/* * FFV1 decoder * * Copyright (c) 2003-2013 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * FF Video Codec 1 (a lossless codec) decoder */ #include "libavutil/avassert.h" #include "libavutil/crc.h" #include "libavutil/mem.h" #include "libavutil/imgutils.h" #include "libavutil/pixdesc.h" #include "avcodec.h" #include "codec_internal.h" #include "get_bits.h" #include "rangecoder.h" #include "golomb.h" #include "mathops.h" #include "ffv1.h" #include "progressframe.h" #include "thread.h" static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed) { if (get_rac(c, state + 0)) return 0; else { int e; unsigned a; e = 0; while (get_rac(c, state + 1 + FFMIN(e, 9))) { // 1..10 e++; if (e > 31) return AVERROR_INVALIDDATA; } a = 1; for (int i = e - 1; i >= 0; i--) a += a + get_rac(c, state + 22 + FFMIN(i, 9)); // 22..31 e = -(is_signed && get_rac(c, state + 11 + FFMIN(e, 10))); // 11..21 return (a ^ e) - e; } } static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed) { return get_symbol_inline(c, state, is_signed); } static inline int get_vlc_symbol(GetBitContext *gb, VlcState *const state, int bits) { int k, i, v, ret; i = state->count; k = 0; while (i < state->error_sum) { // FIXME: optimize k++; i += i; } v = get_sr_golomb(gb, k, 12, bits); ff_dlog(NULL, "v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k); v ^= ((2 * state->drift + state->count) >> 31); ret = fold(v + state->bias, bits); update_vlc_state(state, v); return ret; } static int is_input_end(FFV1Context *s, GetBitContext *gb) { if (s->ac != AC_GOLOMB_RICE) { RangeCoder *const c = &s->c; if (c->overread > MAX_OVERREAD) return AVERROR_INVALIDDATA; } else { if (get_bits_left(gb) < 1) return AVERROR_INVALIDDATA; } return 0; } #define TYPE int16_t #define RENAME(name) name #include "ffv1dec_template.c" #undef TYPE #undef RENAME #define TYPE int32_t #define RENAME(name) name ## 32 #include "ffv1dec_template.c" static int decode_plane(FFV1Context *f, FFV1Context *s, FFV1SliceContext *sc, GetBitContext *gb, uint8_t *src, int w, int h, int stride, int plane_index, int pixel_stride) { int x, y; int16_t *sample[2]; sample[0] = sc->sample_buffer + 3; sample[1] = sc->sample_buffer + w + 6 + 3; sc->run_index = 0; memset(sc->sample_buffer, 0, 2 * (w + 6) * sizeof(*sc->sample_buffer)); for (y = 0; y < h; y++) { int16_t *temp = sample[0]; // FIXME: try a normal buffer sample[0] = sample[1]; sample[1] = temp; sample[1][-1] = sample[0][0]; sample[0][w] = sample[0][w - 1]; if (s->avctx->bits_per_raw_sample <= 8) { int ret = decode_line(f, s, sc, gb, w, sample, plane_index, 8); if (ret < 0) return ret; for (x = 0; x < w; x++) src[x*pixel_stride + stride * y] = sample[1][x]; } else { int ret = decode_line(f, s, sc, gb, w, sample, plane_index, s->avctx->bits_per_raw_sample); if (ret < 0) return ret; if (s->packed_at_lsb) { for (x = 0; x < w; x++) { ((uint16_t*)(src + stride*y))[x*pixel_stride] = sample[1][x]; } } else { for (x = 0; x < w; x++) { ((uint16_t*)(src + stride*y))[x*pixel_stride] = sample[1][x] << (16 - s->avctx->bits_per_raw_sample) | ((uint16_t **)sample)[1][x] >> (2 * s->avctx->bits_per_raw_sample - 16); } } } } return 0; } static int decode_slice_header(const FFV1Context *f, FFV1Context *fs, FFV1SliceContext *sc, AVFrame *frame) { RangeCoder *c = &fs->c; uint8_t state[CONTEXT_SIZE]; unsigned ps, context_count; int sx, sy, sw, sh; memset(state, 128, sizeof(state)); sx = get_symbol(c, state, 0); sy = get_symbol(c, state, 0); sw = get_symbol(c, state, 0) + 1U; sh = get_symbol(c, state, 0) + 1U; av_assert0(f->version > 2); if (sx < 0 || sy < 0 || sw <= 0 || sh <= 0) return AVERROR_INVALIDDATA; if (sx > f->num_h_slices - sw || sy > f->num_v_slices - sh) return AVERROR_INVALIDDATA; sc->slice_x = sx * (int64_t)f->width / f->num_h_slices; sc->slice_y = sy * (int64_t)f->height / f->num_v_slices; sc->slice_width = (sx + sw) * (int64_t)f->width / f->num_h_slices - sc->slice_x; sc->slice_height = (sy + sh) * (int64_t)f->height / f->num_v_slices - sc->slice_y; av_assert0((unsigned)sc->slice_width <= f->width && (unsigned)sc->slice_height <= f->height); av_assert0 ( (unsigned)sc->slice_x + (uint64_t)sc->slice_width <= f->width && (unsigned)sc->slice_y + (uint64_t)sc->slice_height <= f->height); if (fs->ac == AC_GOLOMB_RICE && sc->slice_width >= (1<<23)) return AVERROR_INVALIDDATA; for (unsigned i = 0; i < f->plane_count; i++) { PlaneContext * const p = &fs->plane[i]; int idx = get_symbol(c, state, 0); if (idx >= (unsigned)f->quant_table_count) { av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n"); return -1; } p->quant_table_index = idx; context_count = f->context_count[idx]; if (p->context_count < context_count) { av_freep(&p->state); av_freep(&p->vlc_state); } p->context_count = context_count; } ps = get_symbol(c, state, 0); if (ps == 1) { frame->flags |= AV_FRAME_FLAG_INTERLACED; frame->flags |= AV_FRAME_FLAG_TOP_FIELD_FIRST; } else if (ps == 2) { frame->flags |= AV_FRAME_FLAG_INTERLACED; frame->flags &= ~AV_FRAME_FLAG_TOP_FIELD_FIRST; } else if (ps == 3) { frame->flags &= ~AV_FRAME_FLAG_INTERLACED; } frame->sample_aspect_ratio.num = get_symbol(c, state, 0); frame->sample_aspect_ratio.den = get_symbol(c, state, 0); if (av_image_check_sar(f->width, f->height, frame->sample_aspect_ratio) < 0) { av_log(f->avctx, AV_LOG_WARNING, "ignoring invalid SAR: %u/%u\n", frame->sample_aspect_ratio.num, frame->sample_aspect_ratio.den); frame->sample_aspect_ratio = (AVRational){ 0, 1 }; } if (fs->version > 3) { fs->slice_reset_contexts = get_rac(c, state); fs->slice_coding_mode = get_symbol(c, state, 0); if (fs->slice_coding_mode != 1) { fs->slice_rct_by_coef = get_symbol(c, state, 0); fs->slice_rct_ry_coef = get_symbol(c, state, 0); if ((uint64_t)fs->slice_rct_by_coef + (uint64_t)fs->slice_rct_ry_coef > 4) { av_log(f->avctx, AV_LOG_ERROR, "slice_rct_y_coef out of range\n"); return AVERROR_INVALIDDATA; } } } return 0; } static int decode_slice(AVCodecContext *c, void *arg) { FFV1Context *fs = *(void **)arg; FFV1Context *f = fs->avctx->priv_data; int width, height, x, y, ret; const int ps = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step; AVFrame * const p = f->picture.f; const int si = (FFV1Context**)arg - f->slice_context; FFV1SliceContext *sc = &f->slices[si]; GetBitContext gb; if (f->fsrc && !(p->flags & AV_FRAME_FLAG_KEY) && f->last_picture.f) ff_progress_frame_await(&f->last_picture, si); if(f->fsrc && !(p->flags & AV_FRAME_FLAG_KEY)) { FFV1Context *fssrc = f->fsrc->slice_context[si]; if (!(p->flags & AV_FRAME_FLAG_KEY)) fs->slice_damaged |= fssrc->slice_damaged; for (int i = 0; i < f->plane_count; i++) { PlaneContext *psrc = &fssrc->plane[i]; PlaneContext *pdst = &fs->plane[i]; av_free(pdst->state); av_free(pdst->vlc_state); memcpy(pdst, psrc, sizeof(*pdst)); pdst->state = NULL; pdst->vlc_state = NULL; if (fssrc->ac) { pdst->state = av_malloc_array(CONTEXT_SIZE, psrc->context_count); memcpy(pdst->state, psrc->state, CONTEXT_SIZE * psrc->context_count); } else { pdst->vlc_state = av_malloc_array(sizeof(*pdst->vlc_state), psrc->context_count); memcpy(pdst->vlc_state, psrc->vlc_state, sizeof(*pdst->vlc_state) * psrc->context_count); } } } fs->slice_rct_by_coef = 1; fs->slice_rct_ry_coef = 1; if (f->version > 2) { if (ff_ffv1_init_slice_state(f, fs) < 0) return AVERROR(ENOMEM); if (decode_slice_header(f, fs, sc, p) < 0) { sc->slice_x = sc->slice_y = sc->slice_height = sc->slice_width = 0; fs->slice_damaged = 1; return AVERROR_INVALIDDATA; } } if ((ret = ff_ffv1_init_slice_state(f, fs)) < 0) return ret; if ((p->flags & AV_FRAME_FLAG_KEY) || fs->slice_reset_contexts) { ff_ffv1_clear_slice_state(f, fs); } else if (fs->slice_damaged) { return AVERROR_INVALIDDATA; } width = sc->slice_width; height = sc->slice_height; x = sc->slice_x; y = sc->slice_y; if (fs->ac == AC_GOLOMB_RICE) { if (f->version == 3 && f->micro_version > 1 || f->version > 3) get_rac(&fs->c, (uint8_t[]) { 129 }); fs->ac_byte_count = f->version > 2 || (!x && !y) ? fs->c.bytestream - fs->c.bytestream_start - 1 : 0; init_get_bits(&gb, fs->c.bytestream_start + fs->ac_byte_count, (fs->c.bytestream_end - fs->c.bytestream_start - fs->ac_byte_count) * 8); } av_assert1(width && height); if (f->colorspace == 0 && (f->chroma_planes || !f->transparency)) { const int chroma_width = AV_CEIL_RSHIFT(width, f->chroma_h_shift); const int chroma_height = AV_CEIL_RSHIFT(height, f->chroma_v_shift); const int cx = x >> f->chroma_h_shift; const int cy = y >> f->chroma_v_shift; decode_plane(f, fs, sc, &gb, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 1); if (f->chroma_planes) { decode_plane(f, fs, sc, &gb, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1); decode_plane(f, fs, sc, &gb, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1, 1); } if (f->transparency) decode_plane(f, fs, sc, &gb, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], (f->version >= 4 && !f->chroma_planes) ? 1 : 2, 1); } else if (f->colorspace == 0) { decode_plane(f, fs, sc, &gb, p->data[0] + ps*x + y*p->linesize[0] , width, height, p->linesize[0], 0, 2); decode_plane(f, fs, sc, &gb, p->data[0] + ps*x + y*p->linesize[0] + 1, width, height, p->linesize[0], 1, 2); } else if (f->use32bit) { uint8_t *planes[4] = { p->data[0] + ps * x + y * p->linesize[0], p->data[1] + ps * x + y * p->linesize[1], p->data[2] + ps * x + y * p->linesize[2], p->data[3] + ps * x + y * p->linesize[3] }; decode_rgb_frame32(f, fs, sc, &gb, planes, width, height, p->linesize); } else { uint8_t *planes[4] = { p->data[0] + ps * x + y * p->linesize[0], p->data[1] + ps * x + y * p->linesize[1], p->data[2] + ps * x + y * p->linesize[2], p->data[3] + ps * x + y * p->linesize[3] }; decode_rgb_frame(f, fs, sc, &gb, planes, width, height, p->linesize); } if (fs->ac != AC_GOLOMB_RICE && f->version > 2) { int v; get_rac(&fs->c, (uint8_t[]) { 129 }); v = fs->c.bytestream_end - fs->c.bytestream - 2 - 5*f->ec; if (v) { av_log(f->avctx, AV_LOG_ERROR, "bytestream end mismatching by %d\n", v); fs->slice_damaged = 1; } } ff_progress_frame_report(&f->picture, si); return 0; } static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale) { int v; int i = 0; uint8_t state[CONTEXT_SIZE]; memset(state, 128, sizeof(state)); for (v = 0; i < 128; v++) { unsigned len = get_symbol(c, state, 0) + 1U; if (len > 128 - i || !len) return AVERROR_INVALIDDATA; while (len--) { quant_table[i] = scale * v; i++; } } for (i = 1; i < 128; i++) quant_table[256 - i] = -quant_table[i]; quant_table[128] = -quant_table[127]; return 2 * v - 1; } static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]) { int i; int context_count = 1; for (i = 0; i < 5; i++) { int ret = read_quant_table(c, quant_table[i], context_count); if (ret < 0) return ret; context_count *= ret; if (context_count > 32768U) { return AVERROR_INVALIDDATA; } } return (context_count + 1) / 2; } static int read_extra_header(FFV1Context *f) { RangeCoder *const c = &f->c; uint8_t state[CONTEXT_SIZE]; int ret; uint8_t state2[32][CONTEXT_SIZE]; unsigned crc = 0; memset(state2, 128, sizeof(state2)); memset(state, 128, sizeof(state)); ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size); ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8); f->version = get_symbol(c, state, 0); if (f->version < 2) { av_log(f->avctx, AV_LOG_ERROR, "Invalid version in global header\n"); return AVERROR_INVALIDDATA; } if (f->version > 4) { av_log(f->avctx, AV_LOG_ERROR, "unsupported version %d\n", f->version); return AVERROR_PATCHWELCOME; } if (f->version > 2) { c->bytestream_end -= 4; f->micro_version = get_symbol(c, state, 0); if (f->micro_version < 0) return AVERROR_INVALIDDATA; } f->ac = get_symbol(c, state, 0); if (f->ac == AC_RANGE_CUSTOM_TAB) { for (int i = 1; i < 256; i++) f->state_transition[i] = get_symbol(c, state, 1) + c->one_state[i]; } f->colorspace = get_symbol(c, state, 0); //YUV cs type f->avctx->bits_per_raw_sample = get_symbol(c, state, 0); f->chroma_planes = get_rac(c, state); f->chroma_h_shift = get_symbol(c, state, 0); f->chroma_v_shift = get_symbol(c, state, 0); f->transparency = get_rac(c, state); f->plane_count = 1 + (f->chroma_planes || f->version<4) + f->transparency; f->num_h_slices = 1 + get_symbol(c, state, 0); f->num_v_slices = 1 + get_symbol(c, state, 0); if (f->chroma_h_shift > 4U || f->chroma_v_shift > 4U) { av_log(f->avctx, AV_LOG_ERROR, "chroma shift parameters %d %d are invalid\n", f->chroma_h_shift, f->chroma_v_shift); return AVERROR_INVALIDDATA; } if (f->num_h_slices > (unsigned)f->width || !f->num_h_slices || f->num_v_slices > (unsigned)f->height || !f->num_v_slices ) { av_log(f->avctx, AV_LOG_ERROR, "slice count invalid\n"); return AVERROR_INVALIDDATA; } if (f->num_h_slices > MAX_SLICES / f->num_v_slices) { av_log(f->avctx, AV_LOG_ERROR, "slice count unsupported\n"); return AVERROR_PATCHWELCOME; } f->quant_table_count = get_symbol(c, state, 0); if (f->quant_table_count > (unsigned)MAX_QUANT_TABLES || !f->quant_table_count) { av_log(f->avctx, AV_LOG_ERROR, "quant table count %d is invalid\n", f->quant_table_count); f->quant_table_count = 0; return AVERROR_INVALIDDATA; } for (int i = 0; i < f->quant_table_count; i++) { f->context_count[i] = read_quant_tables(c, f->quant_tables[i]); if (f->context_count[i] < 0) { av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n"); return AVERROR_INVALIDDATA; } } if ((ret = ff_ffv1_allocate_initial_states(f)) < 0) return ret; for (int i = 0; i < f->quant_table_count; i++) if (get_rac(c, state)) { for (int j = 0; j < f->context_count[i]; j++) for (int k = 0; k < CONTEXT_SIZE; k++) { int pred = j ? f->initial_states[i][j - 1][k] : 128; f->initial_states[i][j][k] = (pred + get_symbol(c, state2[k], 1)) & 0xFF; } } if (f->version > 2) { f->ec = get_symbol(c, state, 0); if (f->micro_version > 2) f->intra = get_symbol(c, state, 0); } if (f->version > 2) { unsigned v; v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, f->avctx->extradata, f->avctx->extradata_size); if (v || f->avctx->extradata_size < 4) { av_log(f->avctx, AV_LOG_ERROR, "CRC mismatch %X!\n", v); return AVERROR_INVALIDDATA; } crc = AV_RB32(f->avctx->extradata + f->avctx->extradata_size - 4); } if (f->avctx->debug & FF_DEBUG_PICT_INFO) av_log(f->avctx, AV_LOG_DEBUG, "global: ver:%d.%d, coder:%d, colorspace: %d bpr:%d chroma:%d(%d:%d), alpha:%d slices:%dx%d qtabs:%d ec:%d intra:%d CRC:0x%08X\n", f->version, f->micro_version, f->ac, f->colorspace, f->avctx->bits_per_raw_sample, f->chroma_planes, f->chroma_h_shift, f->chroma_v_shift, f->transparency, f->num_h_slices, f->num_v_slices, f->quant_table_count, f->ec, f->intra, crc ); return 0; } static int read_header(FFV1Context *f) { uint8_t state[CONTEXT_SIZE]; int context_count = -1; //-1 to avoid warning RangeCoder *const c = &f->slice_context[0]->c; memset(state, 128, sizeof(state)); if (f->version < 2) { int chroma_planes, chroma_h_shift, chroma_v_shift, transparency, colorspace, bits_per_raw_sample; unsigned v= get_symbol(c, state, 0); if (v >= 2) { av_log(f->avctx, AV_LOG_ERROR, "invalid version %d in ver01 header\n", v); return AVERROR_INVALIDDATA; } f->version = v; f->ac = get_symbol(c, state, 0); if (f->ac == AC_RANGE_CUSTOM_TAB) { for (int i = 1; i < 256; i++) { int st = get_symbol(c, state, 1) + c->one_state[i]; if (st < 1 || st > 255) { av_log(f->avctx, AV_LOG_ERROR, "invalid state transition %d\n", st); return AVERROR_INVALIDDATA; } f->state_transition[i] = st; } } colorspace = get_symbol(c, state, 0); //YUV cs type bits_per_raw_sample = f->version > 0 ? get_symbol(c, state, 0) : f->avctx->bits_per_raw_sample; chroma_planes = get_rac(c, state); chroma_h_shift = get_symbol(c, state, 0); chroma_v_shift = get_symbol(c, state, 0); transparency = get_rac(c, state); if (colorspace == 0 && f->avctx->skip_alpha) transparency = 0; if (f->plane_count) { if (colorspace != f->colorspace || bits_per_raw_sample != f->avctx->bits_per_raw_sample || chroma_planes != f->chroma_planes || chroma_h_shift != f->chroma_h_shift || chroma_v_shift != f->chroma_v_shift || transparency != f->transparency) { av_log(f->avctx, AV_LOG_ERROR, "Invalid change of global parameters\n"); return AVERROR_INVALIDDATA; } } if (chroma_h_shift > 4U || chroma_v_shift > 4U) { av_log(f->avctx, AV_LOG_ERROR, "chroma shift parameters %d %d are invalid\n", chroma_h_shift, chroma_v_shift); return AVERROR_INVALIDDATA; } f->colorspace = colorspace; f->avctx->bits_per_raw_sample = bits_per_raw_sample; f->chroma_planes = chroma_planes; f->chroma_h_shift = chroma_h_shift; f->chroma_v_shift = chroma_v_shift; f->transparency = transparency; f->plane_count = 2 + f->transparency; } if (f->colorspace == 0) { if (!f->transparency && !f->chroma_planes) { if (f->avctx->bits_per_raw_sample <= 8) f->avctx->pix_fmt = AV_PIX_FMT_GRAY8; else if (f->avctx->bits_per_raw_sample == 9) { f->packed_at_lsb = 1; f->avctx->pix_fmt = AV_PIX_FMT_GRAY9; } else if (f->avctx->bits_per_raw_sample == 10) { f->packed_at_lsb = 1; f->avctx->pix_fmt = AV_PIX_FMT_GRAY10; } else if (f->avctx->bits_per_raw_sample == 12) { f->packed_at_lsb = 1; f->avctx->pix_fmt = AV_PIX_FMT_GRAY12; } else if (f->avctx->bits_per_raw_sample == 14) { f->packed_at_lsb = 1; f->avctx->pix_fmt = AV_PIX_FMT_GRAY14; } else if (f->avctx->bits_per_raw_sample == 16) { f->packed_at_lsb = 1; f->avctx->pix_fmt = AV_PIX_FMT_GRAY16; } else if (f->avctx->bits_per_raw_sample < 16) { f->avctx->pix_fmt = AV_PIX_FMT_GRAY16; } else return AVERROR(ENOSYS); } else if (f->transparency && !f->chroma_planes) { if (f->avctx->bits_per_raw_sample <= 8) f->avctx->pix_fmt = AV_PIX_FMT_YA8; else return AVERROR(ENOSYS); } else if (f->avctx->bits_per_raw_sample<=8 && !f->transparency) { switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P; break; case 0x01: f->avctx->pix_fmt = AV_PIX_FMT_YUV440P; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P; break; case 0x20: f->avctx->pix_fmt = AV_PIX_FMT_YUV411P; break; case 0x22: f->avctx->pix_fmt = AV_PIX_FMT_YUV410P; break; } } else if (f->avctx->bits_per_raw_sample <= 8 && f->transparency) { switch(16*f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P; break; } } else if (f->avctx->bits_per_raw_sample == 9 && !f->transparency) { f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P9; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P9; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P9; break; } } else if (f->avctx->bits_per_raw_sample == 9 && f->transparency) { f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P9; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P9; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P9; break; } } else if (f->avctx->bits_per_raw_sample == 10 && !f->transparency) { f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P10; break; case 0x01: f->avctx->pix_fmt = AV_PIX_FMT_YUV440P10; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P10; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P10; break; } } else if (f->avctx->bits_per_raw_sample == 10 && f->transparency) { f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P10; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P10; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P10; break; } } else if (f->avctx->bits_per_raw_sample == 12 && !f->transparency) { f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P12; break; case 0x01: f->avctx->pix_fmt = AV_PIX_FMT_YUV440P12; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P12; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P12; break; } } else if (f->avctx->bits_per_raw_sample == 12 && f->transparency) { f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P12; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P12; break; } } else if (f->avctx->bits_per_raw_sample == 14 && !f->transparency) { f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P14; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P14; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P14; break; } } else