/* * Apple ProRes encoder * * Copyright (c) 2011 Anatoliy Wasserman * Copyright (c) 2012 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/mem.h" #include "libavutil/mem_internal.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avcodec.h" #include "codec_internal.h" #include "encode.h" #include "fdctdsp.h" #include "put_bits.h" #include "profiles.h" #include "bytestream.h" #include "proresdata.h" #define CFACTOR_Y422 2 #define CFACTOR_Y444 3 #define MAX_MBS_PER_SLICE 8 #define MAX_PLANES 4 enum { PRORES_PROFILE_AUTO = -1, PRORES_PROFILE_PROXY = 0, PRORES_PROFILE_LT, PRORES_PROFILE_STANDARD, PRORES_PROFILE_HQ, PRORES_PROFILE_4444, PRORES_PROFILE_4444XQ, }; enum { QUANT_MAT_PROXY = 0, QUANT_MAT_PROXY_CHROMA, QUANT_MAT_LT, QUANT_MAT_STANDARD, QUANT_MAT_HQ, QUANT_MAT_XQ_LUMA, QUANT_MAT_DEFAULT, }; static const uint8_t prores_quant_matrices[][64] = { { // proxy 4, 7, 9, 11, 13, 14, 15, 63, 7, 7, 11, 12, 14, 15, 63, 63, 9, 11, 13, 14, 15, 63, 63, 63, 11, 11, 13, 14, 63, 63, 63, 63, 11, 13, 14, 63, 63, 63, 63, 63, 13, 14, 63, 63, 63, 63, 63, 63, 13, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, }, { // proxy chromas 4, 7, 9, 11, 13, 14, 63, 63, 7, 7, 11, 12, 14, 63, 63, 63, 9, 11, 13, 14, 63, 63, 63, 63, 11, 11, 13, 14, 63, 63, 63, 63, 11, 13, 14, 63, 63, 63, 63, 63, 13, 14, 63, 63, 63, 63, 63, 63, 13, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63 }, { // LT 4, 5, 6, 7, 9, 11, 13, 15, 5, 5, 7, 8, 11, 13, 15, 17, 6, 7, 9, 11, 13, 15, 15, 17, 7, 7, 9, 11, 13, 15, 17, 19, 7, 9, 11, 13, 14, 16, 19, 23, 9, 11, 13, 14, 16, 19, 23, 29, 9, 11, 13, 15, 17, 21, 28, 35, 11, 13, 16, 17, 21, 28, 35, 41, }, { // standard 4, 4, 5, 5, 6, 7, 7, 9, 4, 4, 5, 6, 7, 7, 9, 9, 5, 5, 6, 7, 7, 9, 9, 10, 5, 5, 6, 7, 7, 9, 9, 10, 5, 6, 7, 7, 8, 9, 10, 12, 6, 7, 7, 8, 9, 10, 12, 15, 6, 7, 7, 9, 10, 11, 14, 17, 7, 7, 9, 10, 11, 14, 17, 21, }, { // high quality 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 5, 5, 6, 4, 4, 4, 4, 5, 5, 6, 7, 4, 4, 4, 4, 5, 6, 7, 7, }, { // XQ luma 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 4, 2, 2, 2, 2, 3, 3, 4, 4, }, { // codec default 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }, }; #define NUM_MB_LIMITS 4 static const int prores_mb_limits[NUM_MB_LIMITS] = { 1620, // up to 720x576 2700, // up to 960x720 6075, // up to 1440x1080 9216, // up to 2048x1152 }; static const struct prores_profile { const char *full_name; uint32_t tag; int min_quant; int max_quant; int br_tab[NUM_MB_LIMITS]; int quant; int quant_chroma; } prores_profile_info[6] = { { .full_name = "proxy", .tag = MKTAG('a', 'p', 'c', 'o'), .min_quant = 4, .max_quant = 8, .br_tab = { 300, 242, 220, 194 }, .quant = QUANT_MAT_PROXY, .quant_chroma = QUANT_MAT_PROXY_CHROMA, }, { .full_name = "LT", .tag = MKTAG('a', 'p', 'c', 's'), .min_quant = 1, .max_quant = 9, .br_tab = { 720, 560, 490, 440 }, .quant = QUANT_MAT_LT, .quant_chroma = QUANT_MAT_LT, }, { .full_name = "standard", .tag = MKTAG('a', 'p', 'c', 'n'), .min_quant = 1, .max_quant = 6, .br_tab = { 1050, 808, 710, 632 }, .quant = QUANT_MAT_STANDARD, .quant_chroma = QUANT_MAT_STANDARD, }, { .full_name = "high quality", .tag = MKTAG('a', 'p', 'c', 'h'), .min_quant = 1, .max_quant = 6, .br_tab = { 1566, 1216, 1070, 950 }, .quant = QUANT_MAT_HQ, .quant_chroma = QUANT_MAT_HQ, }, { .full_name = "4444", .tag = MKTAG('a', 'p', '4', 'h'), .min_quant = 1, .max_quant = 6, .br_tab = { 2350, 1828, 1600, 1425 }, .quant = QUANT_MAT_HQ, .quant_chroma = QUANT_MAT_HQ, }, { .full_name = "4444XQ", .tag = MKTAG('a', 'p', '4', 'x'), .min_quant = 1, .max_quant = 6, .br_tab = { 3525, 2742, 2400, 2137 }, .quant = QUANT_MAT_HQ, /* Fix me : use QUANT_MAT_XQ_LUMA */ .quant_chroma = QUANT_MAT_HQ, } }; #define TRELLIS_WIDTH 16 #define SCORE_LIMIT INT_MAX / 2 struct TrellisNode { int prev_node; int quant; int bits; int score; }; #define MAX_STORED_Q 16 typedef struct ProresThreadData { DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE]; DECLARE_ALIGNED(16, uint16_t, emu_buf)[16 * 16]; int16_t custom_q[64]; int16_t custom_chroma_q[64]; struct TrellisNode *nodes; } ProresThreadData; typedef struct ProresContext { AVClass *class; DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE]; DECLARE_ALIGNED(16, uint16_t, emu_buf)[16*16]; int16_t quants[MAX_STORED_Q][64]; int16_t quants_chroma[MAX_STORED_Q][64]; int16_t custom_q[64]; int16_t custom_chroma_q[64]; const uint8_t *quant_mat; const uint8_t *quant_chroma_mat; const uint8_t *scantable; void (*fdct)(FDCTDSPContext *fdsp, const uint16_t *src, ptrdiff_t linesize, int16_t *block); FDCTDSPContext fdsp; const AVFrame *pic; int mb_width, mb_height; int mbs_per_slice; int num_chroma_blocks, chroma_factor; int slices_width; int slices_per_picture; int pictures_per_frame; // 1 for progressive, 2 for interlaced int cur_picture_idx; int num_planes; int bits_per_mb; int force_quant; int alpha_bits; int warn; char *vendor; int quant_sel; int frame_size_upper_bound; int profile; const struct prores_profile *profile_info; int *slice_q; ProresThreadData *tdata; } ProresContext; static void get_slice_data(ProresContext *ctx, const uint16_t *src, ptrdiff_t linesize, int x, int y, int w, int h, int16_t *blocks, uint16_t *emu_buf, int mbs_per_slice, int blocks_per_mb, int is_chroma) { const uint16_t *esrc; const int mb_width = 4 * blocks_per_mb; ptrdiff_t elinesize; int i, j, k; for (i = 0; i < mbs_per_slice; i++, src += mb_width) { if (x >= w) { memset(blocks, 0, 64 * (mbs_per_slice - i) * blocks_per_mb * sizeof(*blocks)); return; } if (x + mb_width <= w && y + 16 <= h) { esrc = src; elinesize = linesize; } else { int bw, bh, pix; esrc = emu_buf; elinesize = 16 * sizeof(*emu_buf); bw = FFMIN(w - x, mb_width); bh = FFMIN(h - y, 16); for (j = 0; j < bh; j++) { memcpy(emu_buf + j * 16, (const uint8_t*)src + j * linesize, bw * sizeof(*src)); pix = emu_buf[j * 16 + bw - 1]; for (k = bw; k < mb_width; k++) emu_buf[j * 16 + k] = pix; } for (; j < 16; j++) memcpy(emu_buf + j * 16, emu_buf + (bh - 1) * 16, mb_width * sizeof(*emu_buf)); } if (!is_chroma) { ctx->fdct(&ctx->fdsp, esrc, elinesize, blocks); blocks += 64; if (blocks_per_mb > 2) { ctx->fdct(&ctx->fdsp, esrc + 8, elinesize, blocks); blocks += 64; } ctx->fdct(&ctx->fdsp, esrc + elinesize * 4, elinesize, blocks); blocks += 64; if (blocks_per_mb > 2) { ctx->fdct(&ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks); blocks += 64; } } else { ctx->fdct(&ctx->fdsp, esrc, elinesize, blocks); blocks += 64; ctx->fdct(&ctx->fdsp, esrc + elinesize * 4, elinesize, blocks); blocks += 64; if (blocks_per_mb > 2) { ctx->fdct(&ctx->fdsp, esrc + 8, elinesize, blocks); blocks += 64; ctx->fdct(&ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks); blocks += 64; } } x += mb_width; } } static void get_alpha_data(ProresContext *ctx, const uint16_t *src, ptrdiff_t linesize, int x, int y, int w, int h, uint16_t *blocks, int mbs_per_slice, int abits) { const int slice_width = 16 * mbs_per_slice; int i, j, copy_w, copy_h; copy_w = FFMIN(w - x, slice_width); copy_h = FFMIN(h - y, 16); for (i = 0; i < copy_h; i++) { memcpy(blocks, src, copy_w * sizeof(*src)); if (abits == 8) for (j = 0; j < copy_w; j++) blocks[j] >>= 2; else for (j = 0; j < copy_w; j++) blocks[j] = (blocks[j] << 6) | (blocks[j] >> 4); for (j = copy_w; j < slice_width; j++) blocks[j] = blocks[copy_w - 1]; blocks += slice_width; src += linesize >> 1; } for (; i < 16; i++) { memcpy(blocks, blocks - slice_width, slice_width * sizeof(*blocks)); blocks += slice_width; } } /** * Write an unsigned rice/exp golomb codeword. */ static inline void encode_vlc_codeword(PutBitContext *pb, unsigned codebook, int val) { unsigned int rice_order, exp_order, switch_bits, switch_val; int exponent; /* number of prefix bits to switch between Rice and expGolomb */ switch_bits = (codebook & 3) + 1; rice_order = codebook >> 5; /* rice code order */ exp_order = (codebook >> 2) & 7; /* exp golomb code order */ switch_val = switch_bits << rice_order; if (val >= switch_val) { val -= switch_val - (1 << exp_order); exponent = av_log2(val); put_bits(pb, exponent - exp_order + switch_bits, 0); put_bits(pb, exponent + 1, val); } else { exponent = val >> rice_order; if (exponent) put_bits(pb, exponent, 0); put_bits(pb, 1, 1); if (rice_order) put_sbits(pb, rice_order, val); } } #define GET_SIGN(x) ((x) >> 31) #define MAKE_CODE(x) (((x) * 2) ^ GET_SIGN(x)) static void encode_dcs(PutBitContext *pb, int16_t *blocks, int blocks_per_slice, int scale) { int i; int codebook = 5, code, dc, prev_dc, delta, sign, new_sign; prev_dc = (blocks[0] - 0x4000) / scale; encode_vlc_codeword(pb, FIRST_DC_CB, MAKE_CODE(prev_dc)); sign = 0; blocks += 64; for (i = 1; i < blocks_per_slice; i++, blocks += 64) { dc = (blocks[0] - 0x4000) / scale; delta = dc - prev_dc; new_sign = GET_SIGN(delta); delta = (delta ^ sign) - sign; code = MAKE_CODE(delta); encode_vlc_codeword(pb, ff_prores_dc_codebook[codebook], code); codebook = FFMIN(code, 6); sign = new_sign; prev_dc = dc; } } static void encode_acs(PutBitContext *pb, int16_t *blocks, int blocks_per_slice, const uint8_t *scan, const int16_t *qmat) { int idx, i; int prev_run = 4; int prev_level = 2; int run = 0, level; int max_coeffs, abs_level; max_coeffs = blocks_per_slice << 6; for (i = 1; i < 64; i++) { for (idx = scan[i]; idx < max_coeffs; idx += 64) { level = blocks[idx] / qmat[scan[i]]; if (level) { abs_level = FFABS(level); encode_vlc_codeword(pb, ff_prores_run_to_cb[prev_run], run); encode_vlc_codeword(pb, ff_prores_level_to_cb[prev_level], abs_level - 1); put_sbits(pb, 1, GET_SIGN(level)); prev_run = FFMIN(run, 15); prev_level = FFMIN(abs_level, 9); run = 0; } else { run++; } } } } static void encode_slice_plane(ProresContext *ctx, PutBitContext *pb, const uint16_t *src, ptrdiff_t linesize, int mbs_per_slice, int16_t *blocks, int blocks_per_mb, const int16_t *qmat) { int blocks_per_slice = mbs_per_slice * blocks_per_mb; encode_dcs(pb, blocks, blocks_per_slice, qmat[0]); encode_acs(pb, blocks, blocks_per_slice, ctx->scantable, qmat); } static void put_alpha_diff(PutBitContext *pb, int cur, int prev, int abits) { const int dbits = (abits == 8) ? 4 : 7; const int dsize = 1 << dbits - 1; int diff = cur - prev; diff = av_zero_extend(diff, abits); if (diff >= (1 << abits) - dsize) diff -= 1 << abits; if (diff < -dsize || diff > dsize || !diff) { put_bits(pb, 1, 1); put_bits(pb, abits, diff); } else { put_bits(pb, 1, 0); put_bits(pb, dbits - 1, FFABS(diff) - 1); put_bits(pb, 1, diff < 0); } } static void put_alpha_run(PutBitContext *pb, int run) { if (run) { put_bits(pb, 1, 0); if (run < 0x10) put_bits(pb, 4, run); else put_bits(pb, 15, run); } else { put_bits(pb, 1, 1); } } // todo alpha quantisation for high quants static void encode_alpha_plane(ProresContext *ctx, PutBitContext *pb, int mbs_per_slice, uint16_t *blocks, int quant) { const int abits = ctx->alpha_bits; const int mask = (1 << abits) - 1; const int num_coeffs = mbs_per_slice * 256; int prev = mask, cur; int idx = 0; int run = 0; cur = blocks[idx++]; put_alpha_diff(pb, cur, prev, abits); prev = cur; do { cur = blocks[idx++]; if (cur != prev) { put_alpha_run (pb, run); put_alpha_diff(pb, cur, prev, abits); prev = cur; run = 0; } else { run++; } } while (idx < num_coeffs); put_alpha_run(pb, run); } static int encode_slice(AVCodecContext *avctx, const AVFrame *pic, PutBitContext *pb, int sizes[4], int x, int y, int quant, int mbs_per_slice) { ProresContext *ctx = avctx->priv_data; int i, xp, yp; int total_size = 0; const uint16_t *src; int num_cblocks, pwidth, line_add; ptrdiff_t linesize; int is_chroma; uint16_t *qmat; uint16_t *qmat_chroma; if (ctx->pictures_per_frame == 1) line_add = 0; else line_add = ctx->cur_picture_idx ^ !(pic->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST); if (ctx->force_quant) { qmat = ctx->quants[0]; qmat_chroma = ctx->quants_chroma[0]; } else if (quant < MAX_STORED_Q) { qmat = ctx->quants[quant]; qmat_chroma = ctx->quants_chroma[quant]; } else { qmat = ctx->custom_q; qmat_chroma = ctx->custom_chroma_q; for (i = 0; i < 64; i++) { qmat[i] = ctx->quant_mat[i] * quant; qmat_chroma[i] = ctx->quant_chroma_mat[i] * quant; } } for (i = 0; i < ctx->num_planes; i++) { is_chroma = (i == 1 || i == 2); if (!is_chroma || ctx->chroma_factor == CFACTOR_Y444) { xp = x << 4; yp = y << 4; num_cblocks = 4; pwidth = avctx->width; } else { xp = x << 3; yp = y << 4; num_cblocks = 2; pwidth = avctx->width >> 1; } linesize = pic->linesize[i] * ctx->pictures_per_frame; src = (const uint16_t*)(pic->data[i] + yp * linesize + line_add * pic->linesize[i]) + xp; if (i < 3) { get_slice_data(ctx, src, linesize, xp, yp, pwidth, avctx->height / ctx->pictures_per_frame, ctx->blocks[0], ctx->emu_buf, mbs_per_slice, num_cblocks, is_chroma); if (!is_chroma) {/* luma quant */ encode_slice_plane(ctx, pb, src, linesize, mbs_per_slice, ctx->blocks[0], num_cblocks, qmat); } else { /* chroma plane */ encode_slice_plane(ctx, pb, src, linesize, mbs_per_slice, ctx->blocks[0], num_cblocks, qmat_chroma); } } else { get_alpha_data(ctx, src, linesize, xp, yp, pwidth, avctx->height / ctx->pictures_per_frame, ctx->blocks[0], mbs_per_slice, ctx->alpha_bits); encode_alpha_plane(ctx, pb, mbs_per_slice, ctx->blocks[0], quant); } flush_put_bits(pb); sizes[i] = put_bytes_output(pb) - total_size; total_size = put_bytes_output(pb); } return total_size; } static inline int estimate_vlc(unsigned codebook, int val) { unsigned int rice_order, exp_order, switch_bits, switch_val; int exponent; /* number of prefix bits to switch between Rice and expGolomb */ switch_bits = (codebook & 3) + 1; rice_order = codebook >> 5; /* rice code order */ exp_order = (codebook >> 2) & 7; /* exp golomb code order */ switch_val = switch_bits << rice_order; if (val >= switch_val) { val -= switch_val - (1 << exp_order); exponent = av_log2(val); return exponent * 2 - exp_order + switch_bits + 1; } else { return (val >> rice_order) + rice_order + 1; } } static int estimate_dcs(int *error, int16_t *blocks, int blocks_per_slice, int scale) { int i; int codebook = 5, code, dc, prev_dc, delta, sign, new_sign; int bits; prev_dc = (blocks[0] - 0x4000) / scale; bits = estimate_vlc(FIRST_DC_CB, MAKE_CODE(prev_dc)); sign = 0; blocks += 64; *error += FFABS(blocks[0] - 0x4000) % scale; for (i = 1; i < blocks_per_slice; i++, blocks += 64) { dc = (blocks[0] - 0x4000) / scale; *error += FFABS(blocks[0] - 0x4000) % scale; delta = dc - prev_dc; new_sign = GET_SIGN(delta); delta = (delta ^ sign) - sign; code = MAKE_CODE(delta); bits += estimate_vlc(ff_prores_dc_codebook[codebook], code); codebook = FFMIN(code, 6); sign = new_sign; prev_dc = dc; } return bits; } static int estimate_acs(int *error, int16_t *blocks, int blocks_per_slice, const uint8_t *scan, const int16_t *qmat) { int idx, i; int prev_run = 4; int prev_level = 2; int run, level; int max_coeffs, abs_level; int bits = 0; max_coeffs = blocks_per_slice << 6; run = 0; for (i = 1; i < 64; i++) { for (idx = scan[i]; idx < max_coeffs; idx += 64) { level = blocks[idx] / qmat[scan[i]]; *error += FFABS(blocks[idx]) % qmat[scan[i]]; if (level) { abs_level = FFABS(level); bits += estimate_vlc(ff_prores_run_to_cb[prev_run], run); bits += estimate_vlc(ff_prores_level_to_cb[prev_level], abs_level - 1) + 1; prev_run = FFMIN(run, 15); prev_level = FFMIN(abs_level, 9); run = 0; } else { run++; } } } return bits; } static int estimate_slice_plane(ProresContext *ctx, int *error, int plane, const uint16_t *src, ptrdiff_t linesize, int mbs_per_slice, int blocks_per_mb, const int16_t *qmat, ProresThreadData *td) { int blocks_per_slice; int bits; blocks_per_slice = mbs_per_slice * blocks_per_mb; bits = estimate_dcs(error, td->blocks[plane], blocks_per_slice, qmat[0]); bits += estimate_acs(error, td->blocks[plane], blocks_per_slice, ctx->scantable, qmat); return FFALIGN(bits, 8); } static int est_alpha_diff(int cur, int prev, int abits) { const int dbits = (abits == 8) ? 4 : 7; const int dsize = 1 << dbits - 1; int diff = cur - prev; diff = av_zero_extend(diff, abits); if (diff >= (1 << abits) - dsize) diff -= 1 << abits; if (diff < -dsize || diff > dsize || !diff) return abits + 1; else return dbits + 1; } static int estimate_alpha_plane(ProresContext *ctx, const uint16_t *src, ptrdiff_t linesize, int mbs_per_slice, int16_t *blocks) { const int abits = ctx->alpha_bits; const int mask = (1 << abits) - 1; const int num_coeffs = mbs_per_slice * 256; int prev = mask, cur; int idx = 0; int run = 0; int bits; cur = blocks[idx++]; bits = est_alpha_diff(cur, prev, abits); prev = cur; do { cur = blocks[idx++]; if (cur != prev) { if (!run) bits++; else if (run < 0x10) bits += 4; else bits += 15; bits += est_alpha_diff(cur, prev, abits); prev = cur; run = 0; } else { run++; } } while (idx < num_coeffs); if (run) { if (run < 0x10) bits += 4; else bits += 15; } return bits; } static int find_slice_quant(AVCodecContext *avctx, int trellis_node, int x, int y, int mbs_per_slice, ProresThreadData *td) { ProresContext *ctx = avctx->priv_data; int i, q, pq, xp, yp; const uint16_t *src; int num_cblocks[MAX_PLANES], pwidth; int is_chroma[MAX_PLANES]; const int min_quant = ctx->profile_info->min_quant; const int max_quant = ctx->profile_info->max_quant; int error, bits, bits_limit; int mbs, prev, cur, new_score; int slice_bits[TRELLIS_WIDTH], slice_score[TRELLIS_WIDTH]; int overquant; uint16_t *qmat; uint16_t *qmat_chroma; int linesize[4], line_add; int alpha_bits = 0; if (ctx->pictures_per_frame == 1) line_add = 0; else line_add = ctx->cur_picture_idx ^ !