/* * H.26L/H.264/AVC/JVT/14496-10/... decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG4 part10 codec. * @author Michael Niedermayer */ #include "libavutil/avassert.h" #include "libavutil/imgutils.h" #include "libavutil/timer.h" #include "internal.h" #include "cabac.h" #include "cabac_functions.h" #include "dsputil.h" #include "error_resilience.h" #include "avcodec.h" #include "h264.h" #include "h264data.h" #include "h264chroma.h" #include "h264_mvpred.h" #include "golomb.h" #include "mathops.h" #include "mpegutils.h" #include "rectangle.h" #include "thread.h" static const uint8_t rem6[QP_MAX_NUM + 1] = { 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, }; static const uint8_t div6[QP_MAX_NUM + 1] = { 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13, 13, 13, 13, 14,14,14,14, }; static const uint8_t field_scan[16+1] = { 0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4, 0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4, 2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4, }; static const uint8_t field_scan8x8[64+1] = { 0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8, 1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8, 2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8, 0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8, 2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8, 2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8, 2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8, 3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8, 3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8, 4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8, 4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8, 5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8, 5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8, 7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8, 6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8, 7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8, }; static const uint8_t field_scan8x8_cavlc[64+1] = { 0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8, 2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8, 3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8, 5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8, 0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8, 1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8, 3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8, 5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8, 0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8, 1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8, 3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8, 5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8, 1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8, 1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8, 3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8, 6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8, }; // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)] static const uint8_t zigzag_scan8x8_cavlc[64+1] = { 0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8, 4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8, 3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8, 2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8, 1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8, 3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8, 2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8, 3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8, 0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8, 2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8, 1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8, 4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8, 0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8, 1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8, 0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8, 5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8, }; static const uint8_t dequant4_coeff_init[6][3] = { { 10, 13, 16 }, { 11, 14, 18 }, { 13, 16, 20 }, { 14, 18, 23 }, { 16, 20, 25 }, { 18, 23, 29 }, }; static const uint8_t dequant8_coeff_init_scan[16] = { 0, 3, 4, 3, 3, 1, 5, 1, 4, 5, 2, 5, 3, 1, 5, 1 }; static const uint8_t dequant8_coeff_init[6][6] = { { 20, 18, 32, 19, 25, 24 }, { 22, 19, 35, 21, 28, 26 }, { 26, 23, 42, 24, 33, 31 }, { 28, 25, 45, 26, 35, 33 }, { 32, 28, 51, 30, 40, 38 }, { 36, 32, 58, 34, 46, 43 }, }; static const enum AVPixelFormat h264_hwaccel_pixfmt_list_420[] = { #if CONFIG_H264_DXVA2_HWACCEL AV_PIX_FMT_DXVA2_VLD, #endif #if CONFIG_H264_VAAPI_HWACCEL AV_PIX_FMT_VAAPI_VLD, #endif #if CONFIG_H264_VDA_HWACCEL AV_PIX_FMT_VDA_VLD, AV_PIX_FMT_VDA, #endif #if CONFIG_H264_VDPAU_HWACCEL AV_PIX_FMT_VDPAU, #endif AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat h264_hwaccel_pixfmt_list_jpeg_420[] = { #if CONFIG_H264_DXVA2_HWACCEL AV_PIX_FMT_DXVA2_VLD, #endif #if CONFIG_H264_VAAPI_HWACCEL AV_PIX_FMT_VAAPI_VLD, #endif #if CONFIG_H264_VDA_HWACCEL AV_PIX_FMT_VDA_VLD, AV_PIX_FMT_VDA, #endif #if CONFIG_H264_VDPAU_HWACCEL AV_PIX_FMT_VDPAU, #endif AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_NONE }; static void release_unused_pictures(H264Context *h, int remove_current) { int i; /* release non reference frames */ for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { if (h->DPB[i].f.buf[0] && !h->DPB[i].reference && (remove_current || &h->DPB[i] != h->cur_pic_ptr)) { ff_h264_unref_picture(h, &h->DPB[i]); } } } static int alloc_scratch_buffers(H264Context *h, int linesize) { int alloc_size = FFALIGN(FFABS(linesize) + 32, 32); if (h->bipred_scratchpad) return 0; h->bipred_scratchpad = av_malloc(16 * 6 * alloc_size); // edge emu needs blocksize + filter length - 1 // (= 21x21 for h264) h->edge_emu_buffer = av_mallocz(alloc_size * 2 * 21); if (!h->bipred_scratchpad || !h->edge_emu_buffer) { av_freep(&h->bipred_scratchpad); av_freep(&h->edge_emu_buffer); return AVERROR(ENOMEM); } return 0; } static int init_table_pools(H264Context *h) { const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1; const int mb_array_size = h->mb_stride * h->mb_height; const int b4_stride = h->mb_width * 4 + 1; const int b4_array_size = b4_stride * h->mb_height * 4; h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride, av_buffer_allocz); h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) * sizeof(uint32_t), av_buffer_allocz); h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) * sizeof(int16_t), av_buffer_allocz); h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz); if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool || !h->ref_index_pool) { av_buffer_pool_uninit(&h->qscale_table_pool); av_buffer_pool_uninit(&h->mb_type_pool); av_buffer_pool_uninit(&h->motion_val_pool); av_buffer_pool_uninit(&h->ref_index_pool); return AVERROR(ENOMEM); } return 0; } static int alloc_picture(H264Context *h, H264Picture *pic) { int i, ret = 0; av_assert0(!pic->f.data[0]); pic->tf.f = &pic->f; ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ? AV_GET_BUFFER_FLAG_REF : 0); if (ret < 0) goto fail; h->linesize = pic->f.linesize[0]; h->uvlinesize = pic->f.linesize[1]; pic->crop = h->sps.crop; pic->crop_top = h->sps.crop_top; pic->crop_left= h->sps.crop_left; if (h->avctx->hwaccel) { const AVHWAccel *hwaccel = h->avctx->hwaccel; av_assert0(!pic->hwaccel_picture_private); if (hwaccel->frame_priv_data_size) { pic->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size); if (!pic->hwaccel_priv_buf) return AVERROR(ENOMEM); pic->hwaccel_picture_private = pic->hwaccel_priv_buf->data; } } if (!h->avctx->hwaccel && CONFIG_GRAY && h->flags & CODEC_FLAG_GRAY && pic->f.data[2]) { int h_chroma_shift, v_chroma_shift; av_pix_fmt_get_chroma_sub_sample(pic->f.format, &h_chroma_shift, &v_chroma_shift); for(i=0; iavctx->height, v_chroma_shift); i++) { memset(pic->f.data[1] + pic->f.linesize[1]*i, 0x80, FF_CEIL_RSHIFT(h->avctx->width, h_chroma_shift)); memset(pic->f.data[2] + pic->f.linesize[2]*i, 0x80, FF_CEIL_RSHIFT(h->avctx->width, h_chroma_shift)); } } if (!h->qscale_table_pool) { ret = init_table_pools(h); if (ret < 0) goto fail; } pic->qscale_table_buf = av_buffer_pool_get(h->qscale_table_pool); pic->mb_type_buf = av_buffer_pool_get(h->mb_type_pool); if (!pic->qscale_table_buf || !pic->mb_type_buf) goto fail; pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1; pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1; for (i = 0; i < 2; i++) { pic->motion_val_buf[i] = av_buffer_pool_get(h->motion_val_pool); pic->ref_index_buf[i] = av_buffer_pool_get(h->ref_index_pool); if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i]) goto fail; pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4; pic->ref_index[i] = pic->ref_index_buf[i]->data; } return 0; fail: ff_h264_unref_picture(h, pic); return (ret < 0) ? ret : AVERROR(ENOMEM); } static inline int pic_is_unused(H264Context *h, H264Picture *pic) { if (!pic->f.buf[0]) return 1; if (pic->needs_realloc && !