_get_bits(&gb, buf, size); //read bits & initial values nb_bits = get_bits(&gb, 2)+2; table = swf_index_tables[nb_bits-2]; k0 = 1 << (nb_bits-2); signmask = 1 << (nb_bits-1); while (get_bits_count(&gb) <= size - 22*avctx->channels) { for (i = 0; i < avctx->channels; i++) { *samples++ = c->status[i].predictor = get_sbits(&gb, 16); c->status[i].step_index = get_bits(&gb, 6); } for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) { int i; for (i = 0; i < avctx->channels; i++) { // similar to IMA adpcm int delta = get_bits(&gb, nb_bits); int step = ff_adpcm_step_table[c->status[i].step_index]; int vpdiff = 0; // vpdiff = (delta+0.5)*step/4 int k = k0; do { if (delta & k) vpdiff += step; step >>= 1; k >>= 1; } while(k); vpdiff += step; if (delta & signmask) c->status[i].predictor -= vpdiff; else c->status[i].predictor += vpdiff; c->status[i].step_index += table[delta & (~signmask)]; c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); c->status[i].predictor = av_clip_int16(c->status[i].predictor); *samples++ = c->status[i].predictor; } } } } int16_t ff_adpcm_argo_expand_nibble(ADPCMChannelStatus *cs, int nibble, int shift, int flag) { int sample = sign_extend(nibble, 4) * (1 << shift); if (flag) sample += (8 * cs->sample1) - (4 * cs->sample2); else sample += 4 * cs->sample1; sample = av_clip_int16(sample >> 2); cs->sample2 = cs->sample1; cs->sample1 = sample; return sample; } /** * Get the number of samples (per channel) that will be decoded from the packet. * In one case, this is actually the maximum number of samples possible to * decode with the given buf_size. * * @param[out] coded_samples set to the number of samples as coded in the * packet, or 0 if the codec does not encode the * number of samples in each frame. * @param[out] approx_nb_samples set to non-zero if the number of samples * returned is an approximation. */ static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb, int buf_size, int *coded_samples, int *approx_nb_samples) { ADPCMDecodeContext *s = avctx->priv_data; int nb_samples = 0; int ch = avctx->channels; int has_coded_samples = 0; int header_size; *coded_samples = 0; *approx_nb_samples = 0; if(ch <= 0) return 0; switch (avctx->codec->id) { /* constant, only check buf_size */ case AV_CODEC_ID_ADPCM_EA_XAS: if (buf_size < 76 * ch) return 0; nb_samples = 128; break; case AV_CODEC_ID_ADPCM_IMA_QT: if (buf_size < 34 * ch) return 0; nb_samples = 64; break; /* simple 4-bit adpcm */ case AV_CODEC_ID_ADPCM_CT: case AV_CODEC_ID_ADPCM_IMA_APC: case AV_CODEC_ID_ADPCM_IMA_CUNNING: case AV_CODEC_ID_ADPCM_IMA_EA_SEAD: case AV_CODEC_ID_ADPCM_IMA_OKI: case AV_CODEC_ID_ADPCM_IMA_WS: case AV_CODEC_ID_ADPCM_YAMAHA: case AV_CODEC_ID_ADPCM_AICA: case AV_CODEC_ID_ADPCM_IMA_SSI: case AV_CODEC_ID_ADPCM_IMA_APM: case AV_CODEC_ID_ADPCM_IMA_ALP: case AV_CODEC_ID_ADPCM_IMA_MTF: nb_samples = buf_size * 2 / ch; break; } if (nb_samples) return nb_samples; /* simple 4-bit adpcm, with header */ header_size = 0; switch (avctx->codec->id) { case AV_CODEC_ID_ADPCM_4XM: case AV_CODEC_ID_ADPCM_AGM: case AV_CODEC_ID_ADPCM_IMA_ACORN: case AV_CODEC_ID_ADPCM_IMA_DAT4: case AV_CODEC_ID_ADPCM_IMA_MOFLEX: case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break; case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break; } if (header_size > 0) return (buf_size - header_size) * 2 / ch; /* more complex formats */ switch (avctx->codec->id) { case AV_CODEC_ID_ADPCM_IMA_AMV: bytestream2_skip(gb, 4); has_coded_samples = 1; *coded_samples = bytestream2_get_le32u(gb); nb_samples = FFMIN((buf_size - 8) * 2, *coded_samples); bytestream2_seek(gb, -8, SEEK_CUR); break; case AV_CODEC_ID_ADPCM_EA: has_coded_samples = 1; *coded_samples = bytestream2_get_le32(gb); *coded_samples -= *coded_samples % 28; nb_samples = (buf_size - 12) / 30 * 28; break; case AV_CODEC_ID_ADPCM_IMA_EA_EACS: has_coded_samples = 1; *coded_samples = bytestream2_get_le32(gb); nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch; break; case AV_CODEC_ID_ADPCM_EA_MAXIS_XA: nb_samples = (buf_size - ch) / ch * 2; break; case AV_CODEC_ID_ADPCM_EA_R1: case AV_CODEC_ID_ADPCM_EA_R2: case AV_CODEC_ID_ADPCM_EA_R3: /* maximum number of samples */ /* has internal offsets and a per-frame switch to signal raw 16-bit */ has_coded_samples = 1; switch (avctx->codec->id) { case AV_CODEC_ID_ADPCM_EA_R1: header_size = 4 + 9 * ch; *coded_samples = bytestream2_get_le32(gb); break; case AV_CODEC_ID_ADPCM_EA_R2: header_size = 4 + 5 * ch; *coded_samples = bytestream2_get_le32(gb); break; case AV_CODEC_ID_ADPCM_EA_R3: header_size = 4 + 5 * ch; *coded_samples = bytestream2_get_be32(gb); break; } *coded_samples -= *coded_samples % 28; nb_samples = (buf_size - header_size) * 2 / ch; nb_samples -= nb_samples % 28; *approx_nb_samples = 1; break; case AV_CODEC_ID_ADPCM_IMA_DK3: if (avctx->block_align > 0) buf_size = FFMIN(buf_size, avctx->block_align); nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch; break; case AV_CODEC_ID_ADPCM_IMA_DK4: if (avctx->block_align > 0) buf_size = FFMIN(buf_size, avctx->block_align); if (buf_size < 4 * ch) return AVERROR_INVALIDDATA; nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch; break; case AV_CODEC_ID_ADPCM_IMA_RAD: if (avctx->block_align > 0) buf_size = FFMIN(buf_size, avctx->block_align); nb_samples = (buf_size - 4 * ch) * 2 / ch; break; case AV_CODEC_ID_ADPCM_IMA_WAV: { int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2]; int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2]; if (avctx->block_align > 0) buf_size = FFMIN(buf_size, avctx->block_align); if (buf_size < 4 * ch) return AVERROR_INVALIDDATA; nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples; break; } case