/* * HEVC video decoder * * Copyright (C) 2012 - 2013 Guillaume Martres * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef AVCODEC_HEVC_HEVCDEC_H #define AVCODEC_HEVC_HEVCDEC_H #include #include "libavutil/buffer.h" #include "libavutil/mem_internal.h" #include "libavcodec/avcodec.h" #include "libavcodec/bswapdsp.h" #include "libavcodec/cabac.h" #include "libavcodec/dovi_rpu.h" #include "libavcodec/get_bits.h" #include "libavcodec/h2645_parse.h" #include "libavcodec/h274.h" #include "libavcodec/progressframe.h" #include "libavcodec/videodsp.h" #include "dsp.h" #include "hevc.h" #include "pred.h" #include "ps.h" #include "sei.h" #define SHIFT_CTB_WPP 2 #define MAX_TB_SIZE 32 #define MAX_QP 51 #define DEFAULT_INTRA_TC_OFFSET 2 #define HEVC_CONTEXTS 199 #define HEVC_STAT_COEFFS 4 #define MRG_MAX_NUM_CANDS 5 #define L0 0 #define L1 1 #define EPEL_EXTRA_BEFORE 1 #define EPEL_EXTRA_AFTER 2 #define EPEL_EXTRA 3 #define QPEL_EXTRA_BEFORE 3 #define QPEL_EXTRA_AFTER 4 #define QPEL_EXTRA 7 #define EDGE_EMU_BUFFER_STRIDE 80 /** * Value of the luma sample at position (x, y) in the 2D array tab. */ #define SAMPLE(tab, x, y) ((tab)[(y) * s->sps->width + (x)]) #define SAMPLE_CTB(tab, x, y) ((tab)[(y) * min_cb_width + (x)]) #define IS_IDR(s) ((s)->nal_unit_type == HEVC_NAL_IDR_W_RADL || (s)->nal_unit_type == HEVC_NAL_IDR_N_LP) #define IS_BLA(s) ((s)->nal_unit_type == HEVC_NAL_BLA_W_RADL || (s)->nal_unit_type == HEVC_NAL_BLA_W_LP || \ (s)->nal_unit_type == HEVC_NAL_BLA_N_LP) #define IS_IRAP(s) ((s)->nal_unit_type >= HEVC_NAL_BLA_W_LP && (s)->nal_unit_type <= HEVC_NAL_RSV_IRAP_VCL23) enum RPSType { ST_CURR_BEF = 0, ST_CURR_AFT, ST_FOLL, LT_CURR, LT_FOLL, NB_RPS_TYPE, }; enum PartMode { PART_2Nx2N = 0, PART_2NxN = 1, PART_Nx2N = 2, PART_NxN = 3, PART_2NxnU = 4, PART_2NxnD = 5, PART_nLx2N = 6, PART_nRx2N = 7, }; enum PredMode { MODE_INTER = 0, MODE_INTRA, MODE_SKIP, }; enum InterPredIdc { PRED_L0 = 0, PRED_L1, PRED_BI, }; enum PredFlag { PF_INTRA = 0, PF_L0, PF_L1, PF_BI, }; enum IntraPredMode { INTRA_PLANAR = 0, INTRA_DC, INTRA_ANGULAR_2, INTRA_ANGULAR_3, INTRA_ANGULAR_4, INTRA_ANGULAR_5, INTRA_ANGULAR_6, INTRA_ANGULAR_7, INTRA_ANGULAR_8, INTRA_ANGULAR_9, INTRA_ANGULAR_10, INTRA_ANGULAR_11, INTRA_ANGULAR_12, INTRA_ANGULAR_13, INTRA_ANGULAR_14, INTRA_ANGULAR_15, INTRA_ANGULAR_16, INTRA_ANGULAR_17, INTRA_ANGULAR_18, INTRA_ANGULAR_19, INTRA_ANGULAR_20, INTRA_ANGULAR_21, INTRA_ANGULAR_22, INTRA_ANGULAR_23, INTRA_ANGULAR_24, INTRA_ANGULAR_25, INTRA_ANGULAR_26, INTRA_ANGULAR_27, INTRA_ANGULAR_28, INTRA_ANGULAR_29, INTRA_ANGULAR_30, INTRA_ANGULAR_31, INTRA_ANGULAR_32, INTRA_ANGULAR_33, INTRA_ANGULAR_34, }; enum SAOType { SAO_NOT_APPLIED = 0, SAO_BAND, SAO_EDGE, SAO_APPLIED }; enum SAOEOClass { SAO_EO_HORIZ = 0, SAO_EO_VERT, SAO_EO_135D, SAO_EO_45D, }; enum ScanType { SCAN_DIAG = 0, SCAN_HORIZ, SCAN_VERT, }; typedef struct HEVCCABACState { uint8_t state[HEVC_CONTEXTS]; uint8_t stat_coeff[HEVC_STAT_COEFFS]; } HEVCCABACState; typedef struct LongTermRPS { int poc[32]; uint8_t poc_msb_present[32]; uint8_t used[32]; uint8_t nb_refs; } LongTermRPS; typedef struct RefPicList { struct HEVCFrame *ref[HEVC_MAX_REFS]; int list[HEVC_MAX_REFS]; int isLongTerm[HEVC_MAX_REFS]; int nb_refs; } RefPicList; typedef struct RefPicListTab { RefPicList refPicList[2]; } RefPicListTab; typedef struct SliceHeader { unsigned int