(pic->reference & DELAYED_PIC_REF)) return 1; return 0; } static int find_unused_picture(H264Context *h) { int i; for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { if (pic_is_unused(h, &h->DPB[i])) break; } if (i == H264_MAX_PICTURE_COUNT) return AVERROR_INVALIDDATA; if (h->DPB[i].needs_realloc) { h->DPB[i].needs_realloc = 0; ff_h264_unref_picture(h, &h->DPB[i]); } return i; } static void init_dequant8_coeff_table(H264Context *h) { int i, j, q, x; const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8); for (i = 0; i < 6; i++) { h->dequant8_coeff[i] = h->dequant8_buffer[i]; for (j = 0; j < i; j++) if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i], 64 * sizeof(uint8_t))) { h->dequant8_coeff[i] = h->dequant8_buffer[j]; break; } if (j < i) continue; for (q = 0; q < max_qp + 1; q++) { int shift = div6[q]; int idx = rem6[q]; for (x = 0; x < 64; x++) h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] = ((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] * h->pps.scaling_matrix8[i][x]) << shift; } } } static void init_dequant4_coeff_table(H264Context *h) { int i, j, q, x; const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8); for (i = 0; i < 6; i++) { h->dequant4_coeff[i] = h->dequant4_buffer[i]; for (j = 0; j < i; j++) if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16 * sizeof(uint8_t))) { h->dequant4_coeff[i] = h->dequant4_buffer[j]; break; } if (j < i) continue; for (q = 0; q < max_qp + 1; q++) { int shift = div6[q] + 2; int idx = rem6[q]; for (x = 0; x < 16; x++) h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] = ((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] * h->pps.scaling_matrix4[i][x]) << shift; } } } void h264_init_dequant_tables(H264Context *h) { int i, x; init_dequant4_coeff_table(h); memset(h->dequant8_coeff, 0, sizeof(h->dequant8_coeff)); if (h->pps.transform_8x8_mode) init_dequant8_coeff_table(h); if (h->sps.transform_bypass) { for (i = 0; i < 6; i++) for (x = 0; x < 16; x++) h->dequant4_coeff[i][0][x] = 1 << 6; if (h->pps.transform_8x8_mode) for (i = 0; i < 6; i++) for (x = 0; x < 64; x++) h->dequant8_coeff[i][0][x] = 1 << 6; } } /** * Mimic alloc_tables(), but for every context thread. */ static void clone_tables(H264Context *dst, H264Context *src, int i) { dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i * 8 * 2 * src->mb_stride; dst->non_zero_count = src->non_zero_count; dst->slice_table = src->slice_table; dst->cbp_table = src->cbp_table; dst->mb2b_xy = src->mb2b_xy; dst->mb2br_xy = src->mb2br_xy; dst->chroma_pred_mode_table = src->chroma_pred_mode_table; dst->mvd_table[0] = src->mvd_table[0] + i * 8 * 2 * src->mb_stride; dst->mvd_table[1] = src->mvd_table[1] + i * 8 * 2 * src->mb_stride; dst->direct_table = src->direct_table; dst->list_counts = src->list_counts; dst->DPB = src->DPB; dst->cur_pic_ptr = src->cur_pic_ptr; dst->cur_pic = src->cur_pic; dst->bipred_scratchpad = NULL; dst->edge_emu_buffer = NULL; ff_h264_pred_init(&dst->hpc, src->avctx->codec_id, src->sps.bit_depth_luma, src->sps.chroma_format_idc); } #define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b) + (size)))) #undef REBASE_PICTURE #define REBASE_PICTURE(pic, new_ctx, old_ctx) \ (((pic) && (pic) >= (old_ctx)->DPB && \ (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \ &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL) static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base) { int i; for (i = 0; i < count; i++) { assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) || IN_RANGE(from[i], old_base->DPB, sizeof(H264Picture) * H264_MAX_PICTURE_COUNT) || !from[i])); to[i] = REBASE_PICTURE(from[i], new_base, old_base); } } static int copy_parameter_set(void **to, void **from, int count, int size) { int i; for (i = 0; i < count; i++) { if (to[i] && !from[i]) { av_freep(&to[i]); } else if (from[i] && !to[i]) { to[i] = av_malloc(size); if (!to[i]) return AVERROR(ENOMEM); } if (from[i]) memcpy(to[i], from[i], size); } return 0; } #define copy_fields(to, from, start_field, end_field) \ memcpy(&(to)->start_field, &(from)->start_field, \ (char *)&(to)->end_field - (char *)&(to)->start_field) static int h264_slice_header_init(H264Context *h, int reinit); int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { H264Context *h = dst->priv_data, *h1 = src->priv_data; int inited = h->context_initialized, err = 0; int context_reinitialized = 0; int i, ret; if (dst == src) return 0; if (inited && (h->width != h1->width || h->height != h1->height || h->mb_width != h1->mb_width || h->mb_height != h1->mb_height || h->sps.bit_depth_luma != h1->sps.bit_depth_luma || h->sps.chroma_format_idc != h1->sps.chroma_format_idc || h->sps.colorspace != h1->sps.colorspace)) { /* set bits_per_raw_sample to the previous value. the check for changed * bit depth in h264_set_parameter_from_sps() uses it and sets it to * the current value */ h->avctx->bits_per_raw_sample = h->sps.bit_depth_luma; av_freep(&h->bipred_scratchpad); h->width = h1->width; h->height = h1->height; h->mb_height = h1->mb_height; h->mb_width = h1->mb_width; h->mb_num = h1->mb_num; h->mb_stride = h1->mb_stride; h->b_stride = h1->b_stride; // SPS/PPS if ((ret = copy_parameter_set((void **)h->sps_buffers, (void **)h1->sps_buffers, MAX_SPS_COUNT, sizeof(SPS))) < 0) return ret; h->sps = h1->sps; if ((ret = copy_parameter_set((void **)h->pps_buffers, (void **)h1->pps_buffers, MAX_PPS_COUNT, sizeof(PPS))) < 0) return ret; h->pps = h1->pps; if ((err = h264_slice_header_init(h, 1)) < 0) { av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed"); return err; } context_reinitialized = 1; #if 0 h264_set_parameter_from_sps(h); //Note we set context_reinitialized which will cause h264_set_parameter_from_sps to be reexecuted h->cur_chroma_format_idc = h1->cur_chroma_format_idc; #endif } /* update linesize on resize for h264. The h264 decoder doesn't * necessarily call ff_MPV_frame_start in the new thread */ h->linesize = h1->linesize; h->uvlinesize = h1->uvlinesize; /* copy block_offset since frame_start may not be called */ memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset)); if (!inited) { for (i = 0; i < MAX_SPS_COUNT; i++) av_freep(h->sps_buffers + i); for (i = 0; i < MAX_PPS_COUNT; i++) av_freep(h->pps_buffers + i); av_freep(&h->rbsp_buffer[0]); av_freep(&h->rbsp_buffer[1]); memcpy(h, h1, offsetof(H264Context, intra_pcm_ptr)); memcpy(&h->cabac, &h1->cabac, sizeof(H264Context) - offsetof(H264Context, cabac)); av_assert0((void*)&h->cabac == &h->mb_padding + 1); memset(h->sps_buffers, 0, sizeof(h->sps_buffers)); memset(h->pps_buffers, 0, sizeof(h->pps_buffers)); memset(&h->er, 0, sizeof(h->er)); memset(&h->mb, 0, sizeof(h->mb)); memset(&h->mb_luma_dc, 0, sizeof(h->mb_luma_dc)); memset(&h->mb_padding, 0, sizeof(h->mb_padding)); memset(&h->cur_pic, 0, sizeof(h->cur_pic)); h->avctx = dst; h->DPB = NULL; h->qscale_table_pool = NULL; h->mb_type_pool = NULL; h->ref_index_pool = NULL; h->motion_val_pool = NULL; for (i = 0; i < 2; i++) { h->rbsp_buffer[i] = NULL; h->rbsp_buffer_size[i] = 0; } if (h1->context_initialized) { h->context_initialized = 0; memset(&h->cur_pic, 0, sizeof(h->cur_pic)); av_frame_unref(&h->cur_pic.f); h->cur_pic.tf.f = &h->cur_pic.f; ret = ff_h264_alloc_tables(h); if (ret < 0) { av_log(dst, AV_LOG_ERROR, "Could not allocate memory\n"); return ret; } ret = ff_h264_context_init(h); if (ret < 0) { av_log(dst, AV_LOG_ERROR, "context_init() failed.\n"); return ret; } } h->bipred_scratchpad = NULL; h->edge_emu_buffer = NULL; h->thread_context[0] = h; h->context_initialized = h1->context_initialized; } h->avctx->coded_height = h1->avctx->coded_height; h->avctx->coded_width = h1->avctx->coded_width; h->avctx->width = h1->avctx->width; h->avctx->height = h1->avctx->height; h->coded_picture_number = h1->coded_picture_number; h->first_field = h1->first_field; h->picture_structure = h1->picture_structure; h->qscale = h1->qscale; h->droppable = h1->droppable; h->low_delay = h1->low_delay; for (i = 0; h->DPB && i < H264_MAX_PICTURE_COUNT; i++) { ff_h264_unref_picture(h, &h->DPB[i]); if (h1->DPB && h1->DPB[i].f.buf[0] && (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0) return ret; } h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1); ff_h264_unref_picture(h, &h->cur_pic); if (h1->cur_pic.f.buf[0] && (ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic)) < 0) return ret; h->workaround_bugs = h1->workaround_bugs; h->low_delay = h1->low_delay; h->droppable = h1->droppable; // extradata/NAL handling h->is_avc = h1->is_avc; // SPS/PPS if ((ret = copy_parameter_set((void **)h->sps_buffers, (void **)h1->sps_buffers, MAX_SPS_COUNT, sizeof(SPS))) < 0) return ret; h->sps = h1->sps; if ((ret = copy_parameter_set((void **)h->pps_buffers, (void **)h1->pps_buffers, MAX_PPS_COUNT, sizeof(PPS))) < 0) return ret; h->pps = h1->pps; // Dequantization matrices // FIXME these are big - can they be only copied