/* * The simplest mpeg encoder (well, it was the simplest!) * Copyright (c) 2000,2001 Fabrice Bellard * Copyright (c) 2002-2004 Michael Niedermayer * * 4MV & hq & B-frame encoding stuff by Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * The simplest mpeg encoder (well, it was the simplest!). */ #include "libavutil/attributes.h" #include "libavutil/avassert.h" #include "libavutil/imgutils.h" #include "libavutil/internal.h" #include "libavutil/mem.h" #include "avcodec.h" #include "blockdsp.h" #include "idctdsp.h" #include "mathops.h" #include "mpeg_er.h" #include "mpegutils.h" #include "mpegvideo.h" #include "mpegvideodata.h" #include "refstruct.h" static void dct_unquantize_mpeg1_intra_c(MpegEncContext *s, int16_t *block, int n, int qscale) { int i, level, nCoeffs; const uint16_t *quant_matrix; nCoeffs= s->block_last_index[n]; block[0] *= n < 4 ? s->y_dc_scale : s->c_dc_scale; /* XXX: only MPEG-1 */ quant_matrix = s->intra_matrix; for(i=1;i<=nCoeffs;i++) { int j= s->intra_scantable.permutated[i]; level = block[j]; if (level) { if (level < 0) { level = -level; level = (int)(level * qscale * quant_matrix[j]) >> 3; level = (level - 1) | 1; level = -level; } else { level = (int)(level * qscale * quant_matrix[j]) >> 3; level = (level - 1) | 1; } block[j] = level; } } } static void dct_unquantize_mpeg1_inter_c(MpegEncContext *s, int16_t *block, int n, int qscale) { int i, level, nCoeffs; const uint16_t *quant_matrix; nCoeffs= s->block_last_index[n]; quant_matrix = s->inter_matrix; for(i=0; i<=nCoeffs; i++) { int j= s->intra_scantable.permutated[i]; level = block[j]; if (level) { if (level < 0) { level = -level; level = (((level << 1) + 1) * qscale * ((int) (quant_matrix[j]))) >> 4; level = (level - 1) | 1; level = -level; } else { level = (((level << 1) + 1) * qscale * ((int) (quant_matrix[j]))) >> 4; level = (level - 1) | 1; } block[j] = level; } } } static void dct_unquantize_mpeg2_intra_c(MpegEncContext *s, int16_t *block, int n, int qscale) { int i, level, nCoeffs; const uint16_t *quant_matrix; if (s->q_scale_type) qscale = ff_mpeg2_non_linear_qscale[qscale]; else qscale <<= 1; if(s->alternate_scan) nCoeffs= 63; else nCoeffs= s->block_last_index[n]; block[0] *= n < 4 ? s->y_dc_scale : s->c_dc_scale; quant_matrix = s->intra_matrix; for(i=1;i<=nCoeffs;i++) { int j= s->intra_scantable.permutated[i]; level = block[j]; if (level) { if (level < 0) { level = -level; level = (int)(level * qscale * quant_matrix[j]) >> 4; level = -level; } else { level = (int)(level * qscale * quant_matrix[j]) >> 4; } block[j] = level; } } } static void dct_unquantize_mpeg2_intra_bitexact(MpegEncContext *s, int16_t *block, int n, int qscale) { int i, level, nCoeffs; const uint16_t *quant_matrix; int sum=-1; if (s->q_scale_type) qscale = ff_mpeg2_non_linear_qscale[qscale]; else qscale <<= 1; if(s->alternate_scan) nCoeffs= 63; else nCoeffs= s->block_last_index[n]; block[0] *= n < 4 ? s->y_dc_scale : s->c_dc_scale; sum += block[0]; quant_matrix = s->intra_matrix; for(i=1;i<=nCoeffs;i++) { int j= s->intra_scantable.permutated[i]; level = block[j]; if (level) { if (level < 0) { level = -level; level = (int)(level * qscale * quant_matrix[j]) >> 4; level = -level; } else { level = (int)(level * qscale * quant_matrix[j]) >> 4; } block[j] = level; sum+=level; } } block[63]^=sum&1; } static void dct_unquantize_mpeg2_inter_c(MpegEncContext *s, int16_t *block, int n, int qscale) { int i, level, nCoeffs; const uint16_t *quant_matrix; int sum=-1; if (s->q_scale_type) qscale = ff_mpeg2_non_linear_qscale[qscale]; else qscale <<= 1; if(s->alternate_scan) nCoeffs= 63; else nCoeffs= s->block_last_index[n]; quant_matrix = s->inter_matrix; for(i=0; i<=nCoeffs; i++) { int j= s->intra_scantable.permutated[i]; level = block[j]; if (level) { if (level < 0) { level = -level; level = (((level << 1) + 1) * qscale * ((int) (quant_matrix[j]))) >> 5; level = -level; } else { level = (((level << 1) + 1) * qscale * ((int) (quant_matrix[j]))) >> 5; } block[j] = level; sum+=level; } } block[63]^=sum&1; } static void dct_unquantize_h263_intra_c(MpegEncContext *s, int16_t *block, int n, int qscale) { int i, level, qmul, qadd; int nCoeffs; av_assert2(s->block_last_index[n]>=0 || s->h263_aic); qmul = qscale << 1; if (!s->h263_aic) { block[0] *= n < 4 ? s->y_dc_scale : s->c_dc_scale; qadd = (qscale - 1) | 1; }else{ qadd = 0; } if(s->ac_pred) nCoeffs=63; else nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ]; for(i=1; i<=nCoeffs; i++) { level = block[i]; if (level) { if (level < 0) { level = level * qmul - qadd; } else { level = level * qmul + qadd; } block[i] = level; } } } static void dct_unquantize_h263_inter_c(MpegEncContext *s, int16_t *block, int n, int qscale) { int i, level, qmul, qadd; int nCoeffs; av_assert2(s->block_last_index[n]>=0); qadd = (qscale - 1) | 1; qmul = qscale << 1; nCoeffs= s->inter_scantable.raster_end[ s->block_last_index[n] ]; for(i=0; i<=nCoeffs; i++) { level = block[i]; if (level) { if (level < 0) { level = level * qmul - qadd; } else { level = level * qmul + qadd; } block[i] = level; } } } static void gray16(uint8_t *dst, const uint8_t *src, ptrdiff_t linesize, int h) { while(h--) memset(dst + h*linesize, 128, 16); } static void gray8(uint8_t *dst, const uint8_t *src, ptrdiff_t linesize, int h) { while(h--) memset(dst + h*linesize, 128, 8); } /* init common dct for both encoder and decoder */ static av_cold int dct_init(MpegEncContext *s) { ff_blockdsp_init(&s->bdsp); ff_hpeldsp_init(&s->hdsp, s->avctx->flags); ff_videodsp_init(&s->vdsp, s->avctx->bits_per_raw_sample); if (s->avctx->debug & FF_DEBUG_NOMC) { int i; for (i=0; i<4; i++) { s->hdsp.avg_pixels_tab[0][i] = gray16; s->hdsp.put_pixels_tab[0][i] = gray16; s->hdsp.put_no_rnd_pixels_tab[0][i] = gray16; s->hdsp.avg_pixels_tab[1][i] = gray8; s->hdsp.put_pixels_tab[1][i] = gray8; s->hdsp.put_no_rnd_pixels_tab[1][i] = gray8; } } s->dct_unquantize_h263_intra = dct_unquantize_h263_intra_c; s->dct_unquantize_h263_inter = dct_unquantize_h263_inter_c; s->dct_unquantize_mpeg1_intra = dct_unquantize_mpeg1_intra_c; s->dct_unquantize_mpeg1_inter = dct_unquantize_mpeg1_inter_c; s->dct_unquantize_mpeg2_intra = dct_unquantize_mpeg2_intra_c; if (s->avctx->flags & AV_CODEC_FLAG_BITEXACT) s->dct_unquantize_mpeg2_intra = dct_unquantize_mpeg2_intra_bitexact; s->dct_unquantize_mpeg2_inter = dct_unquantize_mpeg2_inter_c; #if HAVE_INTRINSICS_NEON ff_mpv_common_init_neon(s); #endif #if ARCH_ALPHA ff_mpv_common_init_axp(s); #elif ARCH_ARM ff_mpv_common_init_arm(s); #elif ARCH_PPC ff_mpv_common_init_ppc(s); #elif ARCH_X86 ff_mpv_common_init_x86(s); #elif ARCH_MIPS ff_mpv_common_init_mips(s); #endif return 0; } av_cold void ff_init_scantable(const uint8_t *permutation, ScanTable *st, const uint8_t *src_scantable) { int end; st->scantable = src_scantable; for (int i = 0; i < 64; i++) { int j = src_scantable[i]; st->permutated[i] = permutation[j]; } end = -1; for (int i = 0; i < 64; i++) { int j = st->permutated[i]; if (j > end) end = j; st->raster_end[i] = end; } } av_cold void ff_mpv_idct_init(MpegEncContext *s) { if (s->codec_id == AV_CODEC_ID_MPEG4) s->idsp.mpeg4_studio_profile = s->studio_profile; ff_idctdsp_init(&s->idsp, s->avctx); /* load & permutate scantables * note: only wmv uses different ones */ if (s->alternate_scan) { ff_init_scantable(s->idsp.idct_permutation, &s->inter_scantable, ff_alternate_vertical_scan); ff_init_scantable(s->idsp.idct_permutation, &s->intra_scantable, ff_alternate_vertical_scan); } else { ff_init_scantable(s->idsp.idct_permutation, &s->inter_scantable, ff_zigzag_direct); ff_init_scantable(s->idsp.idct_permutation, &s->intra_scantable, ff_zigzag_direct); } ff_permute_scantable(s->permutated_intra_h_scantable, ff_alternate_horizontal_scan, s->idsp.idct_permutation); ff_permute_scantable(s->permutated_intra_v_scantable, ff_alternate_vertical_scan, s->idsp.idct_permutation); } static int init_duplicate_context(MpegEncContext *s) { int i; if (s->encoding) { s->me.map = av_mallocz(2 * ME_MAP_SIZE * sizeof(*s->me.map)); if (!s->me.map) return AVERROR(ENOMEM); s->me.score_map = s->me.map + ME_MAP_SIZE; if (s->noise_reduction) { if (!FF_ALLOCZ_TYPED_ARRAY(s->dct_error_sum, 2)) return AVERROR(ENOMEM); } } if (!FF_ALLOCZ_TYPED_ARRAY(s->blocks, 1 + s->encoding)) return AVERROR(ENOMEM); s->block = s->blocks[0]; for (i = 0; i < 12; i++) { s->pblocks[i] = &s->block[i]; } if (s->avctx->codec_tag == AV_RL32("VCR2")) { // exchange uv FFSWAP(void *, s->pblocks[4], s->pblocks[5]); } if (s->out_format == FMT_H263) { int mb_height = s->msmpeg4_version == 6 /* VC-1 like */ ? FFALIGN(s->mb_height, 2) : s->mb_height; int y_size = s->b8_stride * (2 * mb_height + 1); int c_size = s->mb_stride * (mb_height + 1); int yc_size = y_size + 2 * c_size; /* ac values */ if (!FF_ALLOCZ_TYPED_ARRAY(s->ac_val_base, yc_size)) return AVERROR(ENOMEM); s->ac_val[0] = s->ac_val_base + s->b8_stride + 1; s->ac_val[1] = s->ac_val_base + y_size + s->mb_stride + 1; s->ac_val[2] = s->ac_val[1] + c_size; } return 0; } int ff_mpv_init_duplicate_contexts(MpegEncContext *s) { int nb_slices = s->slice_context_count, ret; /* We initialize the copies before the original so that * fields allocated in init_duplicate_context are NULL after * copying. This prevents double-frees upon allocation error. */ for (int i = 1; i < nb_slices; i++) { s->thread_context[i] = av_memdup(s, sizeof(MpegEncContext)); if (!s->thread_context[i]) return AVERROR(ENOMEM); if ((ret = init_duplicate_context(s->thread_context[i])) < 0) return ret; s->thread_context[i]->start_mb_y = (s->mb_height * (i ) + nb_slices / 2) / nb_slices; s->thread_context[i]->end_mb_y = (s->mb_height * (i + 1) + nb_slices / 2) / nb_slices; } s->start_mb_y = 0; s->end_mb_y = nb_slices > 1 ? (s->mb_height + nb_slices / 2) / nb_slices : s->mb_height; return init_duplicate_context(s); } static void free_duplicate_context(MpegEncContext *s) { if (!s) return; av_freep(&s->sc.edge_emu_buffer); av_freep(&s->me.scratchpad); s->me.temp = s->sc.rd_scratchpad = s->sc.b_scratchpad = s->sc.obmc_scratchpad = NULL; s->sc.linesize = 