pps_id; ///< address (in raster order) of the first block in the current slice segment unsigned int slice_segment_addr; ///< address (in raster order) of the first block in the current slice unsigned int slice_addr; enum HEVCSliceType slice_type; int pic_order_cnt_lsb; int poc; uint8_t first_slice_in_pic_flag; uint8_t dependent_slice_segment_flag; uint8_t pic_output_flag; uint8_t colour_plane_id; ///< RPS coded in the slice header itself is stored here int short_term_ref_pic_set_sps_flag; int short_term_ref_pic_set_size; ShortTermRPS slice_rps; const ShortTermRPS *short_term_rps; int long_term_ref_pic_set_size; LongTermRPS long_term_rps; unsigned int list_entry_lx[2][32]; uint8_t rpl_modification_flag[2]; uint8_t no_output_of_prior_pics_flag; uint8_t slice_temporal_mvp_enabled_flag; unsigned int nb_refs[2]; uint8_t slice_sample_adaptive_offset_flag[3]; uint8_t mvd_l1_zero_flag; uint8_t cabac_init_flag; uint8_t disable_deblocking_filter_flag; ///< slice_header_disable_deblocking_filter_flag uint8_t slice_loop_filter_across_slices_enabled_flag; uint8_t collocated_list; unsigned int collocated_ref_idx; int slice_qp_delta; int slice_cb_qp_offset; int slice_cr_qp_offset; int slice_act_y_qp_offset; int slice_act_cb_qp_offset; int slice_act_cr_qp_offset; uint8_t cu_chroma_qp_offset_enabled_flag; int beta_offset; ///< beta_offset_div2 * 2 int tc_offset; ///< tc_offset_div2 * 2 uint8_t max_num_merge_cand; ///< 5 - 5_minus_max_num_merge_cand uint8_t use_integer_mv_flag; unsigned *entry_point_offset; int * offset; int * size; int num_entry_point_offsets; int8_t slice_qp; uint8_t luma_log2_weight_denom; int16_t chroma_log2_weight_denom; int16_t luma_weight_l0[16]; int16_t chroma_weight_l0[16][2]; int16_t chroma_weight_l1[16][2]; int16_t luma_weight_l1[16]; int16_t luma_offset_l0[16]; int16_t chroma_offset_l0[16][2]; int16_t luma_offset_l1[16]; int16_t chroma_offset_l1[16][2]; int slice_ctb_addr_rs; unsigned data_offset; } SliceHeader; typedef struct CodingUnit { int x; int y; enum PredMode pred_mode; ///< PredMode enum PartMode part_mode; ///< PartMode // Inferred parameters uint8_t intra_split_flag; ///< IntraSplitFlag uint8_t max_trafo_depth; ///< MaxTrafoDepth uint8_t cu_transquant_bypass_flag; } CodingUnit; typedef struct Mv { int16_t x; ///< horizontal component of motion vector int16_t y; ///< vertical component of motion vector } Mv; typedef struct MvField { DECLARE_ALIGNED(4, Mv, mv)[2]; int8_t ref_idx[2]; int8_t pred_flag; } MvField; typedef struct NeighbourAvailable { int cand_bottom_left; int cand_left; int cand_up; int cand_up_left; int cand_up_right; int cand_up_right_sap; } NeighbourAvailable; typedef struct PredictionUnit { int mpm_idx; int rem_intra_luma_pred_mode; uint8_t intra_pred_mode[4]; Mv mvd; uint8_t merge_flag; uint8_t intra_pred_mode_c[4]; uint8_t chroma_mode_c[4]; } PredictionUnit; typedef struct TransformUnit { int cu_qp_delta; int res_scale_val; // Inferred parameters; int intra_pred_mode; int intra_pred_mode_c; int chroma_mode_c; uint8_t is_cu_qp_delta_coded; uint8_t is_cu_chroma_qp_offset_coded; int8_t cu_qp_offset_cb; int8_t cu_qp_offset_cr; uint8_t cross_pf; } TransformUnit; typedef struct DBParams { int beta_offset; int tc_offset; } DBParams; #define HEVC_FRAME_FLAG_OUTPUT (1 << 0) #define HEVC_FRAME_FLAG_SHORT_REF (1 << 1) #define HEVC_FRAME_FLAG_LONG_REF (1 << 2) #define HEVC_FRAME_FLAG_UNAVAILABLE (1 << 3) typedef struct HEVCFrame { union { struct { AVFrame *f; }; ProgressFrame tf; }; AVFrame *frame_grain; int needs_fg; /* 1 if grain needs to be applied by the decoder */ MvField *tab_mvf; ///< RefStruct reference RefPicList *refPicList; RefPicListTab **rpl_tab; ///< RefStruct reference int ctb_count; int poc; RefPicListTab *rpl; ///< RefStruct reference int nb_rpl_elems; void *hwaccel_picture_private; ///< RefStruct reference /** * A combination of HEVC_FRAME_FLAG_* */ uint8_t flags; } HEVCFrame; typedef struct HEVCLocalContext { uint8_t cabac_state[HEVC_CONTEXTS]; uint8_t stat_coeff[HEVC_STAT_COEFFS]; uint8_t first_qp_group; void *logctx; const struct HEVCContext *parent; CABACContext cc; /** * This is a pointer to the common CABAC state. * In case entropy_coding_sync_enabled_flag is set, * the CABAC state after decoding the second CTU in a row is * stored here and used to initialize the CABAC state before * decoding the first CTU in the next row. * This is the basis for WPP and in case slice-threading is used, * the next row is decoded by another thread making this state * shared between threads. */ HEVCCABACState *common_cabac_state; int8_t qp_y; int8_t curr_qp_y; int qPy_pred; TransformUnit tu; uint8_t ctb_left_flag; uint8_t ctb_up_flag; uint8_t ctb_up_right_flag; uint8_t ctb_up_left_flag; int end_of_tiles_x; int end_of_tiles_y; /* +7 is for subpixel interpolation, *2 for high bit depths */ DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[(MAX_PB_SIZE + 7) * EDGE_EMU_BUFFER_STRIDE * 2]; /* The extended size between the new edge emu buffer is abused by SAO */ DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer2)[(MAX_PB_SIZE + 7) * EDGE_EMU_BUFFER_STRIDE * 2]; DECLARE_ALIGNED(32, int16_t, tmp)[MAX_PB_SIZE * MAX_PB_SIZE]; int ct_depth; CodingUnit cu; PredictionUnit pu; NeighbourAvailable na; #define BOUNDARY_LEFT_SLICE (1 << 0) #define BOUNDARY_LEFT_TILE (1 << 1) #define BOUNDARY_UPPER_SLICE (1 << 2) #define BOUNDARY_UPPER_TILE (1 << 3) /* properties of the boundary of the current CTB for the purposes * of the deblocking filter */ int boundary_flags; // an array of these structs is used for per-thread state - pad its size // to avoid false sharing char padding[128]; } HEVCLocalContext; typedef struct HEVCLayerContext { HEVCFrame DPB[32]; int bs_width; int bs_height; SAOParams *sao; DBParams *deblock; // CU uint8_t *skip_flag; uint8_t *tab_ct_depth; // PU uint8_t *cbf_luma; // cbf_luma of colocated TU uint8_t *tab_ipm; uint8_t *is_pcm; // CTB-level flags affecting loop filter operation uint8_t *filter_slice_edges; int32_t *tab_slice_address; int8_t *qp_y_tab; uint8_t *horizontal_bs; uint8_t *vertical_bs; } HEVCLayerContext; typedef struct HEVCContext { const AVClass *c; // needed by private avoptions AVCodecContext *avctx; HEVCLocalContext *local_ctx; unsigned nb_local_ctx; HEVCLayerContext layers[1]; // index in layers of the layer currently being decoded unsigned cur_layer; /** 1 if the independent slice segment header was successfully parsed */ uint8_t slice_initialized; struct ContainerFifo *output_fifo; uint8_t *sao_pixel_buffer_h[3]; uint8_t *sao_pixel_buffer_v[3]; HEVCParamSets ps; HEVCSEI sei; struct AVMD5 *md5_ctx; struct FFRefStructPool *tab_mvf_pool; struct FFRefStructPool *rpl_tab_pool; ///< candidate references