when PPS changes? copy_fields(h, h1, dequant4_buffer, dequant4_coeff); for (i = 0; i < 6; i++) h->dequant4_coeff[i] = h->dequant4_buffer[0] + (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]); for (i = 0; i < 6; i++) h->dequant8_coeff[i] = h->dequant8_buffer[0] + (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]); h->dequant_coeff_pps = h1->dequant_coeff_pps; // POC timing copy_fields(h, h1, poc_lsb, redundant_pic_count); // reference lists copy_fields(h, h1, short_ref, cabac_init_idc); copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1); copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1); copy_picture_range(h->delayed_pic, h1->delayed_pic, MAX_DELAYED_PIC_COUNT + 2, h, h1); h->frame_recovered = h1->frame_recovered; if (context_reinitialized) ff_h264_set_parameter_from_sps(h); if (!h->cur_pic_ptr) return 0; if (!h->droppable) { err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); h->prev_poc_msb = h->poc_msb; h->prev_poc_lsb = h->poc_lsb; } h->prev_frame_num_offset = h->frame_num_offset; h->prev_frame_num = h->frame_num; h->outputed_poc = h->next_outputed_poc; h->recovery_frame = h1->recovery_frame; return err; } static int h264_frame_start(H264Context *h) { H264Picture *pic; int i, ret; const int pixel_shift = h->pixel_shift; int c[4] = { 1<<(h->sps.bit_depth_luma-1), 1<<(h->sps.bit_depth_chroma-1), 1<<(h->sps.bit_depth_chroma-1), -1 }; if (!ff_thread_can_start_frame(h->avctx)) { av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n"); return -1; } release_unused_pictures(h, 1); h->cur_pic_ptr = NULL; i = find_unused_picture(h); if (i < 0) { av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n"); return i; } pic = &h->DPB[i]; pic->reference = h->droppable ? 0 : h->picture_structure; pic->f.coded_picture_number = h->coded_picture_number++; pic->field_picture = h->picture_structure != PICT_FRAME; /* * Zero key_frame here; IDR markings per slice in frame or fields are ORed * in later. * See decode_nal_units(). */ pic->f.key_frame = 0; pic->mmco_reset = 0; pic->recovered = 0; pic->invalid_gap = 0; pic->sei_recovery_frame_cnt = h->sei_recovery_frame_cnt; if ((ret = alloc_picture(h, pic)) < 0) return ret; if(!h->frame_recovered && !h->avctx->hwaccel && !(h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)) avpriv_color_frame(&pic->f, c); h->cur_pic_ptr = pic; ff_h264_unref_picture(h, &h->cur_pic); if (CONFIG_ERROR_RESILIENCE) { ff_h264_set_erpic(&h->er.cur_pic, NULL); } if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0) return ret; if (CONFIG_ERROR_RESILIENCE) { ff_er_frame_start(&h->er); ff_h264_set_erpic(&h->er.last_pic, NULL); ff_h264_set_erpic(&h->er.next_pic, NULL); } assert(h->linesize && h->uvlinesize); for (i = 0; i < 16; i++) { h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->linesize * ((scan8[i] - scan8[0]) >> 3); h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->linesize * ((scan8[i] - scan8[0]) >> 3); } for (i = 0; i < 16; i++) { h->block_offset[16 + i] = h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3); h->block_offset[48 + 16 + i] = h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3); } /* We mark the current picture as non-reference after allocating it, so * that if we break out due to an error it can be released automatically * in the next ff_MPV_frame_start(). */ h->cur_pic_ptr->reference = 0; h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX; h->next_output_pic = NULL; assert(h->cur_pic_ptr->long_ref == 0); return 0; } static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple) { uint8_t *top_border; int top_idx = 1; const int pixel_shift = h->pixel_shift; int chroma444 = CHROMA444(h); int chroma422 = CHROMA422(h); src_y -= linesize; src_cb -= uvlinesize; src_cr -= uvlinesize; if (!simple && FRAME_MBAFF(h)) { if (h->mb_y & 1) { if (!MB_MBAFF(h)) { top_border = h->top_borders[0][h->mb_x]; AV_COPY128(top_border, src_y + 15 * linesize); if (pixel_shift) AV_COPY128(top_border + 16, src_y + 15 * linesize + 16); if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) { if (chroma444) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize); AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16); AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize); AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16); } else { AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize); AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize); } } else if (chroma422) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize); } } else { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize); } } } } } else if (MB_MBAFF(h)) { top_idx = 0; } else return; } top_border = h->top_borders[top_idx][h->mb_x]; /* There are two lines saved, the line above the top macroblock * of a pair, and the line above the bottom macroblock. */ AV_COPY128(top_border, src_y + 16 * linesize); if (pixel_shift) AV_COPY128(top_border + 16, src_y + 16 * linesize + 16); if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) { if (chroma444) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 16 * linesize); AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16); AV_COPY128(top_border + 64, src_cr + 16 * linesize); AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16); } else { AV_COPY128(top_border + 16, src_cb + 16 * linesize); AV_COPY128(top_border + 32, src_cr + 16 * linesize); } } else if (chroma422) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize); } } else { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize); } } } } /** * Initialize implicit_weight table. * @param field 0/1 initialize the weight for interlaced MBAFF * -1 initializes the rest */ static void implicit_weight_table(H264Context *h, int field) { int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1; for (i = 0; i < 2; i++) { h->luma_weight_flag[i] = 0; h->chroma_weight_flag[i] = 0; } if (field < 0) { if (h->picture_structure == PICT_FRAME) { cur_poc = h->cur_pic_ptr->poc; } else { cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1]; } if (h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF(h) && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2 * cur_poc) { h->use_weight = 0; h->use_weight_chroma = 0; return; } ref_start = 0; ref_count0 = h->ref_count[0]; ref_count1 = h->ref_count[1]; } else { cur_poc = h->cur_pic_ptr->field_poc[field]; ref_start = 16; ref_count0 = 16 + 2 * h->ref_count[0]; ref_count1 = 16 + 2 * h->ref_count[1]; } h->use_weight = 2; h->use_weight_chroma = 2; h->luma_log2_weight_denom = 5; h->chroma_log2_weight_denom = 5; for (ref0 = ref_start; ref0 < ref_count0; ref0++) { int poc0 = h->ref_list[0][ref0].poc; for (ref1 = ref_start; ref1 < ref_count1; ref1++) { int w = 32; if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) { int poc1 = h->ref_list[1][ref1].poc; int td = av_clip(poc1 - poc0, -128, 127); if (td) { int tb = av_clip(cur_poc - poc0, -128, 127); int tx = (16384 + (FFABS(td) >> 1)) / td; int dist_scale_factor = (tb * tx + 32) >> 8; if (dist_scale_factor >= -64 && dist_scale_factor <= 128) w = 64 - dist_scale_factor; } } if (field < 0) { h->implicit_weight[ref0][ref1][0] = h->implicit_weight[ref0][ref1][1] = w; } else { h->implicit_weight[ref0][ref1][field] = w; } } } } /** * initialize scan tables */ static void init_scan_tables(H264Context *h) { int i; for (i = 0; i < 16; i++) { #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF) h->zigzag_scan[i] = TRANSPOSE(zigzag_scan[i]); h->field_scan[i] = TRANSPOSE(field_scan[i]); #undef TRANSPOSE } for (i = 0; i < 64; i++) { #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3) h->zigzag_scan8x8[i] = TRANSPOSE(ff_zigzag_direct[i]); h->zigzag_scan8x8_cavlc[i] = TRANSPOSE(zigzag_scan8x8_cavlc[i]); h->field_scan8x8[i] = TRANSPOSE(field_scan8x8[i]); h->field_scan8x8_cavlc[i] = TRANSPOSE(field_scan8x8_cavlc[i]); #undef TRANSPOSE } if (h->sps.transform_bypass) { // FIXME same ugly memcpy(h->zigzag_scan_q0 , zigzag_scan , sizeof(h->zigzag_scan_q0 )); memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 )); memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0)); memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 )); memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 )); memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 )); } else { memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 )); memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 )); memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0)); memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 )); memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 )); memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 )); } } /** * Replicate H264 "master" context to thread contexts. */ static int clone_slice(H264Context *dst, H264Context *src) { memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset)); dst->cur_pic_ptr = src->cur_pic_ptr; dst->cur_pic = src->cur_pic; dst->linesize = src->linesize; dst->uvlinesize = src->uvlinesize; dst->first_field = src->first_field; dst->prev_poc_msb = src->prev_poc_msb; dst->prev_poc_lsb = src->prev_poc_lsb; dst->prev_frame_num_offset = src->prev_frame_num_offset; dst->prev_frame_num = src->prev_frame_num; dst->short_ref_count = src->short_ref_count; memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref)); memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref)); memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list)); memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff)); memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff)); return 0; } static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback) { switch (h->sps.bit_depth_luma) { case 9: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { return AV_PIX_FMT_GBRP9; } else return AV_PIX_FMT_YUV444P9; } else if (CHROMA422(h)) return AV_PIX_FMT_YUV422P9; else return AV_PIX_FMT_YUV420P9; break; case 10: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { return AV_PIX_FMT_GBRP10; } else return AV_PIX_FMT_YUV444P10; } else if (CHROMA422(h)) return AV_PIX_FMT_YUV422P10; else return AV_PIX_FMT_YUV420P10; break; case 12: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { return AV_PIX_FMT_GBRP12; } else return AV_PIX_FMT_YUV444P12; } else if (CHROMA422(h)) return AV_PIX_FMT_YUV422P12; else return AV_PIX_FMT_YUV420P12; break; case 14: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { return AV_PIX_FMT_GBRP14; } else return AV_PIX_FMT_YUV444P14; } else if (CHROMA422(h)) return AV_PIX_FMT_YUV422P14; else return AV_PIX_FMT_YUV420P14; break; case 8: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { av_log(h->avctx, AV_LOG_DEBUG, "Detected GBR colorspace.\n"); return AV_PIX_FMT_GBR24P; } else if (h->avctx->colorspace == AVCOL_SPC_YCGCO) { av_log(h->avctx, AV_LOG_WARNING, "Detected unsupported YCgCo colorspace.\n"); } return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ444P : AV_PIX_FMT_YUV444P; } else if (CHROMA422(h)) { return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ422P : AV_PIX_FMT_YUV422P; } else { int i; const enum AVPixelFormat * fmt = h->avctx->codec->pix_fmts ? h->avctx->codec->pix_fmts : h->avctx->color_range == AVCOL_RANGE_JPEG ? h264_hwaccel_pixfmt_list_jpeg_420 : h264_hwaccel_pixfmt_list_420; for (i=0; fmt[i] != AV_PIX_FMT_NONE; i++) if (fmt[i] == h->avctx->pix_fmt && !force_callback) return fmt[i]; return ff_thread_get_format(h->avctx, fmt); } break; default: av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n", h->sps.bit_depth_luma); return AVERROR_INVALIDDATA; } } /* export coded and cropped frame dimensions to AVCodecContext */ static int init_dimensions(H264Context *h) { int width = h->width - (h->sps.crop_right + h->sps.crop_left); int height = h->height - (h->sps.crop_top + h->sps.crop_bottom); av_assert0(h->sps.crop_right + h->sps.crop_left < (unsigned)h->width); av_assert0(h->sps.crop_top + h->sps.crop_bottom < (unsigned)h->height); /* handle container cropping */ if (!h->sps.crop && FFALIGN(h->avctx->width, 16) == h->width && FFALIGN(h->avctx->height, 16) == h->height) { width = h->avctx->width; height = h->avctx->height; } if (width <= 0 || height <= 0) { av_log(h->avctx, AV_LOG_ERROR, "Invalid cropped dimensions: %dx%d.\n", width, height); if (h->avctx->err_recognition & AV_EF_EXPLODE) return AVERROR_INVALIDDATA; av_log(h->avctx, AV_LOG_WARNING, "Ignoring cropping information.\n"); h->sps.crop_bottom = h->sps.crop_top = h->sps.crop_right = h->sps.crop_left = 0; h->sps.crop = 0; width = h->width; height = h->height; } h->avctx->coded_width = h->width; h->avctx->coded_height = h->height; h->avctx->width = width; h->avctx->height = height; return 0; } static int h264_slice_header_init(H264Context *h, int reinit) { int nb_slices = (HAVE_THREADS && h->avctx->active_thread_type & FF_THREAD_SLICE) ? h->avctx->thread_count : 1; int i, ret; h->avctx->sample_aspect_ratio = h->sps.sar; av_assert0(h->avctx->sample_aspect_ratio.den); av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt, &h->chroma_x_shift, &h->chroma_y_shift); if (h->sps.timing_info_present_flag) { int64_t den = h->sps.time_scale; if (h->x264_build < 44U) den *= 2; av_reduce(&h->avctx->time_base.num, &h->avctx->time_base.den, h->sps.num_units_in_tick, den, 1 << 30); } if (reinit) ff_h264_free_tables(h, 0); h->first_field = 0; h->prev_interlaced_frame = 1; init_scan_tables(h); ret = ff_h264_alloc_tables(h); if (ret < 0) { av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n"); return ret; } if (nb_slices > H264_MAX_THREADS || (nb_slices > h->mb_height && h->mb_height)) { int max_slices; if (h->mb_height) max_slices = FFMIN(H264_MAX_THREADS, h->mb_height); else max_slices = H264_MAX_THREADS; av_log(h->avctx, AV_LOG_WARNING, "too many threads/slices %d," " reducing to %d\n", nb_slices, max_slices); nb_slices = max_slices; } h->slice_context_count = nb_slices; if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) { ret = ff_h264_context_init(h); if (ret < 0) { av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n"); return ret; } } else { for (i = 1; i < h->slice_context_count; i++) { H264Context *c; c = h->thread_context[i] = av_mallocz(sizeof(H264Context)); if (!c) return AVERROR(ENOMEM); c->avctx = h->avctx; if (CONFIG_ERROR_RESILIENCE) { c->dsp = h->dsp; } c->vdsp = h->vdsp; c->h264dsp = h->h264dsp; c->h264qpel = h->h264qpel; c->h264chroma = h->h264chroma; c->sps = h->sps; c->pps = h->pps; c->pixel_shift = h->pixel_shift; c->cur_chroma_format_idc = h->cur_chroma_format_idc; c->width = h->width; c->height = h->height; c->linesize = h->linesize; c->uvlinesize = h->uvlinesize; c->chroma_x_shift = h->chroma_x_shift; c->chroma_y_shift = h->chroma_y_shift; c->qscale = h->qscale; c->droppable = h->droppable; c->data_partitioning = h->data_partitioning; c->low_delay = h->low_delay; c->mb_width = h->mb_width; c->mb_height = h->mb_height; c->mb_stride = h->mb_stride; c->mb_num = h->mb_num; c->flags = h->flags; c->workaround_bugs = h->workaround_bugs; c->pict_type = h->pict_type; init_scan_tables(c); clone_tables(c, h, i); c->context_initialized = 1; } for (i = 0; i < h->slice_context_count; i++) if ((ret = ff_h264_context_init(h->thread_context[i])) < 0) { av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n"); return ret; } } h->context_initialized = 1; return 0; } static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a) { switch (a) { case AV_PIX_FMT_YUVJ420P: return AV_PIX_FMT_YUV420P; case AV_PIX_FMT_YUVJ422P: return AV_PIX_FMT_YUV422P; case AV_PIX_FMT_YUVJ444P: return AV_PIX_FMT_YUV444P; default: return a; } } /** * Decode a slice header. * This will (re)intialize the decoder and call h264_frame_start() as needed. * * @param h h264context * @param h0 h264 master context (differs from 'h' when doing sliced based * parallel decoding) * * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded */ int ff_h264_decode_slice_header(H264Context *h, H264Context *h0) { unsigned int first_mb_in_slice; unsigned int pps_id; int ret; unsigned int slice_type, tmp, i, j; int last_pic_structure, last_pic_droppable; int must_reinit; int needs_reinit = 0; int field_pic_flag, bottom_field_flag; h->qpel_put = h->h264qpel.put_h264_qpel_pixels_tab; h->qpel_avg = h->h264qpel.avg_h264_qpel_pixels_tab; first_mb_in_slice = get_ue_golomb_long(&h->gb); if (first_mb_in_slice == 0) { // FIXME better field boundary detection if (h0->current_slice && h->cur_pic_ptr && FIELD_PICTURE(h)) { ff_h264_field_end(h, 1); } h0->current_slice = 0; if (!h0->first_field) { if (h->cur_pic_ptr && !h->droppable) { ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, h->picture_structure == PICT_BOTTOM_FIELD); } h->cur_pic_ptr = NULL; } } slice_type = get_ue_golomb_31(&h->gb); if (slice_type > 9) { av_log(h->avctx, AV_LOG_ERROR, "slice type %d too large at %d %d\n", slice_type, h->mb_x, h->mb_y); return AVERROR_INVALIDDATA; } if (slice_type > 4) { slice_type -= 5; h->slice_type_fixed = 1; } else h->slice_type_fixed = 0; slice_type = golomb_to_pict_type[slice_type]; h->slice_type = slice_type; h->slice_type_nos = slice_type & 3; if (h->nal_unit_type == NAL_IDR_SLICE && h->slice_type_nos != AV_PICTURE_TYPE_I) { av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n"); return AVERROR_INVALIDDATA; } if ( (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) || (h->avctx->skip_frame >= AVDISCARD_BIDIR && h->slice_type_nos == AV_PICTURE_TYPE_B) || (h->avctx->skip_frame >= AVDISCARD_NONINTRA && h->slice_type_nos != AV_PICTURE_TYPE_I) || (h->avctx->skip_frame >= AVDISCARD_NONKEY && h->nal_unit_type != NAL_IDR_SLICE) || h->avctx->skip_frame >= AVDISCARD_ALL) { return SLICE_SKIPED; } // to make a few old functions happy, it's wrong though h->pict_type = h->slice_type; pps_id = get_ue_golomb(&h->gb); if (pps_id >= MAX_PPS_COUNT) { av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", pps_id); return AVERROR_INVALIDDATA; } if (!h0->pps_buffers[pps_id]) { av_log(h->avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id); return