AV_CODEC_ID_ADPCM_MS: if (avctx->block_align > 0) buf_size = FFMIN(buf_size, avctx->block_align); nb_samples = (buf_size - 6 * ch) * 2 / ch; break; case AV_CODEC_ID_ADPCM_MTAF: if (avctx->block_align > 0) buf_size = FFMIN(buf_size, avctx->block_align); nb_samples = (buf_size - 16 * (ch / 2)) * 2 / ch; break; case AV_CODEC_ID_ADPCM_SBPRO_2: case AV_CODEC_ID_ADPCM_SBPRO_3: case AV_CODEC_ID_ADPCM_SBPRO_4: { int samples_per_byte; switch (avctx->codec->id) { case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break; case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break; case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break; } if (!s->status[0].step_index) { if (buf_size < ch) return AVERROR_INVALIDDATA; nb_samples++; buf_size -= ch; } nb_samples += buf_size * samples_per_byte / ch; break; } case AV_CODEC_ID_ADPCM_SWF: { int buf_bits = buf_size * 8 - 2; int nbits = (bytestream2_get_byte(gb) >> 6) + 2; int block_hdr_size = 22 * ch; int block_size = block_hdr_size + nbits * ch * 4095; int nblocks = buf_bits / block_size; int bits_left = buf_bits - nblocks * block_size; nb_samples = nblocks * 4096; if (bits_left >= block_hdr_size) nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch); break; } case AV_CODEC_ID_ADPCM_THP: case AV_CODEC_ID_ADPCM_THP_LE: if (avctx->extradata) { nb_samples = buf_size * 14 / (8 * ch); break; } has_coded_samples = 1; bytestream2_skip(gb, 4); // channel size *coded_samples = (avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE) ? bytestream2_get_le32(gb) : bytestream2_get_be32(gb); buf_size -= 8 + 36 * ch; buf_size /= ch; nb_samples = buf_size / 8 * 14; if (buf_size % 8 > 1) nb_samples += (buf_size % 8 - 1) * 2; *approx_nb_samples = 1; break; case AV_CODEC_ID_ADPCM_AFC: nb_samples = buf_size / (9 * ch) * 16; break; case AV_CODEC_ID_ADPCM_XA: nb_samples = (buf_size / 128) * 224 / ch; break; case AV_CODEC_ID_ADPCM_DTK: case AV_CODEC_ID_ADPCM_PSX: nb_samples = buf_size / (16 * ch) * 28; break; case AV_CODEC_ID_ADPCM_ARGO: nb_samples = buf_size / avctx->block_align * 32; break; case AV_CODEC_ID_ADPCM_ZORK: nb_samples = buf_size / ch; break; } /* validate coded sample count */ if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples)) return AVERROR_INVALIDDATA; return nb_samples; } static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { AVFrame *frame = data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; ADPCMDecodeContext *c = avctx->priv_data; ADPCMChannelStatus *cs; int n, m, channel, i; int16_t *samples; int16_t **samples_p; int st; /* stereo */ int count1, count2; int nb_samples, coded_samples, approx_nb_samples, ret; GetByteContext gb; bytestream2_init(&gb, buf, buf_size); nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples); if (nb_samples <= 0) { av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n"); return AVERROR_INVALIDDATA; } /* get output buffer */ frame->nb_samples = nb_samples; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; samples = (int16_t *)frame->data[0]; samples_p = (int16_t **)frame->extended_data; /* use coded_samples when applicable */ /* it is always <= nb_samples, so the output buffer will be large enough */ if (coded_samples) { if (!approx_nb_samples && coded_samples != nb_samples) av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n"); frame->nb_samples = nb_samples = coded_samples; } st = avctx->channels == 2 ? 1 : 0; switch(avctx->codec->id) { case AV_CODEC_ID_ADPCM_IMA_QT: /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples). Channel data is interleaved per-chunk. */ for (channel = 0; channel < avctx->channels; channel++) { int predictor; int step_index; cs = &(c->status[channel]); /* (pppppp) (piiiiiii) */ /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ predictor = sign_extend(bytestream2_get_be16u(&gb), 16); step_index = predictor & 0x7F; predictor &= ~0x7F; if (cs->step_index == step_index) { int diff = predictor - cs->predictor; if (diff < 0) diff = - diff; if (diff > 0x7f) goto update; } else { update: cs->step_index = step_index; cs->predictor = predictor; } if (cs->step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", channel, cs->step_index); return AVERROR_INVALIDDATA; } samples = samples_p[channel]; for (m = 0; m < 64; m += 2) { int byte = bytestream2_get_byteu(&gb); samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F); samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 ); } } break; case AV_CODEC_ID_ADPCM_IMA_WAV: for(i=0; ichannels; i++){ cs = &(c->status[i]); cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16); cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16); if (cs->step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", i, cs->step_index); return AVERROR_INVALIDDATA; } } if (avctx->bits_per_coded_sample != 4) { int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2]; int block_size = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2]; uint8_t temp[20 + AV_INPUT_BUFFER_PADDING_SIZE] = { 0 }; GetBitContext g; for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) { for (i = 0; i < avctx->channels; i++) { int j; cs = &c->status[i]; samples = &samples_p[i][1 + n * samples_per_block]; for (j = 0; j < block_size; j++) { temp[j] = buf[4 * avctx->channels + block_size * n * avctx->channels + (j % 4) + (j / 4) * (avctx->channels * 4) + i * 4]; } ret = init_get_bits8(&g, (const uint8_t *)&temp, block_size); if (ret < 0) return ret; for (m = 0; m < samples_per_block; m++) { samples[m] = adpcm_ima_wav_expand_nibble(cs, &g, avctx->bits_per_coded_sample); } } } bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4); } else { for (n = 0; n < (nb_samples - 1) / 8; n++) { for (i = 0; i < avctx->channels; i++) { cs = &c->status[i]; samples = &samples_p[i][1 + n * 8]; for (m = 0; m < 8; m += 2) { int v = bytestream2_get_byteu(&gb); samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3); samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3); } } } } break; case AV_CODEC_ID_ADPCM_4XM: for (i = 0; i < avctx->channels; i++) c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); for (i = 0; i < avctx->channels; i++) { c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16); if (c->status[i].step_index > 88u) { av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", i, c->status[i].step_index); return AVERROR_INVALIDDATA; } } for (i = 0; i < avctx->channels; i++) { samples = (int16_t *)frame->data[i]; cs = &c->status[i]; for (n = nb_samples >> 1; n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4); *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4); } } break; case AV_CODEC_ID_ADPCM_AGM: for (i = 0; i < avctx->channels; i++) c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); for (i = 0; i < avctx->channels; i++) c->status[i].step = sign_extend(bytestream2_get_le16u(&gb), 16); for (n = 0; n < nb_samples >> (1 - st); n++) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_agm_expand_nibble(&c->status[0], v & 0xF); *samples++ = adpcm_agm_expand_nibble(&c->status[st], v >> 4 ); } break; case AV_CODEC_ID_ADPCM_MS: { int block_predictor; if (avctx->channels > 2) { for (channel = 0; channel < avctx->channels; channel++) { samples = samples_p[channel]; block_predictor = bytestream2_get_byteu(&gb); if (block_predictor > 6) { av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[%d] = %d\n", channel, block_predictor); return AVERROR_INVALIDDATA; } c->status[channel].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor]; c->status[channel].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor]; c->status[channel].idelta = sign_extend(bytestream2_get_le16u(&gb), 16); c->status[channel].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16); c->status[channel].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16); *samples++ = c->status[channel].sample2; *samples++ = c->status[channel].sample1; for(n = (nb_samples - 2) >> 1; n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte >> 4 ); *samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte & 0x0F); } } } else { block_predictor = bytestream2_get_byteu(&gb); if (block_predictor > 6) { av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n", block_predictor); return AVERROR_INVALIDDATA; } c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor]; c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor]; if (st) { block_predictor = bytestream2_get_byteu(&gb); if (block_predictor > 6) { av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n", block_predictor); return AVERROR_INVALIDDATA; } c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor]; c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor]; } c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16); if (st){ c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16); } c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16); if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16); c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16); if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16); *samples++ = c->status[0].sample2; if (st) *samples++ = c->status[1].sample2; *samples++ = c->status[0].sample1; if (st) *samples++ = c->status[1].sample1; for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 ); *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F); } } break; } case AV_CODEC_ID_ADPCM_MTAF: for (channel = 0; channel < avctx->channels; channel+=2) { bytestream2_skipu(&gb, 4); c->status[channel ].step = bytestream2_get_le16u(&gb) & 0x1f; c->status[channel + 1].step = bytestream2_get_le16u(&gb) & 0x1f; c->status[channel ].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); bytestream2_skipu(&gb, 2); c->status[channel + 1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); bytestream2_skipu(&gb, 2); for (n = 0; n < nb_samples; n+=2) { int v = bytestream2_get_byteu(&gb); samples_p[channel][n ] = adpcm_mtaf_expand_nibble(&c->status[channel], v & 0x0F); samples_p[channel][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel], v >> 4 ); } for (n = 0; n < nb_samples; n+=2) { int v = bytestream2_get_byteu(&gb); samples_p[channel + 1][n ] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v & 0x0F); samples_p[channel + 1][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v >> 4 ); } } break; case AV_CODEC_ID_ADPCM_IMA_DK4: for (channel = 0; channel < avctx->channels; channel++) { cs = &c->status[channel]; cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16); cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16); if (cs->step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", channel, cs->step_index); return AVERROR_INVALIDDATA; } } for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3); } break; case AV_CODEC_ID_ADPCM_IMA_DK3: { int last_byte = 0; int nibble; int decode_top_nibble_next = 0; int diff_channel; const int16_t *samples_end = samples + avctx->channels * nb_samples; bytestream2_skipu(&gb, 10); c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); c->status[0].step_index = bytestream2_get_byteu(&gb); c->status[1].step_index = bytestream2_get_byteu(&gb); if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n", c->status[0].step_index, c->status[1].step_index); return AVERROR_INVALIDDATA; } /* sign extend the predictors */ diff_channel = c->status[1].predictor; /* DK3 ADPCM support macro */ #define DK3_GET_NEXT_NIBBLE() \ if (decode_top_nibble_next) { \ nibble = last_byte >> 4; \ decode_top_nibble_next = 0; \ } else { \ last_byte = bytestream2_get_byteu(&gb); \ nibble = last_byte & 0x0F; \ decode_top_nibble_next = 1; \ } while (samples < samples_end) { /* for this algorithm, c->status[0] is the sum channel and * c->status[1] is the diff channel */ /* process the first predictor of the sum channel */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[0], nibble, 3); /* process the diff channel predictor */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[1], nibble, 3); /* process the first pair of stereo PCM samples */ diff_channel = (diff_channel + c->status[1].predictor) / 2; *samples++ = c->status[0].predictor + c->status[1].predictor; *samples++ = c->status[0].predictor - c->status[1].predictor; /* process the second predictor of the sum channel */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[0], nibble, 3); /* process the second pair of stereo PCM samples */ diff_channel = (diff_channel + c->status[1].predictor) / 2; *samples++ = c->status[0].predictor + c->status[1].predictor; *samples++ = c->status[0].predictor - c->status[1].predictor; } if ((bytestream2_tell(&gb) & 1)) bytestream2_skip(&gb, 1); break; } case AV_CODEC_ID_ADPCM_IMA_ISS: for (channel = 0; channel < avctx->channels; channel++) { cs = &c->status[channel]; cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16); cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16); if (cs->step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", channel, cs->step_index); return AVERROR_INVALIDDATA; } } for (n = nb_samples >> (1 - st); n > 0; n--) { int v1, v2; int v = bytestream2_get_byteu(&gb); /* nibbles are swapped for mono */ if (st) { v1 = v >> 4; v2 = v & 0x0F; } else { v2 = v >> 4; v1 = v & 0x0F; } *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3); } break; case AV_CODEC_ID_ADPCM_IMA_MOFLEX: for (channel = 0; channel < avctx->channels; channel++) { cs = &c->status[channel]; cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16); cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16); if (cs->step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", channel, cs->step_index); return AVERROR_INVALIDDATA; } } for (int subframe = 0; subframe < nb_samples / 256; subframe++) { for (channel = 0; channel < avctx->channels; channel++) { samples = samples_p[channel] + 256 * subframe; for (n = 0; n < 256; n += 2) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3); } } } break; case AV_CODEC_ID_ADPCM_IMA_DAT4: for (channel = 0; channel < avctx->channels; channel++) { cs = &c->status[channel]; samples = samples_p[channel]; bytestream2_skip(&gb, 4); for (n = 0; n < nb_samples; n += 2) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 3); } } break; case AV_CODEC_ID_ADPCM_IMA_APC: for (n = nb_samples >> (1 - st); n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3); } break; case AV_CODEC_ID_ADPCM_IMA_SSI: for (n = nb_samples >> (1 - st); n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0], v >> 4 ); *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0x0F); } break; case AV_CODEC_ID_ADPCM_IMA_APM: for (n = nb_samples / 2; n > 0; n--) { for (channel = 0; channel < avctx->channels; channel++) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_qt_expand_nibble(&c->status[channel], v >> 4 ); samples[st] = adpcm_ima_qt_expand_nibble(&c->status[channel], v & 0x0F); } samples += avctx->channels; } break; case AV_CODEC_ID_ADPCM_IMA_ALP: for (n = nb_samples / 2; n > 0; n--) { for (channel = 0; channel < avctx->channels; channel++) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_alp_expand_nibble(&c->status[channel], v >> 4 , 2); samples[st] = adpcm_ima_alp_expand_nibble(&c->status[channel], v & 0x0F, 2); } samples += avctx->channels; } break; case AV_CODEC_ID_ADPCM_IMA_CUNNING: for (channel = 0; channel < avctx->channels; channel++) { int16_t *smp = samples_p[channel]; for (n = 0; n < nb_samples / 2; n++) { int v = bytestream2_get_byteu(&gb); *smp++ = adpcm_ima_cunning_expand_nibble(&c->status[channel], v & 0x0F); *smp++ = adpcm_ima_cunning_expand_nibble(&c->status[channel], v >> 4); } } break; case AV_CODEC_ID_ADPCM_IMA_OKI: for (n = nb_samples >> (1 - st); n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 ); *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F); } break; case AV_CODEC_ID_ADPCM_IMA_RAD: for (channel = 0; channel < avctx->channels; channel++) { cs = &c->status[channel]; cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16); cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16); if (cs->step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", channel, cs->step_index); return AVERROR_INVALIDDATA; } } for (n = 0; n < nb_samples / 2; n++) { int byte[2]; byte[0] = bytestream2_get_byteu(&gb); if (st) byte[1] = bytestream2_get_byteu(&gb); for(channel = 0; channel < avctx->channels; channel++) { *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3); } for(channel = 0; channel < avctx->channels; channel++) { *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3); } } break; case AV_CODEC_ID_ADPCM_IMA_WS: if (c->vqa_version == 3) { for (channel = 0; channel < avctx->channels; channel++) { int16_t *smp = samples_p[channel]; for (n = nb_samples / 2; n > 0; n--) { int v = bytestream2_get_byteu(&gb); *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3); *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3); } } } else { for (n = nb_samples / 2; n > 0; n--) { for (channel = 0; channel < avctx->channels; channel++) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3); samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3); } samples += avctx->channels; } } bytestream2_seek(&gb, 0, SEEK_END); break; case