/* * SVQ1 Encoder * Copyright (C) 2004 Mike Melanson * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Sorenson Vector Quantizer #1 (SVQ1) video codec. * For more information of the SVQ1 algorithm, visit: * http://www.pcisys.net/~melanson/codecs/ */ #include "libavutil/emms.h" #include "avcodec.h" #include "codec_internal.h" #include "encode.h" #include "hpeldsp.h" #include "me_cmp.h" #include "mpegvideo.h" #include "h263.h" #include "h263enc.h" #include "internal.h" #include "mpegutils.h" #include "packet_internal.h" #include "put_bits.h" #include "svq1.h" #include "svq1encdsp.h" #include "svq1enc_cb.h" #include "version.h" #include "libavutil/avassert.h" #include "libavutil/frame.h" #include "libavutil/mem_internal.h" // Workaround for GCC bug 102513 #if AV_GCC_VERSION_AT_LEAST(10, 0) && AV_GCC_VERSION_AT_MOST(12, 0) \ && !defined(__clang__) && !defined(__INTEL_COMPILER) #pragma GCC optimize ("no-ipa-cp-clone") #endif typedef struct SVQ1EncContext { /* FIXME: Needed for motion estimation, should not be used for anything * else, the idea is to make the motion estimation eventually independent * of MpegEncContext, so this will be removed then. */ MpegEncContext m; AVCodecContext *avctx; MECmpContext mecc; HpelDSPContext hdsp; AVFrame *current_picture; AVFrame *last_picture; /* Some compression statistics */ enum AVPictureType pict_type; int quality; /* why ooh why this sick breadth first order, * everything is slower and more complex */ PutBitContext reorder_pb[6]; int frame_width; int frame_height; /* Y plane block dimensions */ int y_block_width; int y_block_height; /* U & V plane (C planes) block dimensions */ int c_block_width; int c_block_height; DECLARE_ALIGNED(16, int16_t, encoded_block_levels)[6][7][256]; uint16_t *mb_type; uint32_t *dummy; int16_t (*motion_val8[3])[2]; int16_t (*motion_val16[3])[2]; int64_t rd_total; uint8_t *scratchbuf; int motion_est; SVQ1EncDSPContext svq1encdsp; } SVQ1EncContext; static void svq1_write_header(SVQ1EncContext *s, PutBitContext *pb, int frame_type) { int i; /* frame code */ put_bits(pb, 22, 0x20); /* temporal reference (sure hope this is a "don't care") */ put_bits(pb, 8, 0x00); /* frame type */ put_bits(pb, 2, frame_type - 1); if (frame_type == AV_PICTURE_TYPE_I) { /* no checksum since frame code is 0x20 */ /* no embedded string either */ /* output 5 unknown bits (2 + 2 + 1) */ put_bits(pb, 5, 2); /* 2 needed by quicktime decoder */ i = ff_match_2uint16(ff_svq1_frame_size_table, FF_ARRAY_ELEMS(ff_svq1_frame_size_table), s->frame_width, s->frame_height); put_bits(pb, 3, i); if (i == 7) { put_bits(pb, 12, s->frame_width); put_bits(pb, 12, s->frame_height); } } /* no checksum or extra data (next 2 bits get 0) */ put_bits(pb, 2, 0); } #define QUALITY_THRESHOLD 100 #define THRESHOLD_MULTIPLIER 0.6 static int ssd_int8_vs_int16_c(const int8_t *pix1, const int16_t *pix2, intptr_t size) { int score = 0, i; for (i = 0; i < size; i++) score += (pix1[i] - pix2[i]) * (pix1[i] - pix2[i]); return score; } static int encode_block(SVQ1EncContext *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, unsigned level, int threshold, int lambda, int intra) { int count, y, x, i, j, split, best_mean, best_score, best_count; int best_vector[6]; int block_sum[7] = { 0, 0, 0, 0, 0, 0 }; int w = 2 << (level + 2 >> 1); int h = 2 << (level + 1 >> 1); int size = w * h; int16_t (*block)[256] = s->encoded_block_levels[level]; const int8_t *codebook_sum, *codebook; const uint16_t(*mean_vlc)[2]; const uint8_t(*multistage_vlc)[2]; best_score = 0; // FIXME: Optimize, this does not need to be done multiple times. if (intra) { // level is 5 when encode_block is called from svq1_encode_plane // and always < 4 when called recursively from this function. codebook_sum = level < 4 ? svq1_intra_codebook_sum[level] : NULL; codebook = ff_svq1_intra_codebooks[level]; mean_vlc = ff_svq1_intra_mean_vlc; multistage_vlc = ff_svq1_intra_multistage_vlc[level]; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int v = src[x + y * stride]; block[0][x + w * y] = v; best_score += v * v; block_sum[0] += v; } } } else { // level is 5 or < 4, see above for details. codebook_sum = level < 4 ? svq1_inter_codebook_sum[level] : NULL; codebook = ff_svq1_inter_codebooks[level]; mean_vlc = ff_svq1_inter_mean_vlc + 256; multistage_vlc = ff_svq1_inter_multistage_vlc[level]; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int v = src[x + y * stride] - ref[x + y * stride]; block[0][x + w * y] = v; best_score += v * v; block_sum[0] += v; } } } best_count = 0; best_score -= (int)((unsigned)block_sum[0] * block_sum[0] >> (level + 3)); best_mean = block_sum[0] + (size >> 1) >> (level + 3); if (level < 4) { for (count = 1; count < 7; count++) { int best_vector_score = INT_MAX; int best_vector_sum = -999, best_vector_mean = -999; const int stage = count - 1; const int8_t *vector; for (i = 0; i < 16; i++) { int sum = codebook_sum[stage * 16 + i]; int sqr, diff, score; vector = codebook + stage * size * 16 + i * size; sqr = s->svq1encdsp.ssd_int8_vs_int16(vector, block[stage], size); diff = block_sum[stage] - sum; score = sqr - (diff * (int64_t)diff >> (level + 3)); // FIXME: 64 bits slooow if (score < best_vector_score) { int mean = diff + (size >> 1) >> (level + 3); av_assert2(mean > -300 && mean < 300); mean = av_clip(mean, intra ? 0 : -256, 255); best_vector_score = score; best_vector[stage] = i; best_vector_sum = sum; best_vector_mean = mean; } } av_assert0(best_vector_mean != -999); vector = codebook + stage * size * 16 + best_vector[stage] * size; for (j = 0; j < size; j++) block[stage + 1][j] = block[stage][j] - vector[j]; block_sum[stage + 1] = block_sum[stage] - best_vector_sum; best_vector_score += lambda * (+1 + 4 * count + multistage_vlc[1 + count][1] + mean_vlc[best_vector_mean][1]); if (best_vector_score < best_score) { best_score = best_vector_score; best_count = count; best_mean = best_vector_mean; } } } if (best_mean == -128) best_mean = -127; else if (best_mean == 128) best_mean = 127; split = 0; if (best_score > threshold && level) { int score = 0; int offset = level & 1 ? stride * h / 2 : w / 2; PutBitContext backup[6]; for (i = level - 1; i >= 0; i--) backup[i] = s->reorder_pb[i]; score += encode_block(s, src, ref, decoded, stride, level - 1, threshold >> 1, lambda, intra); score += encode_block(s, src + offset, ref + offset, decoded + offset, stride, level - 1, threshold >> 1, lambda, intra); score += lambda; if (score < best_score) { best_score = score; split = 1; } else { for (i = level - 1; i >= 0; i--) s->reorder_pb[i] = backup[i]; } } if (level > 0) put_bits(&s->reorder_pb[level], 1, split); if (!split) { av_assert1(best_mean >= 0 && best_mean < 256 || !intra); av_assert1(best_mean >= -256 && best_mean < 256); av_assert1(best_count >= 0 && best_count < 7); av_assert1(level < 4 || best_count == 0); /* output the encoding */ put_bits(&s->reorder_pb[level], multistage_vlc[1 + best_count][1], multistage_vlc[1 + best_count][0]); put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1], mean_vlc[best_mean][0]); for (i = 0; i < best_count; i++) { av_assert2(best_vector[i] >= 0 && best_vector[i] < 16); put_bits(&s->reorder_pb[level], 4, best_vector[i]); } for (y = 0; y < h; y++) for (x = 0; x < w; x++) decoded[x + y * stride] = src[x + y * stride] - block[best_count][x + w * y] + best_mean; } return best_score; } static void init_block_index(MpegEncContext *s){ s->block_index[0]= s->b8_stride*(s->mb_y*2 ) + s->mb_x*2; s->block_index[1]= s->b8_stride*(s->mb_y*2 ) + 1 + s->mb_x*2; s->block_index[2]= s->b8_stride*(s->mb_y*2 + 1) + s->mb_x*2; s->block_index[3]= s->b8_stride*(s->mb_y*2 + 1) + 1 + s->mb_x*2; s->block_index[4]= s->mb_stride*(s->mb_y + 1) + s->b8_stride*s->mb_height*2 + s->mb_x; s->block_index[5]= s->mb_stride*(s->mb_y + s->mb_height + 2) + s->b8_stride*s->mb_height*2 + s->mb_x; } static int svq1_encode_plane(SVQ1EncContext *s, int plane, PutBitContext *pb, const unsigned char *src_plane, unsigned char *ref_plane, unsigned char *decoded_plane, int width, int height, int src_stride, int stride) { int x, y; int i; int block_width, block_height; int level; int threshold[6]; uint8_t *src = s->scratchbuf + stride * 32; const int lambda = (s->quality * s->quality) >> (2 * FF_LAMBDA_SHIFT); /* figure out the acceptable level thresholds in advance */ threshold[5] = QUALITY_THRESHOLD; for (level = 4; level >= 0; level--) threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER; block_width = (width + 15) / 16; block_height = (height + 15) / 16; if (s->pict_type == AV_PICTURE_TYPE_P) { s->m.avctx = s->avctx; s->m.current_picture_ptr = &s->m.current_picture; s->m.last_picture_ptr = &s->m.last_picture; s->m.last_picture.f->data[0] = ref_plane; s->m.linesize = s->m.last_picture.f->linesize[0] = s->m.new_picture->linesize[0] = s->m.current_picture.f->linesize[0] = stride; s->m.width = width; s->m.height = height; s->m.mb_width = block_width; s->m.mb_height = block_height; s->m.mb_stride = s->m.mb_width + 1; s->m.b8_stride = 2 * s->m.mb_width + 1; s->m.f_code = 1; s->m.pict_type = s->pict_type; s->m.motion_est = s->motion_est; s->m.me.scene_change_score = 0; // s->m.out_format = FMT_H263; // s->m.unrestricted_mv = 1; s->m.lambda = s->quality; s->m.qscale = s->m.lambda * 139 + FF_LAMBDA_SCALE * 64 >> FF_LAMBDA_SHIFT + 7; s->m.lambda2 = s->m.lambda * s->m.lambda + FF_LAMBDA_SCALE / 2 >> FF_LAMBDA_SHIFT; if (!s->motion_val8[plane]) { s->motion_val8[plane] = av_mallocz((s->m.b8_stride * block_height * 2 + 2) * 2 * sizeof(int16_t)); s->motion_val16[plane] = av_mallocz((s->m.mb_stride * (block_height + 2) + 1) * 2 * sizeof(int16_t)); if (!s->motion_val8[plane] || !s->motion_val16[plane]) return AVERROR(ENOMEM); } s->m.mb_type = s->mb_type; // dummies, to avoid segfaults s->m.mb_mean = (uint8_t *)s->dummy; s->m.mb_var = (uint16_t *)s->dummy; s->m.mc_mb_var = (uint16_t *)s->dummy; s->m.current_picture.mb_type = s->dummy; s->m.current_picture.motion_val[0] = s->motion_val8[plane] + 2; s->m.p_mv_table = s->motion_val16[plane] + s->m.mb_stride + 1; s->m.mecc = s->mecc; // move ff_init_me(&s->m); s->m.me.dia_size = s->avctx->dia_size; s->m.first_slice_line = 1; for (y = 0; y < block_height; y++) { s->m.new_picture->data[0] = src - y * 16 * stride; // ugly s->m.mb_y = y; for (i = 0; i < 16 && i + 16 * y < height; i++) { memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride], width); for (x = width; x < 16 * block_width; x++) src[i * stride + x] = src[i * stride + x - 1]; } for (; i < 16 && i + 16 * y < 16 * block_height; i++) memcpy(&src[i * stride], &src[(i - 1) * stride], 16 * block_width); for (x = 0; x < block_width; x++) { s->m.mb_x = x; init_block_index(&s->m); ff_estimate_p_frame_motion(&s->m, x, y); } s->m.first_slice_line = 0; } ff_fix_long_p_mvs(&s->m, CANDIDATE_MB_TYPE_INTRA); ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code, CANDIDATE_MB_TYPE_INTER, 0); } s->m.first_slice_line = 1; for (y = 0; y < block_height; y++) { for (i = 0; i < 16 && i + 16 * y < height; i++) { memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride], width); for (x = width; x < 16 * block_width; x++) src[i * stride + x] = src[i * stride + x - 1]; } for (; i < 16 && i + 16 * y < 16 * block_height; i++) memcpy(&src[i * stride], &src[(i - 1) * stride], 16 * block_width); s->m.mb_y = y; for (x = 0; x < block_width; x++) { uint8_t reorder_buffer[2][6][7 * 32]; int count[2][6]; int offset = y * 16 * stride + x * 16; uint8_t *decoded = decoded_plane + offset; const uint8_t *ref = ref_plane + offset; int score[4] = { 0, 0, 0, 0 }, best; uint8_t *temp = s->scratchbuf; if (put_bytes_left(pb, 0) < 3000) { // FIXME: check size av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } s->m.mb_x = x; init_block_index(&s->m); if (s->pict_type == AV_PICTURE_TYPE_I || (s->m.mb_type[x + y * s->m.mb_stride] & CANDIDATE_MB_TYPE_INTRA)) { for (i = 0; i < 6; i++) init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i], 7 * 32); if (s->pict_type == AV_PICTURE_TYPE_P) { put_bits(&s->reorder_pb[5], SVQ1_BLOCK_INTRA_LEN, SVQ1_BLOCK_INTRA_CODE); score[0] = SVQ1_BLOCK_INTRA_LEN * lambda; } score[0] += encode_block(s, src + 16 * x, NULL, temp, stride, 5, 64, lambda, 1); for (i = 0; i < 6; i++) { count[0][i] = put_bits_count(&s->reorder_pb[i]); flush_put_bits(&s->reorder_pb[i]); } } else score[0] = INT_MAX; best = 0; if (s->pict_type == AV_PICTURE_TYPE_P) { int mx, my, pred_x, pred_y, dxy; int16_t *motion_ptr; motion_ptr = ff_h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y); if (s->m.mb_type[x + y * s->m.mb_stride] & CANDIDATE_MB_TYPE_INTER) { for (i = 0; i < 6; i++) init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i], 7 * 32); put_bits(&s->reorder_pb[5], SVQ1_BLOCK_INTER_LEN, SVQ1_BLOCK_INTER_CODE); s->m.pb = s->reorder_pb[5]; mx = motion_ptr[0]; my = motion_ptr[1]; av_assert1(mx >= -32 && mx <= 31); av_assert1(my >= -32 && my <= 31); av_assert1(pred_x >= -32 && pred_x <= 31); av_assert1(pred_y >= -32 && pred_y <= 31); ff_h263_encode_motion(&s->m.pb, mx - pred_x, 1); ff_h263_encode_motion(&s->m.pb, my - pred_y, 1); s->reorder_pb[5] = s->m.pb; score[1] += lambda * put_bits_count(&s->reorder_pb[5]); dxy = (mx & 1) + 2 * (my & 1); s->hdsp.put_pixels_tab[0][dxy](temp + 16*stride, ref + (mx >> 1) + stride * (my >> 1), stride, 16); score[1] += encode_block(s, src + 16 * x, temp + 16*stride, decoded, stride, 5, 64, lambda, 0); best = score[1] <= score[0]; score[2] = s->mecc.sse[0](NULL, src + 16 * x, ref, stride, 16); score[2] += SVQ1_BLOCK_SKIP_LEN * lambda; if (score[2] < score[best] && mx == 0 && my == 0) { best = 2; s->hdsp.put_pixels_tab[0][0](decoded, ref, stride, 16); put_bits(pb, SVQ1_BLOCK_SKIP_LEN, SVQ1_BLOCK_SKIP_CODE); } } if (best == 1) { for (i = 0; i < 6; i++) { count[1][i] = put_bits_count(&s->reorder_pb[i]); flush_put_bits(&s->reorder_pb[i]); } } else { motion_ptr[0] = motion_ptr[1] = motion_ptr[2] = motion_ptr[3] = motion_ptr[0 + 2 * s->m.b8_stride] = motion_ptr[1 + 2 * s->m.b8_stride] = motion_ptr[2 + 2 * s->m.b8_stride] = motion_ptr[3 + 2 * s->m.b8_stride] = 0; } } s->rd_total += score[best]; if (best != 2) for (i = 5; i >= 0; i--) ff_copy_bits(pb, reorder_buffer[best][i], count[best][i]); if (best == 0) s->hdsp.put_pixels_tab[0][0](decoded, temp, stride, 16); } s->m.first_slice_line = 0; } return 0; } static av_cold int svq1_encode_end(AVCodecContext *avctx) { SVQ1EncContext *const s = avctx->priv_data; int i; if (avctx->frame_num) av_log(avctx, AV_LOG_DEBUG, "RD: %f\n", s->rd_total / (double)(avctx->width * avctx->height * avctx->frame_num)); s->m.mb_type = NULL; ff_mpv_common_end(&s->m); av_freep(&s->m.me.scratchpad); av_freep(&s->m.me.map); av_freep(&s->mb_type); av_freep(&s->dummy); av_freep(&s->scratchbuf); for (i = 0; i < 3; i++) { av_freep(&s->motion_val8[i]); av_freep(&s->motion_val16[i]); } av_frame_free(&s->current_picture); av_frame_free(&s->last_picture); av_frame_free(&s->m.new_picture); return 0; } static av_cold int write_ident(AVCodecContext *avctx, const char *ident) { int size = strlen(ident); avctx->extradata = av_malloc(size + 8); if (!avctx->extradata) return AVERROR(ENOMEM); AV_WB32(avctx->extradata, size + 8); AV_WL32(avctx->extradata + 4, MKTAG('S', 'V', 'Q', '1')); memcpy(avctx->extradata + 8, ident, size); avctx->extradata_size = size + 8; return 0; } static av_cold int svq1_encode_init(AVCodecContext *avctx) { SVQ1EncContext *const s = avctx->priv_data; int ret; if (avctx->width >= 4096 || avctx->height >= 4096) { av_log(avctx, AV_LOG_ERROR, "Dimensions too large, maximum is 4095x4095\n"); return AVERROR(EINVAL); } ff_hpeldsp_init(&s->hdsp, avctx->flags); ff_me_cmp_init(&s->mecc, avctx); ff_mpegvideoencdsp_init(&s->m.mpvencdsp, avctx); s->current_picture = av_frame_alloc(); s->last_picture = av_frame_alloc(); if (!s->current_picture || !s->last_picture) { return AVERROR(ENOMEM); } s->frame_width = avctx->width; s->frame_height = avctx->height; s->y_block_width = (s->frame_width + 15) / 16; s->y_block_height = (s->frame_height + 15) / 16; s->c_block_width = (s->frame_width / 4 + 15) / 16; s->c_block_height = (s->frame_height / 4 + 15) / 16; s->avctx = avctx; s->m.avctx = avctx; if ((ret = ff_mpv_common_init(&s->m)) < 0) { return ret; } s->m.picture_structure = PICT_FRAME; s->m.me.temp = s->m.me.scratchpad = av_mallocz((avctx->width + 64) * 2 * 16 * 2 * sizeof(uint8_t)); s->mb_type = av_mallocz((s->y_block_width + 1) * s->y_block_height * sizeof(int16_t)); s->dummy = av_mallocz((s->y_block_width + 1) * s->y_block_height * sizeof(int32_t)); s->m.me.map = av_mallocz(2 * ME_MAP_SIZE * sizeof(*s->m.me.map)); s->m.new_picture = av_frame_alloc(); if (!s->m.me.scratchpad || !s->m.me.map || !s->mb_type || !s->dummy || !s->m.new_picture) return AVERROR(ENOMEM); s->m.me.score_map = s->m.me.map + ME_MAP_SIZE; ff_svq1enc_init(&s->svq1encdsp); ff_h263_encode_init(&s->m); // mv_penalty return write_ident(avctx, s->avctx->flags & AV_CODEC_FLAG_BITEXACT ? "Lavc" : LIBAVCODEC_IDENT); } static int svq1_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet) { SVQ1EncContext *const s = avctx->priv_data; PutBitContext pb; int i, ret; ret = ff_alloc_packet(avctx, pkt, s->y_block_width * s->y_block_height * MAX_MB_BYTES * 3 + AV_INPUT_BUFFER_MIN_SIZE); if (ret < 0) return ret; if (avctx->pix_fmt != AV_PIX_FMT_YUV410P) { av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n"); return -1; } if (!s->current_picture->data[0]) { if ((ret = ff_encode_alloc_frame(avctx, s->current_picture)) < 0) { return ret; } } if (!s->last_picture->data[0]) { ret = ff_encode_alloc_frame(avctx, s->last_picture); if (ret < 0) return ret; } if (!s->scratchbuf) { s->scratchbuf = av_malloc_array(s->current_picture->linesize[0], 16 * 3); if (!s->scratchbuf) return AVERROR(ENOMEM); } FFSWAP(AVFrame*, s->current_picture, s->last_picture); if (avctx->gop_size && (avctx->frame_num % avctx->gop_size)) s->pict_type = AV_PICTURE_TYPE_P; else s->pict_type = AV_PICTURE_TYPE_I; s->quality = pict->quality; ff_side_data_set_encoder_stats(pkt, pict->quality, NULL, 0, s->pict_type); init_put_bits(&pb, pkt->data, pkt->size); svq1_write_header(s, &pb, s->pict_type); for (i = 0; i < 3; i++) { int ret = svq1_encode_plane(s, i, &pb, pict->data[i], s->last_picture->data[i], s->current_picture->data[i], s->frame_width / (i ? 4 : 1), s->frame_height / (i ? 4 : 1), pict->linesize[i], s->current_picture->linesize[i]); emms_c(); if (ret < 0) { int j; for (j = 0; j < i; j++) { av_freep(&s->motion_val8[j]); av_freep(&s->motion_val16[j]); } av_freep(&s->scratchbuf); return -1; } } // align_put_bits(&pb); while (put_bits_count(&pb) & 31) put_bits(&pb, 1, 0); flush_put_bits(&pb); pkt->size = put_bytes_output(&pb); if (s->pict_type == AV_PICTURE_TYPE_I) pkt->flags |= AV_PKT_FLAG_KEY; *got_packet = 1; return 0; } #define OFFSET(x) offsetof(struct SVQ1EncContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "motion-est", "Motion estimation algorithm", OFFSET(motion_est), AV_OPT_TYPE_INT, { .i64 = FF_ME_EPZS }, FF_ME_ZERO, FF_ME_XONE, VE, "motion-est"}, { "zero", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ZERO }, 0, 0, FF_MPV_OPT_FLAGS, "motion-est" }, { "epzs", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_EPZS }, 0, 0, FF_MPV_OPT_FLAGS, "motion-est" }, { "xone", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_XONE }, 0, 0, FF_MPV_OPT_FLAGS, "motion-est" }, { NULL }, }; static const AVClass svq1enc_class = { .class_name = "svq1enc", .option = options, .version = LIBAVUTIL_VERSION_INT, }; const FFCodec ff_svq1_encoder = { .p.name = "svq1", CODEC_LONG_NAME("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_SVQ1, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, .priv_data_size = sizeof(SVQ1EncContext), .p.priv_class = &svq1enc_class, .init = svq1_encode_init, FF_CODEC_ENCODE_CB(svq1_encode_frame), .close = svq1_encode_end, .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV410P, AV_PIX_FMT_NONE }, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; void ff_svq1enc_init(SVQ1EncDSPContext *c) { c->ssd_int8_vs_int16 = ssd_int8_vs_int16_c; #if ARCH_PPC ff_svq1enc_init_ppc(c); #elif ARCH_X86 ff_svq1enc_init_x86(c); #endif }