if (f->avctx->bits_per_raw_sample == 16 && !f->transparency){ f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUV444P16; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUV422P16; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUV420P16; break; } } else if (f->avctx->bits_per_raw_sample == 16 && f->transparency){ f->packed_at_lsb = 1; switch(16 * f->chroma_h_shift + f->chroma_v_shift) { case 0x00: f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P16; break; case 0x10: f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P16; break; case 0x11: f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P16; break; } } } else if (f->colorspace == 1) { if (f->chroma_h_shift || f->chroma_v_shift) { av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n"); return AVERROR(ENOSYS); } if ( f->avctx->bits_per_raw_sample <= 8 && !f->transparency) f->avctx->pix_fmt = AV_PIX_FMT_0RGB32; else if (f->avctx->bits_per_raw_sample <= 8 && f->transparency) f->avctx->pix_fmt = AV_PIX_FMT_RGB32; else if (f->avctx->bits_per_raw_sample == 9 && !f->transparency) f->avctx->pix_fmt = AV_PIX_FMT_GBRP9; else if (f->avctx->bits_per_raw_sample == 10 && !f->transparency) f->avctx->pix_fmt = AV_PIX_FMT_GBRP10; else if (f->avctx->bits_per_raw_sample == 10 && f->transparency) f->avctx->pix_fmt = AV_PIX_FMT_GBRAP10; else if (f->avctx->bits_per_raw_sample == 12 && !f->transparency) f->avctx->pix_fmt = AV_PIX_FMT_GBRP12; else if (f->avctx->bits_per_raw_sample == 12 && f->transparency) f->avctx->pix_fmt = AV_PIX_FMT_GBRAP12; else if (f->avctx->bits_per_raw_sample == 14 && !f->transparency) f->avctx->pix_fmt = AV_PIX_FMT_GBRP14; else if (f->avctx->bits_per_raw_sample == 14 && f->transparency) f->avctx->pix_fmt = AV_PIX_FMT_GBRAP14; else if (f->avctx->bits_per_raw_sample == 16 && !f->transparency) { f->avctx->pix_fmt = AV_PIX_FMT_GBRP16; f->use32bit = 1; } else if (f->avctx->bits_per_raw_sample == 16 && f->transparency) { f->avctx->pix_fmt = AV_PIX_FMT_GBRAP16; f->use32bit = 1; } } else { av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n"); return AVERROR(ENOSYS); } if (f->avctx->pix_fmt == AV_PIX_FMT_NONE) { av_log(f->avctx, AV_LOG_ERROR, "format not supported\n"); return AVERROR(ENOSYS); } ff_dlog(f->avctx, "%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift, f->avctx->pix_fmt); if (f->version < 2) { context_count = read_quant_tables(c, f->quant_tables[0]); if (context_count < 0) { av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n"); return AVERROR_INVALIDDATA; } f->slice_count = f->max_slice_count; } else if (f->version < 3) { f->slice_count = get_symbol(c, state, 0); } else { const uint8_t *p = c->bytestream_end; for (f->slice_count = 0; f->slice_count < MAX_SLICES && 3 + 5*!!f->ec < p - c->bytestream_start; f->slice_count++) { int trailer = 3 + 5*!!f->ec; int size = AV_RB24(p-trailer); if (size + trailer > p - c->bytestream_start) break; p -= size + trailer; } } if (f->slice_count > (unsigned)MAX_SLICES || f->slice_count <= 0 || f->slice_count > f->max_slice_count) { av_log(f->avctx, AV_LOG_ERROR, "slice count %d is invalid (max=%d)\n", f->slice_count, f->max_slice_count); return AVERROR_INVALIDDATA; } for (int j = 0; j < f->slice_count; j++) { FFV1Context *fs = f->slice_context[j]; FFV1SliceContext *sc = &f->slices[j]; fs->ac = f->ac; fs->packed_at_lsb = f->packed_at_lsb; fs->slice_damaged = 0; if (f->version == 2) { int sx = get_symbol(c, state, 0); int sy = get_symbol(c, state, 0); int sw = get_symbol(c, state, 0) + 1U; int sh = get_symbol(c, state, 0) + 1U; if (sx < 0 || sy < 0 || sw <= 0 || sh <= 0) return AVERROR_INVALIDDATA; if (sx > f->num_h_slices - sw || sy > f->num_v_slices - sh) return AVERROR_INVALIDDATA; sc->slice_x = sx * (int64_t)f->width / f->num_h_slices; sc->slice_y = sy * (int64_t)f->height / f->num_v_slices; sc->slice_width = (sx + sw) * (int64_t)f->width / f->num_h_slices - sc->slice_x; sc->slice_height = (sy + sh) * (int64_t)f->height / f->num_v_slices - sc->slice_y; av_assert0((unsigned)sc->slice_width <= f->width && (unsigned)sc->slice_height <= f->height); av_assert0 ( (unsigned)sc->slice_x + (uint64_t)sc->slice_width <= f->width && (unsigned)sc->slice_y + (uint64_t)sc->slice_height <= f->height); } for (int i = 0; i < f->plane_count; i++) { PlaneContext *const p = &fs->plane[i]; if (f->version == 2) { int idx = get_symbol(c, state, 0); if (idx >= (unsigned)f->quant_table_count) { av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n"); return AVERROR_INVALIDDATA; } p->quant_table_index = idx; context_count = f->context_count[idx]; } if (f->version <= 2) { av_assert0(context_count >= 0); if (p->context_count < context_count) { av_freep(&p->state); av_freep(&p->vlc_state); } p->context_count = context_count; } } } return 0; } static av_cold int decode_init(AVCodecContext *avctx) { FFV1Context *f = avctx->priv_data; int ret; if ((ret = ff_ffv1_common_init(avctx)) < 0) return ret; if (avctx->extradata_size > 0 && (ret = read_extra_header(f)) < 0) return ret; if ((ret = ff_ffv1_init_slice_contexts(f)) < 0) return ret; return 0; } static int decode_frame(AVCodecContext *avctx, AVFrame *rframe, int *got_frame, AVPacket *avpkt) { uint8_t *buf = avpkt->data; int buf_size = avpkt->size; FFV1Context *f = avctx->priv_data; RangeCoder *const c = &f->slice_context[0]->c; int ret, key_frame; uint8_t keystate = 128; uint8_t *buf_p; AVFrame *p; ff_progress_frame_unref(&f->last_picture); FFSWAP(ProgressFrame, f->picture, f->last_picture); f->avctx = avctx; ff_init_range_decoder(c, buf, buf_size); ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8); if (get_rac(c, &keystate)) { key_frame = AV_FRAME_FLAG_KEY; f->key_frame_ok = 0; if ((ret = read_header(f)) < 0) return ret; f->key_frame_ok = 1; } else { if (!f->key_frame_ok) { av_log(avctx, AV_LOG_ERROR, "Cannot decode non-keyframe without valid keyframe\n"); return AVERROR_INVALIDDATA; } key_frame = 0; } if (f->ac != AC_GOLOMB_RICE) { if (buf_size < avctx->width * avctx->height / (128*8)) return AVERROR_INVALIDDATA; } else { int w = avctx->width; int s = 1 + w / (1<<23); int i; w /= s; for (i = 0; w > (1<height + i + 6) / 8 * s) return AVERROR_INVALIDDATA; } ret = ff_progress_frame_get_buffer(avctx, &f->picture, AV_GET_BUFFER_FLAG_REF); if (ret < 0) return ret; p = f->picture.f; p->pict_type = AV_PICTURE_TYPE_I; //FIXME I vs. P p->flags = (p->flags & ~AV_FRAME_FLAG_KEY) | key_frame; if (f->version < 3 && avctx->field_order > AV_FIELD_PROGRESSIVE) { /* we have interlaced material flagged in container */ p->flags |= AV_FRAME_FLAG_INTERLACED; if (avctx->field_order == AV_FIELD_TT || avctx->field_order == AV_FIELD_TB) p->flags |= AV_FRAME_FLAG_TOP_FIELD_FIRST; } if (avctx->debug & FF_DEBUG_PICT_INFO) av_log(avctx, AV_LOG_DEBUG, "ver:%d keyframe:%d coder:%d ec:%d slices:%d bps:%d\n", f->version, !!(p->flags & AV_FRAME_FLAG_KEY), f->ac, f->ec, f->slice_count, f->avctx->bits_per_raw_sample); ff_thread_finish_setup(avctx); buf_p = buf + buf_size; for (int i = f->slice_count - 1; i >= 0; i--) { FFV1Context *fs = f->slice_context[i]; int trailer = 3 + 5*!!f->ec; int v; if (i || f->version > 2) { if (trailer > buf_p - buf) v = INT_MAX; else v = AV_RB24(buf_p-trailer) + trailer; } else v = buf_p - c->bytestream_start; if (buf_p - c->bytestream_start < v) { av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n"); ff_progress_frame_report(&f->picture, INT_MAX); return AVERROR_INVALIDDATA; } buf_p -= v; if (f->ec) { unsigned crc = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, v); if (crc) { int64_t ts = avpkt->pts != AV_NOPTS_VALUE ? avpkt->pts : avpkt->dts; av_log(f->avctx, AV_LOG_ERROR, "slice CRC mismatch %X!", crc); if (ts != AV_NOPTS_VALUE && avctx->pkt_timebase.num) { av_log(f->avctx, AV_LOG_ERROR, "at %f seconds\n", ts*av_q2d(avctx->pkt_timebase)); } else if (ts != AV_NOPTS_VALUE) { av_log(f->avctx, AV_LOG_ERROR, "at %"PRId64"\n", ts); } else { av_log(f->avctx, AV_LOG_ERROR, "\n"); } fs->slice_damaged = 1; } if (avctx->debug & FF_DEBUG_PICT_INFO) { av_log(avctx, AV_LOG_DEBUG, "slice %d, CRC: 0x%08"PRIX32"\n", i, AV_RB32(buf_p + v - 4)); } } if (i) { ff_init_range_decoder(&fs->c, buf_p, v); } else fs->c.bytestream_end = buf_p + v; fs->avctx = avctx; } avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*)); for (int i = f->slice_count - 1; i >= 0; i--) { FFV1Context *fs = f->slice_context[i]; FFV1SliceContext *sc = &f->slices[i]; if (fs->slice_damaged && f->last_picture.f) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); const uint8_t *src[4]; uint8_t *dst[4]; ff_progress_frame_await(&f->last_picture, INT_MAX); for (int j = 0; j < desc->nb_components; j++) { int pixshift = desc->comp[j].depth > 8; int sh = (j == 1 || j == 2) ? f->chroma_h_shift : 0; int sv = (j == 1 || j == 2) ? f->chroma_v_shift : 0; dst[j] = p->data[j] + p->linesize[j] * (sc->slice_y >> sv) + ((sc->slice_x >> sh) << pixshift); src[j] = f->last_picture.f->data[j] + f->last_picture.f->linesize[j] * (sc->slice_y >> sv) + ((sc->slice_x >> sh) << pixshift); } if (desc->flags & AV_PIX_FMT_FLAG_PAL) { dst[1] = p->data[1]; src[1] = f->last_picture.f->data[1]; } av_image_copy(dst, p->linesize, src, f->last_picture.f->linesize, avctx->pix_fmt, sc->slice_width, sc->slice_height); } } ff_progress_frame_report(&f->picture, INT_MAX); ff_progress_frame_unref(&f->last_picture); if ((ret = av_frame_ref(rframe, f->picture.f)) < 0) return ret; *got_frame = 1; return buf_size; } #if HAVE_THREADS static void copy_fields(FFV1Context *fsdst, const FFV1Context *fssrc, const FFV1Context *fsrc) { fsdst->version = fsrc->version; fsdst->micro_version = fsrc->micro_version; fsdst->chroma_planes = fsrc->chroma_planes; fsdst->chroma_h_shift = fsrc->chroma_h_shift; fsdst->chroma_v_shift = fsrc->chroma_v_shift; fsdst->transparency = fsrc->transparency; fsdst->plane_count = fsrc->plane_count; fsdst->ac = fsrc->ac; fsdst->colorspace = fsrc->colorspace; fsdst->ec = fsrc->ec; fsdst->intra = fsrc->intra; fsdst->slice_damaged = fssrc->slice_damaged; fsdst->key_frame_ok = fsrc->key_frame_ok; fsdst->packed_at_lsb = fsrc->packed_at_lsb; fsdst->slice_count = fsrc->slice_count; } static int update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { FFV1Context *fsrc = src->priv_data; FFV1Context *fdst = dst->priv_data; if (dst == src) return 0; copy_fields(fdst, fsrc, fsrc); fdst->use32bit = fsrc->use32bit; memcpy(fdst->state_transition, fsrc->state_transition, sizeof(fdst->state_transition)); // in version 1 there is a single per-keyframe quant table, so // we need to propagate it between threads if (fsrc->version < 2) memcpy(fdst->quant_tables[0], fsrc->quant_tables[0], sizeof(fsrc->quant_tables[0])); for (int i = 0; i < fdst->num_h_slices * fdst->num_v_slices; i++) { FFV1Context *fssrc = fsrc->slice_context[i]; FFV1Context *fsdst = fdst->slice_context[i]; FFV1SliceContext *sc = &fdst->slices[i]; const FFV1SliceContext *sc0 = &fsrc->slices[i]; copy_fields(fsdst, fssrc, fsrc); if (fsrc->version < 3) { sc->slice_x = sc0->slice_x; sc->slice_y = sc0->slice_y; sc->slice_width = sc0->slice_width; sc->slice_height = sc0->slice_height; } } av_assert0(!fdst->plane[0].state); av_assert1(fdst->max_slice_count == fsrc->max_slice_count); ff_progress_frame_replace(&fdst->picture, &fsrc->picture); fdst->fsrc = fsrc; return 0; } #endif static av_cold int ffv1_decode_close(AVCodecContext *avctx) { FFV1Context *const s = avctx->priv_data; ff_progress_frame_unref(&s->picture); ff_progress_frame_unref(&s->last_picture); return ff_ffv1_close(avctx); } const FFCodec ff_ffv1_decoder = { .p.name = "ffv1", CODEC_LONG_NAME("FFmpeg video codec #1"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_FFV1, .priv_data_size = sizeof(FFV1Context), .init = decode_init, .close = ffv1_decode_close, FF_CODEC_DECODE_CB(decode_frame), UPDATE_THREAD_CONTEXT(update_thread_context), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_USES_PROGRESSFRAMES, };