(ctx->pic->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST); mbs = x + mbs_per_slice; for (i = 0; i < ctx->num_planes; i++) { is_chroma[i] = (i == 1 || i == 2); if (!is_chroma[i] || ctx->chroma_factor == CFACTOR_Y444) { xp = x << 4; yp = y << 4; num_cblocks[i] = 4; pwidth = avctx->width; } else { xp = x << 3; yp = y << 4; num_cblocks[i] = 2; pwidth = avctx->width >> 1; } linesize[i] = ctx->pic->linesize[i] * ctx->pictures_per_frame; src = (const uint16_t *)(ctx->pic->data[i] + yp * linesize[i] + line_add * ctx->pic->linesize[i]) + xp; if (i < 3) { get_slice_data(ctx, src, linesize[i], xp, yp, pwidth, avctx->height / ctx->pictures_per_frame, td->blocks[i], td->emu_buf, mbs_per_slice, num_cblocks[i], is_chroma[i]); } else { get_alpha_data(ctx, src, linesize[i], xp, yp, pwidth, avctx->height / ctx->pictures_per_frame, td->blocks[i], mbs_per_slice, ctx->alpha_bits); } } for (q = min_quant; q < max_quant + 2; q++) { td->nodes[trellis_node + q].prev_node = -1; td->nodes[trellis_node + q].quant = q; } if (ctx->alpha_bits) alpha_bits = estimate_alpha_plane(ctx, src, linesize[3], mbs_per_slice, td->blocks[3]); // todo: maybe perform coarser quantising to fit into frame size when needed for (q = min_quant; q <= max_quant; q++) { bits = alpha_bits; error = 0; bits += estimate_slice_plane(ctx, &error, 0, src, linesize[0], mbs_per_slice, num_cblocks[0], ctx->quants[q], td); /* estimate luma plane */ for (i = 1; i < ctx->num_planes - !!ctx->alpha_bits; i++) { /* estimate chroma plane */ bits += estimate_slice_plane(ctx, &error, i, src, linesize[i], mbs_per_slice, num_cblocks[i], ctx->quants_chroma[q], td); } if (bits > 65000 * 8) error = SCORE_LIMIT; slice_bits[q] = bits; slice_score[q] = error; } if (slice_bits[max_quant] <= ctx->bits_per_mb * mbs_per_slice) { slice_bits[max_quant + 1] = slice_bits[max_quant]; slice_score[max_quant + 1] = slice_score[max_quant] + 1; overquant = max_quant; } else { for (q = max_quant + 1; q < 128; q++) { bits = alpha_bits; error = 0; if (q < MAX_STORED_Q) { qmat = ctx->quants[q]; qmat_chroma = ctx->quants_chroma[q]; } else { qmat = td->custom_q; qmat_chroma = td->custom_chroma_q; for (i = 0; i < 64; i++) { qmat[i] = ctx->quant_mat[i] * q; qmat_chroma[i] = ctx->quant_chroma_mat[i] * q; } } bits += estimate_slice_plane(ctx, &error, 0, src, linesize[0], mbs_per_slice, num_cblocks[0], qmat, td);/* estimate luma plane */ for (i = 1; i < ctx->num_planes - !!ctx->alpha_bits; i++) { /* estimate chroma plane */ bits += estimate_slice_plane(ctx, &error, i, src, linesize[i], mbs_per_slice, num_cblocks[i], qmat_chroma, td); } if (bits <= ctx->bits_per_mb * mbs_per_slice) break; } slice_bits[max_quant + 1] = bits; slice_score[max_quant + 1] = error; overquant = q; } td->nodes[trellis_node + max_quant + 1].quant = overquant; bits_limit = mbs * ctx->bits_per_mb; for (pq = min_quant; pq < max_quant + 2; pq++) { prev = trellis_node - TRELLIS_WIDTH + pq; for (q = min_quant; q < max_quant + 2; q++) { cur = trellis_node + q; bits = td->nodes[prev].bits + slice_bits[q]; error = slice_score[q]; if (bits > bits_limit) error = SCORE_LIMIT; if (td->nodes[prev].score < SCORE_LIMIT && error < SCORE_LIMIT) new_score = td->nodes[prev].score + error; else new_score = SCORE_LIMIT; if (td->nodes[cur].prev_node == -1 || td->nodes[cur].score >= new_score) { td->nodes[cur].bits = bits; td->nodes[cur].score = new_score; td->nodes[cur].prev_node = prev; } } } error = td->nodes[trellis_node + min_quant].score; pq = trellis_node + min_quant; for (q = min_quant + 1; q < max_quant + 2; q++) { if (td->nodes[trellis_node + q].score <= error) { error = td->nodes[trellis_node + q].score; pq = trellis_node + q; } } return pq; } static int find_quant_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) { ProresContext *ctx = avctx->priv_data; ProresThreadData *td = ctx->tdata + threadnr; int mbs_per_slice = ctx->mbs_per_slice; int x, y = jobnr, mb, q = 0; for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) { while (ctx->mb_width - x < mbs_per_slice) mbs_per_slice >>= 1; q = find_slice_quant(avctx, (mb + 1) * TRELLIS_WIDTH, x, y, mbs_per_slice, td); } for (x = ctx->slices_width - 1; x >= 0; x--) { ctx->slice_q[x + y * ctx->slices_width] = td->nodes[q].quant; q = td->nodes[q].prev_node; } return 0; } static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pic, int *got_packet) { ProresContext *ctx = avctx->priv_data; uint8_t *orig_buf, *buf, *slice_hdr, *slice_sizes, *tmp; uint8_t *picture_size_pos; PutBitContext pb; int x, y, i, mb, q = 0; int sizes[4] = { 0 }; int slice_hdr_size = 2 + 2 * (ctx->num_planes - 1); int frame_size, picture_size, slice_size; int pkt_size, ret; int max_slice_size = (ctx->frame_size_upper_bound - 200) / (ctx->pictures_per_frame * ctx->slices_per_picture + 1); uint8_t frame_flags; ctx->pic = pic; pkt_size = ctx->frame_size_upper_bound; if ((ret = ff_alloc_packet(avctx, pkt, pkt_size + FF_INPUT_BUFFER_MIN_SIZE)) < 0) return ret; orig_buf = pkt->data; // frame atom orig_buf += 4; // frame size bytestream_put_be32 (&orig_buf, FRAME_ID); // frame container ID buf = orig_buf; // frame header tmp = buf; buf += 2; // frame header size will be stored here bytestream_put_be16 (&buf, ctx->chroma_factor != CFACTOR_Y422 || ctx->alpha_bits ? 1 : 0); bytestream_put_buffer(&buf, ctx->vendor, 4); bytestream_put_be16 (&buf, avctx->width); bytestream_put_be16 (&buf, avctx->height); frame_flags = ctx->chroma_factor << 6; if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) frame_flags |= (pic->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST) ? 0x04 : 0x08; bytestream_put_byte (&buf, frame_flags); bytestream_put_byte (&buf, 0); // reserved bytestream_put_byte (&buf, pic->color_primaries); bytestream_put_byte (&buf, pic->color_trc); bytestream_put_byte (&buf, pic->colorspace); bytestream_put_byte (&buf, ctx->alpha_bits >> 3); bytestream_put_byte (&buf, 0); // reserved if (ctx->quant_sel != QUANT_MAT_DEFAULT) { bytestream_put_byte (&buf, 0x03); // matrix flags - both matrices are present bytestream_put_buffer(&buf, ctx->quant_mat, 64); // luma quantisation matrix bytestream_put_buffer(&buf, ctx->quant_chroma_mat, 64); // chroma quantisation matrix } else { bytestream_put_byte (&buf, 0x00); // matrix flags - default matrices are used } bytestream_put_be16 (&tmp, buf - orig_buf); // write back frame header size for (ctx->cur_picture_idx = 0; ctx->cur_picture_idx < ctx->pictures_per_frame; ctx->cur_picture_idx++) { // picture header picture_size_pos = buf + 1; bytestream_put_byte (&buf, 0x40); // picture header size (in bits) buf += 4; // picture data size will be stored here bytestream_put_be16 (&buf, ctx->slices_per_picture); bytestream_put_byte (&buf, av_log2(ctx->mbs_per_slice) << 4); // slice width and height in MBs // seek table - will be filled during slice encoding slice_sizes = buf; buf += ctx->slices_per_picture * 2; // slices if (!ctx->force_quant) { ret = avctx->execute2(avctx, find_quant_thread, (void*)pic, NULL, ctx->mb_height); if (ret) return ret; } for (y = 0; y < ctx->mb_height; y++) { int mbs_per_slice = ctx->mbs_per_slice; for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) { q = ctx->force_quant ? ctx->force_quant : ctx->slice_q[mb + y * ctx->slices_width]; while (ctx->mb_width - x < mbs_per_slice) mbs_per_slice >>= 1; bytestream_put_byte(&buf, slice_hdr_size << 3); slice_hdr = buf; buf += slice_hdr_size - 1; if (pkt_size <= buf - orig_buf + 2 * max_slice_size) { uint8_t *start = pkt->data; // Recompute new size according to max_slice_size // and deduce delta int delta = 200 + (ctx->pictures_per_frame * ctx->slices_per_picture + 1) * max_slice_size - pkt_size; delta = FFMAX(delta, 2 * max_slice_size); ctx->frame_size_upper_bound += delta; if (!ctx->warn) { avpriv_request_sample(avctx, "Packet too small: is %i," " needs %i (slice: %i). " "Correct allocation", pkt_size, delta, max_slice_size); ctx->warn = 1; } ret = av_grow_packet(pkt, delta); if (ret < 0) return ret; pkt_size += delta; // restore pointers orig_buf = pkt->data + (orig_buf - start); buf = pkt->data + (buf - start); picture_size_pos = pkt->data + (picture_size_pos - start); slice_sizes = pkt->data + (slice_sizes - start); slice_hdr = pkt->data + (slice_hdr - start); tmp = pkt->data + (tmp - start); } init_put_bits(&pb, buf, (pkt_size - (buf - orig_buf))); ret = encode_slice(avctx, pic, &pb, sizes, x, y, q, mbs_per_slice); if (ret < 0) return ret; bytestream_put_byte(&slice_hdr, q); slice_size = slice_hdr_size + sizes[ctx->num_planes - 1]; for (i = 0; i < ctx->num_planes - 1; i++) { bytestream_put_be16(&slice_hdr, sizes[i]); slice_size += sizes[i]; } bytestream_put_be16(&slice_sizes, slice_size); buf += slice_size - slice_hdr_size; if (max_slice_size < slice_size) max_slice_size = slice_size; } } picture_size = buf - (picture_size_pos - 1); bytestream_put_be32(&picture_size_pos, picture_size); } orig_buf -= 8; frame_size = buf - orig_buf; bytestream_put_be32(&orig_buf, frame_size); pkt->size = frame_size; *got_packet = 1; return 0; } static av_cold int encode_close(AVCodecContext *avctx) { ProresContext *ctx = avctx->priv_data; int i; if (ctx->tdata) { for (i = 0; i < avctx->thread_count; i++) av_freep(&ctx->tdata[i].nodes); } av_freep(&ctx->tdata); av_freep(&ctx->slice_q); return 0; } static void prores_fdct(FDCTDSPContext *fdsp, const uint16_t *src, ptrdiff_t linesize, int16_t *block) { int x, y; const uint16_t *tsrc = src; for (y = 0; y < 8; y++) { for (x = 0; x < 8; x++) block[y * 8 + x] = tsrc[x]; tsrc += linesize >> 1; } fdsp->fdct(block); } static av_cold int encode_init(AVCodecContext *avctx) { ProresContext *ctx = avctx->priv_data; int mps; int i, j; int min_quant, max_quant; int interlaced = !!(avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT); avctx->bits_per_raw_sample = 10; ctx->fdct = prores_fdct; ctx->scantable = interlaced ? ff_prores_interlaced_scan : ff_prores_progressive_scan; ff_fdctdsp_init(&ctx->fdsp, avctx); mps = ctx->mbs_per_slice; if (mps & (mps - 1)) { av_log(avctx, AV_LOG_ERROR, "there should be an integer power of two MBs per slice\n"); return AVERROR(EINVAL); } if (ctx->profile == PRORES_PROFILE_AUTO) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); ctx->profile = (desc->flags & AV_PIX_FMT_FLAG_ALPHA || !(desc->log2_chroma_w + desc->log2_chroma_h)) ? PRORES_PROFILE_4444 : PRORES_PROFILE_HQ; av_log(avctx, AV_LOG_INFO, "Autoselected %s. It can be overridden " "through -profile option.\n", ctx->profile == PRORES_PROFILE_4444 ? "4:4:4:4 profile because of the used input colorspace" : "HQ profile to keep best quality"); } if (av_pix_fmt_desc_get(avctx->pix_fmt)->flags & AV_PIX_FMT_FLAG_ALPHA) { if (ctx->profile != PRORES_PROFILE_4444 && ctx->profile != PRORES_PROFILE_4444XQ) { // force alpha and warn av_log(avctx, AV_LOG_WARNING, "Profile selected will not " "encode alpha. Override with -profile if needed.\n"); ctx->alpha_bits = 0; } if (ctx->alpha_bits & 7) { av_log(avctx, AV_LOG_ERROR, "alpha bits should be 0, 8 or 16\n"); return AVERROR(EINVAL); } avctx->bits_per_coded_sample = 32; } else { ctx->alpha_bits = 0; } ctx->chroma_factor = avctx->pix_fmt == AV_PIX_FMT_YUV422P10 ? CFACTOR_Y422 : CFACTOR_Y444; ctx->profile_info = prores_profile_info + ctx->profile; ctx->num_planes = 3 + !!ctx->alpha_bits; ctx->mb_width = FFALIGN(avctx->width, 16) >> 4; if (interlaced) ctx->mb_height = FFALIGN(avctx->height, 32) >> 5; else ctx->mb_height = FFALIGN(avctx->height, 16) >> 4; ctx->slices_width = ctx->mb_width / mps; ctx->slices_width += av_popcount(ctx->mb_width - ctx->slices_width * mps); ctx->slices_per_picture = ctx->mb_height * ctx->slices_width; ctx->pictures_per_frame = 1 + interlaced; if (ctx->quant_sel == -1) { ctx->quant_mat = prores_quant_matrices[ctx->profile_info->quant]; ctx->quant_chroma_mat = prores_quant_matrices[ctx->profile_info->quant_chroma]; } else { ctx->quant_mat = prores_quant_matrices[ctx->quant_sel]; ctx->quant_chroma_mat = prores_quant_matrices[ctx->quant_sel]; } if (strlen(ctx->vendor) != 4) { av_log(avctx, AV_LOG_ERROR, "vendor ID should be 4 bytes\n"); return AVERROR_INVALIDDATA; } ctx->force_quant = avctx->global_quality / FF_QP2LAMBDA; if (!ctx->force_quant) { if (!ctx->bits_per_mb) { for (i = 0; i < NUM_MB_LIMITS - 1; i++) if (prores_mb_limits[i] >= ctx->mb_width * ctx->mb_height * ctx->pictures_per_frame) break; ctx->bits_per_mb = ctx->profile_info->br_tab[i]; if (ctx->alpha_bits) ctx->bits_per_mb *= 20; } else if (ctx->bits_per_mb < 128) { av_log(avctx, AV_LOG_ERROR, "too few bits per MB, please set at least 128\n"); return AVERROR_INVALIDDATA; } min_quant = ctx->profile_info->min_quant; max_quant = ctx->profile_info->max_quant; for (i = min_quant; i < MAX_STORED_Q; i++) { for (j = 0; j < 64; j++) { ctx->quants[i][j] = ctx->quant_mat[j] * i; ctx->quants_chroma[i][j] = ctx->quant_chroma_mat[j] * i; } } ctx->slice_q = av_malloc_array(ctx->slices_per_picture, sizeof(*ctx->slice_q)); if (!ctx->slice_q) return AVERROR(ENOMEM); ctx->tdata = av_calloc(avctx->thread_count, sizeof(*ctx->tdata)); if (!ctx->tdata) return AVERROR(ENOMEM); for (j = 0; j < avctx->thread_count; j++) { ctx->tdata[j].nodes = av_malloc_array(ctx->slices_width + 1, TRELLIS_WIDTH * sizeof(*ctx->tdata->nodes)); if (!ctx->tdata[j].nodes) return