AVERROR_INVALIDDATA; } if (h0->au_pps_id >= 0 && pps_id != h0->au_pps_id) { av_log(h->avctx, AV_LOG_ERROR, "PPS change from %d to %d forbidden\n", h0->au_pps_id, pps_id); return AVERROR_INVALIDDATA; } h->pps = *h0->pps_buffers[pps_id]; if (!h0->sps_buffers[h->pps.sps_id]) { av_log(h->avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id); return AVERROR_INVALIDDATA; } if (h->pps.sps_id != h->sps.sps_id || h->pps.sps_id != h->current_sps_id || h0->sps_buffers[h->pps.sps_id]->new) { h->sps = *h0->sps_buffers[h->pps.sps_id]; if (h->mb_width != h->sps.mb_width || h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) || h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma || h->cur_chroma_format_idc != h->sps.chroma_format_idc ) needs_reinit = 1; if (h->bit_depth_luma != h->sps.bit_depth_luma || h->chroma_format_idc != h->sps.chroma_format_idc) { h->bit_depth_luma = h->sps.bit_depth_luma; h->chroma_format_idc = h->sps.chroma_format_idc; needs_reinit = 1; } if ((ret = ff_h264_set_parameter_from_sps(h)) < 0) return ret; } h->avctx->profile = ff_h264_get_profile(&h->sps); h->avctx->level = h->sps.level_idc; h->avctx->refs = h->sps.ref_frame_count; must_reinit = (h->context_initialized && ( 16*h->sps.mb_width != h->avctx->coded_width || 16*h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) != h->avctx->coded_height || h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma || h->cur_chroma_format_idc != h->sps.chroma_format_idc || av_cmp_q(h->sps.sar, h->avctx->sample_aspect_ratio) || h->mb_width != h->sps.mb_width || h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) )); if (non_j_pixfmt(h0->avctx->pix_fmt) != non_j_pixfmt(get_pixel_format(h0, 0))) must_reinit = 1; h->mb_width = h->sps.mb_width; h->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag); h->mb_num = h->mb_width * h->mb_height; h->mb_stride = h->mb_width + 1; h->b_stride = h->mb_width * 4; h->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p h->width = 16 * h->mb_width; h->height = 16 * h->mb_height; ret = init_dimensions(h); if (ret < 0) return ret; if (h->sps.video_signal_type_present_flag) { h->avctx->color_range = h->sps.full_range>0 ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; if (h->sps.colour_description_present_flag) { if (h->avctx->colorspace != h->sps.colorspace) needs_reinit = 1; h->avctx->color_primaries = h->sps.color_primaries; h->avctx->color_trc = h->sps.color_trc; h->avctx->colorspace = h->sps.colorspace; } } if (h->context_initialized && (must_reinit || needs_reinit)) { if (h != h0) { av_log(h->avctx, AV_LOG_ERROR, "changing width %d -> %d / height %d -> %d on " "slice %d\n", h->width, h->avctx->coded_width, h->height, h->avctx->coded_height, h0->current_slice + 1); return AVERROR_INVALIDDATA; } ff_h264_flush_change(h); if ((ret = get_pixel_format(h, 1)) < 0) return ret; h->avctx->pix_fmt = ret; av_log(h->avctx, AV_LOG_INFO, "Reinit context to %dx%d, " "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt)); if ((ret = h264_slice_header_init(h, 1)) < 0) { av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed\n"); return ret; } } if (!h->context_initialized) { if (h != h0) { av_log(h->avctx, AV_LOG_ERROR, "Cannot (re-)initialize context during parallel decoding.\n"); return AVERROR_PATCHWELCOME; } if ((ret = get_pixel_format(h, 1)) < 0) return ret; h->avctx->pix_fmt = ret; if ((ret = h264_slice_header_init(h, 0)) < 0) { av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed\n"); return ret; } } if (h == h0 && h->dequant_coeff_pps != pps_id) { h->dequant_coeff_pps = pps_id; h264_init_dequant_tables(h); } h->frame_num = get_bits(&h->gb, h->sps.log2_max_frame_num); h->mb_mbaff = 0; h->mb_aff_frame = 0; last_pic_structure = h0->picture_structure; last_pic_droppable = h0->droppable; h->droppable = h->nal_ref_idc == 0; if (h->sps.frame_mbs_only_flag) { h->picture_structure = PICT_FRAME; } else { if (!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) { av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n"); return -1; } field_pic_flag = get_bits1(&h->gb); if (field_pic_flag) { bottom_field_flag = get_bits1(&h->gb); h->picture_structure = PICT_TOP_FIELD + bottom_field_flag; } else { h->picture_structure = PICT_FRAME; h->mb_aff_frame = h->sps.mb_aff; } } h->mb_field_decoding_flag = h->picture_structure != PICT_FRAME; if (h0->current_slice != 0) { if (last_pic_structure != h->picture_structure || last_pic_droppable != h->droppable) { av_log(h->avctx, AV_LOG_ERROR, "Changing field mode (%d -> %d) between slices is not allowed\n", last_pic_structure, h->picture_structure); h->picture_structure = last_pic_structure; h->droppable = last_pic_droppable; return AVERROR_INVALIDDATA; } else if (!h0->cur_pic_ptr) { av_log(h->avctx, AV_LOG_ERROR, "unset cur_pic_ptr on slice %d\n", h0->current_slice + 1); return AVERROR_INVALIDDATA; } } else { /* Shorten frame num gaps so we don't have to allocate reference * frames just to throw them away */ if (h->frame_num != h->prev_frame_num) { int unwrap_prev_frame_num = h->prev_frame_num; int max_frame_num = 1 << h->sps.log2_max_frame_num; if (unwrap_prev_frame_num > h->frame_num) unwrap_prev_frame_num -= max_frame_num; if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) { unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1; if (unwrap_prev_frame_num < 0) unwrap_prev_frame_num += max_frame_num; h->prev_frame_num = unwrap_prev_frame_num; } } /* See if we have a decoded first field looking for a pair... * Here, we're using that to see if we should mark previously * decode frames as "finished". * We have to do that before the "dummy" in-between frame allocation, * since that can modify h->cur_pic_ptr. */ if (h0->first_field) { assert(h0->cur_pic_ptr); assert(h0->cur_pic_ptr->f.buf[0]); assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF); /* Mark old field/frame as completed */ if (h0->cur_pic_ptr->tf.owner == h0->avctx) { ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, last_pic_structure == PICT_BOTTOM_FIELD); } /* figure out if we have a complementary field pair */ if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) { /* Previous field is unmatched. Don't display it, but let it * remain for reference if marked as such. */ if (last_pic_structure != PICT_FRAME) { ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, last_pic_structure == PICT_TOP_FIELD); } } else { if (h0->cur_pic_ptr->frame_num != h->frame_num) { /* This and previous field were reference, but had * different frame_nums. Consider this field first in * pair. Throw away previous field except for reference * purposes. */ if (last_pic_structure != PICT_FRAME) { ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, last_pic_structure == PICT_TOP_FIELD); } } else { /* Second field in complementary pair */ if (!((last_pic_structure == PICT_TOP_FIELD && h->picture_structure == PICT_BOTTOM_FIELD) || (last_pic_structure == PICT_BOTTOM_FIELD && h->picture_structure == PICT_TOP_FIELD))) { av_log(h->avctx, AV_LOG_ERROR, "Invalid field mode combination %d/%d\n", last_pic_structure, h->picture_structure); h->picture_structure = last_pic_structure; h->droppable = last_pic_droppable; return AVERROR_INVALIDDATA; } else if (last_pic_droppable != h->droppable) { avpriv_request_sample(h->avctx, "Found reference and non-reference fields in the same frame, which"); h->picture_structure = last_pic_structure; h->droppable = last_pic_droppable; return AVERROR_PATCHWELCOME; } } } } while (h->frame_num != h->prev_frame_num && !h0->first_field && h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) { H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL; av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num); if (!h->sps.gaps_in_frame_num_allowed_flag) for(i=0; ilast_pocs); i++) h->last_pocs[i] = INT_MIN; ret = h264_frame_start(h); if (ret < 0) { h0->first_field = 0; return ret; } h->prev_frame_num++; h->prev_frame_num %= 1 << h->sps.log2_max_frame_num; h->cur_pic_ptr->frame_num = h->prev_frame_num; h->cur_pic_ptr->invalid_gap = !h->sps.gaps_in_frame_num_allowed_flag; ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0); ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1); ret = ff_generate_sliding_window_mmcos(h, 1); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) return ret; ret = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) return ret; /* Error concealment: If a ref is missing, copy the previous ref * in its place. * FIXME: Avoiding a memcpy would be nice, but ref handling makes * many assumptions about there being no actual duplicates. * FIXME: This does not copy padding for out-of-frame motion * vectors. Given we are concealing a lost frame, this probably * is not noticeable by comparison, but it should be fixed. */ if (h->short_ref_count) { if (prev) { av_image_copy(h->short_ref[0]->f.data, h->short_ref[0]->f.linesize, (const uint8_t **)prev->f.data, prev->f.linesize, h->avctx->pix_fmt, h->mb_width * 16, h->mb_height * 16); h->short_ref[0]->poc = prev->poc + 2; } h->short_ref[0]->frame_num = h->prev_frame_num; } } /* See if we have a decoded first field looking for a pair... * We're using that to see whether to continue decoding in that * frame, or to allocate a new one. */ if (h0->first_field) { assert(h0->cur_pic_ptr); assert(h0->cur_pic_ptr->f.buf[0]); assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF); /* figure out if we have a complementary field pair */ if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) { /* Previous field is unmatched. Don't display it, but let it * remain for reference if marked as such. */ h0->cur_pic_ptr = NULL; h0->first_field = FIELD_PICTURE(h); } else { if (h0->cur_pic_ptr->frame_num != h->frame_num) { ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, h0->picture_structure==PICT_BOTTOM_FIELD); /* This and the previous field had different frame_nums. * Consider this field first in pair. Throw away previous * one except for reference purposes. */ h0->first_field = 1; h0->cur_pic_ptr = NULL; } else { /* Second field in complementary pair */ h0->first_field = 0; } } } else { /* Frame or first field in a potentially complementary pair */ h0->first_field = FIELD_PICTURE(h); } if (!FIELD_PICTURE(h) || h0->first_field) { if (h264_frame_start(h) < 0) { h0->first_field = 0; return AVERROR_INVALIDDATA; } } else { release_unused_pictures(h, 0); } /* Some macroblocks can be accessed before they're available in case * of lost slices, MBAFF or threading. */ if (FIELD_PICTURE(h)) { for(i = (h->picture_structure == PICT_BOTTOM_FIELD); imb_height; i++) memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table)); } else { memset(h->slice_table, -1, (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table)); } h0->last_slice_type = -1; } if (h != h0 && (ret = clone_slice(h, h0)) < 0) return ret; /* can't be in alloc_tables because linesize isn't known there. * FIXME: redo bipred weight to not require extra buffer? */ for (i = 0; i < h->slice_context_count; i++) if (h->thread_context[i]) { ret = alloc_scratch_buffers(h->thread_context[i], h->linesize); if (ret < 0) return ret; } h->cur_pic_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup av_assert1(h->mb_num == h->mb_width * h->mb_height); if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num || first_mb_in_slice >= h->mb_num) { av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n"); return AVERROR_INVALIDDATA; } h->resync_mb_x = h->mb_x = first_mb_in_slice % h->mb_width; h->resync_mb_y = h->mb_y = (first_mb_in_slice / h->mb_width) << FIELD_OR_MBAFF_PICTURE(h); if (h->picture_structure == PICT_BOTTOM_FIELD) h->resync_mb_y = h->mb_y = h->mb_y + 1; av_assert1(h->mb_y < h->mb_height); if (h->picture_structure == PICT_FRAME) { h->curr_pic_num = h->frame_num; h->max_pic_num = 1 << h->sps.log2_max_frame_num; } else { h->curr_pic_num = 2 * h->frame_num + 1; h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1); } if (h->nal_unit_type == NAL_IDR_SLICE) get_ue_golomb(&h->gb); /* idr_pic_id */ if (h->sps.poc_type == 0) { h->poc_lsb = get_bits(&h->gb, h->sps.log2_max_poc_lsb); if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME) h->delta_poc_bottom = get_se_golomb(&h->gb); } if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) { h->delta_poc[0] = get_se_golomb(&h->gb); if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME) h->delta_poc[1] = get_se_golomb(&h->gb); } ff_init_poc(h, h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc); if (h->pps.redundant_pic_cnt_present) h->redundant_pic_count = get_ue_golomb(&h->gb); ret = ff_set_ref_count(h); if (ret < 0) return ret; if (slice_type != AV_PICTURE_TYPE_I && (h0->current_slice == 0 || slice_type != h0->last_slice_type || memcmp(h0->last_ref_count, h0->ref_count, sizeof(h0->ref_count)))) { ff_h264_fill_default_ref_list(h); } if (h->slice_type_nos != AV_PICTURE_TYPE_I) { ret = ff_h264_decode_ref_pic_list_reordering(h); if (ret < 0) { h->ref_count[1] = h->ref_count[0] = 0; return ret; } } if ((h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P) || (h->pps.weighted_bipred_idc == 1 && h->slice_type_nos == AV_PICTURE_TYPE_B)) ff_pred_weight_table(h); else if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) { implicit_weight_table(h, -1); } else { h->use_weight = 0; for (i = 0; i < 2; i++) { h->luma_weight_flag[i] = 0; h->chroma_weight_flag[i] = 0; } } // If frame-mt is enabled, only update mmco tables for the first slice // in a field. Subsequent slices can temporarily clobber h->mmco_index // or h->mmco, which will cause ref list mix-ups and decoding errors // further down the line. This may break decoding if the first slice is // corrupt, thus we only do this if frame-mt is enabled. if (h->nal_ref_idc) { ret = ff_h264_decode_ref_pic_marking(h0, &h->gb, !(h->avctx->active_thread_type & FF_THREAD_FRAME) || h0->current_slice == 0); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) return AVERROR_INVALIDDATA; } if (FRAME_MBAFF(h)) { ff_h264_fill_mbaff_ref_list(h); if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) { implicit_weight_table(h, 0); implicit_weight_table(h, 1); } } if (h->slice_type_nos == AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred) ff_h264_direct_dist_scale_factor(h); ff_h264_direct_ref_list_init(h); if (h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) { tmp = get_ue_golomb_31(&h->gb); if (tmp > 2) { av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp); return AVERROR_INVALIDDATA; } h->cabac_init_idc = tmp; } h->last_qscale_diff = 0; tmp = h->pps.init_qp + get_se_golomb(&h->gb); if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) { av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp); return AVERROR_INVALIDDATA; } h->qscale = tmp; h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale); h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale); // FIXME qscale / qp ... stuff if (h->slice_type == AV_PICTURE_TYPE_SP) get_bits1(&h->gb); /* sp_for_switch_flag */ if (h->slice_type == AV_PICTURE_TYPE_SP || h->slice_type == AV_PICTURE_TYPE_SI) get_se_golomb(&h->gb); /* slice_qs_delta */ h->deblocking_filter = 1; h->slice_alpha_c0_offset = 0; h->slice_beta_offset = 0; if (h->pps.deblocking_filter_parameters_present) { tmp = get_ue_golomb_31(&h->gb); if (tmp > 2) { av_log(h->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp); return AVERROR_INVALIDDATA; } h->deblocking_filter = tmp; if (h->deblocking_filter < 2) h->deblocking_filter ^= 1; // 1<->0 if (h->deblocking_filter) { h->slice_alpha_c0_offset = get_se_golomb(&h->gb) * 2; h->slice_beta_offset = get_se_golomb(&h->gb) * 2; if (h->slice_alpha_c0_offset > 12 || h->slice_alpha_c0_offset < -12 || h->slice_beta_offset > 12 || h->slice_beta_offset < -12) { av_log(h->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset); return AVERROR_INVALIDDATA; } } } if (h->avctx->skip_loop_filter >= AVDISCARD_ALL || (h->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->nal_unit_type != NAL_IDR_SLICE) || (h->avctx->skip_loop_filter >= AVDISCARD_NONINTRA && h->slice_type_nos != AV_PICTURE_TYPE_I) || (h->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == AV_PICTURE_TYPE_B) || (h->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0)) h->deblocking_filter = 0; if (h->deblocking_filter == 1 && h0->max_contexts > 1) { if (h->avctx->flags2 & CODEC_FLAG2_FAST) { /* Cheat slightly for speed: * Do not bother to deblock across slices. */ h->deblocking_filter = 2; } else { h0->max_contexts = 1; if (!h0->single_decode_warning) { av_log(h->avctx, AV_LOG_INFO, "Cannot parallelize slice decoding with deblocking filter type 1, decoding such frames in sequential order\n" "To parallelize slice decoding you need video encoded with disable_deblocking_filter_idc set to 2 (deblock only edges that do not cross slices).\n" "Setting the flags2 libavcodec option to +fast (-flags2 +fast) will disable deblocking across slices and enable parallel slice decoding " "but will generate non-standard-compliant output.\n"); h0->single_decode_warning = 1; } if (h != h0) { av_log(h->avctx, AV_LOG_ERROR, "Deblocking switched inside frame.