for the current frame RefPicList rps[5]; const HEVCVPS *vps; ///< RefStruct reference const HEVCPPS *pps; ///< RefStruct reference SliceHeader sh; enum HEVCNALUnitType nal_unit_type; int temporal_id; ///< temporal_id_plus1 - 1 HEVCFrame *cur_frame; HEVCFrame *collocated_ref; int poc; int poc_tid0; int slice_idx; ///< number of the slice being currently decoded int eos; ///< current packet contains an EOS/EOB NAL int last_eos; ///< last packet contains an EOS/EOB NAL // NoRaslOutputFlag associated with the last IRAP frame int no_rasl_output_flag; HEVCPredContext hpc; HEVCDSPContext hevcdsp; VideoDSPContext vdsp; BswapDSPContext bdsp; H274FilmGrainDatabase h274db; /** used on BE to byteswap the lines for checksumming */ uint8_t *checksum_buf; int checksum_buf_size; /** The target for the common_cabac_state of the local contexts. */ HEVCCABACState cabac; atomic_int wpp_err; const uint8_t *data; H2645Packet pkt; // type of the first VCL NAL of the current frame enum HEVCNALUnitType first_nal_type; int is_nalff; ///< this flag is != 0 if bitstream is encapsulated ///< as a format defined in 14496-15 int apply_defdispwin; int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4) int nuh_layer_id; int film_grain_warning_shown; AVBufferRef *rpu_buf; ///< 0 or 1 Dolby Vision RPUs. DOVIContext dovi_ctx; ///< Dolby Vision decoding context } HEVCContext; /** * Mark all frames in DPB as unused for reference. */ void ff_hevc_clear_refs(HEVCLayerContext *l); /** * Drop all frames currently in DPB. */ void ff_hevc_flush_dpb(HEVCContext *s); const RefPicList *ff_hevc_get_ref_list(const HEVCContext *s, const HEVCFrame *frame, int x0, int y0); /** * Construct the reference picture sets for the current frame. */ int ff_hevc_frame_rps(HEVCContext *s, HEVCLayerContext *l); /** * Construct the reference picture list(s) for the current slice. */ int ff_hevc_slice_rpl(HEVCContext *s); void ff_hevc_save_states(HEVCLocalContext *lc, const HEVCPPS *pps, int ctb_addr_ts); int ff_hevc_cabac_init(HEVCLocalContext *lc, const HEVCPPS *pps, int ctb_addr_ts, const uint8_t *data, size_t size, int is_wpp); int ff_hevc_sao_merge_flag_decode(HEVCLocalContext *lc); int ff_hevc_sao_type_idx_decode(HEVCLocalContext *lc); int ff_hevc_sao_band_position_decode(HEVCLocalContext *lc); int ff_hevc_sao_offset_abs_decode(HEVCLocalContext *lc, int bit_depth); int ff_hevc_sao_offset_sign_decode(HEVCLocalContext *lc); int ff_hevc_sao_eo_class_decode(HEVCLocalContext *lc); int ff_hevc_end_of_slice_flag_decode(HEVCLocalContext *lc); int ff_hevc_cu_transquant_bypass_flag_decode(HEVCLocalContext *lc); int ff_hevc_skip_flag_decode(HEVCLocalContext *lc, uint8_t *skip_flag, int x0, int y0, int x_cb, int y_cb, int min_cb_width); int ff_hevc_pred_mode_decode(HEVCLocalContext *lc); int ff_hevc_split_coding_unit_flag_decode(HEVCLocalContext *lc, uint8_t *tab_ct_depth, const HEVCSPS *sps, int ct_depth, int x0, int y0); int ff_hevc_part_mode_decode(HEVCLocalContext *lc, const HEVCSPS *sps, int log2_cb_size); int ff_hevc_pcm_flag_decode(HEVCLocalContext *lc); int ff_hevc_prev_intra_luma_pred_flag_decode(HEVCLocalContext *lc); int ff_hevc_mpm_idx_decode(HEVCLocalContext *lc); int ff_hevc_rem_intra_luma_pred_mode_decode(HEVCLocalContext *lc); int ff_hevc_intra_chroma_pred_mode_decode(HEVCLocalContext *lc); int ff_hevc_merge_idx_decode(HEVCLocalContext *lc); int ff_hevc_merge_flag_decode(HEVCLocalContext *lc); int ff_hevc_inter_pred_idc_decode(HEVCLocalContext *lc, int nPbW, int nPbH); int ff_hevc_ref_idx_lx_decode(HEVCLocalContext *lc, int num_ref_idx_lx); int ff_hevc_mvp_lx_flag_decode(HEVCLocalContext *lc); int ff_hevc_no_residual_syntax_flag_decode(HEVCLocalContext *lc); int ff_hevc_split_transform_flag_decode(HEVCLocalContext *lc, int log2_trafo_size); int ff_hevc_cbf_cb_cr_decode(HEVCLocalContext *lc, int trafo_depth); int ff_hevc_cbf_luma_decode(HEVCLocalContext *lc, int trafo_depth); int ff_hevc_log2_res_scale_abs(HEVCLocalContext *lc, int idx); int ff_hevc_res_scale_sign_flag(HEVCLocalContext *lc, int idx); /** * Get the number of candidate references for the current frame. */ int ff_hevc_frame_nb_refs(const SliceHeader *sh, const HEVCPPS *pps); int ff_hevc_set_new_ref(HEVCContext *s, HEVCLayerContext *l, int poc); static av_always_inline int ff_hevc_nal_is_nonref(enum HEVCNALUnitType type) { switch (type) { case HEVC_NAL_TRAIL_N: case HEVC_NAL_TSA_N: case HEVC_NAL_STSA_N: case HEVC_NAL_RADL_N: case HEVC_NAL_RASL_N: case HEVC_NAL_VCL_N10: case HEVC_NAL_VCL_N12: case HEVC_NAL_VCL_N14: return 1; default: break; } return 0; } /** * Find frames in the DPB that are ready for output and either write them to the * output FIFO or drop their output flag, depending on the value of discard. * * @param max_output maximum number of output-pending frames that can be * present in the DPB before output is triggered * @param max_dpb maximum number of any frames that can be present in the DPB * before output is triggered */ int ff_hevc_output_frames(HEVCContext *s, HEVCLayerContext *l, unsigned max_output, unsigned max_dpb, int discard); void ff_hevc_unref_frame(HEVCFrame *frame, int flags); void ff_hevc_set_neighbour_available(HEVCLocalContext *lc, int x0, int y0, int nPbW, int nPbH, int log2_ctb_size); void ff_hevc_luma_mv_merge_mode(HEVCLocalContext *lc, const HEVCPPS *pps, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv); void ff_hevc_luma_mv_mvp_mode(HEVCLocalContext *lc, const HEVCPPS *pps, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv, int mvp_lx_flag, int LX); void ff_hevc_hls_filter(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, int x, int y, int ctb_size); void ff_hevc_hls_filters(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, int x_ctb, int y_ctb, int ctb_size); void ff_hevc_set_qPy(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, int xBase, int yBase, int log2_cb_size); void ff_hevc_deblocking_boundary_strengths(HEVCLocalContext *lc, const HEVCLayerContext *l, const HEVCPPS *pps, int x0, int y0, int log2_trafo_size); int ff_hevc_cu_qp_delta_sign_flag(HEVCLocalContext *lc); int ff_hevc_cu_qp_delta_abs(HEVCLocalContext *lc); int ff_hevc_cu_chroma_qp_offset_flag(HEVCLocalContext *lc); int ff_hevc_cu_chroma_qp_offset_idx(HEVCLocalContext *lc, int chroma_qp_offset_list_len_minus1); void ff_hevc_hls_residual_coding(HEVCLocalContext *lc, const HEVCPPS *pps, int x0, int y0, int log2_trafo_size, enum ScanType scan_idx, int c_idx); void ff_hevc_hls_mvd_coding(HEVCLocalContext *lc, int x0, int y0, int log2_cb_size); extern const uint8_t ff_hevc_qpel_extra_before[4]; extern const uint8_t ff_hevc_qpel_extra_after[4]; extern const uint8_t ff_hevc_qpel_extra[4]; #endif /* AVCODEC_HEVC_HEVCDEC_H */