0; av_freep(&s->dct_error_sum); av_freep(&s->me.map); s->me.score_map = NULL; av_freep(&s->blocks); av_freep(&s->ac_val_base); s->block = NULL; } static void free_duplicate_contexts(MpegEncContext *s) { for (int i = 1; i < s->slice_context_count; i++) { free_duplicate_context(s->thread_context[i]); av_freep(&s->thread_context[i]); } free_duplicate_context(s); } static void backup_duplicate_context(MpegEncContext *bak, MpegEncContext *src) { #define COPY(a) bak->a = src->a COPY(sc); COPY(me.scratchpad); COPY(me.temp); COPY(me.map); COPY(me.score_map); COPY(blocks); COPY(block); COPY(start_mb_y); COPY(end_mb_y); COPY(me.map_generation); COPY(pb); COPY(dct_error_sum); COPY(dct_count[0]); COPY(dct_count[1]); COPY(ac_val_base); COPY(ac_val[0]); COPY(ac_val[1]); COPY(ac_val[2]); #undef COPY } int ff_update_duplicate_context(MpegEncContext *dst, const MpegEncContext *src) { MpegEncContext bak; int i, ret; // FIXME copy only needed parts backup_duplicate_context(&bak, dst); memcpy(dst, src, sizeof(MpegEncContext)); backup_duplicate_context(dst, &bak); for (i = 0; i < 12; i++) { dst->pblocks[i] = &dst->block[i]; } if (dst->avctx->codec_tag == AV_RL32("VCR2")) { // exchange uv FFSWAP(void *, dst->pblocks[4], dst->pblocks[5]); } ret = ff_mpeg_framesize_alloc(dst->avctx, &dst->me, &dst->sc, dst->linesize); if (ret < 0) { av_log(dst->avctx, AV_LOG_ERROR, "failed to allocate context " "scratch buffers.\n"); return ret; } return 0; } /** * Set the given MpegEncContext to common defaults * (same for encoding and decoding). * The changed fields will not depend upon the * prior state of the MpegEncContext. */ void ff_mpv_common_defaults(MpegEncContext *s) { s->y_dc_scale_table = s->c_dc_scale_table = ff_mpeg1_dc_scale_table; s->chroma_qscale_table = ff_default_chroma_qscale_table; s->progressive_frame = 1; s->progressive_sequence = 1; s->picture_structure = PICT_FRAME; s->coded_picture_number = 0; s->picture_number = 0; s->f_code = 1; s->b_code = 1; s->slice_context_count = 1; } static void free_buffer_pools(BufferPoolContext *pools) { ff_refstruct_pool_uninit(&pools->mbskip_table_pool); ff_refstruct_pool_uninit(&pools->qscale_table_pool); ff_refstruct_pool_uninit(&pools->mb_type_pool); ff_refstruct_pool_uninit(&pools->motion_val_pool); ff_refstruct_pool_uninit(&pools->ref_index_pool); pools->alloc_mb_height = pools->alloc_mb_width = pools->alloc_mb_stride = 0; } int ff_mpv_init_context_frame(MpegEncContext *s) { BufferPoolContext *const pools = &s->buffer_pools; int y_size, c_size, yc_size, i, mb_array_size, mv_table_size, x, y; int mb_height; if (s->codec_id == AV_CODEC_ID_MPEG2VIDEO && !s->progressive_sequence) s->mb_height = (s->height + 31) / 32 * 2; else s->mb_height = (s->height + 15) / 16; /* VC-1 can change from being progressive to interlaced on a per-frame * basis. We therefore allocate certain buffers so big that they work * in both instances. */ mb_height = s->msmpeg4_version == 6 /* VC-1 like*/ ? FFALIGN(s->mb_height, 2) : s->mb_height; s->mb_width = (s->width + 15) / 16; s->mb_stride = s->mb_width + 1; s->b8_stride = s->mb_width * 2 + 1; mb_array_size = mb_height * s->mb_stride; mv_table_size = (mb_height + 2) * s->mb_stride + 1; /* set default edge pos, will be overridden * in decode_header if needed */ s->h_edge_pos = s->mb_width * 16; s->v_edge_pos = s->mb_height * 16; s->mb_num = s->mb_width * s->mb_height; s->block_wrap[0] = s->block_wrap[1] = s->block_wrap[2] = s->block_wrap[3] = s->b8_stride; s->block_wrap[4] = s->block_wrap[5] = s->mb_stride; y_size = s->b8_stride * (2 * mb_height + 1); c_size = s->mb_stride * (mb_height + 1); yc_size = y_size + 2 * c_size; if (!FF_ALLOCZ_TYPED_ARRAY(s->mb_index2xy, s->mb_num + 1)) return AVERROR(ENOMEM); for (y = 0; y < s->mb_height; y++) for (x = 0; x < s->mb_width; x++) s->mb_index2xy[x + y * s->mb_width] = x + y * s->mb_stride; s->mb_index2xy[s->mb_height * s->mb_width] = (s->mb_height - 1) * s->mb_stride + s->mb_width; // FIXME really needed? #define ALLOC_POOL(name, size, flags) do { \ pools->name ##_pool = ff_refstruct_pool_alloc((size), (flags)); \ if (!pools->name ##_pool) \ return AVERROR(ENOMEM); \ } while (0) if (s->codec_id == AV_CODEC_ID_MPEG4 || (s->avctx->flags & AV_CODEC_FLAG_INTERLACED_ME)) { /* interlaced direct mode decoding tables */ int16_t (*tmp)[2] = av_calloc(mv_table_size, 4 * sizeof(*tmp)); if (!tmp) return AVERROR(ENOMEM); s->p_field_mv_table_base = tmp; tmp += s->mb_stride + 1; for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { s->p_field_mv_table[i][j] = tmp; tmp += mv_table_size; } } if (s->codec_id == AV_CODEC_ID_MPEG4) { ALLOC_POOL(mbskip_table, mb_array_size + 2, FF_REFSTRUCT_POOL_FLAG_ZERO_EVERY_TIME); if (!s->encoding) { /* cbp, pred_dir */ if (!(s->cbp_table = av_mallocz(mb_array_size)) || !(s->pred_dir_table = av_mallocz(mb_array_size))) return AVERROR(ENOMEM); } } } if (s->msmpeg4_version >= 3) { s->coded_block_base = av_mallocz(y_size); if (!s->coded_block_base) return AVERROR(ENOMEM); s->coded_block = s->coded_block_base + s->b8_stride + 1; } if (s->h263_pred || s->h263_plus || !s->encoding) { /* dc values */ // MN: we need these for error resilience of intra-frames if (!FF_ALLOCZ_TYPED_ARRAY(s->dc_val_base, yc_size)) return AVERROR(ENOMEM); s->dc_val[0] = s->dc_val_base + s->b8_stride + 1; s->dc_val[1] = s->dc_val_base + y_size + s->mb_stride + 1; s->dc_val[2] = s->dc_val[1] + c_size; for (i = 0; i < yc_size; i++) s->dc_val_base[i] = 1024; } // Note the + 1 is for a quicker MPEG-4 slice_end detection if (!(s->mbskip_table = av_mallocz(mb_array_size + 2)) || /* which mb is an intra block, init macroblock skip table */ !(s->mbintra_table = av_malloc(mb_array_size))) return AVERROR(ENOMEM); memset(s->mbintra_table, 1, mb_array_size); ALLOC_POOL(qscale_table, mv_table_size, 0); ALLOC_POOL(mb_type, mv_table_size * sizeof(uint32_t), 0); if (s->out_format == FMT_H263 || s->encoding || (s->avctx->export_side_data & AV_CODEC_EXPORT_DATA_MVS)) { const int b8_array_size = s->b8_stride * mb_height * 2; int mv_size = 2 * (b8_array_size + 4) * sizeof(int16_t); int ref_index_size = 4 * mb_array_size; /* FIXME: The output of H.263 with OBMC depends upon * the earlier content of the buffer; therefore we set * the flags to always reset returned buffers here. */ ALLOC_POOL(motion_val, mv_size, FF_REFSTRUCT_POOL_FLAG_ZERO_EVERY_TIME); ALLOC_POOL(ref_index, ref_index_size, 0); } #undef ALLOC_POOL pools->alloc_mb_width = s->mb_width; pools->alloc_mb_height = mb_height; pools->alloc_mb_stride = s->mb_stride; return !CONFIG_MPEGVIDEODEC || s->encoding ? 