\n"); return SLICE_SINGLETHREAD; } } } h->qp_thresh = 15 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]) + 6 * (h->sps.bit_depth_luma - 8); h0->last_slice_type = slice_type; memcpy(h0->last_ref_count, h0->ref_count, sizeof(h0->last_ref_count)); h->slice_num = ++h0->current_slice; if (h->slice_num) h0->slice_row[(h->slice_num-1)&(MAX_SLICES-1)]= h->resync_mb_y; if ( h0->slice_row[h->slice_num&(MAX_SLICES-1)] + 3 >= h->resync_mb_y && h0->slice_row[h->slice_num&(MAX_SLICES-1)] <= h->resync_mb_y && h->slice_num >= MAX_SLICES) { //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", h->slice_num, MAX_SLICES); } for (j = 0; j < 2; j++) { int id_list[16]; int *ref2frm = h->ref2frm[h->slice_num & (MAX_SLICES - 1)][j]; for (i = 0; i < 16; i++) { id_list[i] = 60; if (j < h->list_count && i < h->ref_count[j] && h->ref_list[j][i].f.buf[0]) { int k; AVBuffer *buf = h->ref_list[j][i].f.buf[0]->buffer; for (k = 0; k < h->short_ref_count; k++) if (h->short_ref[k]->f.buf[0]->buffer == buf) { id_list[i] = k; break; } for (k = 0; k < h->long_ref_count; k++) if (h->long_ref[k] && h->long_ref[k]->f.buf[0]->buffer == buf) { id_list[i] = h->short_ref_count + k; break; } } } ref2frm[0] = ref2frm[1] = -1; for (i = 0; i < 16; i++) ref2frm[i + 2] = 4 * id_list[i] + (h->ref_list[j][i].reference & 3); ref2frm[18 + 0] = ref2frm[18 + 1] = -1; for (i = 16; i < 48; i++) ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] + (h->ref_list[j][i].reference & 3); } if (h->ref_count[0]) ff_h264_set_erpic(&h->er.last_pic, &h->ref_list[0][0]); if (h->ref_count[1]) ff_h264_set_erpic(&h->er.next_pic, &h->ref_list[1][0]); h->er.ref_count = h->ref_count[0]; h0->au_pps_id = pps_id; h->sps.new = h0->sps_buffers[h->pps.sps_id]->new = 0; h->current_sps_id = h->pps.sps_id; if (h->avctx->debug & FF_DEBUG_PICT_INFO) { av_log(h->avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n", h->slice_num, (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"), first_mb_in_slice, av_get_picture_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "", pps_id, h->frame_num, h->cur_pic_ptr->field_poc[0], h->cur_pic_ptr->field_poc[1], h->ref_count[0], h->ref_count[1], h->qscale, h->deblocking_filter, h->slice_alpha_c0_offset, h->slice_beta_offset, h->use_weight, h->use_weight == 1 && h->use_weight_chroma ? "c" : "", h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""); } return 0; } int ff_h264_get_slice_type(const H264Context *h) { switch (h->slice_type) { case AV_PICTURE_TYPE_P: return 0; case AV_PICTURE_TYPE_B: return 1; case AV_PICTURE_TYPE_I: return 2; case AV_PICTURE_TYPE_SP: return 3; case AV_PICTURE_TYPE_SI: return 4; default: return AVERROR_INVALIDDATA; } } static av_always_inline void fill_filter_caches_inter(H264Context *h, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list) { int b_stride = h->b_stride; int16_t(*mv_dst)[2] = &h->mv_cache[list][scan8[0]]; int8_t *ref_cache = &h->ref_cache[list][scan8[0]]; if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) { if (USES_LIST(top_type, list)) { const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride; const int b8_xy = 4 * top_xy + 2; int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2)); AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]); ref_cache[0 - 1 * 8] = ref_cache[1 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 0]]; ref_cache[2 - 1 * 8] = ref_cache[3 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 1]]; } else { AV_ZERO128(mv_dst - 1 * 8); AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); } if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) { if (USES_LIST(left_type[LTOP], list)) { const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3; const int b8_xy = 4 * left_xy[LTOP] + 1; int (*ref2frm)[64] =(void*)( h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2)); AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]); AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]); AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]); AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]); ref_cache[-1 + 0] = ref_cache[-1 + 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 0]]; ref_cache[-1 + 16] = ref_cache[-1 + 24] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 1]]; } else { AV_ZERO32(mv_dst - 1 + 0); AV_ZERO32(mv_dst - 1 + 8); AV_ZERO32(mv_dst - 1 + 16); AV_ZERO32(mv_dst - 1 + 24); ref_cache[-1 + 0] = ref_cache[-1 + 8] = ref_cache[-1 + 16] = ref_cache[-1 + 24] = LIST_NOT_USED; } } } if (!USES_LIST(mb_type, list)) { fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4); AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); return; } { int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy]; int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_num & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2)); uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]], ref2frm[list][ref[1]]) & 0x00FF00FF) * 0x0101; uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]], ref2frm[list][ref[3]]) & 0x00FF00FF) * 0x0101; AV_WN32A(&ref_cache[0 * 8], ref01); AV_WN32A(&ref_cache[1 * 8], ref01); AV_WN32A(&ref_cache[2 * 8], ref23); AV_WN32A(&ref_cache[3 * 8], ref23); } { int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * h->mb_x + 4 * h->mb_y * b_stride]; AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride); AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride); AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride); AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride); } } /** * * @return non zero if the loop filter can be skipped */ static int fill_filter_caches(H264Context *h, int mb_type) { const int mb_xy = h->mb_xy; int top_xy, left_xy[LEFT_MBS]; int top_type, left_type[LEFT_MBS]; uint8_t *nnz; uint8_t *nnz_cache; top_xy = mb_xy - (h->mb_stride << MB_FIELD(h)); /* Wow, what a mess, why didn't they simplify the interlacing & intra * stuff, I can't imagine that these complex rules are worth it. */ left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1; if (FRAME_MBAFF(h)) { const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]); const int curr_mb_field_flag = IS_INTERLACED(mb_type); if (h->mb_y & 1) { if (left_mb_field_flag != curr_mb_field_flag) left_xy[LTOP] -= h->mb_stride; } else { if (curr_mb_field_flag) top_xy += h->mb_stride & (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1); if (left_mb_field_flag != curr_mb_field_flag) left_xy[LBOT] += h->mb_stride; } } h->top_mb_xy = top_xy; h->left_mb_xy[LTOP] = left_xy[LTOP]; h->left_mb_xy[LBOT] = left_xy[LBOT]; { /* For sufficiently low qp, filtering wouldn't do anything. * This is a conservative estimate: could also check beta_offset * and more accurate chroma_qp. */ int qp_thresh = h->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice int qp = h->cur_pic.qscale_table[mb_xy]; if (qp <= qp_thresh && (left_xy[LTOP] < 0 || ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) && (top_xy < 0 || ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) { if (!FRAME_MBAFF(h)) return 1; if ((left_xy[LTOP] < 0 || ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) && (top_xy < h->mb_stride || ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh)) return 1; } } top_type = h->cur_pic.mb_type[top_xy]; left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]]; left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]]; if (h->deblocking_filter == 2) { if (h->slice_table[top_xy] != h->slice_num) top_type = 0; if (h->slice_table[left_xy[LBOT]] != h->slice_num) left_type[LTOP] = left_type[LBOT] = 0; } else { if (h->slice_table[top_xy] == 0xFFFF) top_type = 0; if (h->slice_table[left_xy[LBOT]] == 0xFFFF) left_type[LTOP] = left_type[LBOT] = 0; } h->top_type = top_type; h->left_type[LTOP] = left_type[LTOP]; h->left_type[LBOT] = left_type[LBOT]; if (IS_INTRA(mb_type)) return 0; fill_filter_caches_inter(h, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 0); if (h->list_count == 2) fill_filter_caches_inter(h, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 1); nnz = h->non_zero_count[mb_xy]; nnz_cache = h->non_zero_count_cache; AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]); AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]); AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]); AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]); h->cbp = h->cbp_table[mb_xy]; if (top_type) { nnz = h->non_zero_count[top_xy]; AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]); } if (left_type[LTOP]) { nnz = h->non_zero_count[left_xy[LTOP]]; nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4]; nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4]; nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4]; nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4]; } /* CAVLC 8x8dct requires NNZ values for residual decoding that differ * from what the loop filter needs */ if (!CABAC(h) && h->pps.transform_8x8_mode) { if (IS_8x8DCT(top_type)) { nnz_cache[4 + 8 * 0] = nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12; nnz_cache[6 + 8 * 0] = nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12; } if (IS_8x8DCT(left_type[LTOP])) { nnz_cache[3 + 8 * 1] = nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF } if (IS_8x8DCT(left_type[LBOT])) { nnz_cache[3 + 8 * 3] = nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF } if (IS_8x8DCT(mb_type)) { nnz_cache[scan8[0]] = nnz_cache[scan8[1]] = nnz_cache[scan8[2]] = nnz_cache[scan8[3]] = (h->cbp & 0x1000) >> 12; nnz_cache[scan8[0 + 4]] = nnz_cache[scan8[1 + 4]] = nnz_cache[scan8[2 + 4]] = nnz_cache[scan8[3 + 4]] = (h->cbp & 0x2000) >> 12; nnz_cache[scan8[0 + 8]] = nnz_cache[scan8[1 + 8]] = nnz_cache[scan8[2 + 8]] = nnz_cache[scan8[3 + 8]] = (h->cbp & 