AV_CODEC_ID_ADPCM_XA: { int16_t *out0 = samples_p[0]; int16_t *out1 = samples_p[1]; int samples_per_block = 28 * (3 - avctx->channels) * 4; int sample_offset = 0; int bytes_remaining; while (bytestream2_get_bytes_left(&gb) >= 128) { if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb), &c->status[0], &c->status[1], avctx->channels, sample_offset)) < 0) return ret; bytestream2_skipu(&gb, 128); sample_offset += samples_per_block; } /* Less than a full block of data left, e.g. when reading from * 2324 byte per sector XA; the remainder is padding */ bytes_remaining = bytestream2_get_bytes_left(&gb); if (bytes_remaining > 0) { bytestream2_skip(&gb, bytes_remaining); } break; } case AV_CODEC_ID_ADPCM_IMA_EA_EACS: for (i=0; i<=st; i++) { c->status[i].step_index = bytestream2_get_le32u(&gb); if (c->status[i].step_index > 88u) { av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", i, c->status[i].step_index); return AVERROR_INVALIDDATA; } } for (i=0; i<=st; i++) { c->status[i].predictor = bytestream2_get_le32u(&gb); if (FFABS((int64_t)c->status[i].predictor) > (1<<16)) return AVERROR_INVALIDDATA; } for (n = nb_samples >> (1 - st); n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3); } break; case AV_CODEC_ID_ADPCM_IMA_EA_SEAD: for (n = nb_samples >> (1 - st); n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6); *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6); } break; case AV_CODEC_ID_ADPCM_EA: { int previous_left_sample, previous_right_sample; int current_left_sample, current_right_sample; int next_left_sample, next_right_sample; int coeff1l, coeff2l, coeff1r, coeff2r; int shift_left, shift_right; /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces, each coding 28 stereo samples. */ if(avctx->channels != 2) return AVERROR_INVALIDDATA; current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16); previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16); current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16); previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16); for (count1 = 0; count1 < nb_samples / 28; count1++) { int byte = bytestream2_get_byteu(&gb); coeff1l = ea_adpcm_table[ byte >> 4 ]; coeff2l = ea_adpcm_table[(byte >> 4 ) + 4]; coeff1r = ea_adpcm_table[ byte & 0x0F]; coeff2r = ea_adpcm_table[(byte & 0x0F) + 4]; byte = bytestream2_get_byteu(&gb); shift_left = 20 - (byte >> 4); shift_right = 20 - (byte & 0x0F); for (count2 = 0; count2 < 28; count2++) { byte = bytestream2_get_byteu(&gb); next_left_sample = sign_extend(byte >> 4, 4) * (1 << shift_left); next_right_sample = sign_extend(byte, 4) * (1 << shift_right); next_left_sample = (next_left_sample + (current_left_sample * coeff1l) + (previous_left_sample * coeff2l) + 0x80) >> 8; next_right_sample = (next_right_sample + (current_right_sample * coeff1r) + (previous_right_sample * coeff2r) + 0x80) >> 8; previous_left_sample = current_left_sample; current_left_sample = av_clip_int16(next_left_sample); previous_right_sample = current_right_sample; current_right_sample = av_clip_int16(next_right_sample); *samples++ = current_left_sample; *samples++ = current_right_sample; } } bytestream2_skip(&gb, 2); // Skip terminating 0x0000 break; } case AV_CODEC_ID_ADPCM_EA_MAXIS_XA: { int coeff[2][2], shift[2]; for(channel = 0; channel < avctx->channels; channel++) { int byte = bytestream2_get_byteu(&gb); for (i=0; i<2; i++) coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i]; shift[channel] = 20 - (byte & 0x0F); } for (count1 = 0; count1 < nb_samples / 2; count1++) { int byte[2]; byte[0] = bytestream2_get_byteu(&gb); if (st) byte[1] = bytestream2_get_byteu(&gb); for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */ for(channel = 0; channel < avctx->channels; channel++) { int sample = sign_extend(byte[channel] >> i, 4) * (1 << shift[channel]); sample = (sample + c->status[channel].sample1 * coeff[channel][0] + c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8; c->status[channel].sample2 = c->status[channel].sample1; c->status[channel].sample1 = av_clip_int16(sample); *samples++ = c->status[channel].sample1; } } } bytestream2_seek(&gb, 0, SEEK_END); break; } case AV_CODEC_ID_ADPCM_EA_R1: case AV_CODEC_ID_ADPCM_EA_R2: case AV_CODEC_ID_ADPCM_EA_R3: { /* channel numbering 2chan: 0=fl, 1=fr 4chan: 0=fl, 1=rl, 2=fr, 3=rr 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */ const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3; int previous_sample, current_sample, next_sample; int coeff1, coeff2; int shift; unsigned int channel; uint16_t *samplesC; int count = 0; int offsets[6]; for (channel=0; channelchannels; channel++) offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) : bytestream2_get_le32(&gb)) + (avctx->channels + 1) * 4; for (channel=0; channelchannels; channel++) { bytestream2_seek(&gb, offsets[channel], SEEK_SET); samplesC = samples_p[channel]; if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) { current_sample = sign_extend(bytestream2_get_le16(&gb), 16); previous_sample = sign_extend(bytestream2_get_le16(&gb), 16); } else { current_sample = c->status[channel].predictor; previous_sample = c->status[channel].prev_sample; } for (count1 = 0; count1 < nb_samples / 28; count1++) { int byte = bytestream2_get_byte(&gb); if (byte == 0xEE) { /* only seen in R2 and R3 */ current_sample = sign_extend(bytestream2_get_be16(&gb), 16); previous_sample = sign_extend(bytestream2_get_be16(&gb), 16); for (count2=0; count2<28; count2++) *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16); } else { coeff1 = ea_adpcm_table[ byte >> 4 ]; coeff2 = ea_adpcm_table[(byte >> 4) + 4]; shift = 20 - (byte & 0x0F); for (count2=0; count2<28; count2++) { if (count2 & 