0 : ff_mpeg_er_init(s); } static void clear_context(MpegEncContext *s) { memset(&s->buffer_pools, 0, sizeof(s->buffer_pools)); memset(&s->next_picture, 0, sizeof(s->next_picture)); memset(&s->last_picture, 0, sizeof(s->last_picture)); memset(&s->current_picture, 0, sizeof(s->current_picture)); memset(s->thread_context, 0, sizeof(s->thread_context)); s->me.map = NULL; s->me.score_map = NULL; s->dct_error_sum = NULL; s->block = NULL; s->blocks = NULL; memset(s->pblocks, 0, sizeof(s->pblocks)); s->ac_val_base = NULL; s->ac_val[0] = s->ac_val[1] = s->ac_val[2] =NULL; s->me.scratchpad = NULL; s->me.temp = NULL; memset(&s->sc, 0, sizeof(s->sc)); s->bitstream_buffer = NULL; s->allocated_bitstream_buffer_size = 0; s->picture = NULL; s->p_field_mv_table_base = NULL; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) s->p_field_mv_table[i][j] = NULL; s->dc_val_base = NULL; s->coded_block_base = NULL; s->mbintra_table = NULL; s->cbp_table = NULL; s->pred_dir_table = NULL; s->mbskip_table = NULL; s->er.error_status_table = NULL; s->er.er_temp_buffer = NULL; s->mb_index2xy = NULL; } /** * init common structure for both encoder and decoder. * this assumes that some variables like width/height are already set */ av_cold int ff_mpv_common_init(MpegEncContext *s) { int i, ret; int nb_slices = (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_SLICE) ? s->avctx->thread_count : 1; clear_context(s); if (s->encoding && s->avctx->slices) nb_slices = s->avctx->slices; if (s->avctx->pix_fmt == AV_PIX_FMT_NONE) { av_log(s->avctx, AV_LOG_ERROR, "decoding to AV_PIX_FMT_NONE is not supported.\n"); return AVERROR(EINVAL); } if ((s->width || s->height) && av_image_check_size(s->width, s->height, 0, s->avctx)) return AVERROR(EINVAL); dct_init(s); /* set chroma shifts */ ret = av_pix_fmt_get_chroma_sub_sample(s->avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); if (ret) return ret; if (!FF_ALLOCZ_TYPED_ARRAY(s->picture, MAX_PICTURE_COUNT)) return AVERROR(ENOMEM); for (i = 0; i < MAX_PICTURE_COUNT; i++) { s->picture[i].f = av_frame_alloc(); if (!s->picture[i].f) goto fail_nomem; } if (!(s->next_picture.f = av_frame_alloc()) || !(s->last_picture.f = av_frame_alloc()) || !(s->current_picture.f = av_frame_alloc())) goto fail_nomem; if ((ret = ff_mpv_init_context_frame(s))) goto fail; if (nb_slices > MAX_THREADS || (nb_slices > s->mb_height && s->mb_height)) { int max_slices; if (s->mb_height) max_slices = FFMIN(MAX_THREADS, s->mb_height); else max_slices = MAX_THREADS; av_log(s->avctx, AV_LOG_WARNING, "too many threads/slices (%d)," " reducing to %d\n", nb_slices, max_slices); nb_slices = max_slices; } s->context_initialized = 1; memset(s->thread_context, 0, sizeof(s->thread_context)); s->thread_context[0] = s; s->slice_context_count = nb_slices; // if (s->width && s->height) { ret = ff_mpv_init_duplicate_contexts(s); if (ret < 0) goto fail; // } return 0; fail_nomem: ret = AVERROR(ENOMEM); fail: ff_mpv_common_end(s); return ret; } void ff_mpv_free_context_frame(MpegEncContext *s) { free_duplicate_contexts(s); free_buffer_pools(&s->buffer_pools); av_freep(&s->p_field_mv_table_base); for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) s->p_field_mv_table[i][j] = NULL; av_freep(&s->dc_val_base); av_freep(&s->coded_block_base); av_freep(&s->mbintra_table); av_freep(&s->cbp_table); av_freep(&s->pred_dir_table); av_freep(&s->mbskip_table); av_freep(&s->er.error_status_table); av_freep(&s->er.er_temp_buffer); av_freep(&s->mb_index2xy); s->linesize = s->uvlinesize = 0; } void ff_mpv_common_end(MpegEncContext *s) { ff_mpv_free_context_frame(s); if (s->slice_context_count > 1) s->slice_context_count = 1; av_freep(&s->bitstream_buffer); s->allocated_bitstream_buffer_size = 0; if (s->picture) { for (int i = 0; i < MAX_PICTURE_COUNT; i++) ff_mpv_picture_free(&s->picture[i]); } av_freep(&s->picture); ff_mpv_picture_free(&s->last_picture); ff_mpv_picture_free(&s->current_picture); ff_mpv_picture_free(&s->next_picture); s->context_initialized = 0; s->context_reinit = 0; s->last_picture_ptr = s->next_picture_ptr = s->current_picture_ptr = NULL; s->linesize = s->uvlinesize = 0; } /** * Clean dc, ac for the current non-intra MB. */ void ff_clean_intra_table_entries(MpegEncContext *s) { int wrap = s->b8_stride; int xy = s->block_index[0]; s->dc_val[0][xy ] = s->dc_val[0][xy + 1 ] = s->dc_val[0][xy + wrap] = s->dc_val[0][xy + 1 + wrap] = 1024; /* ac pred */ memset(s->ac_val[0][xy ], 0, 32 * sizeof(int16_t)); memset(s->ac_val[0][xy + wrap], 0, 32 * sizeof(int16_t)); /* chroma */ wrap = s->mb_stride; xy = s->mb_x + s->mb_y * wrap; s->dc_val[1][xy] = s->dc_val[2][xy] = 1024; /* ac pred */ memset(s->ac_val[1][xy], 0, 16 * sizeof(int16_t)); memset(s->ac_val[2][xy], 0, 16 * sizeof(int16_t)); s->mbintra_table[xy]= 0; } void ff_init_block_index(MpegEncContext *s){ //FIXME maybe rename const int linesize = s->current_picture.f->linesize[0]; //not s->linesize as this would be wrong for field pics const int uvlinesize = s->current_picture.f->linesize[1]; const int width_of_mb = (4 + (s->avctx->bits_per_raw_sample > 8)) - s->avctx->lowres; const int height_of_mb = 4 - s->avctx->lowres; s->block_index[0]= s->b8_stride*(s->mb_y*2 ) - 2 + s->mb_x*2; s->block_index[1]= s->b8_stride*(s->mb_y*2 ) - 1 + s->mb_x*2; s->block_index[2]= s->b8_stride*(s->mb_y*2 + 1) - 2 + s->mb_x*2; s->block_index[3]= s->b8_stride*(s->mb_y*2 + 1) - 1 + s->mb_x*2; s->block_index[4]= s->mb_stride*(s->mb_y + 1) + s->b8_stride*s->mb_height*2 + s->mb_x - 1; s->block_index[5]= s->mb_stride*(s->mb_y + s->mb_height + 2) + s->b8_stride*s->mb_height*2 + s->mb_x - 1; //block_index is not used by mpeg2, so it is not affected by chroma_format s->dest[0] = s->current_picture.f->data[0] + (int)((s->mb_x - 1U) << width_of_mb); s->dest[1] = s->current_picture.f->data[1] + (int)((s->mb_x - 1U) << (width_of_mb - s->chroma_x_shift)); s->dest[2] = s->current_picture.f->data[2] + (int)((s->mb_x - 1U) << (width_of_mb - s->chroma_x_shift)); if (s->picture_structure == PICT_FRAME) { s->dest[0] += s->mb_y * linesize << height_of_mb; s->dest[1] += s->mb_y * uvlinesize << (height_of_mb - s->chroma_y_shift); s->dest[2] += s->mb_y * uvlinesize << (height_of_mb - s->chroma_y_shift); } else { s->dest[0] += (s->mb_y>>1) * linesize << height_of_mb; s->dest[1] += (s->mb_y>>1) * uvlinesize << (height_of_mb - s->chroma_y_shift); s->dest[2] += (s->mb_y>>1) * uvlinesize << (height_of_mb - s->chroma_y_shift); av_assert1((s->mb_y&1) == (s->picture_structure == PICT_BOTTOM_FIELD)); } } /** * set qscale and update qscale dependent variables. */ void ff_set_qscale(MpegEncContext * s, int qscale) { if (qscale < 1) qscale = 1; else if (qscale > 31) qscale = 31; s->qscale = qscale; s->chroma_qscale= s->chroma_qscale_table[qscale]; s->y_dc_scale= s->y_dc_scale_table[ qscale ]; s->c_dc_scale= s->c_dc_scale_table[ s->chroma_qscale ]; }