0x4000) >> 12; nnz_cache[scan8[0 + 12]] = nnz_cache[scan8[1 + 12]] = nnz_cache[scan8[2 + 12]] = nnz_cache[scan8[3 + 12]] = (h->cbp & 0x8000) >> 12; } } return 0; } static void loop_filter(H264Context *h, int start_x, int end_x) { uint8_t *dest_y, *dest_cb, *dest_cr; int linesize, uvlinesize, mb_x, mb_y; const int end_mb_y = h->mb_y + FRAME_MBAFF(h); const int old_slice_type = h->slice_type; const int pixel_shift = h->pixel_shift; const int block_h = 16 >> h->chroma_y_shift; if (h->deblocking_filter) { for (mb_x = start_x; mb_x < end_x; mb_x++) for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) { int mb_xy, mb_type; mb_xy = h->mb_xy = mb_x + mb_y * h->mb_stride; h->slice_num = h->slice_table[mb_xy]; mb_type = h->cur_pic.mb_type[mb_xy]; h->list_count = h->list_counts[mb_xy]; if (FRAME_MBAFF(h)) h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type); h->mb_x = mb_x; h->mb_y = mb_y; dest_y = h->cur_pic.f.data[0] + ((mb_x << pixel_shift) + mb_y * h->linesize) * 16; dest_cb = h->cur_pic.f.data[1] + (mb_x << pixel_shift) * (8 << CHROMA444(h)) + mb_y * h->uvlinesize * block_h; dest_cr = h->cur_pic.f.data[2] + (mb_x << pixel_shift) * (8 << CHROMA444(h)) + mb_y * h->uvlinesize * block_h; // FIXME simplify above if (MB_FIELD(h)) { linesize = h->mb_linesize = h->linesize * 2; uvlinesize = h->mb_uvlinesize = h->uvlinesize * 2; if (mb_y & 1) { // FIXME move out of this function? dest_y -= h->linesize * 15; dest_cb -= h->uvlinesize * (block_h - 1); dest_cr -= h->uvlinesize * (block_h - 1); } } else { linesize = h->mb_linesize = h->linesize; uvlinesize = h->mb_uvlinesize = h->uvlinesize; } backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0); if (fill_filter_caches(h, mb_type)) continue; h->chroma_qp[0] = get_chroma_qp(h, 0, h->cur_pic.qscale_table[mb_xy]); h->chroma_qp[1] = get_chroma_qp(h, 1, h->cur_pic.qscale_table[mb_xy]); if (FRAME_MBAFF(h)) { ff_h264_filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } else { ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } } } h->slice_type = old_slice_type; h->mb_x = end_x; h->mb_y = end_mb_y - FRAME_MBAFF(h); h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale); h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale); } static void predict_field_decoding_flag(H264Context *h) { const int mb_xy = h->mb_x + h->mb_y * h->mb_stride; int mb_type = (h->slice_table[mb_xy - 1] == h->slice_num) ? h->cur_pic.mb_type[mb_xy - 1] : (h->slice_table[mb_xy - h->mb_stride] == h->slice_num) ? h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0; h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0; } /** * Draw edges and report progress for the last MB row. */ static void decode_finish_row(H264Context *h) { int top = 16 * (h->mb_y >> FIELD_PICTURE(h)); int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h); int height = 16 << FRAME_MBAFF(h); int deblock_border = (16 + 4) << FRAME_MBAFF(h); if (h->deblocking_filter) { if ((top + height) >= pic_height) height += deblock_border; top -= deblock_border; } if (top >= pic_height || (top + height) < 0) return; height = FFMIN(height, pic_height - top); if (top < 0) { height = top + height; top = 0; } ff_h264_draw_horiz_band(h, top, height); if (h->droppable || h->er.error_occurred) return; ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1, h->picture_structure == PICT_BOTTOM_FIELD); } static void er_add_slice(H264Context *h, int startx, int starty, int endx, int endy, int status) { if (CONFIG_ERROR_RESILIENCE) { ERContext *er = &h->er; ff_er_add_slice(er, startx, starty, endx, endy, status); } } static int decode_slice(struct AVCodecContext *avctx, void *arg) { H264Context *h = *(void **)arg; int lf_x_start = h->mb_x; h->mb_skip_run = -1; av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * h->linesize * ((scan8[15] - scan8[0]) >> 3)); h->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME || avctx->codec_id != AV_CODEC_ID_H264 || (CONFIG_GRAY && (h->flags & CODEC_FLAG_GRAY)); if (!(h->avctx->active_thread_type & FF_THREAD_SLICE) && h->picture_structure == PICT_FRAME && h->er.error_status_table) { const int start_i = av_clip(h->resync_mb_x + h->resync_mb_y * h->mb_width, 0, h->mb_num - 1); if (start_i) { int prev_status = h->er.error_status_table[h->er.mb_index2xy[start_i - 1]]; prev_status &= ~ VP_START; if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END)) h->er.error_occurred = 1; } } if (h->pps.cabac) { /* realign */ align_get_bits(&h->gb); /* init cabac */ ff_init_cabac_decoder(&h->cabac, h->gb.buffer + get_bits_count(&h->gb) / 8, (get_bits_left(&h->gb) + 7) / 8); ff_h264_init_cabac_states(h); for (;;) { // START_TIMER int ret = ff_h264_decode_mb_cabac(h); int eos; // STOP_TIMER("decode_mb_cabac") if (ret >= 0) ff_h264_hl_decode_mb(h); // FIXME optimal? or let mb_decode decode 16x32 ? if (ret >= 0 && FRAME_MBAFF(h)) { h->mb_y++; ret = ff_h264_decode_mb_cabac(h); if (ret >= 0) ff_h264_hl_decode_mb(h); h->mb_y--; } eos = get_cabac_terminate(&h->cabac); if ((h->workaround_bugs & FF_BUG_TRUNCATED) && h->cabac.bytestream > h->cabac.bytestream_end + 2) { er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1, h->mb_y, ER_MB_END); if (h->mb_x >= lf_x_start) loop_filter(h, lf_x_start, h->mb_x + 1); return 0; } if (h->cabac.bytestream > h->cabac.bytestream_end + 2 ) av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", h->cabac.bytestream_end - h->cabac.bytestream); if (ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 4) { av_log(h->avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n", h->mb_x, h->mb_y, h->cabac.bytestream_end - h->cabac.bytestream); er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x, h->mb_y, ER_MB_ERROR); return AVERROR_INVALIDDATA; } if (++h->mb_x >= h->mb_width) { loop_filter(h, lf_x_start, h->mb_x); h->mb_x = lf_x_start = 0; decode_finish_row(h); ++h->mb_y; if (FIELD_OR_MBAFF_PICTURE(h)) { ++h->mb_y; if (FRAME_MBAFF(h) && h->mb_y < h->mb_height) predict_field_decoding_flag(h); } } if (eos || h->mb_y >= h->mb_height) { tprintf(h->avctx, "slice end %d %d\n", get_bits_count(&h->gb), h->gb.size_in_bits); er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1, h->mb_y, ER_MB_END); if (h->mb_x > lf_x_start) loop_filter(h, lf_x_start, h->mb_x); return 0; } } } else { for (;;) { int ret = ff_h264_decode_mb_cavlc(h); if (ret >= 0) ff_h264_hl_decode_mb(h); // FIXME optimal? or let mb_decode decode 16x32 ? if (ret >= 0 && FRAME_MBAFF(h)) { h->mb_y++; ret = ff_h264_decode_mb_cavlc(h); if (ret >= 0) ff_h264_hl_decode_mb(h); h->mb_y--; } if (ret < 0) { av_log(h->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", h->mb_x, h->mb_y); er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x, h->mb_y, ER_MB_ERROR); return ret; } if (++h->mb_x >= h->mb_width) { loop_filter(h, lf_x_start, h->mb_x); h->mb_x = lf_x_start = 0; decode_finish_row(h); ++h->mb_y; if (FIELD_OR_MBAFF_PICTURE(h)) { ++h->mb_y; if (FRAME_MBAFF(h) && h->mb_y < h->mb_height) predict_field_decoding_flag(h); } if (h->mb_y >= h->mb_height) { tprintf(h->avctx, "slice end %d %d\n", get_bits_count(&h->gb), h->gb.size_in_bits); if ( get_bits_left(&h->gb) == 0 || get_bits_left(&h->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) { er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1, h->mb_y, ER_MB_END); return 0; } else { er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x, h->mb_y, ER_MB_END); return AVERROR_INVALIDDATA; } } } if (get_bits_left(&h->gb) <= 0 && h->mb_skip_run <= 0) { tprintf(h->avctx, "slice end %d %d\n", get_bits_count(&h->gb), h->gb.size_in_bits); if (get_bits_left(&h->gb) == 0) { er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1, h->mb_y, ER_MB_END); if (h->mb_x > lf_x_start) loop_filter(h, lf_x_start, h->mb_x); return 0; } else { er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x, h->mb_y, ER_MB_ERROR); return AVERROR_INVALIDDATA; } } } } } /** * Call decode_slice() for each context. * * @param h h264 master context * @param context_count number of contexts to execute */ int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count) { AVCodecContext *const avctx = h->avctx; H264Context *hx; int i; av_assert0(h->mb_y < h->mb_height); if (h->avctx->hwaccel || h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) return 0; if (context_count == 1) { return decode_slice(avctx, &h); } else { av_assert0(context_count > 0); for (i = 1; i < context_count; i++) { hx = h->thread_context[i]; if (CONFIG_ERROR_RESILIENCE) { hx->er.error_count = 0; } hx->x264_build = h->x264_build; } avctx->execute(avctx, decode_slice, h->thread_context, NULL, context_count, sizeof(void *)); /* pull back stuff from slices to master context */ hx = h->thread_context[context_count - 1]; h->mb_x = hx->mb_x; h->mb_y = hx->mb_y; h->droppable = hx->droppable; h->picture_structure = hx->picture_structure; if (CONFIG_ERROR_RESILIENCE) { for (i = 1; i < context_count; i++) h->er.error_count += h->thread_context[i]->er.error_count; } } return 0; }