1) next_sample = (unsigned)sign_extend(byte, 4) << shift; else { byte = bytestream2_get_byte(&gb); next_sample = (unsigned)sign_extend(byte >> 4, 4) << shift; } next_sample += (current_sample * coeff1) + (previous_sample * coeff2); next_sample = av_clip_int16(next_sample >> 8); previous_sample = current_sample; current_sample = next_sample; *samplesC++ = current_sample; } } } if (!count) { count = count1; } else if (count != count1) { av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n"); count = FFMAX(count, count1); } if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) { c->status[channel].predictor = current_sample; c->status[channel].prev_sample = previous_sample; } } frame->nb_samples = count * 28; bytestream2_seek(&gb, 0, SEEK_END); break; } case AV_CODEC_ID_ADPCM_EA_XAS: for (channel=0; channelchannels; channel++) { int coeff[2][4], shift[4]; int16_t *s = samples_p[channel]; for (n = 0; n < 4; n++, s += 32) { int val = sign_extend(bytestream2_get_le16u(&gb), 16); for (i=0; i<2; i++) coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i]; s[0] = val & ~0x0F; val = sign_extend(bytestream2_get_le16u(&gb), 16); shift[n] = 20 - (val & 0x0F); s[1] = val & ~0x0F; } for (m=2; m<32; m+=2) { s = &samples_p[channel][m]; for (n = 0; n < 4; n++, s += 32) { int level, pred; int byte = bytestream2_get_byteu(&gb); level = sign_extend(byte >> 4, 4) * (1 << shift[n]); pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n]; s[0] = av_clip_int16((level + pred + 0x80) >> 8); level = sign_extend(byte, 4) * (1 << shift[n]); pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n]; s[1] = av_clip_int16((level + pred + 0x80) >> 8); } } } break; case AV_CODEC_ID_ADPCM_IMA_ACORN: for (channel = 0; channel < avctx->channels; channel++) { cs = &c->status[channel]; cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16); cs->step_index = bytestream2_get_le16u(&gb) & 0xFF; if (cs->step_index > 88u){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n", channel, cs->step_index); return AVERROR_INVALIDDATA; } } for (n = nb_samples >> (1 - st); n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte & 0x0F, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte >> 4, 3); } break; case AV_CODEC_ID_ADPCM_IMA_AMV: av_assert0(avctx->channels == 1); /* * Header format: * int16_t predictor; * uint8_t step_index; * uint8_t reserved; * uint32_t frame_size; * * Some implementations have step_index as 16-bits, but others * only use the lower 8 and store garbage in the upper 8. */ c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16); c->status[0].step_index = bytestream2_get_byteu(&gb); bytestream2_skipu(&gb, 5); if (c->status[0].step_index > 88u) { av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", c->status[0].step_index); return AVERROR_INVALIDDATA; } for (n = nb_samples >> 1; n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3); } if (nb_samples & 1) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3); if (v & 0x0F) { /* Holds true on all the http://samples.mplayerhq.hu/amv samples. */ av_log(avctx, AV_LOG_WARNING, "Last nibble set on packet with odd sample count.\n"); av_log(avctx, AV_LOG_WARNING, "Sample will be skipped.\n"); } } break; case AV_CODEC_ID_ADPCM_IMA_SMJPEG: for (i = 0; i < avctx->channels; i++) { c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16); c->status[i].step_index = bytestream2_get_byteu(&gb); bytestream2_skipu(&gb, 1); if (c->status[i].step_index > 88u) { av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", c->status[i].step_index); return AVERROR_INVALIDDATA; } } for (n = nb_samples >> (1 - st); n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4 ); *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf); } break; case AV_CODEC_ID_ADPCM_CT: for (n = nb_samples >> (1 - st); n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 ); *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F); } break; case AV_CODEC_ID_ADPCM_SBPRO_4: case AV_CODEC_ID_ADPCM_SBPRO_3: case AV_CODEC_ID_ADPCM_SBPRO_2: if (!c->status[0].step_index) { /* the first byte is a raw sample */ *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80); if (st) *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80); c->status[0].step_index = 1; nb_samples--; } if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) { for (n = nb_samples >> (1 - st); n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], byte >> 4, 4, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], byte & 0x0F, 4, 0); } } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) { for (n = (nb_samples< 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], byte >> 5 , 3, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], (byte >> 2) & 0x07, 3, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], byte & 0x03, 2, 0); } } else { for (n = nb_samples >> (2 - st); n > 0; n--) { int byte = bytestream2_get_byteu(&gb); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], byte >> 6 , 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], (byte >> 4) & 0x03, 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], (byte >> 2) & 0x03, 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], byte & 0x03, 2, 2); } } break; case AV_CODEC_ID_ADPCM_SWF: adpcm_swf_decode(avctx, buf, buf_size, samples); bytestream2_seek(&gb, 0, SEEK_END); break; case AV_CODEC_ID_ADPCM_YAMAHA: for (n = nb_samples >> (1 - st); n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F); *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 ); } break; case AV_CODEC_ID_ADPCM_AICA: for (channel = 0; channel < avctx->channels; channel++) { samples = samples_p[channel]; for (n = nb_samples >> 1; n > 0; n--) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v & 0x0F); *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v >> 4 ); } } break; case AV_CODEC_ID_ADPCM_AFC: { int samples_per_block; int blocks; if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) { samples_per_block = avctx->extradata[0] / 16; blocks = nb_samples / avctx->extradata[0]; } else { samples_per_block = nb_samples / 16; blocks = 1; } for (m = 0; m < blocks; m++) { for (channel = 0; channel < avctx->channels; channel++) { int prev1 = c->status[channel].sample1; int prev2 = c->status[channel].sample2; samples = samples_p[channel] + m * 16; /* Read in every sample for this channel. */ for (i = 0; i < samples_per_block; i++) { int byte = bytestream2_get_byteu(&gb); int scale = 1 << (byte >> 4); int index = byte & 0xf; int factor1 = ff_adpcm_afc_coeffs[0][index]; int factor2 = ff_adpcm_afc_coeffs[1][index]; /* Decode 16 samples. */ for (n = 0; n < 16; n++) { int32_t sampledat; if (n & 1) { sampledat = sign_extend(byte, 4); } else { byte = bytestream2_get_byteu(&gb); sampledat = sign_extend(byte >> 4, 4); } sampledat = ((prev1 * factor1 + prev2 * factor2) >> 11) + sampledat * scale; *samples = av_clip_int16(sampledat); prev2 = prev1; prev1 = *samples++; } } c->status[channel].sample1 = prev1; c->status[channel].sample2 = prev2; } } bytestream2_seek(&gb, 0, SEEK_END); break; } case AV_CODEC_ID_ADPCM_THP: case AV_CODEC_ID_ADPCM_THP_LE: { int table[14][16]; int ch; #define THP_GET16(g) \ sign_extend( \ avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \ bytestream2_get_le16u(&(g)) : \ bytestream2_get_be16u(&(g)), 16) if (avctx->extradata) { GetByteContext tb; if (avctx->extradata_size < 32 * avctx->channels) { av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n"); return AVERROR_INVALIDDATA; } bytestream2_init(&tb, avctx->extradata, avctx->extradata_size); for (i = 0; i < avctx->channels; i++) for (n = 0; n < 16; n++) table[i][n] = THP_GET16(tb); } else { for (i = 0; i < avctx->channels; i++) for (n = 0; n < 16; n++) table[i][n] = THP_GET16(gb); if (!c->has_status) { /* Initialize the previous sample. */ for (i = 0; i < avctx->channels; i++) { c->status[i].sample1 = THP_GET16(gb); c->status[i].sample2 = THP_GET16(gb); } c->has_status = 1; } else { bytestream2_skip(&gb, avctx->channels * 4); } } for (ch = 0; ch < avctx->channels; ch++) { samples = samples_p[ch]; /* Read in every sample for this channel. */ for (i = 0; i < (nb_samples + 13) / 14; i++) { int byte = bytestream2_get_byteu(&gb); int index = (byte >> 4) & 7; unsigned int exp = byte & 0x0F; int64_t factor1 = table[ch][index * 2]; int64_t factor2 = table[ch][index * 2 + 1]; /* Decode 14 samples. */ for (n = 0; n < 14 && (i * 14 + n < nb_samples); n++) { int32_t sampledat; if (n & 1) { sampledat = sign_extend(byte, 4); } else { byte = bytestream2_get_byteu(&gb); sampledat = sign_extend(byte >> 4, 4); } sampledat = ((c->status[ch].sample1 * factor1 + c->status[ch].sample2 * factor2) >> 11) + sampledat * (1 << exp); *samples = av_clip_int16(sampledat); c->status[ch].sample2 = c->status[ch].sample1; c->status[ch].sample1 = *samples++; } } } break; } case AV_CODEC_ID_ADPCM_DTK: for (channel = 0; channel < avctx->channels; channel++) { samples = samples_p[channel]; /* Read in every sample for this channel. */ for (i = 0; i < nb_samples / 28; i++) { int byte, header; if (channel) bytestream2_skipu(&gb, 1); header = bytestream2_get_byteu(&gb); bytestream2_skipu(&gb, 3 - channel); /* Decode 28 samples. */ for (n = 0; n < 28; n++) { int32_t sampledat, prev; switch (header >> 4) { case 1: prev = (c->status[channel].sample1 * 0x3c); break; case 2: prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34); break; case 3: prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37); break; default: prev = 0; } prev = av_clip_intp2((prev + 0x20) >> 6, 21); byte = bytestream2_get_byteu(&gb); if (!channel) sampledat = sign_extend(byte, 4); else sampledat = sign_extend(byte >> 4, 4); sampledat = ((sampledat * (1 << 12)) >> (header & 0xf)) * (1 << 6) + prev; *samples++ = av_clip_int16(sampledat >> 6); c->status[channel].sample2 = c->status[channel].sample1; c->status[channel].sample1 = sampledat; } } if (!channel) bytestream2_seek(&gb, 0, SEEK_SET); } break; case AV_CODEC_ID_ADPCM_PSX: for (int block = 0; block < avpkt->size / FFMAX(avctx->block_align, 16 * avctx->channels); block++) { int nb_samples_per_block = 28 * FFMAX(avctx->block_align, 16 * avctx->channels) / (16 * avctx->channels); for (channel = 0; channel < avctx->channels; channel++) { samples = samples_p[channel] + block * nb_samples_per_block; av_assert0((block + 1) * nb_samples_per_block <= nb_samples); /* Read in every sample for this channel. */ for (i = 0; i < nb_samples_per_block / 28; i++) { int filter, shift, flag, byte; filter = bytestream2_get_byteu(&gb); shift = filter & 0xf; filter = filter >> 4; if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) return AVERROR_INVALIDDATA; flag = bytestream2_get_byteu(&gb); /* Decode 28 samples. */ for (n = 0; n < 28; n++) { int sample = 0, scale; if (flag < 0x07) { if (n & 1) { scale = sign_extend(byte >> 4, 4); } else { byte = bytestream2_get_byteu(&gb); scale = sign_extend(byte, 4); } scale = scale * (1 << 12); sample = (int)((scale >> shift) + (c->status[channel].sample1 * xa_adpcm_table[filter][0] + c->status[channel].sample2 * xa_adpcm_table[filter][1]) / 64); } *samples++ = av_clip_int16(sample); c->status[channel].sample2 = c->status[channel].sample1; c->status[channel].sample1 = sample; } } } } break; case AV_CODEC_ID_ADPCM_ARGO: /* * The format of each block: * uint8_t left_control; * uint4_t left_samples[nb_samples]; * ---- and if stereo ---- * uint8_t