AVERROR(ENOMEM); for (i = min_quant; i < max_quant + 2; i++) { ctx->tdata[j].nodes[i].prev_node = -1; ctx->tdata[j].nodes[i].bits = 0; ctx->tdata[j].nodes[i].score = 0; } } } else { int ls = 0; int ls_chroma = 0; if (ctx->force_quant > 64) { av_log(avctx, AV_LOG_ERROR, "too large quantiser, maximum is 64\n"); return AVERROR_INVALIDDATA; } for (j = 0; j < 64; j++) { ctx->quants[0][j] = ctx->quant_mat[j] * ctx->force_quant; ctx->quants_chroma[0][j] = ctx->quant_chroma_mat[j] * ctx->force_quant; ls += av_log2((1 << 11) / ctx->quants[0][j]) * 2 + 1; ls_chroma += av_log2((1 << 11) / ctx->quants_chroma[0][j]) * 2 + 1; } ctx->bits_per_mb = ls * 4 + ls_chroma * 4; if (ctx->chroma_factor == CFACTOR_Y444) ctx->bits_per_mb += ls_chroma * 4; } ctx->frame_size_upper_bound = (ctx->pictures_per_frame * ctx->slices_per_picture + 1) * (2 + 2 * ctx->num_planes + (mps * ctx->bits_per_mb) / 8) + 200; if (ctx->alpha_bits) { // The alpha plane is run-coded and might exceed the bit budget. ctx->frame_size_upper_bound += (ctx->pictures_per_frame * ctx->slices_per_picture + 1) * /* num pixels per slice */ (ctx->mbs_per_slice * 256 * /* bits per pixel */ (1 + ctx->alpha_bits + 1) + 7 >> 3); } avctx->codec_tag = ctx->profile_info->tag; avctx->profile = ctx->profile; av_log(avctx, AV_LOG_DEBUG, "profile %d, %d slices, interlacing: %s, %d bits per MB\n", ctx->profile, ctx->slices_per_picture * ctx->pictures_per_frame, interlaced ? "yes" : "no", ctx->bits_per_mb); av_log(avctx, AV_LOG_DEBUG, "frame size upper bound: %d\n", ctx->frame_size_upper_bound); return 0; } #define OFFSET(x) offsetof(ProresContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "mbs_per_slice", "macroblocks per slice", OFFSET(mbs_per_slice), AV_OPT_TYPE_INT, { .i64 = 8 }, 1, MAX_MBS_PER_SLICE, VE }, { "profile", NULL, OFFSET(profile), AV_OPT_TYPE_INT, { .i64 = PRORES_PROFILE_AUTO }, PRORES_PROFILE_AUTO, PRORES_PROFILE_4444XQ, VE, .unit = "profile" }, { "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_AUTO }, 0, 0, VE, .unit = "profile" }, { "proxy", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_PROXY }, 0, 0, VE, .unit = "profile" }, { "lt", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_LT }, 0, 0, VE, .unit = "profile" }, { "standard", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_STANDARD }, 0, 0, VE, .unit = "profile" }, { "hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_HQ }, 0, 0, VE, .unit = "profile" }, { "4444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_4444 }, 0, 0, VE, .unit = "profile" }, { "4444xq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_4444XQ }, 0, 0, VE, .unit = "profile" }, { "vendor", "vendor ID", OFFSET(vendor), AV_OPT_TYPE_STRING, { .str = "Lavc" }, 0, 0, VE }, { "bits_per_mb", "desired bits per macroblock", OFFSET(bits_per_mb), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 8192, VE }, { "quant_mat", "quantiser matrix", OFFSET(quant_sel), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, QUANT_MAT_DEFAULT, VE, .unit = "quant_mat" }, { "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1 }, 0, 0, VE, .unit = "quant_mat" }, { "proxy", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_PROXY }, 0, 0, VE, .unit = "quant_mat" }, { "lt", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_LT }, 0, 0, VE, .unit = "quant_mat" }, { "standard", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_STANDARD }, 0, 0, VE, .unit = "quant_mat" }, { "hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_HQ }, 0, 0, VE, .unit = "quant_mat" }, { "default", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_DEFAULT }, 0, 0, VE, .unit = "quant_mat" }, { "alpha_bits", "bits for alpha plane", OFFSET(alpha_bits), AV_OPT_TYPE_INT, { .i64 = 16 }, 0, 16, VE }, { NULL } }; static const AVClass proresenc_class = { .class_name = "ProRes encoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; const FFCodec ff_prores_ks_encoder = { .p.name = "prores_ks", CODEC_LONG_NAME("Apple ProRes (iCodec Pro)"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_PRORES, .priv_data_size = sizeof(ProresContext), .init = encode_init, .close = encode_close, FF_CODEC_ENCODE_CB(encode_frame), .p.capabilities = AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_NONE }, .p.priv_class = &proresenc_class, .p.profiles = NULL_IF_CONFIG_SMALL(ff_prores_profiles), .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, };