right_control; * uint4_t right_samples[nb_samples]; * * Format of the control byte: * MSB [SSSSRDRR] LSB * S = (Shift Amount - 2) * D = Decoder flag. * R = Reserved * * Each block relies on the previous two samples of each channel. * They should be 0 initially. */ for (int block = 0; block < avpkt->size / avctx->block_align; block++) { for (channel = 0; channel < avctx->channels; channel++) { int control, shift; samples = samples_p[channel] + block * 32; cs = c->status + channel; /* Get the control byte and decode the samples, 2 at a time. */ control = bytestream2_get_byteu(&gb); shift = (control >> 4) + 2; for (n = 0; n < 16; n++) { int sample = bytestream2_get_byteu(&gb); *samples++ = ff_adpcm_argo_expand_nibble(cs, sample >> 4, shift, control & 0x04); *samples++ = ff_adpcm_argo_expand_nibble(cs, sample >> 0, shift, control & 0x04); } } } break; case AV_CODEC_ID_ADPCM_ZORK: for (n = 0; n < nb_samples * avctx->channels; n++) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_zork_expand_nibble(&c->status[n % avctx->channels], v); } break; case AV_CODEC_ID_ADPCM_IMA_MTF: for (n = nb_samples / 2; n > 0; n--) { for (channel = 0; channel < avctx->channels; channel++) { int v = bytestream2_get_byteu(&gb); *samples++ = adpcm_ima_mtf_expand_nibble(&c->status[channel], v >> 4); samples[st] = adpcm_ima_mtf_expand_nibble(&c->status[channel], v & 0x0F); } samples += avctx->channels; } break; default: av_assert0(0); // unsupported codec_id should not happen } if (avpkt->size && bytestream2_tell(&gb) == 0) { av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n"); return AVERROR_INVALIDDATA; } *got_frame_ptr = 1; if (avpkt->size < bytestream2_tell(&gb)) { av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb)); return avpkt->size; } return bytestream2_tell(&gb); } static void adpcm_flush(AVCodecContext *avctx) { ADPCMDecodeContext *c = avctx->priv_data; /* Just nuke the entire state and re-init. */ memset(c, 0, sizeof(ADPCMDecodeContext)); switch(avctx->codec_id) { case AV_CODEC_ID_ADPCM_CT: c->status[0].step = c->status[1].step = 511; break; case AV_CODEC_ID_ADPCM_IMA_APC: if (avctx->extradata && avctx->extradata_size >= 8) { c->status[0].predictor = av_clip_intp2(AV_RL32(avctx->extradata ), 18); c->status[1].predictor = av_clip_intp2(AV_RL32(avctx->extradata + 4), 18); } break; case AV_CODEC_ID_ADPCM_IMA_APM: if (avctx->extradata && avctx->extradata_size >= 28) { c->status[0].predictor = av_clip_intp2(AV_RL32(avctx->extradata + 16), 18); c->status[0].step_index = av_clip(AV_RL32(avctx->extradata + 20), 0, 88); c->status[1].predictor = av_clip_intp2(AV_RL32(avctx->extradata + 4), 18); c->status[1].step_index = av_clip(AV_RL32(avctx->extradata + 8), 0, 88); } break; case AV_CODEC_ID_ADPCM_IMA_WS: if (avctx->extradata && avctx->extradata_size >= 2) c->vqa_version = AV_RL16(avctx->extradata); break; default: /* Other codecs may want to handle this during decoding. */ c->has_status = 0; return; } c->has_status = 1; } static const enum AVSampleFormat sample_fmts_s16[] = { AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE }; static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE }; static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE }; #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \ const AVCodec ff_ ## name_ ## _decoder = { \ .name = #name_, \ .long_name = NULL_IF_CONFIG_SMALL(long_name_), \ .type = AVMEDIA_TYPE_AUDIO, \ .id = id_, \ .priv_data_size = sizeof(ADPCMDecodeContext), \ .init = adpcm_decode_init, \ .decode = adpcm_decode_frame, \ .flush = adpcm_flush, \ .capabilities = AV_CODEC_CAP_DR1, \ .sample_fmts = sample_fmts_, \ .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, \ } /* Note: Do not forget to add new entries to the Makefile as well. */ ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_AGM, sample_fmts_s16, adpcm_agm, "ADPCM AmuseGraphics Movie"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_AICA, sample_fmts_s16p, adpcm_aica, "ADPCM Yamaha AICA"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_ARGO, sample_fmts_s16p, adpcm_argo, "ADPCM Argonaut Games"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ACORN, sample_fmts_s16, adpcm_ima_acorn, "ADPCM IMA Acorn Replay"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APM, sample_fmts_s16, adpcm_ima_apm, "ADPCM IMA Ubisoft APM"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_CUNNING, sample_fmts_s16p, adpcm_ima_cunning, "ADPCM IMA Cunning Developments"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DAT4, sample_fmts_s16, adpcm_ima_dat4, "ADPCM IMA Eurocom DAT4"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_MOFLEX, sample_fmts_s16p, adpcm_ima_moflex, "ADPCM IMA MobiClip MOFLEX"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_MTF, sample_fmts_s16, adpcm_ima_mtf, "ADPCM IMA Capcom's MT Framework"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SSI, sample_fmts_s16, adpcm_ima_ssi, "ADPCM IMA Simon & Schuster Interactive"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ALP, sample_fmts_s16, adpcm_ima_alp, "ADPCM IMA High Voltage Software ALP"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_both, adpcm_ms, "ADPCM Microsoft"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_MTAF, sample_fmts_s16p, adpcm_mtaf, "ADPCM MTAF"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_PSX, sample_fmts_s16p, adpcm_psx, "ADPCM Playstation"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP_LE, sample_fmts_s16p, adpcm_thp_le, "ADPCM Nintendo THP (little-endian)"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo THP"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha"); ADPCM_DECODER(AV_CODEC_ID_ADPCM_ZORK, sample_fmts_s16, adpcm_zork, "ADPCM Zork");